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ABSTRACT

Incorporating ecosystem functioning and functional diversity in ecology and nature
conservation is key to promote sustainability and a safe operating space for humanity.
Nowadays, numerous international agreements, such as the Convention on Biological
Diversity (CBD), face the challenge of safeguarding the ecological processes and ecosystem
functions that sustain the multiple facets of biodiversity and ecosystem services. Indeed,
variables describing ecosystem functioning are widely demanded to define essential
biodiversity variables, a framework to coordinate monitoring programmes worldwide.
Ecosystem functioning is particularly relevant to track and forecast how environmental
changes affect biodiversity and ecosystem services. To characterize ecosystem functioning,
multiple remote sensing techniques can be used, such as the Ecosystem Functional Type
(EFT) approach. EFTs can be defined as groups of ecosystems with similar dynamics of matter
and energy exchanges between the biota and the physical environment. EFTs can be derived
from biologically meaningful descriptors (named Ecosystem Functional Attributes -EFAs-) of
the seasonal curves of spectral indices as surrogates of focal ecosystem functions, for
instance, of primary production dynamics, one of the most essential and integrative

indicators of ecosystem functioning.

The main objective of this thesis was to provide a remote-sensing based conceptual and
methodological approach to incorporate the functional dimension of biodiversity at
ecosystem level in ecology and conservation biology through the application of the
Ecosystem Functional Type (EFT) concept. We achieved this goal in four steps: 1) First, we
provide ground-based empirical evidence for the use of satellite-derived EFTs as descriptors
of the regional heterogeneity in ecosystem functioning, i.e., satellite-derived EFTs as
homogeneous patches of the land surface in terms of Net Ecosystem Exchange (NEE)
dynamics measured on ground. 2) Second, we showed how EFTs can be used to describe the
spatial heterogeneity and inter-annual variability of ecosystem functioning (i.e. EFAs and

EFTs), ecosystem functional diversity (i.e. EFT richness and EFT rarity) and ecosystem
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functional stability (interannual variability and dissimilarity) and released the associated
dataset. 3) Third, we provide a proof of concept on how to use EFTs to incorporate ecosystem
functional heterogeneity and singularity in setting geographic conservation priorities. 4)
Finally, we also provide a proof of concept on how to use EFTs in biological regionalizations

to complement the compositional and structural descriptions of biodiversity.

Theoretical and empirical models support the relationship between spectral indices derived
from satellite images (e.g., Enhanced Vegetation Index -EVI-) and essential functional
variables of ecosystems, such as primary production. In this thesis, we identified EFTs from
three descriptors of the seasonal curves of MODIS/Terra EVI (MOD13Q1 product): annual
mean (proxy of primary production), seasonal coefficient of variation or standard deviation

(descriptors of seasonality), and date of maximum EVI (indicator of phenology).

Satellite-derived EFTs demonstrated to be an ecosystem functional classification that can
inform on homogeneous patches on the land surface in terms of their NEE dynamics
measured on ground. Given that NEE dynamics is related to primary production, a focal
ecosystem function, EFTs can then be used (as essential variables) to describe, assess and
monitor the regional heterogeneity of ecosystem functioning (Chapter I). EFTs also provide
a straightforward approach to characterize the spatial diversity, i.e. EFT richness and EFT
rarity, and functional stability, i.e. EFT interannual variability and dissimilarity, of ecosystem
functioning to inform scientists and managers on ecosystem functional diversity patterns
and trends (Chapter II). Furthermore, EFTs helped to both reinforce and complement
traditional geographic conservation priorities based on biodiversity composition and
structure by incorporating the heterogeneity and singularity of focal ecosystem functions
(Chapter III). Finally, EFTs allowed us to understand the relationship between different
dimensions of biodiversity in ecological regionalization exercises, i.e. based on biodiversity
composition and structure (species distribution, endemisms, vegetation types) and on

patterns of ecosystem functioning (Chapter V).



Overall, the characterization of the spatial patterns and temporal variability of ecosystem
functioning in terms of EFAs, EFTs, and EFT diversity metrics derived from satellite spectral
indices related to a focal ecosystem function (e.g. Enhanced Vegetation Index, as a proxy for
primary production), demonstrated to be a useful and innovative tool to incorporate
ecosystem functioning at regional scale into ecology and conservation under the new
conservation paradigm that considers ecological processes and ecosystem functions and

services.
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RESUMEN

La incorporacion del funcionamiento de los ecosistemas y la diversidad funcional en la
ecologia y la conservacién de la naturaleza es fundamental para promover la sostenibilidad
y un espacio seguro para la humanidad. Hoy en dia, numerosos acuerdos internacionales,
como el Convenio sobre la Diversidad Bioldgica (CDB), se enfrentan al reto de salvaguardar
los procesos ecoldgicos y las funciones de los ecosistemas que sustentan las multiples
facetas de la biodiversidad y los servicios ecosistémicos. De hecho, se demanda que variables
que describen el funcionamiento de los ecosistemas definan las variables esenciales de la
biodiversidad, un marco para coordinar los programas de vigilancia ambiental en todo el
mundo. El funcionamiento de los ecosistemas es particularmente importante para el
seguimiento y monitoreo de los cambios ambientales que afectan a la biodiversidad y los
servicios de los ecosistemas. Para caracterizar el funcionamiento de los ecosistemas, pueden
utilizarse multiples técnicas basadas en teledeteccion, como la aproximacion basada en tipos
funcionales de ecosistemas (TFEs). Los TFEs pueden definirse como grupos de ecosistemas
con una dinamica similar de intercambios de materia y energia entre la biota y el entorno
fisico. Los TFEs pueden derivarse de descriptores biolégicamente significativos
(denominados Atributos Funcionales del Ecosistema - AFE), obtenidos de las curvas
estacionales de los indices espectrales, y utilizados como subrogados de las funciones
focales del ecosistema, por ejemplo, de la dindmica de la produccién primaria, uno de los

indicadores mas esenciales e integradores del funcionamiento del ecosistema.

El principal objetivo de esta tesis doctoral fue proporcionar un enfoque conceptual y
metodolégico basado en la teledeteccion para incorporar la dimensién funcional de la
biodiversidad a nivel de ecosistema en la ecologia y la biologia de la conservacién, mediante
la aplicacién del concepto de Tipo Funcional de Ecosistema (TFE). Logramos este objetivo en
cuatro pasos: 1) En primer lugar, aportamos pruebas empiricas basadas en datos de campo
para la utilizacién de los TFEs obtenidos mediante teledeteccion como descriptores de la

heterogeneidad regional en el funcionamiento de los ecosistemas, es decir, determinamos
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si los TFEs obtenidos mediante satélite son parches homogéneos de la superficie terrestre
en términos de la dindmica de intercambio neto de ecosistemas (i.e. CO>). 2) En segundo
lugar, mostramos como pueden utilizarse los TFEs para describir la heterogeneidad espacial
y la variabilidad interanual del funcionamiento de los ecosistemas (es decir, los AFE y los
TFE), la diversidad funcional de los ecosistemas (es decir, la riqueza y la rareza de TFEs) y la
estabilidad funcional de los ecosistemas (variabilidad y disimilitud interanuales), y ponemos
a disposicion de la comunidad cientifica el conjunto de datos correspondiente. 3) En tercer
lugar, ofrecemos una prueba de concepto sobre como utilizar TFEs para incorporar la
heterogeneidad y la singularidad funcional de los ecosistemas en el establecimiento de
prioridades geogréficas en conservacion. 4) Por ultimo, también proporcionamos una prueba
de concepto sobre como utilizar TFEs en las regionalizaciones biologicas para complementar

las descripciones composicionales y estructurales de la biodiversidad.

Los modelos tedricos y empiricos apoyan la relacion entre los indices espectrales derivados
de las imagenes satelitales (por ejemplo, el indice de vegetacion mejorado -EVI-) y las
variables esenciales del funcionamiento de los ecosistemas, como la produccién primaria. En
esta tesis, identificamos TFEs a partir de tres descriptores de las curvas estacionales del EVI
de MODIS/Terra (producto MOD13Q1): media anual (proxy de la produccién primaria),
coeficiente de variaciéon estacional o desviacion estandar (descriptores de la estacionalidad)

y fecha del EVI mé&ximo (indicador de la fenologia).

Los TFEs obtenidos mediante teledeteccion demostraron ser una clasificacion funcional del
ecosistema que puede informar sobre parches homogéneos en la superficie terrestre en
términos de su dindmica de intercambio de CO, medida en tierra. Dado que esta dindmica
esta relacionada con la produccién primaria, una funcién central del ecosistema, los TFEs
pueden utilizarse (como variables esenciales) para describir, evaluar y vigilar la
heterogeneidad regional del funcionamiento del ecosistema (Capitulo I). Los TFEs también
proporcionan un enfoque directo para caracterizar la diversidad espacial, es decir, la riqueza
y la rareza de TFEs, y la estabilidad funcional, es decir, la variabilidad y la disimilitud interanual

de TFEs, del funcionamiento de los ecosistemas para informar a la comunidad cientifica y a



la administracion de los patrones y tendencias de la diversidad funcional de los ecosistemas
(Capitulo II). Ademas, los TFEs contribuyeron a reforzar y complementar las prioridades
tradicionales de conservacion geografica basadas en la composicion y la estructura de la
diversidad biologica al incorporar la heterogeneidad y la singularidad de las funciones
focales de los ecosistemas (Capitulo III). Por Gltimo, los TFEs nos permitieron comprender la
relacion entre las diferentes dimensiones de la biodiversidad en los ejercicios de
regionalizacion ecolégica, es decir, basados en la composicion y la estructura de la
biodiversidad (distribucion de las especies, endemismos, tipos de vegetacion) y en los

patrones de funcionamiento de los ecosistemas (Capitulo IV).

En general, la caracterizacién de los patrones espaciales y la variabilidad temporal del
funcionamiento de los ecosistemas en términos de AFEs, TFEs y métricas de diversidad de
TFEs derivadas de los indices espectrales satelitales relacionados con una funcién central del
ecosistema (por ejemplo, el indice de vegetacidn mejorado, como sustituto de la produccion
primaria), demostré ser un instrumento Util e innovador para incorporar el funcionamiento
de los ecosistemas a escala regional en la ecologia y la conservacion dentro del nuevo
paradigma de conservacion que considera los procesos ecoldgicos y las funciones y servicios

de los ecosistemas.
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Introduction

1. INTRODUCTION

1.1. The multidimensional nature of biodiversity and its importance for the

integrity of ecosystems

Biodiversity is a central concept in ecology and conservation that can be understood as a
measure of the total difference within a biological system (Lyashevska & Farnsworth, 2012).
Since its proposal, the concept has received much attention due to its complex and
hierarchical nature. In 1992, the United Nations Earth Summit in Rio de Janeiro defined
biodiversity as "the variability among living organisms from all sources, including, terrestrial,
marine, and other aquatic ecosystems, and the ecological complexes of which they are part:
this includes diversity within species, between species and of ecosystems” (Convention on
Biological Diversity, 1992). From this declaration, several definitions have been proposed to
provide a more comprehensive concept of biodiversity. While these definitions can vary
enormously (Kaennel, 1998; Gastén and Spicer, 2013), a common feature among them is that
biodiversity arises at multiple levels of biological organization (i.e. genetic, species,
ecosystems and ecoregions) and it is inherently multidimensional (Noss, 1990; Lyashevska &
Farnsworth, 2012; Naeem et al.,, 2016). Such complex nature implies the acknowledgement
of biodiversity is organized in three main dimensions -composition, structure and function-
(Noss, 1990; Walters and Scholes, 2017) (Figure 1.1). Composition deals with the identity and
variety of entities in a collection (e.g., species lists and diversity indices); structure is the
physical organization or pattern of a system (e.g., habitat complexity or physiognomy of
vegetation); and function involves ecological processes (e.g., information, matter and energy
exchanges). The acknowledgement of the importance of research on the development of
new methodologies and analytic tools for measuring the natural variation of biodiversity

embracing all its dimensions is currently one of the mainstays of biological sciences.
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Figure 1.1. Biodiversity dimensions from Scholes et al., (2017) based on Noss, (1990).

The growing awareness that biodiversity is a precious global asset to human well-being and
that the integrity of habitats and ecosystems are at serious risk, has increased the importance
of biodiversity-related research. Such an investigation has shown that the characterization
and monitoring of all dimensions of biodiversity is key to maintaining ecosystems healthy
and resilient to global change (Walters and Scholes, 2017). First, nowadays it is widely
recognized that healthy ecosystems are the basis of human well-being since they provide
the multiple benefits that we need to have an good life (MEA, 2005). Such benefits, the so-
called ecosystem services, are obtained only if ecosystems hold adequate biodiversity
composition and structure that guarantees the functional processes necessary to deliver
them (Cardinale et al.,, 2012). Second, ecosystems have been resilient enough to gradually
adapt to environmental changes. However, the demographic growth of the human
population and the exploitation of natural resources have dramatically reduced biological
diversity (Bongaarts, 2019) undermining ecosystems' abilities to function efficiently and

thereby diminishing their ability to respond to environmental changes (Oliver et al., 2015).
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1.2. Compositionalism vs functionalism

Even though traditionally compositional and structural biodiversity has been more important
in ecology and conservation than functional biodiversity (Calicott 1999; Lovett et al., 2005),
in recent decades the role of ecosystem functions in biodiversity studies has significantly
increased (Oliver et al., 2015; Navarro et al., 2017; Pettorelli et al.,, 2018). Indeed, biodiversity
research has moved from a compositional approach oriented towards the biological
hierarchy of organisms and populations of species that interact in biotic communities, to a
functional approach that aims to know the ecological processes that sustain biodiversity (Jax,
2010). Both approaches have a different conceptual basis, since while compositionalism is
based on evolutionary ecology, functionalism adopts the principles of thermodynamic
ecology (Callicott et al., 1999, Rodriguez, 2016) (Figure 1.2). According to Cabello et al,
(2012), the higher tangibility of the discrete entities that study evolutionary ecology (such as
species) has made it possible to make more and earlier progress in the use of biodiversity
composition and structure in ecology and conservation. In contrast, the fact that
thermodynamic ecology (e.g. functions) is based on continuous and intangible units using
aggregation criteria such as biomass or matter and energy flows has delayed and limited its
use. Despite their methodological and theoretical differences, in practice, both approaches
are complementary, since they offer the opportunity to address the current biodiversity crisis
from a wide variety of arguments that as a whole deal to the intrinsic, instrumental and

relational values of biodiversity (Tallis and Lubchenco, 2014).
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Figure 1.2. Compositionalism vs functionalism. Based on Callicott, (1999) and Rodriguez, (2016).

1.3. Ecosystem functioning as a focus in the study of the functional dimension

of biodiversity

The incorporation of ecosystem functioning in ecological research offers a better
understanding of spatial and temporal patterns of biodiversity (Garnier et al., 2016). Research
on the functional aspects of biodiversity has primarily focused on reflecting the variability of
ecological attributes among species that provides a mechanistic link to ecosystem resistance,
resilience and functioning (Petchey & Gaston, 2006; Lavorel et al.,, 2007). However, because
the final goal of the functional biodiversity dimension research is to focus on processes that
arise as an integral response at the ecosystem level, in practice, it has been expanded to deal
with the characterization of ecosystem functioning (e.g., Cabello et al., 2012). Nowadays, the

ecosystem functioning has an essential role in biodiversity research, since through it, we can
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address how systems perform, and provide the links between biological diversity (Diaz et al.,
2007; Chapin et al, 2010; Cadotte et al., 2011; Asner et al, 2017), ecosystem services
(Balvanera et al., 2006; Duncan et al.,, 2015), and ecological resilience (Petchey and Gaston,
2006). In this sense, variables describing ecosystem functioning are widely demanded to
define essential biodiversity variables, a framework to coordinate monitoring programmes
worldwide (Pereira et al., 2013). Functional variables have also been claimed to predict, for
example, how communities and ecosystems respond to environmental change (Bengtsson,
1998) and on understanding how declining diversity influences ecosystem services on which
humans depend (Costanza et al., 1997; Pettorelli et al., 2018). Furthermore, variables capable
of describing ecosystem functioning at regional to global scales are needed to advance in
the definition of one of the nine critical, but still unassessed planetary boundaries, i.e.

functional diversity (Steffen et al., 2015).

Multiple definitions of ecosystem functioning and related terms of its semantic field (i.e.
ecological processes, ecosystem functions) can be found in the literature (Jax 2010; Pettorelli
et al, 2018). All of them try to reflect the collective life activities of plants, animals, and
microbes and the effects that these activities (e.g. feeding, growing, moving, excreting
waste) have on the physical and chemical conditions of their environment. In this thesis, we
considered the following definitions: 1) Ecological processes as “the resulting activities from
interactions among organisms and with their environment” (Martinez, 1996); 2) Ecosystem
processes as “the transfer of energy, material, or organisms among pools in an ecosystem”
(Lovett et al., 2006); 3) Ecosystem functions as “attributes related to the performance of an
ecosystem that is the consequence of one or of multiple ecosystem processes” (Lovett et al.,
2006); and 4) Ecosystem functioning as the sum of all ecosystem functions, in particular, we
will refer to the ecosystem functioning as the information contained in magnitudes of stocks
and rates of processes involving exchanges of energy and matter between the biota and the

environment (Paruelo et al., 2001).
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1.4. Ecosystem functioning research in conservation

A better understanding of ecosystem functioning and functional diversity is key to
biodiversity conservation and its services. The emergence of the biodiversity-ecosystem
functioning paradigm has recognized the bidirectional relationship between the
conservation status of biodiversity and of ecosystem processes (Naeem, 2002; Hooper et al.,
2005). Accompanied by the challenge of safeguarding the ecological processes necessary for
the persistence of biodiversity over time (CBD, 2010; GBO4, 2014; Mace, 2014) appeared a
general concern for maintaining the capacity of ecosystems to sustain and regulate their
functions (Chapin et al., 2010; Prober et al., 2019) and services (Naidoo et al., 2008; Costanza
et al., 2014; Doak et al., 2015). Indeed, a growing number of international commitments, such
as the Convention on Biological Diversity or the Aichi Targets, require specific management

plans that specifically address ecosystem functioning (CBD, 2011; Visconti et al., 2019).

From the planning and management perspective, the importance of incorporating
ecosystem processes and functions into systematic conservation planning, ecosystem
management and adaptive management is also noted (Margules and Pressey, 2000;
Possingham et al., 2005; Klein et al., 2009; Jax, 2010). Systematic approaches to conservation
planning have been developed over the last two decades to guide the allocation of the scarce
resources available for protecting biodiversity (Carwardine et al., 2007). These approaches
should be supported by the identification of explicit targets for biodiversity features to guide
decisions for setting conservation priorities (Possingham et al., 2000). The identification of
conservation priorities areas is usually based on the important metrics in ecology and
conservation, such as richness or rarity (Ceballos and Brown, 1995). Nowadays, the need for
a larger and more representative and comprehensive global protected area network (Aichi
target 11, CBD 2011) that accounts for all dimensions of biodiversity could greatly benefit
from the explicit inclusion of the ecosystem functions and processes that support biodiversity

and ecosystem services (Naidoo et al., 2008).
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Ecosystem functioning provides several advantages in conservation schemes over
compositional and structural dimensions. Ecosystem functioning offers a more rapid
response to environmental changes, allowing adaptive management and early detection of
impacts (Milchunas and Lauenroth, 1995). Besides, the large-scale changes in ecosystem
functioning across Earth has important consequences for biodiversity and resources
availability to support biological conservation and human well-being (Olson et al., 2001). In
consequence, a growing number of authors have identified the need to integrate new
concepts and methodologies to connect classical ecology and contemporary conservation
with ecosystem functioning (Violle et al, 2014). Thus, new approaches aimed at
characterizing biodiversity based on ecosystem functioning could help to address such

conceptual and operational challenges.

1.5. Remote sensing of ecosystem functioning

Ecosystem functioning can be systematically and easily monitored through satellite images
over large areas, providing us a dynamic characterization of ecosystems (Paruelo et al., 2001).
Consequently, remote sensing appears as a tool that allows us to incorporate ecosystem
functioning indicators to biodiversity conservation (Duro et al.,, 2007; Cabello et al., 2012;

O’'Connor et al., 2015; Skidmore et al., 2015; Pettorelli et al., 2019).

Remote sensing has been around as a tool for nature science development for several
decades, improving the knowledge on ecology and conservation. Over the last decades,
technological advancements in sensors (e.g. increasing spatial, temporal and spectral
resolution), computer processing capacity of large-datasets and associated development of
analytic tools have opened new opportunities to biodiversity research (Pettorelli et al., 2018).
Remote sensing offers the opportunity to understand the spatial and temporal patterns of
the ecological processes that operate over large scales to support biodiversity and
ecosystem services (Pettorelli et al., 2016). In fact, remote sensing has repeatedly been
identified as a promising and powerful tool to aid biodiversity mapping and monitoring (e.g.,

Stoms and Estes 1993; Turner et al., 2003; Nagendra et al., 2013; Corbane et al, 2015;
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Pettorelli et al., 2016, 2018). Through remote sensing techniques, ecologists have more
integrative functional measures of the whole ecosystem performance that complement our

traditional view of ecosystems (Butchart et al.,, 2010; Asner et al., 2017).

Currently, the use of satellite images provides suitable methods to produce a spatially
continuous characterization of ecosystem (Xiao and Moody, 2004; Alcaraz-Segura et al,
2006). The spectral response of the vegetation changes according to physical parameters
(i.e. in wavelengths in the red, infrared and thermal range) allowing us to obtain continuous
information of these parameters and to study different functional attributes over large
extensions of territory (Box et al, 1989; Running et al, 2000; Pefuelas et al., 2004). In
particular, both theoretical and empirical models support the relationship between spectral
indices derived from satellite images and functional attributes of ecosystems such as
evapotranspiration, surface temperature, albedo or net primary production (Running et al.,
2000; Pettorelli et al., 2005, 2018). For us, the variable of interest is primary productivity for
the reasons which we will explain below. Among the most important and used spectral
indices related with primary productivity and derived from satellite images are the vegetation
indices (VI), we found the NDVI (Normalized Difference Vegetation Index) and the EVI
(Enhanced Vegetation Index). Both spectral indices (i.e. NDVI and EVI) are linear estimators
of the fraction of Photosynthetically Active Radiation (fPAR) intercepted by vegetation, which

is the main control of carbon gains (Monteith, 1972) (see section 3. General methodology).

Among the functional variables, primary productivity appears as the most integrative
descriptor of ecosystem functioning (Virginia and Wall, 2001), since primary productivity
represents the energy that enters into the life cycle, and it is linked to multiple ecosystem
processes and services (Paruelo et al., 2016). In essence, primary productivity shows a
comprehensive response to environmental changes, being a synthetic indicator of ecosystem

health (Costanza et al.,, 1992; Skidmore et al., 2015).

Ecological research based on spectral vegetation indices has great value in conservation
biology (Cabello et al., 2012; Pettorelli 2016, 2018), as a support to management (Pelkey et

al., 2003; Cabello et al., 2016) and in the study of biodiversity responses to environmental
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changes (Alcaraz-Segura et al., 2017). Among the many advantages of using these indices to
study the spatial and temporal variability of vegetation dynamics are the use of common
protocols across the Earth (Pettorelli et al., 2018), their high sensitivity and rapid response to
environmental changes (Milchunas and Lauenroth, 1995), their clear biological significance
(Pettorelli et al., 2005), and their connection to the assessment of ecosystem functions and

services (Volante et al., 2012; Paruelo et al., 2016).

1.6. Ecosystem Functional Types: a concept to incorporate the spatial
heterogeneity of ecosystem functioning into conservation practice and

landscape ecology

Ecosystem functioning has been characterized from spectral vegetation indices, in particular
from Ecosystem Functional Attributes (EFAs). Recently, the use of Ecosystems Functional
Attributes derived from spectral vegetation indices in species distribution models is allowing
the assessment of habitat suitability for plant (Arenas-Castro et al., 2018) and animal species
(Requena-Mullor et al.,, 2017, Regos et al., 2019) with great spatial and temporal precision,
and can even anticipate expected changes in the distribution of threatened plant species as
a result of climate change (Alcaraz-Segura et al., 2017). In addition, based on the Ecosystems
Functional Attributes, have been possible to evaluate the functional changes in ecosystems
at regional scale and at the protected area level (Alcaraz-Segura et al., 2009; Lourenco et al.,
2018). In fact, a monitoring program has been designed for the Spanish National Park
Network, which allows changes and anomalies in functioning to be identified, informing

managers of the health and state of conservation of the ecosystems (Cabello et al., 2016).

Satellite-derived Ecosystem Functional Attributes can be grouped together (i.e. getting a
functional classification), providing a useful framework to understand these large-scale
ecological changes in relation to ecosystem function and processes, and allowing the
identification of homogeneous categorical groups that showed a similar and coordinated
response to environmental factors (Diaz et al., 2013). Functional classifications have been

widely used to simplify a number of categories for regional-to-global synthesis and
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modeling studies (Wullschleger et al, 2014). The understanding changes in ecosystem
functioning across large-scales can benefit from a greater ability to represent and define
biotic communities (Reichstein et al., 2014). This leads the functional classifications to have

been widely used for ecologists historically.

In 1992, Soriano and Paruelo proposed the concept of Biozones referred to vegetation units
that share ecosystem functional characteristics, identified using time-series of satellite
images of spectral vegetation indices. Biozones were later renamed to Ecosystem Functional
Types (EFTs) by Paruelo et al., (2001), using an equivalent definition and methodology.
Shugart (1997) used for the first time the term EFT as "aggregated components of
ecosystems whose interactions with one another and with the environment produce
differences in patterns of ecosystem structure and dynamics”. Walker (1997) proposed the
use of a similar term, vegetation functional types, for “groups of PFTs in sets that constitute
the different states of vegetation succession in non-equilibrium ecosystems”. Scholes et al.,
(1997) also applied the term, in a wider sense for those areas having similar ecological
attributes, such as PFTs composition, structure, phenology, biomass or productivity. Since
then, several studies have applied hierarchy and patch dynamic theories (Reynolds and Wu,
1999; Wu et al., 2003) for the definition of ecosystem and landscape functional types at
different spatial scales. Valentini et al., (1999) defined land functional units by focusing on
“patches of the land surface that are able to exchange mass and energy with the atmosphere
and show a coordinated and specific response to environmental factors”. Paruelo et al.,
(2001) and Alcaraz-Segura et al., (2006, 2013) refined the EFT concept and proposed a
remote-sensing based methodology to derive them from VI. Both defined EFTs as “patches
of the land surface that share similar dynamics of matter and energy exchanges between the
biota and the physical environment” (Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2013).
In practice, EFTs group ecosystems (at large scales) on the basis of shared ecosystem
functioning without prior knowledge of vegetation type or canopy architecture (Fernandez
et al,, 2010; Pérez-Hoyos et al.,, 2014; Villarreal et al., 2018). In other words, EFTs capture

dynamics of ecosystem functioning, a different dimension to the structural vegetation types
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(Noss, 1990). As species can be grouped into plant functional types (PFTs) based on common
species traits, ecosystems can be grouped into ecosystem functional types (EFTs) based on
their similar ecosystem functioning (Noble and Gitay 1996). In this sense, we follow the
holistic approach by Naeem (1998, 2002), Hooper et al., (2005), and Loreau (2008), focusing
on the overall operation or performance of the ecosystem as a whole (see review in Jax,
2010). EFTs adopt a top-down approach to understand and map functional aspects of
ecosystem heterogeneity and diversity at the regional scale, while PFTs follow a bottom-up
approach to derive ecological properties at the regional scale by aggregation of species

functional traits used in their classification.

Regardless of the definition or methodology, since the concept of EFT appeared in 2001
(Paruelo et al., 2001), its implementation or that of similar methodologies has not stopped
growing to characterize functional heterogeneity at a regional scale (Alcaraz-Segura et al,
2006; Duro et al.,, 2007; Fernandez et al.,, 2010; Geerken, 2009; Alcaraz-Segura et al., 2013;
Ivits et al,, 2013; Pérez-Hoyos et al, 2014; Miiller et al., 2014; Wang and Huang, 2015;
Villarreal et al., 2018; Coops et al., 2018; Mucina, 2019). Satellite-derived EFAs and EFTs have
been used to describe large-scale functional biogeographical patterns (Ivits et al., 2013); to
assess the representativeness of environmental observatory networks (Villarreal et al., 2018);
to assess the environmental and human controls of ecosystem functional diversity (Alcaraz-
Segura et al,, 2013); to evaluate the effects of land-use changes on ecosystem functioning
(Oki et al., 2013); to improve weather forecasting models (Lee et al.,, 2013; Mdller et al., 2014);
and to improve species distribution and abundance models (Arenas-Castro et al., 2018,

2019).

However, no study has yet assessed whether such top-down-identified EFT classes are
biologically meaningful in terms of field-measured ecological processes, such as
biogeochemical fluxes, which would build reliability on the concept. In addition, few studies
have still formally tested the usefulness of EFTs to incorporate ecosystem functioning in

ecology and conservation.
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Therefore, the importance of this work relies in the strengthening of the conceptual and
methodological foundations of Ecosystem Functional Types as well as in the assessment of
their usefulness to incorporate ecosystem functioning as a necessary dimension of

biodiversity in regional ecology and conservation biology.



2. OBJECTIVES
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2. OBJECTIVES

2.1. General Objective

The overall objective of this thesis was to generate conceptual and methodological advances
to incorporate the functional dimension of biodiversity at ecosystem level in regional
ecology and conservation biology through the application of the Ecosystem Functional Type

(EFT) concept.

To achieve this goal, we proposed the following specific objectives:

2.2. Specific Objectives (SO)

SO1. To assess whether the satellite-based methodological approach to identifying
Ecosystem Functional Types, conceptually defined as land patches that show similar
ecosystem functioning in terms of their exchanges of matter and energy with the
atmosphere, is capable of capturing such differences in ecosystem processes as measured in

the field.

SO2. To develop an approach to describe the spatial heterogeneity and temporal variability
of a focal ecosystem function (i.e. primary production) by means of Ecosystem Functional
Types derived from the satellite images of vegetation greenness. Such approach provides
scientists and managers with valuable information of the functional heterogeneity and

diversity at ecosystem level for protected areas.

SO3. To use Ecosystem Functional Types, to incorporate the spatiotemporal heterogeneity
and singularity of a focal ecosystem function (i.e. primary production) in setting geographic
conservation priorities, as a new complementary approach to traditional ones, which are

usually based on biodiversity composition and structure.
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SOA4. To use the patterns of ecosystem functioning as a tool for biological regionalization, by
examining the relationships between biological regionalization based on biodiversity
composition and structure and patterns of ecosystem functioning revealed by the

geographical distribution of EFTs.

2.3. Structure of the thesis

The thesis is organized into four chapters. Each chapter aims to respond to the objectives

previously set out in section 2.2.

After the general introduction, which presents the background and need for this work, the
objectives are formulated, as well as the general methodology and the results of each
chapter. Moreover, a general discussion about the role of ecosystem functioning in
biodiversity science and conservation, and the final general conclusions have been carried
out. CHAPTER I aims to provide ground-based empirical evidence for the use of satellite-
derived Ecosystem Functional Types (EFTs) as descriptors of the regional heterogeneity in
ecosystem functioning, i.e., in the dynamics of matter and energy exchanges between the
biota and the physical environment. CHAPTER II provides a straightforward approach to
characterize the spatial heterogeneity and inter-annual variability of ecosystem functioning
(i.e. EFAs and EFTs), ecosystem functional diversity (i.e. EFT richness and EFT rarity) and
ecosystem functional stability (interannual variability and dissimilarity), providing to the
scientific community the dataset. CHAPTER III, and IV apply the concept to conservation
and regional ecology. In particular, CHAPTER III establishes EFT-based geographic
conservation priorities based on EFT richness and EFT rarity, representing a new and
complementary approach to long-established ones based on the compositional (e.g., species
richness) and structural (e.g., vegetation types) characterizations of biodiversity. CHAPTER IV
assesses the potential of EFT incorporating the functional perspective in the design of large-
scale biogeographical regionalizations, by using patterns of ecosystem functioning as a

means for biological regionalization.

The main road map of the thesis is presented in the following Figure 2.1.:



Structure of the thesis

1. General Introduction

4. Results

EFT validation and development EFT applicationsin conservation and ecology

4.1. CHAPTER]

EFT concept validation
Assessing whether satellite-based approach to identifying EFTs is capable of
capturing such differences in ecosystem processes as measured in the field

-

Figure 2.1. General structure of the thesis.
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3. GENERAL METHODOLOGY

This section only includes general methodological aspects that were not included in the
Methods sections of the different chapters that were already published or under revision as

journal articles.

3.1. Characterization of ecosystem functioning by means of satellite remote

sensing

In this thesis, the characterization of ecosystem functioning was based on satellite-derived
attributes of primary production as focal ecosystem function. We used primary production
as a focal ecosystem function because it is considered as an integrative surrogate of the
stocks and fluxes of matter and energy derived from biological activity (Virginia and Wall

2001), and can be easily characterized by remote sensing.

Nowadays, the use of satellite imagery provides useful methods to produce a spatially
explicit characterization of ecosystem functioning and its spatial heterogeneity (i.e,
ecosystem functional diversity) from local to regional and global scales (Ustin & Gamon,
2010; Tuanmu & Jetz, 2015; Jetz et al., 2016; Asner et al., 2017; Walters and Scholes, 2017;
Pettorelli et al., 2018; Anderson, 2018; Jetz et al., 2019; Gamon et al., 2019). Theoretical and
empirical models support the relationship between spectral indices derived from satellite

images and essential functional variables of ecosystems, such as primary production.
e Vegetation Indices

“A Vegetation Index (VI) is a spectral transformation of two or more bands designed to
enhance the contribution of vegetation properties and allow reliable spatial and temporal
inter-comparisons of terrestrial photosynthetic activity and canopy structural variations”
(Huete et al.,, 2002). Among the most important and widely used spectral vegetation indices
derived from satellite images we found the NDVI (Normalized Difference Vegetation Index)

and the EVI (Enhanced Vegetation Index). The NDVI is calculated from the reflectance in the
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red and near-infrared wavelengths (Tucker and Sellers, 1986) while the EVI calculation also
includes the reflectance in the blue band. This is an improvement over the NDVI, since EVI
considers the effect of the atmosphere and the radiometric signal from the ground under
the vegetation cover (Liu and Huete, 1995; Huete et al., 1999). Hence, we chose EVI instead
of any other vegetation index as an indicator of carbon gains since it is supposed to be more
reliable in both low and high vegetation cover situations (Huete et al., 1997). In this sense,
EVI is sensitive to changes in areas having high biomass, EVI reduces the influence of
atmospheric conditions on vegetation index values, and EVI corrects for canopy background

signals.

EVI is computed as follows:

(NIKR — RED)

EVI=0Gx
(NIR + C1 x RED — C2  Blue + L)

where NIR/RED/BLUE are atmospherically-corrected (Rayleigh and ozone absorption)
surface reflectances, L is the canopy background adjustment that addresses non-linear,
differential NIR and red radiant transfer through a canopy, and C1, C2 are the coefficients of
the aerosol resistance term, which uses the blue band to correct for aerosol influences in the
red band. The coefficients adopted in the MODIS-EVI algorithm are; L=1, C1 = 6, C2 = 7.5,
and G (gain factor) = 2.5.

As well as NDVI, EVI can be used as a proxy of Net Primary Production (NPP), by estimating
the fraction of Photosynthetically Active Radiation absorbed by vegetation (fAPAR), which
represents the main control of primary production (Monteith, 1972). Due to the linear
relationship between spectral vegetation indices and fAPAR (Hatfield et al., 1984; Boschetti
et al, 2011) (Figure 3.1), and that the other variables of the equation remain constant

(Equation 1).
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Figure 3.1. Fraction of Photosynthetically Active Radiation absorbed by vegetation (fAPAR) and
Enhanced Vegetation Index (EVI) lineal relation from field data and satellite observations (from

Boschetti et al., 2011).

NPP = PAR X fPAR X RUE

[gCm?year’] = [MJm? year] X  [proportion] X [gC MJ]

Equation 1. Monteith model to calculate the Net Primary Production (NPP) from the Photosynthetically
Active Radiation (PAR), the fraction of Photosynthetically Active Radiation absorbed by vegetation

(fPAR), and the Radiation-Use Efficiency by plants to transform it into organic carbon (RUE).

We obtained the spectral index EVI from the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor, onboard the Earth Observing System-Terra platform. In
particular, we selected the MOD13Q1.006 product (i.e. MOD13Q1 version 6) as the basis for
our data since it offers a long time series (almost 20 years), and 23 EVI maximum value
composite images per year (every 16 days) with an approximated pixel size of 231.65 meters
at the equator, which allows for the characterization of the temporal dynamics of ecosystem
functioning (Anderson, 2018).

The EVI values range from -1 to +1, where negative values generally correspond to snow,

ice, or water; and values closer to +1 represent the higher density of green leaves (Huete et
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al., 2002). Throughout the thesis, in addition to assuming the correct native pre-processing
of the data explained below, negative values (associated with snow, ice or water) were

transformed into zeros.
¢ MODIS-MOD13Q1 data quality

The algorithm to produce the MOD13Q1 product from which we used EVI has several
advantages over other indices in terms of data quality. MODIS EVI uses the blue band to
reduce residual atmosphere contamination caused by smoke and sub-pixel thin clouds
(Huete et al, 1999). Furthermore, the MODIS EVI products are computed from
atmospherically corrected bi-directional surface reflectances. The algorithm used by this
product (MOD13Q1.006 product) chooses the best available pixel value from all the
acquisitions from the 16 day period (Maximum Value Composite, MVC). The algorithm
operates on a per-pixel basis and requires multiple observations (16 days) to generate a
composited EVI (Composite Value, CV). Due to orbit overlap, multiple observations may exist
for one day, and a maximum of four observations per day may be collected. The MOD13Q1
algorithm separates all observations by their orbits, providing a means to filter the input data

further.

Once all 16 days are collected, “the MODIS-MOD13Q1 algorithm applies a filter to the data
based on quality, cloud presence, and viewing geometry (Figure 3.2). Cloud-contaminated
pixels and extreme off-nadir sensor views are considered lower quality. A cloud-free, nadir
view pixel with no residual atmospheric contamination represents the best quality pixel. Only
the highest quality, cloud-free, filtered data are retained for compositing” (Huete et al., 1999;
Didan, 2015). The goal of the compositing methodology is to extract a single value per pixel
from all the retained filtered data, which is representative of each pixel over the 16-day

period. The compositing technique works as follows (Figure 3.2):
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Figure 3.2. MODIS-MOD13Q1 compositing algorithm data flow (from Didan et al., 2015).

e Advantages and disadvantages of the MOD13Q1 product over other satellite

sensors to characterize ecosystem functioning

Other satellite products could potentially be used, since they have a higher spatial resolution
or more extended time series, but present some disadvantages compared to MODIS

MOD13Q1.

Regarding spatial resolution, using MODIS MOD13Q1 instead of other satellites with smaller
pixel size (e.g. Landsat or Sentinel 2) has several advantages in terms of data quality (e.g.
presence of clouds, length of the data record) along with the time series. Since the MODIS
sensor provides a daily image of the Earth, such high frequency (a maximum of four

observations per day may be collected) increases the probability of finding a cloud-free
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image every 16-days. MODIS provides the best composite value every 16 days (i.e. chooses
the best available pixel value from all the acquisitions from the 16 day period), applying an
algorithm that selects the image atmospherically corrected bi-directional surface
reflectances and select the image with lowest cloud presence, the lowest view angle, and the
highest EVI value. Although Landsat has a lower pixel size, their images have a lower
frequency (i.e., one image every 16 days). Thus, the fixed acquisition schedule makes it less
probable to acquire good-quality imagery for a particular place periodically (mostly if clouds
frequently occur over the area of interest, e.g. rainy seasons). Landsat 7 (1999-present) has a
more extensive time series than MODIS, however, on May 31, 2003, the satellite's scan-line
corrector failed. The scan-line corrector is a device on the satellite that keeps the scan lines
parallel to each other. Without the Scan Line Corrector (SLC), the scan lines are misaligned,
and there are wedge-shaped data gaps in the image (see sample Figure 3.3 for Sierra
Nevada, Spain). Therefore, since 2003 SLC failure of Landsat 7, Landsat 8 is the only fully
operational Landsat satellite in orbit, but covers a shorter time series than MODIS (Landsat8

covers from 2013 to present, while MODIS covers from 2001 to present).
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Figure 3.3. Effect of Scan Line Corrector fault on Landsat7 imagery in Sierra Nevada (Spain) and data

gaps due to clouds (in green and white). Landsat-7 image courtesy of the U.S. Geological Survey.

Other satellites have also been considered for their use, as Sentinel, which also has a higher
spatial resolution but the time series is still too short for long-term assessments (2014-

present).

In consequence, considering the advantages and disadvantages of MOD13Q1 product over
other satellite sensors to characterize ecosystem functioning, we recognize appropriate
MODIS for ecological studies at regional scales, according to Anderson, (2018), which
showed that the temporal resolution of MODIS is useful for characterizing the seasonal
dynamics of ecosystem functioning (Figure 3.4). Furthermore, there are other works that use

MODIS successfully at regional level (e.g. Lourenco et al., 2018; Requena-Mullor et al., 2018).
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Figure 3.4. "Log-log plot of spatial and temporal and grain sizes for 44 current and historic satellite
Earth observation (EO) sensors, coloured by biodiversity pattern type. Several sensors have been used
to measure multiple biodiversity patterns, and the most cited or most novel were selected in these

cases”. From Anderson, (2018).

e Ecosystem functioning dynamics characterization from Ecosystem Functional

Attributes and Ecosystem Functional Types

To characterize the ecosystem functioning using spectral vegetation indices we used the
approach developed by Paruelo et al,, (2001) and Alcaraz-Segura et al., (2006, 2013) based
on Ecosystem Functional Types (EFTs), defined here as patches of the land surface that share
similar primary production dynamics (i.e, Ecosystem Functional Attributes (EFAs):
productivity, seasonality, and phenology). The EFT concept is analogous to the Plant
Functional Type (PFT) concept that many land-cover product legends are based on, but

defined at a higher level of the biological organization. As plant species can be grouped
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according to common functional characteristics, ecosystems can be grouped according to
their common functional behavior. EFTs adopt a top-down approach to understand and map
functional aspects of ecosystem heterogeneity at the regional scale, while PFTs follow a
bottom-up approach to derive ecological properties at the regional scale by aggregation of
species functional traits used in their classification. In practice, EFTs group ecosystems (at
large scales) on the basis of shared ecosystem functioning without prior knowledge of
vegetation type or canopy architecture (Fernandez et al., 2010; Pérez-Hoyos et al,, 2014;
Villarreal et al., 2018). In other words, EFTs capture dynamics of ecosystem functioning, a

different dimension to the compositional or structural vegetation types (Noss, 1990).

In this thesis, to build EFTs (workflow in Figure 3.5), we parameterized the yearly seasonal
dynamics of carbon gains by using three metrics or EFAs that capture most of the variance
of the EVI annual curve. Biologically, these three metrics can be interpreted as surrogates
(Paruelo et al., 2001; Pettorelli et al., 2005; Alcaraz-Segura et al., 2006) of the total amount
and timing (both seasonality and phenology) of primary production, one of the most
integrative indicators of ecosystem functioning (Virginia and Wall, 2001). Statistically, these
three metrics or EFAs are known to be highly correlated with the first two, or three axes (and
hence capture most of the variance) of a Principal Component Analysis (PCA) run on the
NDVI or EVI annual dynamics in different regions (Townshend et al., 1985; Paruelo and
Lauenroth, 1998; Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2009; lvits et al., 2013). In
this thesis, to assess the variance explained by each metric, we examined the meaningfulness
of these three EFAs for describing the vegetation dynamics with a Principal Component
Analysis (PCA). We carried out it using the twelve months EVI values of the annual curve for
the study area, then, we analysed the correlation between the EFAs (EVI_mean, EVI_sCV or
EVI_SD and EVI_DMAX) and the first three principal axes of each PCA separately (see
Appendix Chapter II). The three main descriptors or EFAs used were: annual mean (EVI_mean,
surrogate of primary production), seasonal coefficient of variation or standard deviation
(EVI_sCV or EVI_SD, descriptors of seasonality), and the date of maximum EVI (EVI_ DMAX,

indicator of phenology). These three EVI metrics were orthogonal, since each EVI metric
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contributed independently to explain the variance of the EVI time series (see Appendix

Chapter II).

To derive EFT classes from EFAs, the range of values of each EFA was divided into four
intervals, i.e. quartiles, which were then combined, giving a potential number of (4 x 4 x 4)
64 EFTs. Following the logic of Noble and Gitay (Noble and Gitay, 1996) in developing
functional classifications, we decided to start from the simplest, as long as outputs were
ecologically interpretable. Our approach allows for a straightforward ecological
interpretability of the legend based on four categories of productivity, seasonality, and
phenology. Four intervals of each metric or EFA produced a relatively low number of
potential classes (4x4x4=64) and allowed for the maintenance of the observed spatial
patterns. In the case of DMAX, we wanted to reflect its ecological sense (the timing or
phenology of the greatest interception of radiation by vegetation) in the final classification,
so we had to group the 23 16-day MVC periods into just four classes that kept
correspondence with the four seasons of the year. In the case of EVI_mean and EVI sCV-
EVI_SD, by using the first, second, and third quartiles, we also obtained four categories for
each trait (as the four seasons in DMAX) with increasing values of productivity and

seasonality.
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Figure 3.5. Workflow to characterize ecosystem functioning trough Ecosystem Functional Types.
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Since EFTs are built from three independent descriptors of the EVI seasonal dynamics (see

Appendix Chapter II), the average EVI annual cycle of the 64 EFTs show differences among

each other in terms of mean annual EVI values, seasonal differences in the EVI values, and

phenology of the growing season peak (see Figure 3.6).
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Figure 3.6. Difference in the average EVI annual cycle of the 64 EFTs. Capital letters correspond to the

EVI annual mean, ranging from A to D for low to high EVI_mean. Small letters show the coefficient of

variation of EVI (EVL_sCV), ranging similarly from a to d for low to high EVI_sCV. The numbers indicate

the season of the date maximum of EVI (EVI_DMAX): 1-spring, 2-summer, 3-autumn, 4-winter.

In this section we only justify the use of the metrics, the methodology to build and code EFTs

is explained in each of the thesis chapters (sections 4.1.2.,4.2.2,,4.23,4.32).
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Abstract

Describing and quantifying ecosystem functioning provides a powerful tool for the
management and conservation of ecosystems and its services. Numerous ways to evaluate
ecosystem functioning have been developed, such as by means of species traits, Plant
Functional Types (PFTs), flux measurements with the Eddy Covariance (EC) technique, and
remote sensing techniques. We propose that the spatial heterogeneity in ecosystem
functioning at regional scale can be assessed and monitored by means of satellite-derived
Ecosystem Functional Types (EFTs): groups of ecosystems or patches of the land surface that
share similar dynamics of matter and energy exchanges. We hypothesize that, as observed
for PFTs, different satellite-derived EFTs should have distinct patterns and magnitudes of Net
Ecosystem Exchange (NEE) measured on ground. We derived EFTs based on the 2001-2014
time-series of satellite images of the Enhanced Vegetation Index (EVI) and compare them
with NEE measurements (derived from /n situ field observations using the EC technique)
across 50 sites in Europe. Our results show that distinct EFTs classes display significantly
different dynamics and magnitudes of NEE, and that EFTs perform marginally better than
PFTs to explain NEE regional patterns (0.953-0.978 and 0.923-0.960, respectively). Land-cover
maps based on PFTs are difficult to update at an annual basis and are not sensitive to
changes in ecosystem performance (e.g. due to droughts or pests) that do involve short-
term changes in PFT composition. Contrary, satellite-derived EFTs are sensitive to short-term
changes in ecosystem performance and can be produced on an annual basis using the same
classification rules, which provides a straightforward way to assess and monitor interannual

changes in ecosystem functioning and in ecosystem functional diversity.

KEYWORDS: Functional classification; Ecosystem Functional Types; Plant Functional Types;

Eddy Covariance; FLUXNET; Remote sensing.
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4.1.1. Introduction

Ecosystem functioning and functional diversity are key issues of current ecological research
(Jax, 2010; Violle et al., 2014, 2017; Tilman et al., 2014; Laureto et al., 2015; Pettorelli et al.,
2018; Villarreal et al., 2018; Isbell et al., 2018; Malaterre et al., 2019). Quantifying, monitoring
and understanding ecosystem functioning are useful to provide insights for management
and conservation of ecosystems and their services (Cabello et al., 2012; Pettorelli et al., 2018).
Variables capable of describing ecosystem functioning at regional to global scales are
needed to define essential biodiversity variables to monitor biodiversity status (Pereira et al.,
2013), to advance in the definition of this critical but still unassessed planetary boundary
(Steffen et al., 2015), and to quantify their associated ecosystem services (Costanza et al,
1997; Balvanera et al.,, 2017). Despite the ecosystem functioning importance, its definition is
unclear, and thus, multiple definitions can be found in the literature (see reviews in Jax 2010
and Pettorelli et al., 2018). Here, we adopt a holistic definition of ecosystem functioning as
the information contained in magnitudes of stocks and rates of processes involving
exchanges of energy and matter between the biota and the environment (Paruelo et al,

2001).

Multiple ways to evaluate ecosystem functioning have also been developed, from concepts
such as species traits or Plant Functional Types (PFTs), to direct observation techniques such
as Eddy Covariance (EC), and remote sensing. Traditionally, studies on ecosystem functioning
were approached by grouping species into PFTs based on structural (e.g., biotypes),
phylogenetic (e.g., coniferous) or functional species traits (e.g., metabolic pathway) that were
linked to biological processes (Lavorel et al., 2002, 2007). These functional classifications
aimed to reduce the diversity of biological entities (for instance genes, species or
ecosystems) (Noss, 1990), and to allow for the identification of homogeneous categorical
groups that showed a similar and coordinated responses to environmental factors and
effects on ecological processes (Diaz et al.,, 2013). The PFT approach has been widely used,
for instance in land-cover mapping and dynamic vegetation models, to simplify the

continuum of species traits into a reduced number of discrete categories suitable for
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regional-to-global synthesis and modeling studies (Wullschleger et al., 2014). However, this
simplification, although useful, can lead to information loss (Funk et al., 2017) and may not
be capable of predicting the overall ecosystem functioning (Clark et al., 2016; Virtanen 2017;
Thomas et al., 2019). Another more recent way to evaluate ecosystem functioning is by using
direct and continuous observations of the exchanges of mass and/or energy between the
land surface and the atmosphere measured. For instance, the Eddy Covariance technique
(EC), a standardized method that uses high-frequency wind and scalar concentration data
for calculating the Net Ecosystem CO, Exchange (NEE) between the land surface and the
atmosphere at the ecosystem level (Baldocchi et al., 2001). This approach is widely used and
regional (e.g., AmeriFlux, AsiaFlux, ICOS, NEON) and global networks of EC measurements
have emerged (e.g., FLUXNET; and more recently Fluxnet-CH4) (Franz et al., 2018; Knox et al,,
2019). Although FLUXNET has provided unprecedented information (Baldocchi et al., 2001),
these measurements are still not enough for assessing ecosystem functioning at regional or
global scales due to their small footprints (essentially considered as point-scale data) and a
lack of representativity (Villarreal et al., 2018). In parallel, advances in remote sensing to
measure plant traits, vegetation functions and ecosystem functional properties are providing
new opportunities to measure ecosystem functioning and functional diversity from regional
to global scales (Houborg et al.,, 2015; Huesca et al., 2015; Lausch et al., 2016; Rocchini et al.,
2018). Consequently, combining field-based measurements (such as EC) with remote sensing
data may allow for a better integration of information across multiple spatial and temporal
scales (Running et al., 1999; Wang et al.,, 2017). Indeed, multiple studies aim to derive global
wall-to-wall maps from fusing flux measurements with earth observation data, though

challenges and limitations remain (e.g. FLUXCOM; Jung et al., 2020).

Ecosystem functioning and functional diversity at the regional scale can be assessed as the
spatial heterogeneity in functions or in ecosystem functional behaviours by means of
satellite-derived Ecosystem Functional Types (EFTs) (Paruelo et al., 2001). Conceptually, EFTs
are defined as patches of the land surface that share similar dynamics of matter and energy

exchanges between the biota and the physical environment (Alcaraz-Segura et al.,, 2006,
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2013). The concept of EFT is equivalent to the concept of PFTs but applied to a higher level
of biological organization. That is, just like plant species can be grouped based on shared
functional traits (e.g. growth rates, nitrogen fixation) into PFTs, ecosystems can be grouped
based on their common functional dynamics (e.g. productivity, seasonality, phenology) into
EFTs (Paruelo et al.,, 2001). Empirically, remote sensing has been used to identify EFTs mainly
through spectral indices related to the carbon dynamics (Paruelo et al., 2001; Alcaraz-Segura
ant others 2006; lvits et al, 2013) but also including other functional aspects such as
evapotranspiration, surface temperature, and albedo (e.g., Fernandez et al., 2010). In practical
terms, EFTs classify ecosystems according to their functioning, distinguishing classes of
homogeneous annual dynamics in the land surface spectral properties considered without
any prior knowledge of vegetation cover (Fernandez et al., 2010; Pérez-Hoyos et al., 2014).
Furthermore, contrary to the static PFT classification, EFTs can be produced on an annual
basis using the same classification rules, which provides a straightforward way to track
interannual changes in ecosystem functioning. EFTs have been used to: describe large-scale
functional biogeographical patterns (lvits et al, 2013), assess the representativeness of
environmental observatory networks (Villarreal et al.,, 2018, 2019), assess the environmental
and human controls of ecosystem functional diversity (Alcaraz-Segura et al.,, 2013), evaluate
the effects of land-use changes on ecosystem functioning (Oki et al., 2012), improve weather
forecasting (Lee et al.,, 2013; Mdller et al., 2014) and species distribution/abundance models
(Arenas-Castro et al, 2018, 2019), and to identify geographic priorities for biodiversity

conservation (Cazorla et al.,, 2020).

So far, EFTs have been identified from satellite remote sensing data (but see Bond-Lamberty
et al,, 2016; Petrakis et al., 2018). However, it still remains untested whether such top-down-
identified EFT classes are biologically meaningful in terms of ecological processes measured
on ground, such as biogeochemical fluxes. That is, whether satellite-derived EFT classes
empirically differ in their exchanges of energy and matter measured on ground. If so, EFTs
could be used as biological entities for mapping the heterogeneity of such key ecosystem

processes at regional scales. Mapping EFTs as biological entities that capture the
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performance of whole ecosystems opens a tangible and feasible way to visualize and monitor
the spatial diversity of ecosystem functions from local to global scales, which complements
the traditional structural and compositional view of ecosystems (Paruelo et al., 2001; Alcaraz-
Segura et al.,, 2006; Asner et al., 2017). Therefore, linking satellite-derived EFTs identified at
large scales to biogeochemical fluxes measured at site level could help to strengthen the
ecological significance of the EFT patterns for ecosystem modelling and functional diversity

assessments, since it provides empirical evidence for the use of the concept in these areas.

The goal of this study is to provide field-based empirical evidence for the use of satellite-
derived EFTs as descriptors of regional heterogeneity in ecosystem functioning measured on
ground (i.e., seasonal dynamics of Net Ecosystem Exchange (NEE) between the biota and the
physical environment). Our hypothesis was that satellite-derived EFTs should significantly
differ in their exchanges of energy and matter with the atmosphere, as estimated with /n situ
field observations. That is, we propose that different satellite-derived EFTs should display
significantly different NEE measured using EC technique, while sites under the same EFT
should exhibit similar NEE dynamics. If proved, EFTs could serve as biologically meaningful
mapping entities to characterize spatial diversity in focal ecosystem functions. To achieve
our goal, we used publicly available data across continental Europe, given its high density of
EC sites, 1) to characterize the regional patterns of ecosystem functioning by means of
satellite-derived EFTs; 2) to assess whether different satellite-derived EFTs correspond to
different NEE dynamics measured on the ground with the EC technique; and 3) to assess how

EFTs perform compared to traditional PFTs to discriminate among different NEE dynamics.

4.1.2. Methods

Study area

We used NEE information of continental Europe as it has one of the largest densities of EC
sites worldwide (Table 4.1.1). Sites were distributed across four biogeographical regions (EEA

2016): Mediterranean (12 sites), Continental (21 sites), Atlantic (9 sites), and Alpine (8 sites).
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Only sites with a long-term (i.e., from 3 to 14 years) NEE time-series were included in the

analysis (detailed below).

Satellite-derived Ecosystem Functional Types (EFTs)

To characterize the regional heterogeneity in ecosystem functioning across continental
Europe, we identified Ecosystem Functional Types (EFTs) based on the 2001-2014 time-series
of satellite images of the Enhanced Vegetation Index (EVI) captured by the MODIS-Terra
sensor. These images (MOD13Q1.C006 product) provide a maximum composite EVI value
every 16 days at a ~230 m spatial resolution. EVI is a proxy for canopy greenness and
vegetation carbon gains or primary production (Huete et al., 1999). Based on the approach
by Alcaraz-Segura et al, (2013), we identified EFTs using three biologically meaningful
metrics of the EVI seasonal curve: the EVI annual mean (EVI_mean; an estimator of annual
primary production), the EVI seasonal standard deviation (EVI_SD; a descriptor of

seasonality), and the date of maximum EVI (EVI_DMAX; an indicator of phenology).

The range of values of each EVI metric was divided into four intervals, giving a potential
number of 64 EFTs (4 x 4 x 4). For EVI_DMAX, the four intervals agreed with the four seasons
of the year. For EVI_mean and EVI_SD, we extracted the first, second, and third quartiles for
each year and then calculated their interannual average for the 14-year period. To name
EFTs, we used two letters and a number: the first capital letter indicates net primary
production (EVI_mean), increasing from A to D; the second small letter represents seasonality
(EVI_SD), decreasing from a to d; the numbers are a phenological indicator of the growing
season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter. To summarize the
ecosystem functional diversity of the 2001-2014 period, we calculated the dominant EFT (i.e.,

the mode value for each pixel) of the period.
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Table 4.1.1. Main characteristics of the 50 Eddy Covariance (EC) sites in the study area. Data from FLUXNET 2015 dataset

ID Site Country PFT EFT Ecoregion n years Elevation Latitude Longitude
code (2001-2014) (m)

AT-Neu Neustift/Stu  Austria Grasslands Da2 Alpine 11 (2002-2013) 970 47116 11.317
bai Valley

BE-Bra Brasschaat Belgium Mixed Trees Ccl Atlantic 14 (2001-2014) 16 51.309 4520
(De Inslag
Trees)

BE-Lon Lonzee Belgium Croplands Ba1 Atlantic 11 (2004-2014) 167 50.552 4.744

BE-Vie Vielsalm Belgium Mixed Trees Bc1 Continental 14 (2001-2014) 439 50.305 5.998

CH-Cha Chamau Switzerland Grasslands Db1 Continental 10 (2005-2014) 393 47.210 8.410
grassland

CH-Dav Davos- Switzerland Evergreen Ac2 Alpine 14 (2001-2014) 1639 46.815 9.855
Seehorn Needleleaf
forest Trees

CH-Fru Fruebuel Switzerland Grasslands Da2 Continental 10 (2005-2014) 982 47115 8.537
grassland

CH-Lae Laegeren Switzerland Mixed Trees Da1 Continental 11 (2004-2014) 689 47.478 8.365

CH-Oe1 Oensingen1  Switzerland Croplands Cb1 Continental 7 (2002-2008) 450 47.285 7.731

grass
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ID Site Country PFT EFT Ecoregion n years Elevation Latitude Longitude
code (2001-2014) (m)
CZ-BK1 Bily Kriz- Czech Evergreen Ccl Continental 11 (2004-2014) 875 49.502 18.536
Beskidy Republic Needleleaf
Mountains Trees
CZ-BK2 Bily Kriz-  Czech Mixed Trees  Acl Alpine 9 (2004-2012) 855 49.494 18.542
grassland Republic
CZ-wet CZECHWET Czech Croplands Ba1 Continental 9 (2004-2012) 426 49.024 14.770
Republic
DE-Akm Anklam Germany Wetlands Ba1 Continental 5(2010-2014) -1 53.866 13.683
DE-Geb Gebesee Germany Croplands Ba1 Continental 14 (2001-2014) 161 51.100 10.914
DE-Gri Grillenburg-  Germany Grassland Da2 Continental 11 (2004-2014) 385 50.949 13.512
grass station
DE-Hai Hainich Germany Mixed Trees Ca1 Continental 12 (2001-2012) 430 51.079 10.452
DE-Kli Klingenberg  Germany Croplands Ba1l Continental 11 (2004-2014) 478 50.892 13.522
DE-Lkb Lackenberg ~ Germany Evergreen Ab2 Continental 5 (2009-2013) 1308 49.099 13.304
Needleleaf
Trees
DE-Lnf Leinefelde Germany Deciduous Da1 Continental 11 (2002-2012) 451 51.328 10.367
Broadleaf
Trees
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ID Site Country PFT EFT Ecoregion n years Elevation Latitude Longitude
code (2001-2014) (m)
DE-RuR Rollesbroich  Germany Grasslands Da2 Continental 4 (2011-2014) 515 50.621 6.304
DE-RuS Selhausen Germany Croplands Cb1 Atlantic 4 (2011-2014) 103 50.865 6.447
Juelich
DE-Seh Selhausen Germany Croplands Cb1 Atlantic 4 (2007-2010) 103 50.870 6.449
DE-Spw Spreewald Germany Mixed Trees  Cal Continental 5(2010-2014) 61 51.892 14.033
DE-Tha Tharandt- Germany Evergreen Bc1 Continental 14 (2001-2014) 385 50.963 13.566
Anchor Needleleaf
Station Trees
DK-Eng Enghave Denmark Croplands Ca1 Continental 4 (2005-2008) 10 55.690 12.191
DK-Sor Soroe- Denmark Deciduous Dal Continental 14 (2001-2014) 40 55.485 11.644
LilleBogesko Broadleaf
v Trees
ES-Amo Amoladeras  Spain Shrublands Ad4 Mediterranea 6 (2007-2012) 58 36.833 -2.252
ES-LJu Llano de los Spain Shrublands Ad1 Mediterranea 10 (2004-2013) 1600 36.926 -2.752
Juanes
FR-Fon Fontaineblea France Deciduous Da1 Atlantic 10 (2005-2014) 103 48.476 2.780
u Broadleaf
Trees
FR-Gri Grignon France Croplands Ccl Atlantic 11 (2004-2014) 125 48.844 1.951
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ID Site Country PFT EFT Ecoregion n years Elevation Latitude Longitude
code (2001-2014) (m)

FR-Pue Puechabon France Mixed Trees Cd1 Mediterranea 14 (2001-2014) 270 43.741 3.595

IT-BCi Borgo Cioffi  Italy Croplands Db4 Mediterranea 11 (2004-2014) 20 40.523 14.957

IT-CA1 Castel Italy Croplands Bd1 Mediterranea 4 (2011-2014) 200 42.380 12.026
d'Asso1

IT-CA2 Castel Italy Croplands Cb1 Mediterranea 4 (2011-2014) 200 42.377 12.026
d'Asso2

IT-CA3 Castel Italy Croplands Bd1 Mediterranea 4 (2011-2014) 197 42.380 12.022
d'Asso 3

IT-Col Collelongo-  Italy Deciduous Dal Alpine 14 (2001-2014) 1560 41.849 13.588
Selva Piana Broadleaf

Trees

IT-Cpz Castelporzia  Italy Evergreen Dd1 Mediterranea 9 (2001-2009) 68 41.705 12.376

no Needleleaf
Trees

IT-Lav Lavarone Italy Evergreen Bc1 Alpine 12 (2003-2014) 1353 45.956 11.281
(after Needleleaf
3/2002) Trees

IT-MBo Monte Italy Grasslands Aal Alpine 11 (2003-2013) 1550 46.014 11.045
Bondone

IT-Noe Sardinia/Arc  Italy Shrublands Ad1 Mediterranea 11 (2004-2014) 25 40.606 8.151

a di Noe
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ID Site Country PFT EFT Ecoregion n years Elevation Latitude Longitude
code (2001-2014) (m)
IT-Ro1 Roccarespa Italy Deciduous Da1 Mediterranea 8 (2001-2008) 235 42.408 11.930
mpani’l Broadleaf
Trees
IT-Ro2 Roccarespa Italy Deciduous Da1 Mediterranea 11 (2002-2012) 160 42.390 11.920
mpani2 Broadleaf
Trees
IT-SRo San Rossore  Italy Evergreen Cd3 Mediterranea 12 (2001-2012) 6 43.727 10.284
Needleleaf
Trees
IT-Tor Torgnon Italy Grassland Aal Alpine 7 (2008-2014) 1260 45.844 7.578
NL-Hor Horstermeer Netherlands Mixed Trees Dal Atlantic 8 (2004-2011) 2 52.240 5.071
NL-Loo Loobos Netherlands Evergreen Bd2 Atlantic 14 (2001-2014) 25 52.166 5.743
Needleleaf
Trees
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Eddy covariance (EC) sites for net ecosystem exchange (NEE)

To obtain NEE fluxes, 50 EC sites were selected across our study area from the FLUXNET2015
dataset (Table 4.1.1). The FLUXNET network (Baldocchi et al., 2001) provides a high-quality,
community-based globally distributed dataset of exchanges of CO, H.O, and energy
between the biosphere and the atmosphere measured using the EC technique (Baldocchi,
2003). We used data of NEE of CO, (NEE_VUT_REF, gC m™ d™') from the FLUXNET2015
database, which includes NEE data using a Variable Ustar Threshold (VUT) for each year,
selected on the basis of the model efficiency (MEF). The MEF analysis is repeated for each
half-hourly data (Baldocchi et al., 2001). We selected sites that: (a) were located in our study
area; (b) provided more than three consecutive years of data over the 2001-2014 period; (c)
provided daily averages of NEE calculated from half-hourly data (DD); and (d) had quality
control information (i.e. NEE_VUT_REF data with quality control flag QC > 1 were removed

since they represent medium and poor quality gap filled data).

To assess whether different satellite-derived EFT classes correspond to different NEE
dynamics and whether sites under the same EFT exhibit similar NEE dynamics, we applied
discriminant analysis. Discriminant analysis allowed us to examine the homogeneity within
each EFT class as well as the differences among EFT classes based on the annual dynamics
of NEE as a predictor variable (Williams ,1981, 1983). We selected the EFT of the MODIS pixel
where each EC site was located and its corresponding interannual average of the seasonal
cycle of NEE for the available years. EC sites fluxes were regarded as the ground truth
standard against which the satellite data were compared to calculate five performance

metrics: Kappa, Accuracy, Precision, Recall, and F1 score (Table 4.1.2).
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Table 4.1.2. Metrics, interpretations and equations used to evaluate and compare results from the

discriminant analysis, Pr(a) is the relative observed agreement between observations, and Pr(e) is the

hypothetical probability of agreement by chance. True Positives are the correctly classified as positive,

True Negative are the correctly classified as negative, Positives are all positives including false positives

(i.e. including falsely classified as positive, Type I error) and, Negatives are all negatives including false

negatives (i.e. falsely classified as negative, Type II error). All performances metrics oscillate between 0

(disagreement) and 1 (maximum agreement).

Metric Meaning Equation

Kappa Measures the percentage of data values in the main K= Pr(a)-Pr(e) / 1-Pr(e)
diagonal of the contingence table and adjusts these
values for the amount of agreement that could be
expected due to chance alone

Accuracy Degree of closeness of measurements of a quantity ~ Accuracy = (True Positives +
to that quantity's true value True Negatives )/

(Positives+Negatives)

Precision Fraction of relevant instances among the retrieved Precision = True Positives /
instances (also called positive predictive value, i.e., (True
how many EFTs were well discriminated) Positives+False Positives)

Recall Fraction of relevant instances that have been Recall = True Positives / (True
retrieved over the total amount of relevant instances Positives+False

Negatives)
F1 Considers both the Precision and the Recall of the F1 score= 2 x (Precision x

test to compute the score

Recall) / (Precision
+ Recall)
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Comparing how EFTs and PFTs discriminate different NEE dynamics

The PFT corresponding to each EC site was assigned by the site’s principal investigators using
the International Geosphere-Biosphere Programme (IGBP) legend. We verified the assigned
PFTs using the MODIS MCD12Q1 land cover product. The PFT categories present in the EC
sites were: cropland (15 sites), deciduous broadleaf trees (6), evergreen needleleaf trees (10),

grassland (5), mixed trees (8), shrubland (3), and wetland (1) (Table 4.1.1).

During the comparison of the performance of PFTs and EFTs to discriminate the seasonal
dynamics of NEE, we took into account the unbalanced sample size due to the different
number of classes of EFTs (18) and PFTs (7) represented by FLUXNET2015 and to the different
number of EC sites per class (which ranged between 3 and 31). To do this we considered the

following steps:

First, we calculated all possible combinations without repetitions between the 18 EFT and
the 7 PFT classes (C1s,7) = 31834). Second, we discarded all combinations that had different
number of EC sites in the EFT and PFT classes being combined. Third, for each combination,
we applied discriminant analysis to assess how the EFT classification and the PFT classification
performed to discriminate the seasonal dynamics of NEE. For each discriminant analysis, we
obtained five metrics of performance (Table 4.1.2). Fourth, to assess whether there existed
significant differences in the performance metrics between EFTs and PFTs, we applied the
Wilcoxon non-parametric test. For each combination of number of classes and number of
EC sites there was a different number of discrimant analysis in the EFT subset and in the PFT
subset (Table S4.1.1). To account for such unbalanced design during the Wilcoxon test, we
fixed the sample size to the smaller subset (either from the EFT or the PFT classification) and
randomly bootstrapped the performance metrics from the bigger one. Fifth, for the final
report, we calculated the mean and standard deviation of each metric obtained by the EFTs
and PFTs classifications, the average p-value, and the percentage of times that we obtained

significant differences (p-value <0.05) between EFTs and PFTs.
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4.1.3. Results

Regional heterogeneity in ecosystem functioning by means of satellite-derived EFTs

The map of the EVI-derived proxies of productivity (EVI_mean), seasonality (EVI_SD) and
phenology (DMAX) (Figure S4.1.1), and their integration into EFTs (Figure 4.1.1) provided a
characterization of the spatial patterns of our focal ecosystem function across Europe. At
continental scale, productivity decreased eastwards and southwards. Seasonality was greater
in cultivated and mountainous areas, and the most frequent EVI maxima occurred in spring

and summer.

The greatest EVI_mean (D) was reached in the Atlantic and Continental biogeographic
regions, while the lowest EVI_mean (A) occurred in the western part of mediterranean region,
corresponding to most of the Iberian Peninsula, some parts of the Italian Peninsula the
mountainous areas of the Alpine region and in the eastern part of the Continental region.
The greatest seasonality (a) occurred in the highest altitudes of: the Alpine region (peaks of
Alps), the Continental region (southwestern, northwestern and eastern part), and eastern part
of the Atlantic region. The lowest seasonality (d) was observed in the western part of
mediterranean region, specifically in the Iberian Peninsula, in surroundings of the Gulf of
Lion and in Coastal western places of the Atlantic region. The phenological indicator of the
growing season, DMAX, showed that most areas of the mediterranean region have the EVI
maxima in spring (1) and autumn (3). EVI maxima in spring (1) was also observed in the
Continental and Alpine regions. Maximas in summer (2) were identified in western places of
the Atlantic region and in most of the Alpine region. EVI maxima in autumn (3) also occurred
in western places of the Atlantic region. Maxima in winter (4) were rare and mainly occurred

in the eastern part of the Atlantic region, where all ranges of maximum greening were found.
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Figure 4.1.1. Ecosystem Functional Types (EFTs) based on MODIS-EVI dynamics (~230 m resolution)
and Eddy Covariance (EC) sites corresponding to the 2001-2014 period. Capital letters in the legend
correspond to the EVI annual mean (EVL_mean) level, ranging from A to D for low to high productivity.
Small letters show the seasonal standard deviation (EVI_SD), ranging from a to d for high to low
seasonality of carbon gains. The numbers indicate the season when the maximum EVI took place
(DMAX): (1) spring, (2) summer, (3) autumn, (4) winter. Places with eddy covariance sites are shown
with symbols, where each one represents a different plant functional type. Biogeographical regions are

based on the official European biogeographical regions map (EEA, 2016).
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Ground-based NEE of the satellite-derived EFTs

In total, 20 of the 64 potential EFTs, containing 73.10 % of our study area, were represented
by the network of the 50 long-term EC sites that met our selection criteria (Figure 4.1.2). The
most abundant EFT, Da1, showed high productivity (D) high seasonality (a) and maximum
EVI in spring (1) (Figure 4.1.2). Dal occupied 10.87% of the surface and was distributed
throughout the study area, but abundantly in the western and southern extremes of the
Atlantic Region). Da1 was represented by 8 EC sites that exhibited NEE with a strong seasonal
variability, with a pronounced peak of carbon assimilation between -7.23 and -7.46 gC m™
d™in spring (Figure 4.1.4), and corresponded with the most abundant ecosystem in Europe,
the Deciduous Broadleaf and Mixed Trees (Table S4.1.2). The second most abundant EFT,
Ad1, showed low productivity (A), low seasonality (d) and maximum EVI also in spring (1).
Ad1 occupied 9.98% of the territory and was located mainly in the Iberian Peninsula (Figure
4.1.1). Ad1 was represented by 2 EC sites (Figure 4.1.2) that exhibited NEE dynamics with low
seasonality and peak of carbon assimilation between -0.72 and -1.98 gC m™ d" in spring

(Figure 4.1.4) and was concentrated in areas dominated by shrub vegetation (Table S4.1.2).

In terms of abundance in EC sites, the EFT Dal mentioned above was represented by 8 EC
sites, followed by EFT Ba1 and Cb1 with 5 EC sites. The first one, EFT Ba1, was also abundant,
occupying 7.4% of the total surface (Figure 4.1.2), and was located mainly in the eastern part
of the study area (Atlantic and Continental regions) (Figure 4.1.1). The second one, EFT Cb1,
was not as abundant as the previous one (3.61%), and was located in central areas of the
Atlantic and Continental regions. NEE dynamics were characterized by high (a) and medium-
high (b) seasonality and peak time of carbon assimilation between -6.40 and -7.53 gC m™? d°
"in spring. In both cases, these places corresponded with cereal crops (Table S4.1.2), and

NEE dynamics had a higher standard deviation in the annual curve, due to the variability of

such crops.
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Figure 4.1.2. Accumulated covered area by the Ecosystem functional types (EFTs; in %) which are
represented in the study (ordered from highest to lowest). Colours indicated the number of eddy

covariance (EC) sites and the numbers indicate the area occupied by each of these EC sites (in %).

Our discriminant analysis showed that EFTs significantly differed in NEE measured /n s/itu with
the EC technique. The average of the performance metrics obtained from the discrimination
that satellite EFTs made of EC site NEE ranged between 0.953 to 0.978 (Table 4.1.3 a). NEE
dynamics significantly differed between different EFTs, but was similar within the same EFTs
(Figure S4.1.2). For example, the EFT "Da1”, which had high productivity, high seasonality and
spring EVI maxima, also showed high average NEE values, high seasonality in NEE, and
maximum carbon assimilation in spring (Figure 4.1.4, EC sites DE-Lnf, FR-Fon). The EFT “Bc1”,
with medium to high productivity, medium seasonality and spring EVI maxima, was also
characterized by moderate seasonality in terms of NEE and maximum carbon assimilation in
spring (Figure 4.1.4a for EC sites BE-Vie, DE-Tha). Contrary, the EFT “Ad1”, which had low

productivity, low seasonality and EVI spring maxima, also showed low average NEE, low
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seasonality in NEE, and a peak of maximum carbon assimilation in spring (ES-Uu, IT-Noe).
As another example, the EFT “Cb1”, with medium productivity, medium-high seasonality, and
spring EVI maxima, also showed medium to high seasonality in terms of NEE and maximum

carbon assimilation in spring (Figure 4.1.4a for EC sites DE-Seh, DE-RuS).

Table 4.1.3. Mean performances metrics, their standard deviation (SD) and differences in: Kappa,
Accuracy, Precision, Recall and F1 values obtained from discriminant analysis of combinations with
equal number of classes and EC sites of (a) ecosystem functional types (EFTs) and (b) plant functional
types (PFTs). To assess for significant differences, we applied a Wilcoxon-test (p-values showed), and
we calculated the percentage of cases in which differences between EFTs or PFTs with NEE were

significant (% sig), in this case, none.

a. EFTs b. PFTs Difference
mean SD mean SD p-value % sig
Kappa 0.953 0.067 0.923 0.078 1 0
Accuracy 0.972 0.040 0.952 0.051 1 0
Precision 0.967 0.047 0.959 0.057 1 0
Recall 0.978 0.033 0.960 0.040 1 0
F1 0.972 0.040 0.959 0.048 1 0

Comparison between EFTs and PFTs to discriminate NEE measured by EC

EFTs performed marginally better than PFTs in capturing differences in NEE dynamics
measured on ground (Table 4.1.3). The average across all discriminant analysis in all

performance indices was marginally but not significantly higher for EFTs (e.g. mean Kappa =
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0.953) than for PFTs (e.g. mean Kappa = 0.923) (Table 4.1.3, Figure 4.1.3); but, the standard
deviation across all discriminant analysis was higher for PFTs (e.g. sd of Kappa = 0.078) than
for EFTs (e.g. sd of Kappa = 0.067). Although performance indices showed that EFTs
marginally improved the performance metrics of the analysis, no significant differences
between the performance metrics of EFTs and PFTs were detected by the Wilcoxon-test in

any indices (Table 4.1.3).
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Figure 4.1.3. Histograms of performances from discriminant analysis for all combinations of Ecosystem
Functional Types (EFTs) and Plant Functional Types (PFTs) with equal number of classes and EC sites.

Blue lines correspond to EFTs and green lines to PFTs.

In general, NEE dynamics was similar for the same PFT or EFT across EC sites (Figure 4.1.4),
though there existed some exceptions, particularly for PFTs (Figure 4.1.4b; Figure S4.1.3). For
instance, sites corresponding to the PFT “deciduous broadleaf trees” or to the EFT “Da1”
always showed similar NEE (Figure 4.1.4; Table 4.1.1). However, for PFTs, NEE dynamics for
“evergreen needleleaf trees” exhibited a different seasonality and maximum carbon

assimilation across sites (Figure 4.1.4b for EC sites CH-Dav, DE-Lkb). Differences in NEE
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dynamics across sites were also observed for shrublands where the ES-LJu site (EFT Ad1) was

assimilating carbon throughout the year, particularly in spring, while the ES-Amo site (EFT

Ad4) was mostly emitting carbon throughout the year but in the winter. Much bigger

differences in NEE occurred in croplands, with maximum carbon sequestration occurring

in different seasons, particularly in april and may (Figure 4.1.4b, for sites CH-Oe1 and CH-

Oe2 (EFT Cb1).
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Figure 4.1.4. Comparison of the variability within and across classes of Ecosystem Functional Types

(EFTs) and Plant Functional Types (PFTs) in the seasonal dynamics of NEE. a) Variability inter EFTs:
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annual mean of NEE dynamics from different places with the same EFT; and b) variability inter PFTs and

intra EFTs: annual mean of NEE dynamics from different places with the same PFT and different EFT.

4.1.4. Discussion

Remotely-sensed EFTs successfully mapped functionally homogeneous land patches in
terms of NEE dynamics measured /n situwith the EC technique. Furthermore, EFTs performed
marginally better than the commonly used PFTs to discriminate among different NEE
seasonal dynamics (Table 4.1.3), while having the advantage of being quicker and sensitive
response to short-term changes in ecosystem performance than composition or structure,
and can be produced on an annual basis using the same classification rules, which provides
a straightforward way to track interannual changes in ecosystem functioning (Miller et al.,
2014). Our focal ecosystem function was NEE dynamics, which is related to primary
production, one of the most essential and integrative descriptors of ecosystem functioning
(Virginia and Wall, 2010). Hence, satellite-derived EFT classifications could be used to
monitor the status and changes of the regional heterogeneity or spatial diversity of the
essential biodiversity variable of ecosystem production, as a surrogate of the overall

ecosystem performance (Jax, 2010; Pettorelli et al., 2016).

EFTs capture differences in NEE

EFTs allowed us to characterize the regional heterogeneity of ecosystem functioning
dynamics (in terms of NEE) across Europe. Twenty out of the 64 EFTs identified in Europe
(corresponding to 73% of the study area) were represented by at least one EC site in the
FLUXNET2015 dataset with at least three years of data. Our approach could help to the
assessment of the carbon dynamics at regional scale by providing homogeneous land areas
in terms of their primary production dynamics (Running et al., 2004, Zhang et al,, 2015).
Understanding the regional patterns and drivers of the differences in carbon dynamics at the
regional scale could contribute to reduce the uncertainties on the global carbon balance
between the atmosphere and the biosphere (Beer et al, 2010). Here, we quantified and

mapped by means of EFTs the spatio-temporal characteristics of carbon dynamics, a crucial
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aspect for biodiversity conservation and ecosystem services maintenance under a global

change context (Midgley et al., 2010).

EFTs captured spatial differences in NEE seasonal dynamics as good as or marginally better
than mainstream approaches such as PFTs. In the real world, different areas may respond
differently to environmental changes despite being dominated by the same PFT and,
frequently, ecosystem-process models (parameterized for a specific PFT) may not be able to
represent these differential responses (Vargas et al., 2013). Normally, the parameterization
of a particular PFT is homogeneous within such PFT and does not change, for instance,
according to the ecophysiological status of a particular area or its intrinsic plasticity (Muller
et al., 2014). In addition, land-cover maps based on a PFT legend are static and difficult to
update, while EFT are a data-driven classification, through which we can annually detect
changes in exchange of matter and energy between the ecosystems and the atmosphere in
response to environmental variability. In this sense, the literature (Bret-Harte et al., 2008;
Suding et al., 2008; Clark et al., 2016; Saccone and Virtanen 2017; Thomas et al., 2018) has
pointed out that the PFT approach is not straightforward enough to represent ecosystem

functional properties at the ecosystem level.

EFT spatial patterns and environmental controls

EFTs allowed to characterize the regional heterogeneity of ecosystem functioning across
Europe. In relation to the three descriptive attributes of ecosystem functioning from which
the EFTs were constructed, we found general patterns determined by environmental
controls. The role of environmental variables (abiotic and biotic) that control ecosystem
processes is different according to the level of biological organization and the spatial scale
considered (Reed et al., 1993; Pearson and Dawson, 2003). Ecosystem processes in natural
areas are known to be mainly driven by precipitation (Lauenroth et al., 1978), temperature
(Rosenzweig and Dickinson 1968; Jobbagy et al.,, 2002), soil characteristics (NoyMeir 1973)
and vegetation structure (Epstein et al., 1998). In this case, EFTs productivity showed a

decrease from east to west influenced by rainfall patterns determined by the Gulf Stream
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(Palter 2015), which also determines changes in vegetation. Regarding seasonality of EVI, it
increased in relation to two factors: 1) the altitude, having the highest values of seasonality
in the mountainous areas (influenced by changes in precipitation, temperature and thus, in
vegetation) and; 2) the crop areas, where management practices, harvests and crop changes
are responsible of this dynamic and therefore it cannot be explained by natural
environmental controls. Phenology in Europe was characterized by peaks of maximum EVIin
spring and summer, when the availability of water (precipitation) and energy (temperature)

for vegetation is at its optimum (Whittaker et al., 2003).

Boundaries of the biogeographical regions (EEA 2016) were consistent with the EFTs (Figure
4.1.1), but while the classification from EEA is static, EFTs provide a data-driven classification
that could be better coupled to ecosystem functioning. The Alpine region was dominated by
EFTs with low productivity, high seasonality and maxima in summer. In the high peaks, the
vegetation is reduced to a low density of highly adapted plants which are able to tolerate
extreme conditions, i.e. the short growth period and fluctuating air temperature, and
therefore, has a low productivity, also detected in the global primary productivity patterns
of Beer et al., (2010) and Zhang et al,, (2017). In highest altitudes, snow is present over most
of the year, leaving only a short time period for the development of the plants, mainly in

summer, leading to a summer maximum and a high seasonality (Sundseth, 2009a).

The mediterranean region was characterized by a high heterogeneity of EFTs due to their
high habitat diversity, i.e high mountains and rocky shores, thick scrub and semi-arid
steppes, coastal wetlands and sandy beaches, constituting a global biodiversity hotspot
(Myers et al., 2000). The main driver of ecosystem functional diversity is the climate
(characterised by hot dry summers and cool winters) (Lionello et al., 2006), in combination
with human influence, (i.e. livestock grazing, forest cultivation and forest fires) (Blondel and

Aronson, 1999).

The Atlantic region was characterized by EFTs with high productivity, high seasonality and
maximum greening in spring, due to the mild winters, cool summers and predominantly

westerly winds and moderate rainfall throughout the year (Hurrel, 1995). These conditions
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favour the presence of non-water limited deciduous species with high productivity, resulting
in a high seasonality. Due to the anthropogenic influence, agricultural landscapes are very
common in this region, being one of the five major agricultural regions of Europe according
to Kostrowicki (1991). Thus, the region’s high productivity must be partly attributed to

irrigation, and high seasonality is driven by harvest and cropping cycles.

Finally, in the Continental region the ecosystem functioning varied largely in productivity,
reflecting regional climatic patterns. In the eastern part of the continental region, extremes
of hot and cold temperatures, wet and dry conditions, are more frequent and have a strong
impact on ecosystem functioning (dominant EFT was Aa1, low productivity, high seasonality
and maximum in spring). In fact, these areas are mountainous and experience sub-alpine
conditions. Moving west, climate is characterized by relatively small fluctuations of
temperature due to the buffering effect of the nearby ocean and the flat landscape (Da1 and

Ca1 in the transition) (Sundseth, 2009b).

Opportunities and limitations of EFTs

Since EFTs can inform at an annual basis on homogeneous patches on the land surface in
terms of ecosystem functioning, they offer opportunities to be applied in ecology and
conservation compared to less dynamic approaches (such as PFTs), but they also have some

limitations.

The concept of EFT has been highlighted as “the first serious attempt to group ecosystems
(at large scales) on the basis of shared functional behaviour” (Mucina, 2019), and its strength
for being applied as a classification scheme is determined by its ability to translate ecosystem
functions into discrete entities that can be mapped. EFTs are identified by remote sensing
tools from aggregated measurements of ecosystem functions at the pixel level, which in
practice represents information of the performance of the whole ecosystem at that grain
scale. Having the possibility of mapping entities (EFTs) that reflect the performance of the
whole ecosystem opens an straightforward, tangible and biologically meaningful way to

measure ecosystem functions at regional scale, complementing our traditional view of
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ecosystems (Paruelo et al., 2001; Alcaraz-Segura et al., 2006; Butchart et al., 2010; Asner et
al., 2017). In particular, satellite-derived dynamic functional classifications, such as EFTs, have
several advantages over using other static approaches, such as PFTs. Satellite-derived EFAs
and EFTs 1) are capable of capturing differences in ecosystem processes as measured in the
field; 2) they provide a useful framework for understanding the mechanisms underlying
large-scale ecological changes (Cabello et al,, 2016; Alcaraz-Segura et al., 2017; Requena-
Mullor et al.,, 2017, 2018; Arenas-Castro et al., 2018; Lourenco et al., 2018; Vaz et al., 2018);
3) they offer a faster response than compositional or structural approaches to environmental
changes (McNaughton, 1989; Mouillot et al., 2013), which are are particularly noticeable at
the ecosystem level (Vitousek, 1994); 4) they can be more easily monitored and updated than
structural or compositional ones under a common protocol in space and time, at different
spatial scales and over large extents (Paruelo et al, 2001); 5) they can complement
information on vegetation structure and composition (e.g., canopy architecture, vegetation
type, PFT), because they constitute complementary dimensions of biodiversity complexity
(Noss 1990; Pettorelli et al, 2016); 6) they facilitate the direct assessment of ecosystem
functions and services (Costanza et al., 2006; Dzikiti et al., 2016; Hellmann et al., 2017) and
would link key dimensions of biodiversity to ecosystem processes including the carbon cycle,
the water cycle and the provisioning of ecosystem services;7) they have already been
proposed as essential variables for monitoring biodiversity (Pettorelli et al., 2016; Alcaraz-

Segura et al.,, 2017).

However, our approach is still subjected to some challenges. First, EFTs that are represented
by several EC sites could be parameterized in terms of NEE dynamics, though not all EFTs
(18%) are represented yet. Second, the footprint or spatial resolution of the EC
measurements oscillates between 50 m and 200 m (depending on the micrometeorological
conditions and on the vegetation type, e.g. forest EC sites footprints are generally larger than
in grassland EC sites), while the MODIS pixel used have a resolution of ~231 m. Such
limitation could be handled in future works with the use of satellites with higher spatial

resolution such as Landsat (30 m/pixel) or Sentinel-2 (10 m/pixel). Third, different ecosystems
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in terms of other functional aspects (e.g. evapotranspiration, heat exchange..) can be
classified here as the same EFT from the primary production dynamics aspect, since we used
it as our focal function. However, EFTs could also be identified to characterize the
spatiotemporal heterogeneity of multiple ecosystem processes and functions at different
scales, including other functional aspects (e.g. albedo, evapotranspiration, heat exchange)
(Fernandez et al., 2010). Finally, the incorporation of EFTs in earth system models is difficult,
since these models can use simple and small numbers of categories in a variable, and some
models might not be able to run with so many (64) EFT categories, nevertheless there are
works that incorporate EFTs into earth system models (Lee et al., 2013; Miiller et al., 2014).
The incorporation of these types of variables (dynamic and easily accessible) into the models
would be useful for the monitoring and sustainable management of carbon reservoirs at

time scales of in the short to medium term.

4.1.5. Conclusions

Satellite-derived EFTs are an ecosystem functional classification built from satellite
observations of radiation exchanges between the land surface and the atmosphere that
manage to identify homogeneous land patches in terms of an essential ecosystem function,
ecosystem production measured on ground by means of NEE dynamics. EFTs performed as
good as or marginally better than PFTs to discriminate different NEE dynamics, what implies
two main advantages EFTs can be easily updated for any region of the world at an annual
frequency based on open satellite information, and EFTs maps are more sensitive to

environmental changes than vegetation composition or structure.

Our results showed the capability of using ecosystem functional attributes for grouping
ecosystems at large scales according to their different carbon gains dynamics. Such
classification, based on the essential biodiversity variable of ecosystem production as a focal
ecosystem function opens the possibility of assessing and monitoring ecosystem functional
diversity, the spatial heterogeneity in ecosystem functioning, and carbon-related ecosystem

services at regional to global scales. Therefore, our study proofs that satellite-derived EFTs
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provide a validated tool to assess and monitor ecosystem functioning with potential
applications in ecosystem monitoring and modeling, and in biodiversity and carbon

managing programs.

4.1.6. References

Alcaraz, D., Paruelo, J., & Cabello, J. (2006). Identification of current ecosystem functional types
in the Iberian Peninsula. Global Ecology and Biogeography, 15(2), 200-212.

Alcaraz-Segura, D., Paruelo, J. M., Epstein, H. E., & Cabello, J. (2013). Environmental and Human
Controls of Ecosystem Functional Diversity in Temperate South America. Remote Sensing,
5(1), 127-154.

Arenas-Castro, S., Gongalves, J., Alves, P., Alcaraz-Segura, D., & Honrado, J. P. (2018). Assessing
the multi-scale predictive ability of ecosystem functional attributes for species distribution
modelling. PLOS ONE, 13(6), e0199292.

Arenas-Castro, S., Regos, A., Gongalves, J. F,, Alcaraz-Segura, D., & Honrado, J. (2019). Remotely
Sensed Variables of Ecosystem Functioning Support Robust Predictions of Abundance
Patterns for Rare Species. Remote Sensing, 11(18), 2086.

Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R.,, Anderson, C. B,, Sinca, F., Vaughn, N. R,, &
Llactayo, W. (2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity
and guide conservation. Science, 355(6323), 385-389.

Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide
exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(4), 479-
492.

Baldocchi, D., Falge, E., Gu, L, Olson, R, Hollinger, D., Running, S., Anthoni, P., Bernhofer, C.,
Davis, K., Evans, R, Fuentes, J., Goldstein, A, Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T.,
Munger, W., Oechel, W., ... Wofsy, S. (2001). FLUXNET: A New Tool to Study the Temporal
and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux
Densities. Bulletin of the American Meteorological Society, 82(11), 2415-2434.

Balvanera, P., Quijas, S., Karp, D. S., Ash, N., Bennett, E. M., Boumans, R, Brown, C,, Chan, K. M.
A., Chaplin-Kramer, R., Halpern, B. S., Honey-Rosés, J., Kim, C.-K., Cramer, W., Martinez-Harms,
M. J,, Mooney, H., Mwampamba, T., Nel, J., Polasky, S., Reyers, B., ... Walz, A. (2017). Ecosystem
Services. En M. Walters & R. J. Scholes (Eds.), The GEO Handbook on Biodiversity Observation
Networks (pp. 39-78). Springer International Publishing.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rédenbeck, C., Arain, M.
A., Baldocchi, D., Bonan, G. B, Bondeau, A, Cescatti, A, Lasslop, G., Lindroth, A, Lomas, M.,
Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., ... Papale, D. (2010). Terrestrial Gross
Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 329(5993),
834-838.




Result 4.1. - ChapterI
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

Blondel, J., & Aronson, J. (1999). Biology and Wildlife of the Mediterranean Region. Oxford
University Press.

Bret-Harte, M. S., Mack, M. C,, Goldsmith, G. R,, Sloan, D. B., DeMarco, J., Shaver, G. R, Ray, P. M.,
Biesinger, Z., & Chapin, F. S. (2008). Plant functional types do not predict biomass responses
to removal and fertilization in Alaskan tussock tundra. Journal of Ecology, 96(4), 713-726.

Butchart, S. H. M., Walpole, M., Collen, B., Strien, A. van, Scharlemann, J. P. W., Almond, R. E. A,
Baillie, J. E. M., Bomhard, B., Brown, C., Bruno, J., Carpenter, K. E., Carr, G. M., Chanson, J.,
Chenery, A. M., Csirke, J., Davidson, N. C., Dentener, F., Foster, M., Galli, A, ... Watson, R.
(2010). Global Biodiversity: Indicators of Recent Declines. Science, 328(5982), 1164-1168.

Cabello, J., Alcaraz-Segura, D., Reyes, A, Lourenco, P., Requena, J. M., Bonache, J., Castillo, P.,
Valencia, S., Naya, J.,, Ramirez, L., & Serrada, J. (2016). System for monitoring ecosystem
functioning of Network of National Parks of Spain with remote sensing. Revista de
Teledeteccion, 46, 119.

Cabello, J., Fernandez, N., Alcaraz-Segura, D., Oyonarte, C., Pifieiro, G., Altesor, A., Delibes, M., &
Paruelo, J. M. (2012). The ecosystem functioning dimension in conservation: Insights from
remote sensing. Biodiversity and Conservation, 21(13), 3287-3305.

Cazorla, B., Cabello, J., Pefias, J., Garcillan, P.P., Reyes, A., Alcaraz-Segura, D. (2020). Incorporating
ecosystem functional diversity into geographic conservation priorities using remotely-sensed
Ecosystem Functional Types. Ecosystems, 1-17.

Clark, J. S. (2016). Why species tell more about traits than traits about species: Predictive analysis.
Ecology, 97(8), 1979-1993.

Costanza, R, d’Arge, R, de Groot, R, Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S.,
O'Neill, R. V., Paruelo, J., Raskin, R. G,, Sutton, P., & van den Belt, M. (1997). The value of the
world’s ecosystem services and natural capital. Nature, 387(6630), 253-260.

Costanza, R, Wilson, M., Troy, A, Voinov, A, Liu, S., & D’Agostino, J. (2006). The Value of New
Jersey's Ecosystem Services and Natural Capital. Institute for Sustainable Solutions
Publications and Presentations.

Diaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J,, Ewers, R. M., Jordano, P., &
Pearse, W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service
vulnerability. Ecology and Evolution, 3(9), 2958-2975.

Dzikiti, S., Gush, M. B., Le Maitre, D. C,, Maherry, A., Jovanovic, N. Z,, Ramoelo, A., & Cho, M. A.
(2016). Quantifying potential water savings from clearing invasive alien Eucalyptus
camaldulensis using in situ and high resolution remote sensing data in the Berg River
Catchment, Western Cape, South Africa. Forest Ecology and Management, 361, 69-80.

Epstein, H. E., Burke, I. C., & Mosier, A. R. (1998). Plant Effects on Spatial and Temporal Patterns
of Nitrogen Cycling in Shortgrass Steppe. Ecosystems, 1(4), 374-385.

European Environment Agency (EEA). (2016). Biogeographical regions dataset.

91



92

Result 4.1. - Chapter I
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

Fernandez, N., Paruelo, J. M., & Delibes, M. (2010). Ecosystem functioning of protected and
altered Mediterranean environments: A remote sensing classification in Dofana, Spain.
Remote Sensing of Environment, 114(1), 211-220.

Franz, D., Acosta, M., Altimir, N., Arriga, N., Arrouays, D., Aubinet, M., ... & Berveiller, D. (2018).
Towards long-term standardised carbon and greenhouse gas observations for monitoring
Europe's terrestrial ecosystems: a review.

Funk, J. L, Larson, J. E., Ames, G. M., Butterfield, B. J., Cavender-Bares, J., Firn, J.,, Laughlin, D. C,,
Sutton-Grier, A. E., Williams, L., & Wright, J. (2017). Revisiting the Holy Grail: Using plant
functional traits to understand ecological processes. Biological Reviews, 92(2), 1156-1173.

Hellmann, C., GroBe-Stoltenberg, A., Thiele, J.,, Oldeland, J., & Werner, C. (2017). Heterogeneous
environments shape invader impacts: Integrating environmental, structural and functional
effects by isoscapes and remote sensing. Scientific Reports, 7(1), 4118.

Houborg, R, Fisher, J. B., & Skidmore, A. K. (2015). Advances in remote sensing of vegetation
function and traits. International Journal of Applied Earth Observation and Geoinformation,
43, 1-6.

Huesca, M., Merino-de-Miguel, S., Eklundh, L., Litago, J,, Cicuéndez, V., Rodriguez-Rastrero, M.,
Ustin, S. L., & Palacios-Orueta, A. (2015). Ecosystem functional assessment based on the
“optical type"” concept and self-similarity patterns: An application using MODIS-NDVI time
series autocorrelation. International Journal of Applied Earth Observation and
Geoinformation, 43, 132-148.

Hurrel, A. (1995). The Global Environment. International Relations Theory Today.

IGPB (1992). The IGBP-DIS global 1 km land cover data set" DISCover": Proposal and
implementation plans: Report of the Land Cover Working Group of IGBP-DIS. IGBP-DIS
Office.

Isbell, F., Cowles, J., Dee, L. E,, Loreau, M., Reich, P. B, Gonzalez, A.,, Hector, A, & Schmid, B.
(2018). Quantifying effects of biodiversity on ecosystem functioning across times and places.
Ecology Letters, 21(6), 763-778.

Ivits, E., Cherlet, M., Mehl, W., & Sommer, S. (2013). Ecosystem functional units characterized by
satellite observed phenology and productivity gradients: A case study for Europe. Ecological
Indicators, 27, 17-28.

Jax, K. (2010). Ecosystem Functioning. Cambridge University Press.

Jobbégy, E. G, Sala, O. E., & Paruelo, J. M. (2002). Patterns and Controls of Primary Production
in the Patagonian Steppe: A Remote Sensing Approach*. Ecology, 83(2), 307-319.

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P.,
Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V.,
Koehler, P., Ichii, K., Jain, A. K,, Liu, J., Lombardozzi, D., ... Reichstein, M. (2020). Scaling carbon




Result 4.1. - ChapterI
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM
approach. Biogeosciences, 17(5), 1343-1365.

Knox, S. H., Jackson, R. B., Poulter, B., McNicol, G., Fluet-Chouinard, E., Zhang, Z., Hugelius, G.,
Bousquet, P., Canadell, J. G, Saunois, M., Papale, D., Chu, H., Keenan, T. F., Baldocchi, D., Torn,
M. S., Mammarella, I, Trotta, C., Aurela, M., Bohrer, G., ... Zona, D. (2019). FLUXNET-CH4
Synthesis Activity: Objectives, Observations, and Future Directions. Bulletin of the American
Meteorological Society, 100(12), 2607-2632.

Kostrowicki, J. (1991). Trends in the Transformation of European Agriculture. En F. M. Brouwer,
A. J. Thomas, & M. J. Chadwick (Eds.), Land Use Changes in Europe: Processes of Change,
Environmental Transformations and Future Patterns (pp. 21-47). Springer Netherlands.

Lauenroth, W. K, Dodd, J. L, & Sims, P. L. (1978). The effects of water- and nitrogen-induced
stresses on plant community structure in a semiarid grassland. Oecologia, 36(2), 211-222.

Laureto, L. M. O,, Cianciaruso, M. V., & Samia, D. S. M. (2015). Functional diversity: An overview
of its history and applicability. Natureza & Conservacao, 13(2), 112-116.

Lausch, A, Bannehr, L., Beckmann, M., Boehm, C,, Feilhauer, H., Hacker, J. M., Heurich, M., Jung,
A., Klenke, R, Neumann, C.,, Pause, M., Rocchini, D., Schaepman, M. E., Schmidtlein, S., Schulz,
K., Selsam, P., Settele, J., Skidmore, A. K., & Cord, A. F. (2016). Linking Earth Observation and
taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecological
Indicators, 70, 317-339.

Lavorel, S., & Garnier, E. (2002). Predicting changes in community composition and ecosystem
functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16(5), 545-556.

Lavorel, Sandra, Diaz, S., Cornelissen, J. H. C., Garnier, E., Harrison, S. P., McIntyre, S., Pausas, J.
G., Pérez-Harguindeguy, N., Roumet, C., & Urcelay, C. (2007). Plant Functional Types: Are We
Getting Any Closer to the Holy Grail? En J. G. Canadell, D. E. Pataki, & L. F. Pitelka (Eds.),
Terrestrial Ecosystems in a Changing World (pp. 149-164). Springer.

Lee, S.-J,, Berbery, E. H., & Alcaraz-Segura, D. (2013). The impact of ecosystem functional type
changes on the La Plata Basin climate. Advances in Atmospheric Sciences, 30(5), 1387-1405.

Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P, Artale, V., Li, L., Luterbacher, J., May, W.,
Trigo, R., Tsimplis, M., Ulbrich, U., & Xoplaki, E. (2006). The Mediterranean climate: An
overview of the main characteristics and issues. En P. Lionello, P. Malanotte-Rizzoli, & R.
Boscolo (Eds.), Developments in Earth and Environmental Sciences (Vol. 4, pp. 1-26). Elsevier.

Lourengo, P., Alcaraz-Segura, D., Reyes-Diez, A, Requena-Mullor, J. M., & Cabello, J. (2018).
Trends in vegetation greenness dynamics in protected areas across borders: What are the
environmental controls? International Journal of Remote Sensing, 39(14), 4699-4713.

Malaterre, C., Dussault, A. C., Rousseau-Mermans, S., Barker, G., Beisner, B. E., Bouchard, F.,
Desjardins, E., Handa, I T., Kembel, S. W., Lajoie, G., Maris, V., Munson, A. D., Odenbaugh, J.,
Poisot, T., Shapiro, B. J., & Suttle, C. A. (2019). Functional Diversity: An Epistemic Roadmap.
BioScience, 69(10), 800-811.

93



94

Result 4.1. - Chapter I
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

McNaughton, S. J,, Oesterheld, M., Frank, D. A., & Williams, K. J. (1989). Ecosystem-level patterns
of primary productivity and herbivory in terrestrial habitats. Nature, 341(6238), 142-144.

Midgley, G. F., Bond, W. J., Kapos, V., Ravilious, C., Scharlemann, J. P., & Woodward, F. L (2010).
Terrestrial carbon stocks and biodiversity: Key knowledge gaps and some policy implications.
Current Opinion in Environmental Sustainability, 2(4), 264-270.

Mouillot, D., Graham, N. A. J,, Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional
approach reveals community responses to disturbances. Trends in Ecology & Evolution,
28(3), 167-177.

Mucina, L. (2019). Biome: Evolution of a crucial ecological and biogeographical concept. New
Phytologist, 222(1), 97-114.

Mdller, O. V., Berbery, E. H., Alcaraz-Segura, D., & Ek, M. B. (2014). Regional Model Simulations
of the 2008 Drought in Southern South America Using a Consistent Set of Land Surface
Properties. Journal of Climate, 27(17), 6754-6778.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B, & Kent, J. (2000). Biodiversity
hotspots for conservation priorities. Nature, 403(6772), 853-858.

Noss, R. F. (1990). Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conservation
Biology, 4(4), 355-364.

Noy-Meir, 1. (1973). Data Transformations in Ecological Ordination: I. Some Advantages of Non-
Centering. Journal of Ecology, 61(2), 329-341. JSTOR.

Oki, T., Blyth, E. M., Berbery, E. H., & Alcaraz-Segura, D. (2013). Land Use and Land Cover Changes
and Their Impacts on Hydroclimate, Ecosystems and Society. En G. R. Asrar & J. W. Hurrell
(Eds.), Climate Science for Serving Society: Research, Modeling and Prediction Priorities (pp.
185-203). Springer Netherlands.

Palter, J. B. (2015). The Role of the Gulf Stream in European Climate. Annual Review of Marine
Science, 7(1), 113-137.

Paruelo, J. M., Jobbagy, E. G, & Sala, O. E. (2001). Current Distribution of Ecosystem Functional
Types in Temperate South America. Ecosystems, 4(7), 683-698.

Pearson, R. G, & Dawson, T. P. (2003). Predicting the impacts of climate change on the
distribution of species: are bioclimate envelope models useful?. Global ecology and
biogeography, 12(5), 361-371.

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G,, Scholes, R. J., Bruford, M.
W., Brummitt, N., Butchart, S. H. M., Cardoso, A. C,, Coops, N. C., Dulloo, E., Faith, D. P., Freyhof,
J., Gregory, R. D, Heip, C., Hoft, R, Hurtt, G, Jetz, W., ... Wegmann, M. (2013). Essential
Biodiversity Variables. Science, 339(6117), 277-278.

Pérez-Hoyos, A. Martinez, B., Garcia-Haro, F. J., Moreno, A, & Gilabert, M. A. (2014).
Identification of Ecosystem Functional Types from Coarse Resolution Imagery Using a Self-
Organizing Map Approach: A Case Study for Spain. Remote Sensing, 6(11), 11391-11419.




Result 4.1. - ChapterI
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

Petrakis, S., Barba, J., Bond-Lamberty, B., & Vargas, R. (2018). Using greenhouse gas fluxes to
define soil functional types. Plant and Soil, 423(1), 285-294.

Pettorelli, N., Biihne, H. S. to, Tulloch, A., Dubois, G., Macinnis-Ng, C., Queirds, A. M., Keith, D. A,
Wegmann, M., Schrodt, F., Stellmes, M., Sonnenschein, R., Geller, G. N., Roy, S., Somers, B.,
Murray, N., Bland, L., Geijzendorffer, L, Kerr, J. T., Broszeit, S., ... Nicholson, E. (2018). Satellite
remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote
Sensing in Ecology and Conservation, 4(2), 71-93.

Pettorelli, N.,, Wegmann, M., Skidmore, A., Miicher, S., Dawson, T. P., Fernandez, M., Lucas, R,
Schaepman, M. E,, Wang, T., O’'Connor, B., Jongman, R. H. G., Kempeneers, P., Sonnenschein,
R. Leidner, A. K., Bbhm, M., He, K. S., Nagendra, H., Dubois, G., Fatoyinbo, T, ... Geller, G. N.
(2016). Framing the concept of satellite remote sensing essential biodiversity variables:
Challenges and future directions. Remote Sensing in Ecology and Conservation, 2(3), 122-
131.

Reed, R. A, Peet, R. K., Palmer, M. W., & White, P. S. (1993). Scale dependence of vegetation-
environment correlations: A case study of a North Carolina piedmont woodland. Journal of
Vegetation Science, 4(3), 329-340.

Requena-Mullor, J. M., Lépez, E., Castro, A. J., Alcaraz-Segura, D., Castro, H., Reyes, A., & Cabello,
J. (2017). Remote-sensing based approach to forecast habitat quality under climate change
scenarios. PLOS ONE, 12(3), e0172107.

Requena-Mullor, J. M., Quintas-Soriano, C., Brandt, J., Cabello, J., & Castro, A. J. (2018). Modeling
how land use legacy affects the provision of ecosystem services in Mediterranean southern
Spain. Environmental Research Letters, 13(11), 114008.

Rocchini, D., Bacaro, G., Chirici, G., Da Re, D., Feilhauer, H., Foody, G. M., Galluzzi, M., Garzon-
Lopez, C. X, Gillespie, T. W., He, K. S., Lenoir, J., Marcantonio, M., Nagendra, H., Ricotta, C,
Rommel, E., Schmidtlein, S., Skidmore, A. K., Van De Kerchove, R, Wegmann, M., & Rugani,
B. (2018). Remotely sensed spatial heterogeneity as an exploratory tool for taxonomic and
functional diversity study. Ecological Indicators, 85, 983-990.

Rosenzweig, C., & Dickinson, R. (Eds.). (1986). Climate-vegetation interactions. Office for
Interdisciplinary Earth Studies (OIES), University Corporation for Atmospheric Research
(UCAR).

Running, S. W.,, Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., & Hibbard, K. A. (1999).
A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem
Modeling and EOS Satellite Data. Remote Sensing of Environment, 70(1), 108-127.

Running, Steven W., Nemani, R. R, Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004).
A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience,
54(6), 547-560.

95



96

Result 4.1. - Chapter I
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

Saccone, P., Hoikka, K., & Virtanen, R. (2017). What if plant functional types conceal species-
specific responses to environment? Study on arctic shrub communities. Ecology, 98(6), 1600-
1612.

Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E,, Fetzer, L, Bennett, E. M., Biggs, R,
Carpenter, S. R, Vries, W. de, Wit, C. A. de, Folke, C., Gerten, D., Heinke, J., Mace, G. M.,
Persson, L. M., Ramanathan, V., Reyers, B., & Sorlin, S. (2015). Planetary boundaries: Guiding
human development on a changing planet. Science, 347(6223).

Suding, K. N., & Goldstein, L. J. (2008). Testing the Holy Grail Framework: Using Functional Traits
to Predict Ecosystem Change. The New Phytologist, 180(3), 559-562. JSTOR.

Sundseth, K. (2009a). Natura 2000 in the Alpine region.
Sundseth, K. (2009b). Natura 2000 in the Continental region.

Thomas, H. J. D., Myers-Smith, L. H., Bjorkman, A. D., Elmendorf, S. C,, Blok, D., Cornelissen, J. H.
C., Forbes, B. C., Hollister, R. D., Normand, S., Prevéy, J. S., Rixen, C., Schaepman-Strub, G.,
Wilmking, M., Wipf, S., Cornwell, W. K., Kattge, J., Goetz, S. J., Guay, K. C,, Alatalo, J. M., ...
Bodegom, P. M. van. (2019). Traditional plant functional groups explain variation in economic
but not size-related traits across the tundra biome. Global Ecology and Biogeography, 28(2),
78-95.

Tilman, D., Isbell, F., & Cowles, J. M. (2014). Biodiversity and ecosystem functioning. Annual
review of ecology, evolution, and systematics, 45, 471-493.

Vargas, R., Sonnentag, O., Abramowitz, G., Carrara, A., Chen, J. M,, Ciais, P., Correia, A., Keenan,
T. F., Kobayashi, H., Ourcival, J.-M., Papale, D., Pearson, D., Pereira, J. S., Piao, S., Rambal, S., &
Baldocchi, D. D. (2013). Drought Influences the Accuracy of Simulated Ecosystem Fluxes: A
Model-Data Meta-analysis for Mediterranean Oak Woodlands. Ecosystems, 16(5), 749-764.

Vaz, A. S., Alcaraz-Segura, D., Campos, J. C, Vicente, J. R, & Honrado, J. P. (2018). Managing
plant invasions through the lens of remote sensing: A review of progress and the way
forward. Science of The Total Environment, 642, 1328-1339.

Villarreal, S., Guevara, M., Alcaraz-Segura, D., & Vargas, R. (2019). Optimizing an Environmental
Observatory Network Design Using Publicly Available Data. Journal of Geophysical Research:
Biogeosciences, 124(7), 1812-1826.

Villarreal, S., Guevara, M., Alcaraz-Segura, D., Brunsell, N. A,, Hayes, D., Loescher, H. W., & Vargas,
R. (2018). Ecosystem functional diversity and the representativeness of environmental
networks across the conterminous United States. Agricultural and Forest Meteorology, 262,
423-433.

Violle, C., Reich, P. B,, Pacala, S. W., Enquist, B. J., & Kattge, J. (2014). The emergence and promise
of functional biogeography. Proceedings of the National Academy of Sciences, 111(38),
13690-13696.




Result 4.1. - ChapterI
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

Violle, C., Thuiller, W., Mouquet, N., Munoz, F., Kraft, N. J. B.,, Cadotte, M. W., Livingstone, S. W.,
& Mouillot, D. (2017). Functional Rarity: The Ecology of Outliers. Trends in Ecology &
Evolution, 32(5), 356-367.

Virginia R. A, Wall D. H. (2001) Ecosystem function, principles of. Encyclopedia of Biodiversity
(ed. by S.A.Levin), pp. 345352. Academic Press, San Diego

Vitousek, P. M. (1994). Beyond global warming: ecology and global change. Ecology, 75(7), 1861-
1876.

Wang, L., Zhu, H., Lin, A,, Zou, L., Qin, W., & Du, Q. (2017). Evaluation of the Latest MODIS GPP
Products across Multiple Biomes Using Global Eddy Covariance Flux Data. Remote Sensing,
9(5), 418.

Whittaker, R. J., Nogués-Bravo, D., & Araudjo, M. B. (2007). Geographical gradients of species
richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data
for five taxa. Global Ecology and Biogeography, 16(1), 76-89.

Williams, B. K. (1981). Discriminant analysis in wildlife research: theory and applications. The Use
of Multivariate Statistics in Studies of Wildlife Habitat'.(Ed. DE Capen.) pp, 59-71.

Williams, B. K. (1983). Some Observations of the Use of Discriminant Analysis in Ecology. Ecology,
64(5), 1283-1291.

Waullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami, S., Iversen, C. M., Kattge,
J., Norby, R. J,, van Bodegom, P. M., & Xu, X. (2014). Plant functional types in Earth system
models: Past experiences and future directions for application of dynamic vegetation models
in high-latitude ecosystems. Annals of Botany, 114(1), 1-16.

Zhang, Y., Song, C,, Sun, G, Band, L. E., McNulty, S., Noormets, A, Zhang, Q., & Zhang, Z. (2016).
Development of a coupled carbon and water model for estimating global gross primary
productivity and evapotranspiration based on eddy flux and remote sensing data.
Agricultural and Forest Meteorology, 223, 116-131.

97



Result 4.1. - Chapter I
Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale

4.1.7. Appendices

Table S4.1.1. Number of discriminant analysis (i.e. combinations) for each number of classes and

number of EC sites in the EFT and in the PFT subsets.

n classes EFTs n classes PFTs
n
EC 2 3 4 5 6 1 2 3 4 5 6 1
sites 3 32 6

4 38 56 3 3
5 24 112 2 6
6 26 160 392 5 2 3
7 12 160 536 3 7 2
8 160 585 1078 9 3 1
9 10 126 592 1 3 9
10 96 520 1640 2 7 3
11 4 82 464 1668 4 3 2 5
12 1 60 373 1655 3504 6 2 6 2 1
13 50 320 1466 3868 12 3 3 1
14 28 238 1312 6 6 6
15 27 196 1112 3676 512 1 3
16 12 136 922 3396 16 4 6 2
17 8 100 746 7252 9 17 4 1
18 2 54 590 2597 2 24 6 2
19 28 428 8 21
20 12 267 1817 11 16 6
21 4 160 1332 15 7 11
22 1 78 945 4153 4 21 4 2
23 36 580 3308 13 9 2
24 10 337 5 17
25 4 154 1610 12 4 7
26 70 958 6 5
27 20 8
28 6 232 4 4
29 90 2
30 25 3
31 4 7
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Table S4.1.2. Contingency table (in %) of EFTs and PFTs. The numbers show the percentage of EFTs
classified in each PFT. EFTs are coded as follows: capital letters correspond to the EVI annual mean
(EVI_mean) level, ranging from A to D for low to high productivity. Small letters show the seasonal
standard deviation (EVI_SD), ranging from a to d for high to low seasonality of carbon gains. The
numbers indicate the season when the maximum EVI took place (DMAX): (1) spring, (2) summer, (3)

autumn, (4) winter.

Deciduous Evergreen

% Cropland broadleaf needleleaf Grassland htll:;(:;i Shrubland Wetland
trees trees

Aal 29 12

Ab2 10

Ac1 20

Ac2 10

Ad1 67

Ad4 12 33

Ba1 27 100

Bc1 20

Bd1 13 25

Bd2 10 13

Ca1 7

Cb1 33

Ccl 7 10 13

Cd1 7 25

Cd3 10

Da1 100

Da2 57

Db1 14

Db4 6

Dd1 10
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Figure S4.1.1. Ecosystem Functional Attributes based on the 2001-2014 time-series of satellite images of the Enhanced Vegetation Index (EVI)
captured by the MODIS-Terra sensor (MOD13Q1.C006 product): EVI annual mean (EVI_mean; an estimator of annual primary production), the EVI

seasonal standard deviation (EVIL.SD; a descriptor of seasonality) and the date of maximum EVI (EVI.DMAX; an indicator of

phenology). Biogeographical regions are based on the official European biogeographical regions map (EEA, 2016).
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Figure S4.1.2. Variability inter EFTs: annual mean of NEE dynamics from different places with the same EFT.
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Figure S4.1.3. Variability inter PFTs and intra EFTs: Annual mean of NEE dynamics from different
places with the same PFT and different EFT.
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Abstract

Conservation Biology faces the challenge of safeguarding the ecological processes and
ecosystem functions that sustain the multiple facets of biodiversity. Characterization and
evaluation of these processes and functions can be carried out through functional attributes
or traits related to the exchanges of matter and energy between vegetation and the
atmosphere. Based on this principle, satellite imagery can provide integrative spatiotemporal
characterizations of ecosystem functions from local to global scales. Here, we provide a
dataset at protected area level that characterizes the spatial patterns and temporal dynamics
of ecosystem functioning in Sierra Nevada (Spain), captured through the spectral vegetation
index EVI (Enhanced Vegetation Index) from 2001 to 2018 (product MOD13Q1.006 from
MODIS sensor). First, at the annual scale, our database contains three Ecosystem Functional
Attributes (EFAs) (i.e., descriptors of annual primary production, seasonality, and phenology
of carbon gains), as well as their integration into a synthetic map of Ecosystem Functional
Types (EFTs) classes. Second, it also includes two annual measures of ecosystem functional
diversity: EFT richness and EFT rarity. Finally, it provides inter-annual summaries for all
previous variables, i.e., their long-term means and inter-annual variabilities. Then, we show
examples of research and management applications based on EFAs and EFTs from modelling
climate, ecohydrology and species distributions to setting geographical priorities and early-
warning systems in protected area networks. The datasets are available in two open-source

sites (PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.904575 (Cazorla et al., 2019) and

http://obsnev.es/apps/efts SN.html), and bring to scientists, managers and the general

public valuable information on the first characterization of the functional diversity based on
primary production at ecosystem level developed in Sierra Nevada, a biodiversity hotspot in
the Mediterranean basin. This Biosphere Reserve represents an exceptional natural
laboratory for ecological research within the Long-Term Ecological Monitoring (LTER)
network. The long-term data records available on biodiversity, climate, ecosystem services,

hydrology, land-use changes, and management practices can now be analysed with our
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description of ecosystem functioning and functional diversity to explore ecological

hypotheses and relationships from the landscape to the reserve scales.

KEYWORDS: Ecosystem Functional Types; Ecosystem heterogeneity; Ecosystem variability,

EFT richness; EFT rarity; Sierra Nevada (Spain).
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4.2.1. Introduction

A better characterization of the functional dimension of biodiversity is required to develop
management approaches that ensure nature contributions to human well-being (Jax, 2010;
Bennet et al.,, 2015). To achieve this goal, it is necessary to have a set of essential variables
that allow for the characterization and monitoring of ecosystem functioning (Pereira et al.,
2013). Such variables are critical to understanding the dynamics of ecological systems
(Petchey and Gaston, 2006), the links between biological diversity and ecosystem services
(Balvanera et al., 2006; Haines-Young and Potschin, 2010), and the mechanisms of ecological
resilience (Mouchet et al., 2010). In addition, the use of ecosystem functioning variables has
been demanded to assess functional diversity at large scales with the aim of measuring the
Biosphere integrity (Mace et al,, 2014; Steffen et al, 2015), one of the most challenging
planetary boundaries to quantify (Steffen et al., 2015). Despite the importance of ecosystem
functioning variables, and the conceptual frameworks developed to promote their use
(Pettorelli et al., 2018), they have seldom been incorporated to ecosystem monitoring in
protected areas (but see Alcaraz-Segura et al., 2009; Fernandez et al., 2010; Cabello et al.,,

2016).

Characterization and evaluation of ecosystem functioning can be carried out through
attributes or functional traits related to the exchanges of matter and energy between
vegetation and the atmosphere (Mueller-Dombois and Ellenberg, 1974). Nowadays, the use
of satellite imagery provides useful methods to produce a spatially explicit characterization
of ecosystem functioning and its heterogeneity (i.e., functional diversity) from local
(Fernandez et al., 2010) to regional (Alcaraz-Segura et al.,, 2006, 2013) and global scales (lvits
et al, 2013). Theoretical and empirical models support the relationship between spectral
indices derived from satellite images (e.g., Enhanced Vegetation Index -EVI-) and essential
functional variables of ecosystems, such as primary production, evapotranspiration, surface
temperature, or albedo (Running et al.,, 2000; Pettorelli et al., 2005; Fernandez et al., 2010;
Lee et al, 2013). Among them, primary production is one of the most integrative and

essential descriptor of ecosystem functioning (Virginia and Wall, 2001; Pereira et al., 2013),
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since it has an central role in the carbon cycle (i.e., it is the energy input to the trophic web
and therefore, the driving force behind many ecological processes). Moreover, primary
production offers an holistic response to environmental changes and constitutes a synthetic

indicator of ecosystem health (Costanza et al.,, 1992; Skidmore et al., 2015).

To characterize ecosystem functioning through spectral vegetation indices, we can use the
approach based on Ecosystem Functional Types (EFTs), defined as patches of the land surface
that share similar dynamics in the exchanges of matter and energy between the biota and
the physical environment (Paruelo et al., 2001; Alcaraz-Segura et al., 2006). EFTs are derived
from three Ecosystem Functional Attributes (EFAs) that describe the seasonal dynamics of
carbon gains: annual mean (a surrogate of annual primary production, the most essential
and integrative indicator of ecosystem functioning), annual standard deviation (a descriptor
of seasonality or the differences between the growing and non-growing seasons), and the
annual date of maximum (a phenological indicator of when in the year is the growing period
centered). Since the concept appeared in 2001 (Paruelo et al., 2001), the EFT approach (or
equivalent approaches) applications has exponentially grown to characterize functional
heterogeneity from local to global scales (Alcaraz-Segura et al.,, 2006; Karlsen et al., 2006;
Duro et al., 2007; Fernandez et al., 2010; Geerken 2009; Alcaraz-Segura et al., 2013; Ivits et
al., 2013; Cabello et al., 2013; Pérez-Hoyos et al., 2014; Mdller et al., 2014; Wang and Huang,
2015; Villarreal et al., 2018; Coops et al., 2018; Mucina, 2019).

This article aims to provide a dataset that describes the spatial heterogeneity and temporal
variability of ecosystem functioning in terms of primary production dynamics from the intra-
and inter-annual variation of vegetation greenness captured through spectral vegetation
indices (e.g., EVI). We introduce as a proof of concept the case of Sierra Nevada Biosphere
Reserve (SE Spain), a biodiversity hotspot in the Mediterranean basin, that holds a long-term
ecological monitoring program since 2010. First, for each year, we provide three Ecosystem
Functional Attributes (EFAs) (i.e., annual primary production, seasonality, and phenology of
carbon gains), as well as their integration into a synthetic mapping of Ecosystem Functional

Types (EFTs). Second, based on these functional units, we present two measures of functional
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diversity: EFT richness and EFT rarity. Finally, in addition to the yearly maps, we calculated
inter-annual summaries, i.e., inter-annual means and interannual variability, to show the
average conditions as well as the most stable and variable zones along the period (workflow

in Figure 4.2.1)).
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Figure 4.2.1. Workflow to characterize the ecosystem functioning and functional diversity of Sierra
Nevada. MODIS (Moderate Resolution Imaging Spectroradiometer) sensor product MOD13Q1 was
used aboard NASA's Terra satellite. This product contains images with 16-day temporal resolution (23
images per year) and ~231 m spatial resolution from the Enhanced Vegetation Index (EVI). The study

period was from 2001 to 2018. Three functional attributes describing ecosystem functioning were
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calculated from the EVI seasonal curve for each year. The range of values for each attribute was divided
into four intervals, resulting in a potential number of 64 TFEs (4x4x4=64). From EFTs, we derived four
metrics related to ecosystem functional diversity (EFT richness and rarity) and ecosystem functional

stability (inter-annual variability and dissimilarity).

4.2.2. Methods

Site Description

Sierra Nevada (Andalusia, SE Spain) is a mountainous region covering more than 2000 km?
with an elevation range of between 860 and 3482 m a.s.| (Figure 4.2.2.). This mountain is one
of the most important 105 biodiversity hotspots in the Mediterranean region (Blanca et al.,
1998; Cafiadas et al., 2014), hosting endemic plant species for a total of 2353 taxa of vascular
plants (33% and 20% of Spanish and European flora, respectively; Lorite 2016). Forest cover
in Sierra Nevada is dominated by pine plantations (Pinus halepensis Mill., Pinus pinaster Ait.,
Pinus nigra Arnold subsp. salzmannii (Dunal) Franco, and Pinus sylvestris L.) covering
approximately 40000 ha. Most of them were planted in the period 1960-1980. The main
native forests of Sierra Nevada are dominated by the evergreen holm oak Quercus ilexsubsp.
ballota (Desf.) Samp. occupying low and medium mountain areas (8800 ha) and by the
deciduous Pyrenean oak Quercus pyrenaica Willd ranging from 1100 to 2000 m a.s.l. (about
2000 ha). Autochthonous pine forests of Pinus sylvestris L. var. nevadensis H. Christ,
characterized by low tree cover, occurs in small patches in the treeline. Above the treeline,
plant communities of the Oromediterranean and Crioromediterranean belts (above 1800-
2000 m a.s.l.), dominated by chamaephytes and hemicryptophytes (scrublands, grasslands,

and cliff and scree communities), are the habitat to many endemic species.

Sierra Nevada receives legal protection and international recognition in multiple ways:
UNESCO Biosphere Reserve (1986), Natural Park (1989), National Park (1999), Important Bird
Area (2003), Special Area of Conservation in Natura 2000 network (2012), and it is in the
IUCN Green List of Protected Areas (2014), a global standard of best practice for area-based

conservation. Sierra Nevada is also a site within the European Long Term Ecological Research
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(LTER) network, with many available ecological data records from multiple disciplines
(Zamora et al., 2017, LTER_EU_ES_010). The main economic activities in this mountain region

are agriculture, tourism, livestock raising, beekeeping, mining, and skiing (Bonet et al., 2010).

Vegetation studies in Sierra Nevada have mainly been developed considering a
compositional (phytosociological method) or a successional perspective (vegetation
dynamics). These studies have been beneficial for describing the vegetation heterogeneity
at the mesoscale (Loidi, 2017), for characterizing habitats of conservation concern (EU
Directive 92/43/EEC), and for developing ecological restoration actions (Valle et al.,, 2003).
However, these traditional approaches are insufficient for monitoring the effects of
environmental changes or management actions on ecosystem functions, and for assessing

the role of ecosystems as providers of services and benefits to society (Cabello et al., 2019).
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Figure 4.2.2. Study area: Sierra Nevada Biosphere Reserve. a) Location in the context of the Iberian

Peninsula; b) remote view of Sierra Nevada mountain region (image from the International Space

Station took in December 2014; courtesy of “Earth Science and Remote Sensing Unit, 615 NASA

Johnson Space Center”); c) delimitation of the Biosphere Reserve and the distribution of the main

ecosystems (Pérez-Luque et al, 2019) and thermotype bioclimatic belts (Molero-Mesa and Marfil,

2015).
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Satellite images of Vegetation Indices (MOD13Q1 data product)

The characterization of ecosystem functioning in Sierra Nevada was based on the temporal
dynamics of the Enhanced Vegetation Index (EVI) from 2001 to 2018. We chose EVI instead
of any other vegetation index (such as SAVI, ARVI, or NDVI) as an indicator of carbon gains
since it is more reliable in both low and high vegetation cover situations (Huete et al., 1997).
EVI reduces the influence of atmospheric conditions on vegetation index values, and EVI

corrects for canopy background signals.
EVI is computed following this equation:

(NIR — RED)
{i\'YIR*(.l x RED — C2 x Blue + L)

EVI =G »

where NIR/red/blue are atmospherically-corrected (Rayleigh and ozone absorption) surface
reflectances; L is the canopy background adjustment that addresses the non-linear and
differential transfer through a canopy of the NIR and red radiations; and C1, C2 are the
coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol
influences in the red band. The coefficients adopted in the MODIS-EVI algorithm are; L=1,
C1=6,C2 =7.5,and G (gain factor) = 2.5. The EVI values range from -1 to +1, where negative
values generally correspond to snow, ice, or water, and values closer to +1 represent the

higher density of green leaves (Huete et al.,, 2002).

We obtained EVI from MOD13Q1.006 product of the MODIS sensor (Moderate Resolution
Imaging Spectroradiometer) onboard NASA's Terra satellite (Didan, 2015). MOD13Q1.006
EVI product is computed from atmospherically corrected bi-directional surface reflectances
by choosing the best available pixel value from all the acquisitions (4 per day) in a 16-day
period based on quality, cloud presence, and viewing geometry (Huete et al., 1999, Didan et
al., 2015). In addition, to further remove the potential remaining effect of snow, ice, and water
in our dataset, we transformed negative EVIvalues into zeros. Thus, we obtained a maximum-
value composite image every 16 days (23 images per year). Despite its moderate spatial
resolution (~231 meters spatial resolution, though the nickname is 250 meters pixel), we

chose the MOD13Q1.006 product as the basis for our data since it offers a long time series
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(almost 20 years) every 16 days, which allows for the characterization of the temporal

dynamics of ecosystem functioning (Anderson et al., 2018).

MOD13Q1.006 images are downloadable from NASA's LP DAAC (Land Processes Distributed
Active Archive Center) (https://lpdaac.usgs.gov/products/mod13gq1v006/) (Didan, 2015) but

we process them through the Google Earth Engine platform

(https://developers.google.com/earth165 engine/datasets/catalog/MODIS 006 MOD13Q1)

(Gorelick et al., 2017). EVI values are multiplied by 10000 to store them as real numbers to

occupy less disk space (both in the original MOD13Q1.006 product and in our dataset).

Calculating Ecosystem Functional Attributes (EFAs)

We identified three EFAs that are known to capture most of the variance in the time series
of vegetation indices and that are biologically meaningful (Paruelo et al., 2001; Alcaraz-
Segura et al,, 2006, 2009). These functional attributes were calculated from the EVI seasonal
curve or annual dynamics (i.e.,, 23 measures per year): the EVI annual mean (EVI_mean; an
estimator of primary production), the EVI seasonal Standard Deviation (EVI_SD; a descriptor
of seasonality, i.e., the differences between the growing and non-growing seasons), and the
date of maximum EVI (EVI_DMAX; a phenological indicator of the month with maximum EVI)
(Figure 4.2.3.). To summarize the EFAs of the 2001-2018 period, we calculated the inter-

annual mean for each attribute.
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Figure 4.2.3. Seasonal dynamics of Enhanced Vegetation Index (EVI) and EVI derived metrics or

nn

Ecosystem Functional Attributes (EFAs). The axis “X" corresponds with months and the axis “y" with EVI
values. EFAs were: the annual mean or the cumulative EVI, an estimator of annual productivity
(EVI_mean), the EVI seasonal coefficient of variation, i.e. the differences between the minimum and the
maximum EVI values, a descriptor of seasonality (EVI_SD), and the date of maximum EVI, an indicator
of phenology (EVI. DMAX). We chose these three EVI metrics or EFAs since they capture most of the

variance of the EVI time series.

Biologically, these three metrics can be interpreted as surrogates (Paruelo et al, 2001,
Pettorelli et al., 2005, Alcaraz-Segura et al., 2006) of the total amount and timing (seasonality
and phenology) of primary production, one of the most integrative indicators of ecosystem
functioning (Virginia and Wall, 2001). Statistically, these three metrics are highly correlated
with the first two or three axes (and hence capture most of the variance) of a Principal
Component Analysis (PCA) carried out on the NDVI or EVI seasonal dynamics in different
regions (Townshend et al., 1985, Paruelo and Lauenroth, 1998, Paruelo et al., 2001, Alcaraz-
Segura et al., 2006, 2009, lvits et al., 2013). To know the statistical meaningfulness of these
metrics in Sierra Nevada Biosphere Reserve, we also examined their correlation with the first

axes of a PCA run on the EVI annual curve of the average year (12 EVI values, i.e., the inter-
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annual means of the maximum value composites for each month) (see full analysis in

Appendix A).

Identifying Ecosystem Functional Types (EFTs)

EFTs were identified by synthesizing in a single map the variability contained in the three
EFAs following a similar approach to Alcaraz-Segura et al., (2013). The range of values of
each EFA was divided into four intervals, giving a potential number of 64 EFTs (4 x 4 x 4).
For EVI_DMAX, the four intervals agreed with the four seasons of the year: January to March
= Winter, April to June = Spring, July to September = Summer, October to December =
Autumn. For EVI_mean and EVI_SD, we extracted the first, second, and third quartiles for each
year and then calculated the inter-annual mean of each quartile (means of the 18-year
period) (Appendix B, Table B1). To account for the interannual variability in the quartiles and
to assess how many years were necessary in the study period to get stability in the quartiles,
we run a sensitivity analysis (see sections below and Appendix B). Finally, the inter-annual
means of the quartiles were applied to each year as the thresholds for EVI_mean and EVI_SD
to set EFT classes (Table 4.2.1.). To summarize the EFTs of the 2001-2018 period, we
calculated the most frequent EFT of the period (i.e., the EFT mode for each pixel). To name
EFTs, we used two letters and a number: the first capital letter indicates net primary
production (EVI_mean), increasing from A to D; the second small letter represents seasonality
(EVI_SD), decreasing from a to d; the numbers are a phenological indicator of the growing
season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter (Table 4.2.1.). The
EFT alphanumeric code (Aal to Dd4) corresponds to the numeric code (1 to 64) in the .TIF
files, that is shown in the legend of Figure 4.2.4.d and in the data management plan

(Appendix D).
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Table 4.2.1. EFAs range used for the identification of EFTs in the Sierra Nevada Biosphere Reserve.
For EVI_DMAX, the four intervals agreed with the four seasons of the year. For EVI_mean and EVI_SD,
we extracted the first, second, and third quartiles for each year and then calculated the inter-annual
mean of each quartile (their average over the 18-year period). The values of both EVI_mean and

EVI_SD are multiplied by 10000 in the .TIF files to save disk space.

Ecosystem Character code Digit code Range
Functional
Attribute
EVI Mean A 100 0-0.137
(Productivity)
B 200 0.137 -0.187
C 300 0.187 - 0.241
D 400 > 0.241
EVISD a 10 > 0.062

(Seasonality)

b 20 0.043 - 0.062

c 30 0.030 -0.043

d 40 0-0.030
EVI DMAX 1 1 Spring
(Phenology)

2 2 Summer

3 3 Autumn

4 4 Winter
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Characterizing Ecosystem Functional Diversity

To characterize ecosystem functional diversity, we used EFT richness and EFT rarity. EFT
richness was calculated for each year by counting the number of different EFTs in a 4x4-pixel
moving window around each pixel (top-left center pixel of a 4x4 Kernel) (modified from
Alcaraz-Segura et al.,, 2013). Each MOD13Q1.006 pixel received a richness value derived from
counting how many different EFTs there were in the surrounding 4x4 pixels. We chose a 4x4-
pixel window since it offered the finest spatial resolution without saturating the number of
EFT classes per Kernel (i.e., smaller Kernel sizes result in a high proportion of moving windows
saturated with the maximum number of classes) (see sensitivity analysis on Kernel size in

sections below and Appendix C).

EFT rarity was calculated as the extension of each EFT compared to the most abundant EFT
in the study area (Equation 1) (Cabello et al., 2013). Then, the average rarity map of all years

was obtained.

Rarity of EFTi = (Area_EFTmax—Area_EFTi)/Area_EFTmax (Equation 1)

where Area_EFTmax is the area occupied by the most abundant EFT, and Area_EFTi is the

area of the i EFT being evaluated, with i ranging from 1 to 64.

Once we have the rarity value of each EFT (using Equation 1), we assigned to each pixel in
the EFT map such value according to its EFT class. Hence, the original spatial resolution of

the EFT rarity map is the same as the resolution of the EFT map (~231 m).

Inter-annual stability in ecosystem functioning

To identify the most stable and variable areas (either due to inter-annual fluctuations or
directional trends) in ecosystem functioning, we followed two approaches. First, we recorded
the number of different EFTs that occurred in the same pixel in the period 2001-2018, i.e.,

inter-annual-variability in EFTs. Second, to consider the changes not only at the pixel but also
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at the landscape level, the Jaccard similarity index (Jaccard, 1901) (Equation 2) was used in

4x4-pixel moving windows (924 x 924 m).

Jaccard Index = (the number in both sets) / (the number in either set) * 100

The same formula in notation form is (Equation 3):

JIXY) = [XNY] / XUy

where the Jaccard index for two data sets (X = set 1; Y =set 2) is equal to the size of the
intersection divided by the size of the union of the data sets. This measure represents how
similar the EFT composition that occurs in each window throughout the entire time series
(2001-2018) is. For each window, the Jaccard index was calculated among all possible
combinations of years, and then the inter-annual average of all calculated indices was

obtained.
In Steps:

1) Count the number of EFTs which are shared between both windows; 2) Count the total
number of EFTs in both windows (shared and unshared); 3) Divide the number of shared EFTs

1) by the total number of EFTs 2); 4) Multiply the number found in step 3) by 100.

From there, we calculated dissimilarity as (Equation 4):

Dissimilarity = 1 - Jaccard Index Dissimilarity

values range from 0 to 1, with 1 being the highest degree of dissimilarity in composition and

relative abundance of EFTs and 0 being absent.



Result 4.2. - Chapter II
A remote sensing-based dataset to characterize the ecosystem functioning and functional diversity

Sensitivity analyses
Inter-annual stability in quartiles to set boundaries among EFT classes

To assess how inter-annual variability affected the quartiles of EVI_mean and EVI_SD (which
set the boundaries among EFT classes), we determined the minimum number of years that
were needed in a study period to get stability in all quartiles (see Appendix B). For each
quartile, we plotted (Figure B1 Appendix B) the maximum inter-annual coefficient of variation
observed across all possible combinations of consecutive years from 2001 to 2018 (from 17
combinations of two consecutive years to one combination of 18 years) against the number
of years considered. That is, starting with two consecutive years, we plotted the maximum of
17 coefficients of variation (i.e., 2001-2002, 2002- 2003, ... 2017-2018); for three consecutive
years, the maximum of 16 coefficients of variation (i.e., 2001-2002-2003, ... 2016-2017-2018);

etc.

Kernel size and borderline effect on EFT richness

To assess the effect of the size of the sliding window Kernel on EFT richness, we calculated
EFT richness with Kernels of 2x2, 3x3, and 4x4 pixels and compared the outputs (see analysis

in Appendix C).

Since we only classified pixels within the Biosphere Reserve, external pixels with NoData
values were not considered as a distinct class to compute EFT richness along the borderline
of the protected area. For these reasons, it is important to note that the sliding windows
along the borderline of the protected area could systematically show lower EFT richness in

our dataset than in reality.

4.2.3 Results and Discussion

Available dataset

Overall, the collection of datasets provides a characterization of ecosystem functioning and

ecosystem functional diversity in Sierra Nevada Biosphere Reserve (SE Spain) through remote
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sensing. To broaden the use of data, first, we provide data in .TIF format. Second, we have
incorporated rendered versions of all layers as required by Google Earth Pro (called
“filename..._forGoogleEarthVisualization.tif") for visualization. Moreover, we have also
developed an ad-hoc visualization platform for the inter-annual summaries under the Sierra
Nevada Global 275 Change Observatory-LTER website. All data are available yearly (2001-
2018) and summarized for the period in EPSG:4326 WGS84 reference system.

The dataset is structured in three main subsets of variables: Ecosystem Functional Attributes,
Ecosystem Functional Types, and Ecosystem Functional Diversity (see Table 4.2.2.). For each
variable, there are two groups of data (two subfolders): one containing the yearly variables,

and another one 280 containing the summaries for the 18-year period.

Data were clipped with the shapefile of the Sierra Nevada Biosphere Reserve boundaries,
whose layer is available in the public database of the Andalusian regional government
(REDIAM:

https://descargasrediam.cica.es/07 PATRIMONIO NATURAL/01 ESPACIOS PROTEGIDOS).

All .TIFs files contain the following metadata: raster information (columns and rows, number
of bands, cell size, uncompressed size, format, source type, pixel type, pixel depth, NoData
value, pyramids, compression, status), extension (top, left, right, bottom), spatial reference
(angular unit, datum) and statistics (build parameters, min, max, mean, std dev.).
Furthermore, a Data Management Plan with the formal metadata of our dataset is also

available in PANGAEA data repository and in Appendix D.
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Table 4.2.2. Dataset description: Ecosystem Functional Attributes (EVI_mean, EVI_SD and EVI_DMAX provided yearly and summarized for the period);

Ecosystem Functional Types (EFTs yearly and summarized for the period (mode, interannual variability and dissimilarity); Ecosystem Functional

Diversity (EFT richness and EFT rarity, provided yearly and summarized for the period). Spatial resolution is ~231 in all cases except in the EFT

dissimilarity, where it is ~231m x 4 = ~T1km2. YYYY refers to year and varies from 2001 to 2018.

Filename

Variable

Definition

Biological significance

Temporal resolution

EVI_mean_YYYY_C006_MOD13Q1

_Pixel232

EVI_mean

Mean of the positive
EVIvalues in a year

Primary production in a year

Yearly, one image per
year YYYY

EVI_mean_InterAnnualMean_2001-
2018_C006_MOD13Q1_Pixel232

EVI_mean

Inter-annual mean of
the annual EVI_mean
values of the period

Average annual primary production of
the period

One image for
the 2001-2018
period

EVIL_sSD_YYYY_C006_MOD13Q1_
Pixel232

EVL_SD

Intra-annual standard
deviation of the positive
EVI values within a year

Seasonality in vegetation greenness.
Differences in carbon gains between
the growing and non-growing
seasons in a year

Yearly, one
image per year
Yyvy

EVI_sSD_InterannualMean_2001-
2018_C006_MOD13Q1__Pixel232

EVI_SD

Inter-annual mean of
the annual EVI_SD
values of a period

Seasonality.

Average annual of the differences in
carbon gains between the growing
and non-growing seasons throughout
the period

Average of the
2001-2018
period
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Filename Variable Definition Biological significance Temporal resolution
EVI_DMAX_YYYY_C006_MOD13Q1 EVI_DMAX  Month with maximum Phenology. Yearly, one
_Pixel232 EVIin a year Date of maximum greenness in a year image per year

YYYY
EVI_DMAX_InterannualMean_2001- EVI_ DMAX Inter-annual mean of Phenology. Average of the
2018_C006_MOD13Q1_Pixel232 the month with Average annual of the month with 2001-2018
maximum EVI of the maximum greenness throughout the period
period period
EFTs_YYYY_C006_MOD13Q1_Pixel232 EFTs Range of EFA’s values Patches of land surface that share Yearly, one
divided into four similar dynamics in matter and energy image per year
intervals 4 x 4 x 4 = 64 exchanges in a year YYYY
potential EFTs in a year
EFTs_InterannualMode 2001 - EFTs Mode of the range of Patches of land surface that share Mode of the
2018_C006_MOD13Q1_Pixel232 EFA's values divided similar dynamics in matter and energy 2001-2018
into four intervals 4 x 4 exchanges throughout the period period
x 4 = 64 potential EFTs
of the period
EFT_InterannualVariability_2001- EFT Ne° of different EFTs that ~ Changes in an ecosystem functioning 2001-2018
2018_C006_MOD13Q1_Pixel232 interannual occurred in the same in a period period
variability pixel in the period
EFT_InterannualDissimilarity_2001- EFT 1 - Jaccard Index Changes in ecosystem functioning a 2001-2018
2018_C006_MOD13Q1__Pixel232 interannual landscape level in a period period
dissimilarit
y
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2018_C006_MOD13Q1_Pixel232

(Area_EFTmax-
Area EFTi)/Area_EFTmax
(in a period)

Filename Variable Definition Biological significance Temporal resolution
EFT_Richness_YYYY_C006_MOD13Q1 EFT N° of different EFTs in a Different EFTs represented in the Yearly, one
_Pixel232 richness 4 x4-pixel moving land-surface in a year image per year

window around each YYYY
pixel in a year
EFT_Richness_InterannualMean_2001 EFT N° of different EFTs ina  Different EFTs represented in the land Average of the
-2018_C006_MOD13Q1_Pixel232 richness 4 x4-pixel moving surface throughout the period 2001-2018
window (924 x 924 m) period
around each pixel in a
period
EFT_Rarity_YYYY_C006_MOD13Q1 EFT rarity Rarity of EFTi = EFT geographical extension Yearly, one
_Pixel232 (Area_EFTmax— image per year
Area EFTi)/Area_EFTmax YYYY
(in a year)
EFT_Rarity_InterannualMean_2001- EFT rarity Rarity of EFTi = EFT geographical extension Average of the

2001-2018
period
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Ecosystem Functional Attributes patterns

Functional attributes of productivity, seasonality, and phenology showed a clear altitudinal
pattern. Productivity (EVI_mean) was much lower in the high mountain bioclimatic belts
(Crioro- and Oromediterranean belts) than in lower belts (Supra- and Mesomediterranean
belts). Productivity also decreased from west to east (Figure 4.2.4.a). Seasonality (EVI_SD) was
high in the Supramediterranean, decreasing in Meso-, and Thermomediterranean belts, and
in Crioro- and Oromediterranean (Figure 4.2.4.b). Phenology (EVI_DMAX) was characterized
by a dominant summer peak in vegetation greenness in the Crioro- and Oromediterranean
belts, and a late spring peak in the Supra- and Mesomediterranean belts. Dry and semi-arid
Thermomediterranean areas of the south and east showed greenness peaks in early autumn

and winter months (Figure 4.2.4.c).
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Figure 4.2.4. Ecosystem Functional Attributes (a-c) and Ecosystem Functional Types (d) describing the
functioning of the canopy based on the Enhanced Vegetation Index (EVI), derived from MOD13Q1-
850 TERRA (pixel ~231 m) for the period 2001-2018.
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Ecosystem Functional Type patterns

As a result of the combination of the three Ecosystem Functional Attributes, productivity,
seasonality, and phenology, represented in Figure 4.2.4. a-c, we obtained the EFT map (Figure
424.d) that includes a synthetic characterization of the spatial patterns of ecosystem
functioning from the primary production dynamics. A total of 64 classes were observed. The
most abundant EFT presented the maximum greenness in spring, with productivity values
from low to intermediate and with all possible combinations of seasonality: Aa1, Bal, Cb1,
Cd1, Bal, and Cc1 accumulated 30% of the surface. On the contrary, the rarest EFTs were
Ba4, Aa4 characterized by medium or low productivity, high seasonality, and maximum

greenness in winter.

Crioro- and Oromediterranean areas presented EFTs with low and intermediate productivity,
high seasonality, and moments of maximum greenness mainly in summer, but also in spring.
Here, extreme conditions characterized by scarce soil (Peinado et al., 2019), high solar
radiation, extreme temperatures, winds, snow, and ice, give rise to a short vegetative period.
Such conditions result in scarce vegetation cover, controlled by low temperatures, which can
only occur in summer, being the plant growth time; hence these areas have been referred to
as "cold desert" (Blanca et al, 2019). The Supra- and Mesomediterranean levels had
associated EFTs of intermediate-high productivity, medium-low seasonality, and maximum
green moment in spring and autumn (e.g., Cc1-3) (Figure 4.2.4.d). The Supramediterranean
belt is characterized by the presence of deciduous species, e.g., oak groves associated with
the most productive and seasonal ecosystem functional type of the study area, with the
maximum in spring (EFT Da1). In the dry and semi-arid thermomediterranean of the eastern
end, characterized by thermophilic species, which hardly suffer from frost, we detected a
different functional behavior of the ecosystems. The functioning of this area showed low
values of productivity, medium-low seasonality, and maximum greenness of the vegetation
in spring or winter (e.g., Ac1-4). Here, the main control of ecosystem functioning is water
availability, presenting plant species with a fast response to scarce water inputs (Cabello et

al, 2012).
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Stability in ecosystem functioning

The inter-annual variability ranged from 1 to 17 different EFTs over the 18-years period in
the same pixel (Figure 4.2.5.a). The number of EFTs observed in the same pixel over 18 years
was higher in the Supra- and Mesomediterranean levels, coinciding with the altitudinal range
where inter-annual climate variability is most affected (e.g., they may present much snow in
cold years and be affected by drought in dry and warm years). The eastern end of the semi-
arid thermomediterranean also highlighted a high inter-annual variability, where there exists
a more significant climate fluctuation and where small changes in precipitation produce large
changes in the dynamics of primary production (Houérou et al., 1988; Cabello et al., 2012),
as well as the area burned in 2005 near Lanjarén, where the fire eliminated the vegetation
that has been regenerating since then. On the other hand, the most inter-annual stable areas
(i.e., those that changed the least during the period) were located in the Meso-
Oromediterranean and Crioromediterranean belts, specifically, the oak forests and high-
mountain meadows, ecosystems that are not subject to low human pressure (e.g., low forest

management and low livestock).

The results of the inter-annual dissimilarity (1 - Jaccard index) in the EFT composition (Figure
4.2.5.b), also showed an altitudinal pattern where the dissimilarity was lower in the higher
mountain landscapes (Oro- and Crioromediterranean belts), as well as in the
Mesomediterranean oak groves (functional stability already shown by other authors, i. e.
Requena-Mullor et al, 2018). This pattern of dissimilarity increased towards lower levels,
finding the highest values of dissimilarity in areas where changes in land use and
management are significant (Zamora et al., 2016), such as autochthonous pine forests on
dolomites, coniferous afforestation and mid-mountain (Mesomediterranean belt) holm oak
forests. In addition, the eastern side of the Sierra Nevada had an area with low dissimilarity

values, that is, where there were not many changes over the years.



Result 4.2. - Chapter II
A remote sensing-based dataset to characterize the ecosystem functioning and functional diversity

3°40'w 3°30'W 3°20'w 3°10'w 3°w  2°50'w 2°40'w 2°30'wW 3°40'w 3°30'w 3°20'w 3°10'w 3°w  2°50'w 2°40'w 2°30'wW

¢) EFT Richness

1 1 1 '
a) Interannual variability

A 8a

z _nk _’
E = S5 B -
AR N SO AR e
z . =5 3P < o .
~
™ < wom High: 17
B Low: 1

-

-
- L

37°10'N

T e

ANt e O

-3;173';'9'!?“"- o
R L D e

3 f.{ : ¥

7°N

wem  High: 1

3

= ow:0

Figure 4.2.5. Functional diversity patterns based on the Enhanced Vegetation Index (EVI), derived from
MOD13Q1-TERRA for the period 2001-2018. a) EFTs inter-annual variability for the period; b) EFTs
inter-annual dissimilarity (1 - Jaccard index) for the period; c) Spatial EFT richness patterns from a 4x4-

MODIS-pixel sliding window (~231m x 4=~1 kmz2 ); and d) Spatial EFT rarity patterns.

Functional diversity at the ecosystem level

Richness oscillated between 1 and 13 EFTs. Highest EFT richness was observed in the Supra-
and Mesomediterranean belts, particularly in the southern face of the Sierra (Figure 4.2.5.¢),
where the number of vegetation series is also higher than in the rest of the bioclimatic belts
(Valle et al, 2003). The presence of EFTs hotspots mainly in the mid-mountain, and
particularly in the southern face, could be related to two factors. On the one hand, many
Mediterranean mountains show high values of beta diversity up to 1750-1800 m a.s.l. (Wilson
and Schmida, 1984), when there is an essential structural and compositional replacement of
their vegetation. On the other hand, in the middle mountain and especially in its southern
face, there are a very diverse mosaic of different types of natural vegetation mixed with
different types of reforestation, traditional crops and uses (Camacho et al., 2002), which gives
them the characteristic of multifunctional landscapes for the provision of ecosystem services
(Garcia-Nieto et al., 2013; Mastrangelo et al., 2014; Cabello et al., 2019). Molero Mesa et al.,

(1996) and Fernandez Calzado et al., (2012) indicated that Sierra Nevada species richness
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decreases with altitude, while endemic taxa increases (Blanca et al., 2019). Something similar
can be observed in the functional diversity of ecosystems since the maximum richness is
found in areas of medium altitude. The areas with the lowest EFT richness were located in
high-mountain (Oro- and Crioromediterranean belts), and in the eastern semi-arid
thermomediterranean extreme, where the harsh soil and climatic conditions (Peinado et al.,
2019) diminish floristic diversity although their endemicity increases (Fernandez Calzado et
al, 2012). The lowest values of EFT richness (richness 4-5) were found in the
Supramediterranean oak groves, (as in Dionisio et al., 2012; Requena-Mullor et al., 2018) may
be due to the internal homogeneity of their environmental conditions and their floristic

composition (Pérez-Luque et al., 2015a, Requena-Mullor et al., 2018).

EFT rarity was highest in the highest peaks (Crioromediterranean belt) and the lowest areas
of the Eastern side of Sierra Nevada (semi-arid thermomediterranean belt, both areas
characterized by a high concentration of narrow endemic species. The peaks (above 2800 m
a.s.l) are landscapes with very high biodiversity values since they hold the highest
concentration of local endemisms (Cafadas et al., 2014; Pefias et al., 2019) (Figure 4.2.5.d).
In these areas, vegetation develops under very limiting ecological conditions that determine
uncommon types of ecosystem functioning (rarity 0.6; Figure 4.2.5.d), such as, for example,
in scree slopes, where the percentage of rarity or compositional endemicity rises to 80%
(Blanca and Algarra, 2011). The semi-arid areas, also show a high concentration of endemic
species, but in this case from the Iberian arid Southeast (Mota et al., 2004). In the high
mountain areas (Oromediterranean belt), EFT rarity decreased and reached its minimum
value, which reflects the fact that they are the largest (i.e., most frequent) landscapes in the
Biosphere Reserve, and in consequence, broadly distributed ecosystem functional types.
Mid-mountain areas (Supra- and Mesomediterranean belts) (Figure 4.2.5.d) showed medium
to high EFT rarity values, corresponding the highest ones to the coniferous and oak forests
(rarity 0.6). The high rarity of the ecosystem functioning in the coniferous forests of mid- and
high-mountain was associated with their winter canopy phenology (e.g., Cc1, Dcl), a

particular phenological behavior of these forests also identified in other areas of the Iberian
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Peninsula (Aragones et al., 2019). Finally, oaks forest also showed high rarity, due to their

singular deciduous habit in the context of the Mediterranean region (Dionisio et al., 2012).

Sensitivity analysis
Inter-annual stability in quartiles to set boundaries among EFT classes

The inter-annual Coefficient of Variation (CV) of the 2001-2018 period was around 5% for
the EVI_mean quartiles and around 10% for the EVI_SD quartiles (Table B1, Appendix B). The
quartiles of EVI_mean (our surrogate for productivity) required at least 14 years to stabilize
around 5% of CV. The quartiles of EVI_SD (our surrogate for seasonality) required at least 17

years to stabilize around 10% of CV (Figure B1, Appendix B).

Despite there exists variation in the quartile values across years, we did not adopt the limits
among EFT classes to such variation. Adapting the limits between classes to each year would
not make it possible to compare the classification across the years. Instead, we followed a
fixed-classification approach with fixed limits among EFT classes for the entire period to
make the classification capable of detecting such inter-annual changes. For example, if a
macro wildfire burns the entire protected area in 2020, our use of fixed limits among classes
for the 2001-2018 period will allow the detection of such disturbance (most pixels would be
classified as low productivity “A EFT class”). Contrary, if the limits among EFT classes were
adapted to the data distribution of each year, the classification would not be able to detect

the effect of wildfire and make the 2020 classification comparable to previous years.

Kernel size effect on EFT richness

The 4x4-pixel Kernel for the sliding window offered the finest spatial resolution of the EFT
richness map without saturation of this variable (Figure C1, Appendix C). That is, when the
size of the sliding window Kernels was 2x2 or 3x3 pixels, there was a high proportion of
Kernels that reached the highest possible richness value (4 and 9 EFT classes per Kernel,
respectively), so the EFT richness variable was highly saturated. The use of 5x5-pixel sliding

windows never reached the maximum number of pixels in a Kernel but resulted in too coarse
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outputs (grain size of 5x5 MO13Q1 pixels). Hence, the 4x4-pixel Kernels offered a balance
between output resolution and variable saturation, since we observed a maximum EFT

richness of 13, while the maximum potential richness in a 4x4- pixel Kernel was 16.

Nevertheless, any richness assessment depends on the spatial scale. i.e, both grain and
extent (Arponen et al.,, 2012). Regarding grain, when using species distributions to identify
hotspots, the actual values of species richness reached in each cell would increase with grain
size from a dataset built at 1x1 km to a dataset built at 10x10 km. However, the regional
spatial patterns of species richness would not widely vary between the two datasets (Rahbek,
2005). In our analysis, the maximum number of classes per Kernel could vary depending on
the Kernel size. In the future, once data records of satellite images with higher spatial
resolution, such as Sentinel-2, get long enough, it will be possible to get a finer resolution

picture of ecosystem functioning and functional diversity at the protected area level.

Data applications for research and conservation / Example of data usage

Ecological research based on spectral vegetation indices plays an essential role in
biodiversity conservation (Cabello et al., 2012; Pettorelli, 2016, 2018) and management
(Pelkey et al., 2003; Cabello et al., 2016) and for the study of biodiversity and ecosystems
responses to environmental changes (Alcaraz-Segura et al., 2017; Pérez-Luque et al., 2015a).
In fact, numerous studies have demonstrated the usefulness of satellite image time series to
evaluate the functional changes in ecosystems at the regional scale (Alcaraz-Segura et al,
2009) and at the protected area level (AlcarazSegura et al, 2009; Lourenco et al., 2018).
Recently, the use of EFAs derived from spectral indices of vegetation in species distribution
models has made it possible to evaluate with high spatial and temporal precision the
suitability of habitat for plant species (Arenas-Castro et al., 2018) and animals (Requena-
Mullor et al, 2017; Regos et al, 2019) and may even anticipate expected changes in the
distribution of plant species threatened as a consequence of climate change (Alcaraz-Segura
et al,, 2017). In addition, based on the EFAs, a monitoring program of the Spanish National

Parks Network has been designed to identify changes and anomalies in functioning,
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informing managers of the health and conservation status of ecosystems (Cabello et al,

2016).

Furthermore, the EFT approach have been used to characterize spatial and temporal
heterogeneity of ecosystem functioning at local and regional scales (Fernandez et al., 2010;
Cabello et al., 2013); to describe biogeographical patterns (Alcaraz-Segura et al., 2006; lvits
et al, 2013); to evaluate the environmental and human controls of ecosystem functional
diversity (Alcaraz-Segura et al., 2013); to identify priorities for Biodiversity Conservation
(Cazorla et al., 2020); to assess the representativeness environmental networks (Villarreal et
al., 2018); to assess the effects of land-use changes on ecosystem functioning (Oki et al,

2013); and to improve weather forecast models (Lee et al., 2013; Miiller et al., 2014).

This dataset provides the first characterization of functional diversity at the ecosystem level
in Sierra Nevada. Our dataset could serve as a reference situation to track ecosystem
functioning response to global change and management actions, to understand the drivers
of ecosystem functioning and functional diversity, and to assess the supply of ecosystem
services (Palomo et al., 2013; IniestaArandia et al., 2014; Cabello et al., 2019). The Global
Change Observatory of Sierra Nevada is also a long-term ecological research site (name: ES-
SNE, code: LTER_EU_ES_010) established more than a decade ago (Zamora et al., 2016, 2017).
It has available data on species distributions and dynamics, climate, ecosystem services,
hydrology, land-use changes, and management practices (Pérez-Luque et al., 2014, 2015b,
2015c¢, 2016; Ros-Candeira et al., 2019, 2020; Lorite et al., 2020). The abundance of long-term
datasets from multiple disciplines constitutes an opportunity to explore the role of
ecosystem functioning and functional diversity on ecohydrological and species distribution
modeling, climate change mitigation and adaptation, ecological resilience, adaptive

management, and ecosystem services supply.

Data availability

The datasets described in this article are available in open-access sources. To broaden their

use, first, we provide data in .tif format. Second, we have incorporated rendered versions of
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all layers as 470 required by Google Earth Pro (called
“filename..._forGoogleEarthVisualization.tif") for visualization. Moreover, we have also
developed an ad-hoc visualization platform for all the layers. Datasets are available for

download in PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.904575 (Cazorla et al.,

2019) and for visualization in http://obsnev.es/apps/efts SN.html.

The MODIS database used in this work is maintained by NASA (satellite Terra, sensor MODIS,
475 product MOD13Q1.006) and copied by Google into the Earth Engine servers
(https://developers.google.com/earth-engine/datasets/catalog/MODIS 006 MOD13Q1).

The Sierra Nevada Biosphere Reserve boundaries shapefile is included in the public
geodatabase of the Andalusian regional government (REDIAM:

https://descargasrediam.cica.es/ 07 PATRIMONIO NATURAL/01 ESPACIOS PROTEGIDOS.

4.2.4. Conclusions

This dataset provides a characterization of ecosystem functioning and ecosystem functional
diversity patterns in terms of primary production, in the Sierra Nevada Biosphere Reserve (SE
Spain), a biodiversity hotspot and a European Long Term Ecological Research (LTER)
platform. We based our contribution on the identification of Ecosystem Functional Types
(EFTs) through the analysis of time series of satellite images of spectral vegetation indices as
surrogates of the carbon gains dynamics. First, we provided three Ecosystem Functional
Attributes (EFAs) that describe the spatial and interannual variability in productivity,
seasonality, and phenology of vegetation greenness. Second, we combined these EFAs into
a synthetic classification, i.e, Ecosystem Functional Types (EFTs), which integrates into a
single map the spatial heterogeneity of these descriptors of the seasonal dynamics of carbon
gains. Finally, by using EFTs as biological entities, the spatial patterns of ecosystem functional
diversity were assessed using EFT richness and EFT rarity, as well as the inter-annual variability
in ecosystem functioning through EFT inter-annual variability and EFT inter-annual
dissimilarity. The Ecosystem Functional Type approach improves the understanding of

ecosystem processes through environmental gradients, and provides both to the scientific
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and managers communities with valuable information of the first characterization of the

functional diversity at the ecosystem level developed in the entire protected area.
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