Show simple item record

dc.contributor.authorPeña, Haydee
dc.contributor.authorMendoza, Heysa
dc.contributor.authorDiánez, Fernando
dc.contributor.authorSantos, Mila
dc.date.accessioned2020-11-03T11:25:04Z
dc.date.available2020-11-03T11:25:04Z
dc.date.issued2020-10-14
dc.identifier.issn2073-4395
dc.identifier.urihttp://hdl.handle.net/10835/8723
dc.description.abstractThis work studies variables measured from the first phase of composting through the acquisition of the final product, with the goal of identifying those that are more strongly related to quality and are most useful for developing an index. The necessity to establish quality control procedures thus exists for the classification of raw materials in the same way as for the finished products. To accomplish this, three mixtures were prepared, with the goal of achieving a C/N ratio of 30 and a moisture content of 60%. The primary component of each mixture was: fruit processing waste (C1), sewage sludge from the food industry (C2), and the manufacturing waste of fried foods (C3). Temperatures were measured over 107 days, with the corresponding data fit to a logistical model where T °C ~ α / ((1 + exp (− (Time − β) / − γ))) + δ, with interaction compost * time being statistically significant (p < 0.001). This allowed for the temperatures, in keeping with health concerns, to be confirmed. Likewise, a linear regression analysis demonstrated the decomposition of organic matter at 0.82%/week. Statistically, the parameters, measured during the process, with the least variability were selected, which differed in the average contrasts: germination index (cucumber), electrical conductivity, and average moisture. A principal component analysis (PCA) and Spearman’s correlation analysis revealed the best Germination Index (GI) values for C1, due to lower electrical conductivity (EC) and bulk density (Bd) along with higher organic matter content (TOM). For its part, C2 induced a higher Relative emergence (RE) of the cucumber thanks to its higher content of total nitrogen (TN) and lower contribution of Cu, Zn and K. C3 showed a higher presence of salts, less favorable physical characteristics (>Bd and <TPS, total pore space) and higher content of Zn and Cu. Composting carried out with appropriate mixtures can offer high-quality products for use as fertiliser, in soil restoration, and as an alternative substrate to peat and virgin mountain soil.es_ES
dc.language.isoenes_ES
dc.publisherMDPIes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcompostable mixturees_ES
dc.subjectcompostinges_ES
dc.subjectchemometricses_ES
dc.titleParameter Selection for the Evaluation of Compost Qualityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-4395/10/10/1567es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional