Show simple item record

dc.contributor.authorFernández Martínez, Manuel
dc.contributor.authorGarcía Guirao, Juan Luis
dc.contributor.authorSánchez Granero, Miguel Ángel
dc.date.accessioned2020-01-17T13:16:14Z
dc.date.available2020-01-17T13:16:14Z
dc.date.issued2019-04-18
dc.identifier.issn2073-8994
dc.identifier.urihttp://hdl.handle.net/10835/7577
dc.description.abstractIn this paper, we prove the identity dimH(F)=d⋅dimH(α−1(F)) , where dimH denotes Hausdorff dimension, F⊆Rd , and α:[0,1]→[0,1]d is a function whose constructive definition is addressed from the viewpoint of the powerful concept of a fractal structure. Such a result stands particularly from some other results stated in a more general setting. Thus, Hausdorff dimension of higher dimensional subsets can be calculated from Hausdorff dimension of 1-dimensional subsets of [0,1] . As a consequence, Hausdorff dimension becomes available to deal with the effective calculation of the fractal dimension in applications by applying a procedure contributed by the authors in previous works. It is also worth pointing out that our results generalize both Skubalska-Rafajłowicz and García-Mora-Redtwitz theorems.es_ES
dc.language.isoenes_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHausdorff dimensiones_ES
dc.subjectfractal structurees_ES
dc.subjectspace-filling curvees_ES
dc.titleCalculating Hausdorff Dimension in Higher Dimensional Spaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-8994/11/4/564es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional