Show simple item record

dc.contributor.authorMañas Mañas, Juan Francisco
dc.contributor.authorMoreno Balcázar, Juan José
dc.contributor.authorWellman, Richard
dc.date.accessioned2020-02-19T08:28:47Z
dc.date.available2020-02-19T08:28:47Z
dc.date.issued2020-02-03
dc.identifier.issn2227-7390
dc.identifier.urihttp://hdl.handle.net/10835/7697
dc.description.abstractIn this paper, we consider a discrete Sobolev inner product involving the Jacobi weight with a twofold objective. On the one hand, since the orthonormal polynomials with respect to this inner product are eigenfunctions of a certain differential operator, we are interested in the corresponding eigenvalues, more exactly, in their asymptotic behavior. Thus, we can determine a limit value which links this asymptotic behavior and the uniform norm of the orthonormal polynomials in a logarithmic scale. This value appears in the theory of reproducing kernel Hilbert spaces. On the other hand, we tackle a more general case than the one considered in the literature previously.es_ES
dc.language.isoenes_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSobolev orthogonal polynomialses_ES
dc.subjectJacobi weightes_ES
dc.subjectasymptoticses_ES
dc.titleEigenvalue Problem for Discrete Jacobi–Sobolev Orthogonal Polynomialses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://www.mdpi.com/2227-7390/8/2/182es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional