• español
  • English
  • Login
      • español
      • English
    • English 
      • español
      • English
    • Login
    View Item 
    •   riUAL Home
    • Repositorio de Proyectos Obligatorio Acceso Abierto
    • Proyecto DPI2017-85007-R
    • Artículos de revista Proyecto DPI2017-85007-R
    • View Item
    •   riUAL Home
    • Repositorio de Proyectos Obligatorio Acceso Abierto
    • Proyecto DPI2017-85007-R
    • Artículos de revista Proyecto DPI2017-85007-R
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants

    Files
    Desalination_pre-print.pdf (1.284Mb)
    Identifiers
    URI: http://hdl.handle.net/10835/6803
    Services
    RISMendeley
    Share
    Stadistics
    View Usage Statistics
    Metadata
    Show full item record
    Author/s
    Gil, Juan Diego; Ruiz-Aguirre, Alba; Roca, Lidia; Zaragoza, Guillermo; Berenguel, Manuel
    Date
    2018
    Abstract
    Desalting brines from Reverse Osmosis (RO) plants is one of the most promising applications of Membrane Distillation (MD) systems. The development of accurate models to predict MD system performances plays a significant role in the design of this kind of industrial applications. In this paper, a commercial-scale Permeate-Gap Membrane Distillation (PGMD) module was modelled by means of two different approaches: Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). Condenser inlet temperature, evaporator inlet temperature, feed flow rate and feed water salt concentration were selected as inputs of the model, while permeate flux and Specific Thermal Energy Consumption (STEC) were chosen as responses. The prediction abilities of both RSM and ANN models were compared with further experimental data by using the Analysis of Variance (ANOVA) and the Root Mean Squared Error (RMSE). The results show that the ANN model is able to predict in a more precise way the behaviour of t...
    Collections
    • Artículos de revista Proyecto DPI2017-85007-R [22]

    Browse

    All of riUALCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Of interest

    About the RepositoryCopyright FAQsSelf-archiving instructions

    Autoarchivo policies of publishers

    Indexed in

    Contact Us
    Contact Us