• español
  • English
  • Login
      • español
      • English
    • English 
      • español
      • English
    • Login
    View Item 
    •   riUAL Home
    • Repositorio de Proyectos Obligatorio Acceso Abierto
    • Proyecto DPI2017-85007-R
    • Artículos de revista Proyecto DPI2017-85007-R
    • View Item
    •   riUAL Home
    • Repositorio de Proyectos Obligatorio Acceso Abierto
    • Proyecto DPI2017-85007-R
    • Artículos de revista Proyecto DPI2017-85007-R
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Files
    sensors-19-03155.pdf (5.403Mb)
    Identifiers
    URI: http://hdl.handle.net/10835/6915
    Services
    RISMendeley
    Share
    Stadistics
    View Usage Statistics
    Metadata
    Show full item record
    Author/s
    Blanco, José Luis; Mañas, Francisco; Torres-Moreno, José Luis; Rodríguez, Francisco; Giménez Fernández, Antonio
    Date
    2019-07
    Abstract
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial densi...
    Collections
    • Artículos de revista Proyecto DPI2017-85007-R [17]

    Browse

    All of riUALCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    Statistics

    View Usage Statistics

    Of interest

    About the RepositoryCopyright FAQsSelf-archiving instructions

    Autoarchivo policies of publishers

    Indexed in

    Contact Us
    Contact Us