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ABSTRACT 

Incorporating ecosystem functioning and functional diversity in ecology and nature 

conservation is key to promote sustainability and a safe operating space for humanity. 

Nowadays, numerous international agreements, such as the Convention on Biological 

Diversity (CBD), face the challenge of safeguarding the ecological processes and ecosystem 

functions that sustain the multiple facets of biodiversity and ecosystem services. Indeed, 

variables describing ecosystem functioning are widely demanded to define essential 

biodiversity variables, a framework to coordinate monitoring programmes worldwide. 

Ecosystem functioning is particularly relevant to track and forecast how environmental 

changes affect biodiversity and ecosystem services. To characterize ecosystem functioning, 

multiple remote sensing techniques can be used, such as the Ecosystem Functional Type 

(EFT) approach. EFTs can be defined as groups of ecosystems with similar dynamics of matter 

and energy exchanges between the biota and the physical environment. EFTs can be derived 

from biologically meaningful descriptors (named Ecosystem Functional Attributes -EFAs-) of 

the seasonal curves of spectral indices as surrogates of focal ecosystem functions, for 

instance, of primary production dynamics, one of the most essential and integrative 

indicators of ecosystem functioning. 

The main objective of this thesis was to provide a remote-sensing based conceptual and 

methodological approach to incorporate the functional dimension of biodiversity at 

ecosystem level in ecology and conservation biology through the application of the 

Ecosystem Functional Type (EFT) concept. We achieved this goal in four steps: 1) First, we 

provide ground-based empirical evidence for the use of satellite-derived EFTs as descriptors 

of the regional heterogeneity in ecosystem functioning, i.e., satellite-derived EFTs as 

homogeneous patches of the land surface in terms of Net Ecosystem Exchange (NEE) 

dynamics measured on ground. 2) Second, we showed how EFTs can be used to describe the 

spatial heterogeneity and inter-annual variability of ecosystem functioning (i.e. EFAs and 

EFTs), ecosystem functional diversity (i.e. EFT richness and EFT rarity) and ecosystem 
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functional stability (interannual variability and dissimilarity) and released the associated 

dataset. 3) Third, we provide a proof of concept on how to use EFTs to incorporate ecosystem 

functional heterogeneity and singularity in setting geographic conservation priorities. 4) 

Finally, we also provide a proof of concept on how to use EFTs in biological regionalizations 

to complement the compositional and structural descriptions of biodiversity.  

Theoretical and empirical models support the relationship between spectral indices derived 

from satellite images (e.g., Enhanced Vegetation Index -EVI-) and essential functional 

variables of ecosystems, such as primary production. In this thesis, we identified EFTs from 

three descriptors of the seasonal curves of MODIS/Terra EVI (MOD13Q1 product): annual 

mean (proxy of primary production), seasonal coefficient of variation or standard deviation 

(descriptors of seasonality), and date of maximum EVI (indicator of phenology).  

Satellite-derived EFTs demonstrated to be an ecosystem functional classification that can 

inform on homogeneous patches on the land surface in terms of their NEE dynamics 

measured on ground. Given that NEE dynamics is related to primary production, a focal 

ecosystem function, EFTs can then be used (as essential variables) to describe, assess and 

monitor the regional heterogeneity of ecosystem functioning (Chapter I). EFTs also provide 

a straightforward approach to characterize the spatial diversity, i.e. EFT richness and EFT 

rarity, and functional stability, i.e. EFT interannual variability and dissimilarity, of ecosystem 

functioning to inform scientists and managers on ecosystem functional diversity patterns 

and trends (Chapter II). Furthermore, EFTs helped to both reinforce and complement 

traditional geographic conservation priorities based on biodiversity composition and 

structure by incorporating the heterogeneity and singularity of focal ecosystem functions 

(Chapter III). Finally, EFTs allowed us to understand the relationship between different 

dimensions of biodiversity in ecological regionalization exercises, i.e. based on biodiversity 

composition and structure (species distribution, endemisms, vegetation types) and on 

patterns of ecosystem functioning (Chapter IV).  
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Overall, the characterization of the spatial patterns and temporal variability of ecosystem 

functioning in terms of EFAs, EFTs, and EFT diversity metrics derived from satellite spectral 

indices related to a focal ecosystem function (e.g. Enhanced Vegetation Index, as a proxy for 

primary production), demonstrated to be a useful and innovative tool to incorporate 

ecosystem functioning at regional scale into ecology and conservation under the new 

conservation paradigm that considers ecological processes and ecosystem functions and 

services.  
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RESUMEN  

La incorporación del funcionamiento de los ecosistemas y la diversidad funcional en la 

ecología y la conservación de la naturaleza es fundamental para promover la sostenibilidad 

y un espacio seguro para la humanidad. Hoy en día, numerosos acuerdos internacionales, 

como el Convenio sobre la Diversidad Biológica (CDB), se enfrentan al reto de salvaguardar 

los procesos ecológicos y las funciones de los ecosistemas que sustentan las múltiples 

facetas de la biodiversidad y los servicios ecosistémicos. De hecho, se demanda que variables 

que describen el funcionamiento de los ecosistemas definan las variables esenciales de la 

biodiversidad, un marco para coordinar los programas de vigilancia ambiental en todo el 

mundo. El funcionamiento de los ecosistemas es particularmente importante para el 

seguimiento y monitoreo de los cambios ambientales que afectan a la biodiversidad y los 

servicios de los ecosistemas. Para caracterizar el funcionamiento de los ecosistemas, pueden 

utilizarse múltiples técnicas basadas en teledetección, como la aproximación basada en tipos 

funcionales de ecosistemas (TFEs). Los TFEs pueden definirse como grupos de ecosistemas 

con una dinámica similar de intercambios de materia y energía entre la biota y el entorno 

físico. Los TFEs pueden derivarse de descriptores biológicamente significativos 

(denominados Atributos Funcionales del Ecosistema - AFE), obtenidos de las curvas 

estacionales de los índices espectrales, y utilizados como subrogados de las funciones 

focales del ecosistema, por ejemplo, de la dinámica de la producción primaria, uno de los 

indicadores más esenciales e integradores del funcionamiento del ecosistema. 

El principal objetivo de esta tesis doctoral fue proporcionar un enfoque conceptual y 

metodológico basado en la teledetección para incorporar la dimensión funcional de la 

biodiversidad a nivel de ecosistema en la ecología y la biología de la conservación, mediante 

la aplicación del concepto de Tipo Funcional de Ecosistema (TFE). Logramos este objetivo en 

cuatro pasos: 1) En primer lugar, aportamos pruebas empíricas basadas en datos de campo 

para la utilización de los TFEs obtenidos mediante teledetección como descriptores de la 

heterogeneidad regional en el funcionamiento de los ecosistemas, es decir, determinamos 



 
22 

si los TFEs obtenidos mediante satélite son parches homogéneos de la superficie terrestre 

en términos de la dinámica de intercambio neto de ecosistemas (i.e. CO2). 2) En segundo 

lugar, mostramos cómo pueden utilizarse los TFEs para describir la heterogeneidad espacial 

y la variabilidad interanual del funcionamiento de los ecosistemas (es decir, los AFE y los 

TFE), la diversidad funcional de los ecosistemas (es decir, la riqueza y la rareza de TFEs) y la 

estabilidad funcional de los ecosistemas (variabilidad y disimilitud interanuales), y ponemos 

a disposición de la comunidad científica el conjunto de datos correspondiente. 3) En tercer 

lugar, ofrecemos una prueba de concepto sobre cómo utilizar TFEs para incorporar la 

heterogeneidad y la singularidad funcional de los ecosistemas en el establecimiento de 

prioridades geográficas en conservación. 4) Por último, también proporcionamos una prueba 

de concepto sobre cómo utilizar TFEs en las regionalizaciones biológicas para complementar 

las descripciones composicionales y estructurales de la biodiversidad.  

Los modelos teóricos y empíricos apoyan la relación entre los índices espectrales derivados 

de las imágenes satelitales (por ejemplo, el índice de vegetación mejorado -EVI-) y las 

variables esenciales del funcionamiento de los ecosistemas, como la producción primaria. En 

esta tesis, identificamos TFEs a partir de tres descriptores de las curvas estacionales del EVI 

de MODIS/Terra (producto MOD13Q1): media anual (proxy de la producción primaria), 

coeficiente de variación estacional o desviación estándar (descriptores de la estacionalidad) 

y fecha del EVI máximo (indicador de la fenología).  

Los TFEs obtenidos mediante teledetección demostraron ser una clasificación funcional del 

ecosistema que puede informar sobre parches homogéneos en la superficie terrestre en 

términos de su dinámica de intercambio de CO2 medida en tierra. Dado que esta dinámica 

está relacionada con la producción primaria, una función central del ecosistema, los TFEs 

pueden utilizarse (como variables esenciales) para describir, evaluar y vigilar la 

heterogeneidad regional del funcionamiento del ecosistema (Capítulo I). Los TFEs también 

proporcionan un enfoque directo para caracterizar la diversidad espacial, es decir, la riqueza 

y la rareza de TFEs, y la estabilidad funcional, es decir, la variabilidad y la disimilitud interanual 

de TFEs, del funcionamiento de los ecosistemas para informar a la comunidad científica y a 
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la administración de los patrones y tendencias de la diversidad funcional de los ecosistemas 

(Capítulo II). Además, los TFEs contribuyeron a reforzar y complementar las prioridades 

tradicionales de conservación geográfica basadas en la composición y la estructura de la 

diversidad biológica al incorporar la heterogeneidad y la singularidad de las funciones 

focales de los ecosistemas (Capítulo III). Por último, los TFEs nos permitieron comprender la 

relación entre las diferentes dimensiones de la biodiversidad en los ejercicios de 

regionalización ecológica, es decir, basados en la composición y la estructura de la 

biodiversidad (distribución de las especies, endemismos, tipos de vegetación) y en los 

patrones de funcionamiento de los ecosistemas (Capítulo IV).  

En general, la caracterización de los patrones espaciales y la variabilidad temporal del 

funcionamiento de los ecosistemas en términos de AFEs, TFEs y métricas de diversidad de 

TFEs derivadas de los índices espectrales satelitales relacionados con una función central del 

ecosistema (por ejemplo, el índice de vegetación mejorado, como sustituto de la producción 

primaria), demostró ser un instrumento útil e innovador para incorporar el funcionamiento 

de los ecosistemas a escala regional en la ecología y la conservación dentro del nuevo 

paradigma de conservación que considera los procesos ecológicos y las funciones y servicios 

de los ecosistemas.  
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1. INTRODUCTION 

1.1. The multidimensional nature of biodiversity and its importance for the 

integrity of ecosystems 

Biodiversity is a central concept in ecology and conservation that can be understood as a 

measure of the total difference within a biological system (Lyashevska & Farnsworth, 2012). 

Since its proposal, the concept has received much attention due to its complex and 

hierarchical nature. In 1992, the United Nations Earth Summit in Rio de Janeiro defined 

biodiversity as "the variability among living organisms from all sources, including, terrestrial, 

marine, and other aquatic ecosystems, and the ecological complexes of which they are part: 

this includes diversity within species, between species and of ecosystems" (Convention on 

Biological Diversity, 1992). From this declaration, several definitions have been proposed to 

provide a more comprehensive concept of biodiversity. While these definitions can vary 

enormously (Kaennel, 1998; Gastón and Spicer, 2013), a common feature among them is that 

biodiversity arises at multiple levels of biological organization (i.e. genetic, species, 

ecosystems and ecoregions) and it is inherently multidimensional (Noss, 1990; Lyashevska & 

Farnsworth, 2012; Naeem et al., 2016). Such complex nature implies the acknowledgement 

of biodiversity is organized in three main dimensions -composition, structure and function- 

(Noss, 1990; Walters and Scholes, 2017) (Figure 1.1). Composition deals with the identity and 

variety of entities in a collection (e.g., species lists and diversity indices); structure is the 

physical organization or pattern of a system (e.g., habitat complexity or physiognomy of 

vegetation); and function involves ecological processes (e.g., information, matter and energy 

exchanges). The acknowledgement of the importance of research on the development of 

new methodologies and analytic tools for measuring the natural variation of biodiversity 

embracing all its dimensions is currently one of the mainstays of biological sciences. 

https://www.cs.mcgill.ca/~rwest/wikispeedia/wpcd/wp/r/Rio_de_Janeiro.htm


Introduction 

 

 
28 

 

Figure 1.1. Biodiversity dimensions from Scholes et al., (2017) based on Noss, (1990). 

The growing awareness that biodiversity is a precious global asset to human well-being and 

that the integrity of habitats and ecosystems are at serious risk, has increased the importance 

of biodiversity-related research. Such an investigation has shown that the characterization 

and monitoring of all dimensions of biodiversity is key to maintaining ecosystems healthy 

and resilient to global change (Walters and Scholes, 2017). First, nowadays it is widely 

recognized that healthy ecosystems are the basis of human well-being since they provide 

the multiple benefits that we need to have an good life (MEA, 2005). Such benefits, the so-

called ecosystem services, are obtained only if ecosystems hold adequate biodiversity 

composition and structure that guarantees the functional processes necessary to deliver 

them (Cardinale et al., 2012). Second, ecosystems have been resilient enough to gradually 

adapt to environmental changes. However, the demographic growth of the human 

population and the exploitation of natural resources have dramatically reduced biological 

diversity (Bongaarts, 2019) undermining ecosystems' abilities to function efficiently and 

thereby diminishing their ability to respond to environmental changes (Oliver et al., 2015).  
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1.2. Compositionalism vs functionalism 

Even though traditionally compositional and structural biodiversity has been more important 

in ecology and conservation than functional biodiversity (Calicott 1999; Lovett et al., 2005), 

in recent decades the role of ecosystem functions in biodiversity studies has significantly 

increased (Oliver et al., 2015; Navarro et al., 2017; Pettorelli et al., 2018). Indeed, biodiversity 

research has moved from a compositional approach oriented towards the biological 

hierarchy of organisms and populations of species that interact in biotic communities, to a 

functional approach that aims to know the ecological processes that sustain biodiversity (Jax, 

2010). Both approaches have a different conceptual basis, since while compositionalism is 

based on evolutionary ecology, functionalism adopts the principles of thermodynamic 

ecology (Callicott et al., 1999, Rodríguez, 2016) (Figure 1.2). According to Cabello et al., 

(2012), the higher tangibility of the discrete entities that study evolutionary ecology (such as 

species) has made it possible to make more and earlier progress in the use of biodiversity 

composition and structure in ecology and conservation. In contrast, the fact that 

thermodynamic ecology (e.g. functions) is based on continuous and intangible units using 

aggregation criteria such as biomass or matter and energy flows has delayed and limited its 

use. Despite their methodological and theoretical differences, in practice, both approaches 

are complementary, since they offer the opportunity to address the current biodiversity crisis 

from a wide variety of arguments that as a whole deal to the intrinsic, instrumental and 

relational values of biodiversity (Tallis and Lubchenco, 2014). 
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Figure 1.2. Compositionalism vs functionalism. Based on Callicott, (1999) and Rodriguez, (2016). 
 

 

1.3. Ecosystem functioning as a focus in the study of the functional dimension 

of biodiversity  

The incorporation of ecosystem functioning in ecological research offers a better 

understanding of spatial and temporal patterns of biodiversity (Garnier et al., 2016). Research 

on the functional aspects of biodiversity has primarily focused on reflecting the variability of 

ecological attributes among species that provides a mechanistic link to ecosystem resistance, 

resilience and functioning (Petchey & Gaston, 2006; Lavorel et al., 2007). However, because 

the final goal of the functional biodiversity dimension research is to focus on processes that 

arise as an integral response at the ecosystem level, in practice, it has been expanded to deal 

with the characterization of ecosystem functioning (e.g., Cabello et al., 2012). Nowadays, the 

ecosystem functioning has an essential role in biodiversity research, since through it, we can 
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address how systems perform, and provide the links between biological diversity (Díaz et al., 

2007; Chapin et al., 2010; Cadotte et al., 2011; Asner et al., 2017), ecosystem services 

(Balvanera et al., 2006; Duncan et al., 2015), and ecological resilience (Petchey and Gaston, 

2006). In this sense, variables describing ecosystem functioning are widely demanded to 

define essential biodiversity variables, a framework to coordinate monitoring programmes 

worldwide (Pereira et al., 2013). Functional variables have also been claimed to predict, for 

example, how communities and ecosystems respond to environmental change (Bengtsson, 

1998) and on understanding how declining diversity influences ecosystem services on which 

humans depend (Costanza et al., 1997; Pettorelli et al., 2018). Furthermore, variables capable 

of describing ecosystem functioning at regional to global scales are needed to advance in 

the definition of one of the nine critical, but still unassessed planetary boundaries, i.e. 

functional diversity (Steffen et al., 2015).  

Multiple definitions of ecosystem functioning and related terms of its semantic field (i.e. 

ecological processes, ecosystem functions) can be found in the literature (Jax 2010; Pettorelli 

et al., 2018). All of them try to reflect the collective life activities of plants, animals, and 

microbes and the effects that these activities (e.g., feeding, growing, moving, excreting 

waste) have on the physical and chemical conditions of their environment. In this thesis, we 

considered the following definitions: 1) Ecological processes as “the resulting activities from 

interactions among organisms and with their environment” (Martinez, 1996); 2) Ecosystem 

processes as “the transfer of energy, material, or organisms among pools in an ecosystem” 

(Lovett et al., 2006); 3) Ecosystem functions as “attributes related to the performance of an 

ecosystem that is the consequence of one or of multiple ecosystem processes” (Lovett et al., 

2006); and 4) Ecosystem functioning as the sum of all ecosystem functions, in particular, we 

will refer to the ecosystem functioning as the information contained in magnitudes of stocks 

and rates of processes involving exchanges of energy and matter between the biota and the 

environment (Paruelo et al., 2001). 
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1.4. Ecosystem functioning research in conservation 

A better understanding of ecosystem functioning and functional diversity is key to 

biodiversity conservation and its services. The emergence of the biodiversity-ecosystem 

functioning paradigm has recognized the bidirectional relationship between the 

conservation status of biodiversity and of ecosystem processes (Naeem, 2002; Hooper et al., 

2005). Accompanied by the challenge of safeguarding the ecological processes necessary for 

the persistence of biodiversity over time (CBD, 2010; GBO4, 2014; Mace, 2014) appeared a 

general concern for maintaining the capacity of ecosystems to sustain and regulate their 

functions (Chapin et al., 2010; Prober et al., 2019) and services (Naidoo et al., 2008; Costanza 

et al., 2014; Doak et al., 2015). Indeed, a growing number of international commitments, such 

as the Convention on Biological Diversity or the Aichi Targets, require specific management 

plans that specifically address ecosystem functioning (CBD, 2011; Visconti et al., 2019).  

From the planning and management perspective, the importance of incorporating 

ecosystem processes and functions into systematic conservation planning, ecosystem 

management and adaptive management is also noted (Margules and Pressey, 2000; 

Possingham et al., 2005; Klein et al., 2009; Jax, 2010). Systematic approaches to conservation 

planning have been developed over the last two decades to guide the allocation of the scarce 

resources available for protecting biodiversity (Carwardine et al., 2007). These approaches 

should be supported by the identification of explicit targets for biodiversity features to guide 

decisions for setting conservation priorities (Possingham et al., 2000). The identification of 

conservation priorities areas is usually based on the important metrics in ecology and 

conservation, such as richness or rarity (Ceballos and Brown, 1995). Nowadays, the need for 

a larger and more representative and comprehensive global protected area network (Aichi 

target 11, CBD 2011) that accounts for all dimensions of biodiversity could greatly benefit 

from the explicit inclusion of the ecosystem functions and processes that support biodiversity 

and ecosystem services (Naidoo et al., 2008).  
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Ecosystem functioning provides several advantages in conservation schemes over 

compositional and structural dimensions. Ecosystem functioning offers a more rapid 

response to environmental changes, allowing adaptive management and early detection of 

impacts (Milchunas and Lauenroth, 1995). Besides, the large‐scale changes in ecosystem 

functioning across Earth has important consequences for biodiversity and resources 

availability to support biological conservation and human well-being (Olson et al., 2001). In 

consequence, a growing number of authors have identified the need to integrate new 

concepts and methodologies to connect classical ecology and contemporary conservation 

with ecosystem functioning (Violle et al., 2014). Thus, new approaches aimed at 

characterizing biodiversity based on ecosystem functioning could help to address such 

conceptual and operational challenges. 

 

1.5. Remote sensing of ecosystem functioning 

Ecosystem functioning can be systematically and easily monitored through satellite images 

over large areas, providing us a dynamic characterization of ecosystems (Paruelo et al., 2001). 

Consequently, remote sensing appears as a tool that allows us to incorporate ecosystem 

functioning indicators to biodiversity conservation (Duro et al., 2007; Cabello et al., 2012; 

O’Connor et al., 2015; Skidmore et al., 2015; Pettorelli et al., 2019). 

Remote sensing has been around as a tool for nature science development for several 

decades, improving the knowledge on ecology and conservation. Over the last decades, 

technological advancements in sensors (e.g. increasing spatial, temporal and spectral 

resolution), computer processing capacity of large-datasets and associated development of 

analytic tools have opened new opportunities to biodiversity research (Pettorelli et al., 2018). 

Remote sensing offers the opportunity to understand the spatial and temporal patterns of 

the ecological processes that operate over large scales to support biodiversity and 

ecosystem services (Pettorelli et al., 2016). In fact, remote sensing has repeatedly been 

identified as a promising and powerful tool to aid biodiversity mapping and monitoring (e.g., 

Stoms and Estes 1993; Turner et al., 2003; Nagendra et al., 2013; Corbane et al., 2015; 
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Pettorelli et al., 2016, 2018). Through remote sensing techniques, ecologists have more 

integrative functional measures of the whole ecosystem performance that complement our 

traditional view of ecosystems (Butchart et al., 2010; Asner et al., 2017).  

Currently, the use of satellite images provides suitable methods to produce a spatially 

continuous characterization of ecosystem (Xiao and Moody, 2004; Alcaraz-Segura et al., 

2006). The spectral response of the vegetation changes according to physical parameters 

(i.e. in wavelengths in the red, infrared and thermal range) allowing us to obtain continuous 

information of these parameters and to study different functional attributes over large 

extensions of territory (Box et al., 1989; Running et al., 2000; Peñuelas et al., 2004). In 

particular, both theoretical and empirical models support the relationship between spectral 

indices derived from satellite images and functional attributes of ecosystems such as 

evapotranspiration, surface temperature, albedo or net primary production (Running et al., 

2000; Pettorelli et al., 2005, 2018). For us, the variable of interest is primary productivity for 

the reasons which we will explain below. Among the most important and used spectral 

indices related with primary productivity and derived from satellite images are the vegetation 

indices (VI), we found the NDVI (Normalized Difference Vegetation Index) and the EVI 

(Enhanced Vegetation Index). Both spectral indices (i.e. NDVI and EVI) are linear estimators 

of the fraction of Photosynthetically Active Radiation (fPAR) intercepted by vegetation, which 

is the main control of carbon gains (Monteith, 1972) (see section 3. General methodology). 

Among the functional variables, primary productivity appears as the most integrative 

descriptor of ecosystem functioning (Virginia and Wall, 2001), since primary productivity 

represents the energy that enters into the life cycle, and it is linked to multiple ecosystem 

processes and services (Paruelo et al., 2016). In essence, primary productivity shows a 

comprehensive response to environmental changes, being a synthetic indicator of ecosystem 

health (Costanza et al., 1992; Skidmore et al., 2015).  

Ecological research based on spectral vegetation indices has great value in conservation 

biology (Cabello et al., 2012; Pettorelli 2016, 2018), as a support to management (Pelkey et 

al., 2003; Cabello et al., 2016) and in the study of biodiversity responses to environmental 
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changes (Alcaraz-Segura et al., 2017). Among the many advantages of using these indices to 

study the spatial and temporal variability of vegetation dynamics are the use of common 

protocols across the Earth (Pettorelli et al., 2018), their high sensitivity and rapid response to 

environmental changes (Milchunas and Lauenroth, 1995), their clear biological significance 

(Pettorelli et al., 2005), and their connection to the assessment of ecosystem functions and 

services (Volante et al., 2012; Paruelo et al., 2016).  

 

1.6. Ecosystem Functional Types: a concept to incorporate the spatial 

heterogeneity of ecosystem functioning into conservation practice and 

landscape ecology 

Ecosystem functioning has been characterized from spectral vegetation indices, in particular 

from Ecosystem Functional Attributes (EFAs). Recently, the use of Ecosystems Functional 

Attributes derived from spectral vegetation indices in species distribution models is allowing 

the assessment of habitat suitability for plant (Arenas-Castro et al., 2018) and animal species 

(Requena-Mullor et al., 2017, Regos et al., 2019) with great spatial and temporal precision, 

and can even anticipate expected changes in the distribution of threatened plant species as 

a result of climate change (Alcaraz-Segura et al., 2017). In addition, based on the Ecosystems 

Functional Attributes, have been possible to evaluate the functional changes in ecosystems 

at regional scale and at the protected area level (Alcaraz-Segura et al., 2009; Lourenço et al., 

2018). In fact, a monitoring program has been designed for the Spanish National Park 

Network, which allows changes and anomalies in functioning to be identified, informing 

managers of the health and state of conservation of the ecosystems (Cabello et al., 2016). 

Satellite-derived Ecosystem Functional Attributes can be grouped together (i.e. getting a 

functional classification), providing a useful framework to understand these large‐scale 

ecological changes in relation to ecosystem function and processes, and allowing the 

identification of homogeneous categorical groups that showed a similar and coordinated 

response to environmental factors (Díaz et al., 2013). Functional classifications have been 

widely used to simplify a number of categories for regional-to-global synthesis and 
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modeling studies (Wullschleger et al., 2014). The understanding changes in ecosystem 

functioning across large-scales can benefit from a greater ability to represent and define 

biotic communities (Reichstein et al., 2014). This leads the functional classifications to have 

been widely used for ecologists historically. 

In 1992, Soriano and Paruelo proposed the concept of Biozones referred to vegetation units 

that share ecosystem functional characteristics, identified using time-series of satellite 

images of spectral vegetation índices. Biozones were later renamed to Ecosystem Functional 

Types (EFTs) by Paruelo et al., (2001), using an equivalent definition and methodology. 

Shugart (1997) used for the first time the term EFT as “aggregated components of 

ecosystems whose interactions with one another and with the environment produce 

differences in patterns of ecosystem structure and dynamics”. Walker (1997) proposed the 

use of a similar term, vegetation functional types, for “groups of PFTs in sets that constitute 

the different states of vegetation succession in non-equilibrium ecosystems”. Scholes et al., 

(1997) also applied the term, in a wider sense for those areas having similar ecological 

attributes, such as PFTs composition, structure, phenology, biomass or productivity. Since 

then, several studies have applied hierarchy and patch dynamic theories (Reynolds and Wu, 

1999; Wu et al., 2003) for the definition of ecosystem and landscape functional types at 

different spatial scales. Valentini et al., (1999) defined land functional units by focusing on 

“patches of the land surface that are able to exchange mass and energy with the atmosphere 

and show a coordinated and specific response to environmental factors”. Paruelo et al., 

(2001) and Alcaraz-Segura et al., (2006, 2013) refined the EFT concept and proposed a 

remote-sensing based methodology to derive them from VI. Both defined EFTs as “patches 

of the land surface that share similar dynamics of matter and energy exchanges between the 

biota and the physical environment” (Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2013). 

In practice, EFTs group ecosystems (at large scales) on the basis of shared ecosystem 

functioning without prior knowledge of vegetation type or canopy architecture (Fernández 

et al., 2010; Pérez-Hoyos et al., 2014; Villarreal et al., 2018). In other words, EFTs capture 

dynamics of ecosystem functioning, a different dimension to the structural vegetation types 
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(Noss, 1990). As species can be grouped into plant functional types (PFTs) based on common 

species traits, ecosystems can be grouped into ecosystem functional types (EFTs) based on 

their similar ecosystem functioning (Noble and Gitay 1996). In this sense, we follow the 

holistic approach by Naeem (1998, 2002), Hooper et al., (2005), and Loreau (2008), focusing 

on the overall operation or performance of the ecosystem as a whole (see review in Jax, 

2010). EFTs adopt a top-down approach to understand and map functional aspects of 

ecosystem heterogeneity and diversity at the regional scale, while PFTs follow a bottom-up 

approach to derive ecological properties at the regional scale by aggregation of species 

functional traits used in their classification. 

Regardless of the definition or methodology, since the concept of EFT appeared in 2001 

(Paruelo et al., 2001), its implementation or that of similar methodologies has not stopped 

growing to characterize functional heterogeneity at a regional scale (Alcaraz-Segura et al., 

2006; Duro et al., 2007; Fernández et al., 2010; Geerken, 2009; Alcaraz-Segura et al., 2013; 

Ivits et al., 2013; Pérez-Hoyos et al., 2014; Müller et al., 2014; Wang and Huang, 2015; 

Villarreal et al., 2018; Coops et al., 2018; Mucina, 2019). Satellite-derived EFAs and EFTs have 

been used to describe large-scale functional biogeographical patterns (Ivits et al., 2013); to 

assess the representativeness of environmental observatory networks (Villarreal et al., 2018); 

to assess the environmental and human controls of ecosystem functional diversity (Alcaraz-

Segura et al., 2013); to evaluate the effects of land-use changes on ecosystem functioning 

(Oki et al., 2013); to improve weather forecasting models (Lee et al., 2013; Müller et al., 2014); 

and to improve species distribution and abundance models (Arenas-Castro et al., 2018, 

2019).  

However, no study has yet assessed whether such top-down-identified EFT classes are 

biologically meaningful in terms of field-measured ecological processes, such as 

biogeochemical fluxes, which would build reliability on the concept. In addition, few studies 

have still formally tested the usefulness of EFTs to incorporate ecosystem functioning in 

ecology and conservation.   
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Therefore, the importance of this work relies in the strengthening of the conceptual and 

methodological foundations of Ecosystem Functional Types as well as in the assessment of 

their usefulness to incorporate ecosystem functioning as a necessary dimension of 

biodiversity in regional ecology and conservation biology.
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2. OBJECTIVES 

2.1. General Objective 

The overall objective of this thesis was to generate conceptual and methodological advances 

to incorporate the functional dimension of biodiversity at ecosystem level in regional 

ecology and conservation biology through the application of the Ecosystem Functional Type 

(EFT) concept. 

To achieve this goal, we proposed the following specific objectives: 

 

2.2. Specific Objectives (SO) 

SO1. To assess whether the satellite-based methodological approach to identifying 

Ecosystem Functional Types, conceptually defined as land patches that show similar 

ecosystem functioning in terms of their exchanges of matter and energy with the 

atmosphere, is capable of capturing such differences in ecosystem processes as measured in 

the field. 

 

SO2. To develop an approach to describe the spatial heterogeneity and temporal variability 

of a focal ecosystem function (i.e. primary production) by means of Ecosystem Functional 

Types derived from the satellite images of vegetation greenness. Such approach provides 

scientists and managers with valuable information of the functional heterogeneity and 

diversity at ecosystem level for protected areas. 

 

SO3. To use Ecosystem Functional Types, to incorporate the spatiotemporal heterogeneity 

and singularity of a focal ecosystem function (i.e. primary production) in setting geographic 

conservation priorities, as a new complementary approach to traditional ones, which are 

usually based on biodiversity composition and structure. 

 



Objectives 

 

 
42 

SO4. To use the patterns of ecosystem functioning as a tool for biological regionalization, by 

examining the relationships between biological regionalization based on biodiversity 

composition and structure and patterns of ecosystem functioning revealed by the 

geographical distribution of EFTs. 

 

2.3. Structure of the thesis 

The thesis is organized into four chapters. Each chapter aims to respond to the objectives 

previously set out in section 2.2.  

After the general introduction, which presents the background and need for this work, the 

objectives are formulated, as well as the general methodology and the results of each 

chapter. Moreover, a general discussion about the role of ecosystem functioning in 

biodiversity science and conservation, and the final general conclusions have been carried 

out. CHAPTER I aims to provide ground-based empirical evidence for the use of satellite-

derived Ecosystem Functional Types (EFTs) as descriptors of the regional heterogeneity in 

ecosystem functioning, i.e., in the dynamics of matter and energy exchanges between the 

biota and the physical environment. CHAPTER II provides a straightforward approach to 

characterize the spatial heterogeneity and inter-annual variability of ecosystem functioning 

(i.e. EFAs and EFTs), ecosystem functional diversity (i.e. EFT richness and EFT rarity) and 

ecosystem functional stability (interannual variability and dissimilarity), providing to the 

scientific community the dataset. CHAPTER III, and IV apply the concept to conservation 

and regional ecology. In particular, CHAPTER III establishes EFT-based geographic 

conservation priorities based on EFT richness and EFT rarity, representing a new and 

complementary approach to long-established ones based on the compositional (e.g., species 

richness) and structural (e.g., vegetation types) characterizations of biodiversity. CHAPTER IV 

assesses the potential of EFT incorporating the functional perspective in the design of large-

scale biogeographical regionalizations, by using patterns of ecosystem functioning as a 

means for biological regionalization.  

 The main road map of the thesis is presented in the following Figure 2.1.: 
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Figure 2.1. General structure of the thesis.
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3. GENERAL METHODOLOGY  

This section only includes general methodological aspects that were not included in the 

Methods sections of the different chapters that were already published or under revision as 

journal articles. 
 

3.1. Characterization of ecosystem functioning by means of satellite remote 

sensing 

In this thesis, the characterization of ecosystem functioning was based on satellite-derived 

attributes of primary production as focal ecosystem function. We used primary production 

as a focal ecosystem function because it is considered as an integrative surrogate of the 

stocks and fluxes of matter and energy derived from biological activity (Virginia and Wall 

2001), and can be easily characterized by remote sensing.  

Nowadays, the use of satellite imagery provides useful methods to produce a spatially 

explicit characterization of ecosystem functioning and its spatial heterogeneity (i.e., 

ecosystem functional diversity) from local to regional and global scales (Ustin & Gamon, 

2010; Tuanmu & Jetz, 2015; Jetz et al., 2016; Asner et al., 2017; Walters and Scholes, 2017; 

Pettorelli et al., 2018; Anderson, 2018; Jetz et al., 2019; Gamon et al., 2019). Theoretical and 

empirical models support the relationship between spectral indices derived from satellite 

images and essential functional variables of ecosystems, such as primary production.  

• Vegetation Indices 

“A Vegetation Index (VI) is a spectral transformation of two or more bands designed to 

enhance the contribution of vegetation properties and allow reliable spatial and temporal 

inter-comparisons of terrestrial photosynthetic activity and canopy structural variations” 

(Huete et al., 2002). Among the most important and widely used spectral vegetation indices 

derived from satellite images we found the NDVI (Normalized Difference Vegetation Index) 

and the EVI (Enhanced Vegetation Index). The NDVI is calculated from the reflectance in the 
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red and near-infrared wavelengths (Tucker and Sellers, 1986) while the EVI calculation also 

includes the reflectance in the blue band. This is an improvement over the NDVI, since EVI 

considers the effect of the atmosphere and the radiometric signal from the ground under 

the vegetation cover (Liu and Huete, 1995; Huete et al., 1999). Hence, we chose EVI instead 

of any other vegetation index as an indicator of carbon gains since it is supposed to be more 

reliable in both low and high vegetation cover situations (Huete et al., 1997). In this sense, 

EVI is sensitive to changes in areas having high biomass, EVI reduces the influence of 

atmospheric conditions on vegetation index values, and EVI corrects for canopy background 

signals.  

 

EVI is computed as follows: 

 

 

  

where NIR/RED/BLUE are atmospherically-corrected (Rayleigh and ozone absorption) 

surface reflectances, L is the canopy background adjustment that addresses non-linear, 

differential NIR and red radiant transfer through a canopy, and C1, C2 are the coefficients of 

the aerosol resistance term, which uses the blue band to correct for aerosol influences in the 

red band. The coefficients adopted in the MODIS-EVI algorithm are; L=1, C1 = 6, C2 = 7.5, 

and G (gain factor) = 2.5. 

As well as NDVI, EVI can be used as a proxy of Net Primary Production (NPP), by estimating 

the fraction of Photosynthetically Active Radiation absorbed by vegetation (fAPAR), which 

represents the main control of primary production (Monteith, 1972). Due to the linear 

relationship between spectral vegetation indices and fAPAR (Hatfield et al., 1984; Boschetti 

et al., 2011) (Figure 3.1), and that the other variables of the equation remain constant 

(Equation 1). 



General methodology 

Characterization of ecosystem functioning by means of satellite remote sensing 

 

 
49 

 

Figure 3.1. Fraction of Photosynthetically Active Radiation absorbed by vegetation (fAPAR) and 

Enhanced Vegetation Index (EVI) lineal relation from field data and satellite observations (from 

Boschetti et al., 2011). 

 

           NPP        =           PAR                   x          fPAR         x        RUE 

[gC m-2 year-1]  =     [MJ m-2  year-1]   x     [proportion]   x  [gC MJ-1] 

Equation 1. Monteith model to calculate the Net Primary Production (NPP) from the Photosynthetically 

Active Radiation (PAR), the fraction of Photosynthetically Active Radiation absorbed by vegetation 

(fPAR), and the Radiation-Use Efficiency by plants to transform it into organic carbon (RUE).  

We obtained the spectral index EVI from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor, onboard the Earth Observing System-Terra platform. In 

particular, we selected the MOD13Q1.006 product (i.e. MOD13Q1 version 6) as the basis for 

our data since it offers a long time series (almost 20 years), and 23 EVI maximum value 

composite images per year (every 16 days) with an approximated pixel size of 231.65 meters 

at the equator, which allows for the characterization of the temporal dynamics of ecosystem 

functioning (Anderson, 2018).  

The EVI values range from -1 to +1, where negative values generally correspond to snow, 

ice, or water; and values closer to +1 represent the higher density of green leaves (Huete et 
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al., 2002). Throughout the thesis, in addition to assuming the correct native pre-processing 

of the data explained below, negative values (associated with snow, ice or water) were 

transformed into zeros. 

• MODIS-MOD13Q1 data quality 

The algorithm to produce the MOD13Q1 product from which we used EVI has several 

advantages over other indices in terms of data quality. MODIS EVI uses the blue band to 

reduce residual atmosphere contamination caused by smoke and sub-pixel thin clouds 

(Huete et al., 1999). Furthermore, the MODIS EVI products are computed from 

atmospherically corrected bi-directional surface reflectances. The algorithm used by this 

product (MOD13Q1.006 product) chooses the best available pixel value from all the 

acquisitions from the 16 day period (Maximum Value Composite, MVC). The algorithm 

operates on a per-pixel basis and requires multiple observations (16 days) to generate a 

composited EVI (Composite Value, CV). Due to orbit overlap, multiple observations may exist 

for one day, and a maximum of four observations per day may be collected. The MOD13Q1 

algorithm separates all observations by their orbits, providing a means to filter the input data 

further. 

Once all 16 days are collected, “the MODIS-MOD13Q1 algorithm applies a filter to the data 

based on quality, cloud presence, and viewing geometry (Figure 3.2). Cloud-contaminated 

pixels and extreme off-nadir sensor views are considered lower quality. A cloud-free, nadir 

view pixel with no residual atmospheric contamination represents the best quality pixel. Only 

the highest quality, cloud-free, filtered data are retained for compositing” (Huete et al., 1999; 

Didan, 2015). The goal of the compositing methodology is to extract a single value per pixel 

from all the retained filtered data, which is representative of each pixel over the 16-day 

period. The compositing technique works as follows (Figure 3.2): 
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Figure 3.2. MODIS-MOD13Q1 compositing algorithm data flow (from Didan et al., 2015). 

 

• Advantages and disadvantages of the MOD13Q1 product over other satellite 

sensors to characterize ecosystem functioning                     

Other satellite products could potentially be used, since they have a higher spatial resolution 

or more extended time series, but present some disadvantages compared to MODIS 

MOD13Q1. 

Regarding spatial resolution, using MODIS MOD13Q1 instead of other satellites with smaller 

pixel size (e.g. Landsat or Sentinel 2) has several advantages in terms of data quality (e.g. 

presence of clouds, length of the data record) along with the time series. Since the MODIS 

sensor provides a daily image of the Earth, such high frequency (a maximum of four 

observations per day may be collected) increases the probability of finding a cloud-free 
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image every 16-days. MODIS provides the best composite value every 16 days (i.e. chooses 

the best available pixel value from all the acquisitions from the 16 day period), applying an 

algorithm that selects the image atmospherically corrected bi-directional surface 

reflectances and select the image with lowest cloud presence, the lowest view angle, and the 

highest EVI value. Although Landsat has a lower pixel size, their images have a lower 

frequency (i.e., one image every 16 days). Thus, the fixed acquisition schedule makes it less 

probable to acquire good-quality imagery for a particular place periodically (mostly if clouds 

frequently occur over the area of interest, e.g. rainy seasons). Landsat 7 (1999-present) has a 

more extensive time series than MODIS, however, on May 31, 2003, the satellite's scan-line 

corrector failed. The scan-line corrector is a device on the satellite that keeps the scan lines 

parallel to each other. Without the Scan Line Corrector (SLC), the scan lines are misaligned, 

and there are wedge-shaped data gaps in the image (see sample Figure 3.3 for Sierra 

Nevada, Spain). Therefore, since 2003 SLC failure of Landsat 7, Landsat 8 is the only fully 

operational Landsat satellite in orbit, but covers a shorter time series than MODIS (Landsat8 

covers from 2013 to present, while MODIS covers from 2001 to present).  
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Figure 3.3. Effect of Scan Line Corrector fault on Landsat7 imagery in Sierra Nevada (Spain) and data 

gaps due to clouds (in green and white). Landsat-7 image courtesy of the U.S. Geological Survey. 

Other satellites have also been considered for their use, as Sentinel, which also has a higher 

spatial resolution but the time series is still too short for long-term assessments (2014-

present).  

In consequence, considering the advantages and disadvantages of MOD13Q1 product over 

other satellite sensors to characterize ecosystem functioning, we recognize appropriate 

MODIS for ecological studies at regional scales, according to Anderson, (2018), which 

showed that the temporal resolution of MODIS is useful for characterizing the seasonal 

dynamics of ecosystem functioning (Figure 3.4). Furthermore, there are other works that use 

MODIS successfully at regional level (e.g. Lourenço et al., 2018; Requena-Mullor et al., 2018).  
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Figure 3.4. “Log–log plot of spatial and temporal and grain sizes for 44 current and historic satellite 

Earth observation (EO) sensors, coloured by biodiversity pattern type. Several sensors have been used 

to measure multiple biodiversity patterns, and the most cited or most novel were selected in these 

cases”. From Anderson, (2018). 

 

• Ecosystem functioning dynamics characterization from Ecosystem Functional 

Attributes and Ecosystem Functional Types 

To characterize the ecosystem functioning using spectral vegetation indices we used the 

approach developed by Paruelo et al., (2001) and Alcaraz-Segura et al., (2006, 2013) based 

on Ecosystem Functional Types (EFTs), defined here as patches of the land surface that share 

similar primary production dynamics (i.e., Ecosystem Functional Attributes (EFAs): 

productivity, seasonality, and phenology). The EFT concept is analogous to the Plant 

Functional Type (PFT) concept that many land-cover product legends are based on, but 

defined at a higher level of the biological organization. As plant species can be grouped 
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according to common functional characteristics, ecosystems can be grouped according to 

their common functional behavior. EFTs adopt a top-down approach to understand and map 

functional aspects of ecosystem heterogeneity at the regional scale, while PFTs follow a 

bottom-up approach to derive ecological properties at the regional scale by aggregation of 

species functional traits used in their classification. In practice, EFTs group ecosystems (at 

large scales) on the basis of shared ecosystem functioning without prior knowledge of 

vegetation type or canopy architecture (Fernández et al., 2010; Pérez-Hoyos et al., 2014; 

Villarreal et al., 2018). In other words, EFTs capture dynamics of ecosystem functioning, a 

different dimension to the compositional or structural vegetation types (Noss, 1990). 

In this thesis, to build EFTs (workflow in Figure 3.5), we parameterized the yearly seasonal 

dynamics of carbon gains by using three metrics or EFAs that capture most of the variance 

of the EVI annual curve. Biologically, these three metrics can be interpreted as surrogates 

(Paruelo et al., 2001; Pettorelli et al., 2005; Alcaraz-Segura et al., 2006) of the total amount 

and timing (both seasonality and phenology) of primary production, one of the most 

integrative indicators of ecosystem functioning (Virginia and Wall, 2001). Statistically, these 

three metrics or EFAs are known to be highly correlated with the first two, or three axes (and 

hence capture most of the variance) of a Principal Component Analysis (PCA) run on the 

NDVI or EVI annual dynamics in different regions (Townshend et al., 1985; Paruelo and 

Lauenroth, 1998; Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2009; Ivits et al., 2013). In 

this thesis, to assess the variance explained by each metric, we examined the meaningfulness 

of these three EFAs for describing the vegetation dynamics with a Principal Component 

Analysis (PCA). We carried out it using the twelve months EVI values of the annual curve for 

the study area, then, we analysed the correlation between the EFAs (EVI_mean, EVI_sCV or 

EVI_SD and EVI_DMAX) and the first three principal axes of each PCA separately (see 

Appendix Chapter II). The three main descriptors or EFAs used were: annual mean (EVI_mean, 

surrogate of primary production), seasonal coefficient of variation or standard deviation 

(EVI_sCV or EVI_SD, descriptors of seasonality), and the date of maximum EVI (EVI_ DMAX, 

indicator of phenology). These three EVI metrics were orthogonal, since each EVI metric 
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contributed independently to explain the variance of the EVI time series (see Appendix 

Chapter II).  

To derive EFT classes from EFAs, the range of values of each EFA was divided into four 

intervals, i.e. quartiles, which were then combined, giving a potential number of (4 × 4 × 4) 

64 EFTs. Following the logic of Noble and Gitay (Noble and Gitay, 1996) in developing 

functional classifications, we decided to start from the simplest, as long as outputs were 

ecologically interpretable. Our approach allows for a straightforward ecological 

interpretability of the legend based on four categories of productivity, seasonality, and 

phenology. Four intervals of each metric or EFA produced a relatively low number of 

potential classes (4x4x4=64) and allowed for the maintenance of the observed spatial 

patterns. In the case of DMAX, we wanted to reflect its ecological sense (the timing or 

phenology of the greatest interception of radiation by vegetation) in the final classification, 

so we had to group the 23 16-day MVC periods into just four classes that kept 

correspondence with the four seasons of the year. In the case of EVI_mean and EVI_sCV-

EVI_SD, by using the first, second, and third quartiles, we also obtained four categories for 

each trait (as the four seasons in DMAX) with increasing values of productivity and 

seasonality. 
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Figure 3.5. Workflow to characterize ecosystem functioning trough Ecosystem Functional Types. 
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Since EFTs are built from three independent descriptors of the EVI seasonal dynamics (see 

Appendix Chapter II), the average EVI annual cycle of the 64 EFTs show differences among 

each other in terms of mean annual EVI values, seasonal differences in the EVI values, and 

phenology of the growing season peak (see Figure 3.6).  

 

 

Figure 3.6. Difference in the average EVI annual cycle of the 64 EFTs. Capital letters correspond to the 

EVI annual mean, ranging from A to D for low to high EVI_mean. Small letters show the coefficient of 

variation of EVI (EVI_sCV), ranging similarly from a to d for low to high EVI_sCV. The numbers indicate 

the season of the date maximum of EVI (EVI_DMAX): 1-spring, 2-summer, 3-autumn, 4-winter. 

In this section we only justify the use of the metrics, the methodology to build and code EFTs 

is explained in each of the thesis chapters (sections 4.1.2., 4.2.2., 4.2.3., 4.3.2.). 
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Abstract 

Describing and quantifying ecosystem functioning provides a powerful tool for the 

management and conservation of ecosystems and its services. Numerous ways to evaluate 

ecosystem functioning have been developed, such as by means of species traits, Plant 

Functional Types (PFTs), flux measurements with the Eddy Covariance (EC) technique, and 

remote sensing techniques. We propose that the spatial heterogeneity in ecosystem 

functioning at regional scale can be assessed and monitored by means of satellite-derived 

Ecosystem Functional Types (EFTs): groups of ecosystems or patches of the land surface that 

share similar dynamics of matter and energy exchanges. We hypothesize that, as observed 

for PFTs, different satellite-derived EFTs should have distinct patterns and magnitudes of Net 

Ecosystem Exchange (NEE) measured on ground. We derived EFTs based on the 2001-2014 

time-series of satellite images of the Enhanced Vegetation Index (EVI) and compare them 

with NEE measurements (derived from in situ field observations using the EC technique) 

across 50 sites in Europe. Our results show that distinct EFTs classes display significantly 

different dynamics and magnitudes of NEE, and that EFTs perform marginally better than 

PFTs to explain NEE regional patterns (0.953-0.978 and 0.923-0.960, respectively). Land-cover 

maps based on PFTs are difficult to update at an annual basis and are not sensitive to 

changes in ecosystem performance (e.g. due to droughts or pests) that do involve short-

term changes in PFT composition. Contrary, satellite-derived EFTs are sensitive to short-term 

changes in ecosystem performance and can be produced on an annual basis using the same 

classification rules, which provides a straightforward way to assess and monitor interannual 

changes in ecosystem functioning and in ecosystem functional diversity. 

 

KEYWORDS: Functional classification; Ecosystem Functional Types; Plant Functional Types; 

Eddy Covariance; FLUXNET; Remote sensing.  
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4.1.1. Introduction 

Ecosystem functioning and functional diversity are key issues of current ecological research 

(Jax, 2010; Violle et al., 2014, 2017; Tilman et al., 2014; Laureto et al., 2015; Pettorelli et al., 

2018; Villarreal et al., 2018; Isbell et al., 2018; Malaterre et al., 2019). Quantifying, monitoring 

and understanding ecosystem functioning are useful to provide insights for management 

and conservation of ecosystems and their services (Cabello et al., 2012; Pettorelli et al., 2018). 

Variables capable of describing ecosystem functioning at regional to global scales are 

needed to define essential biodiversity variables to monitor biodiversity status (Pereira et al., 

2013), to advance in the definition of this critical but still unassessed planetary boundary 

(Steffen et al., 2015), and to quantify their associated ecosystem services (Costanza et al., 

1997; Balvanera et al., 2017). Despite the ecosystem functioning importance, its definition is 

unclear, and thus, multiple definitions can be found in the literature (see reviews in Jax 2010 

and Pettorelli et al., 2018). Here, we adopt a holistic definition of ecosystem functioning as 

the information contained in magnitudes of stocks and rates of processes involving 

exchanges of energy and matter between the biota and the environment (Paruelo et al., 

2001).  

Multiple ways to evaluate ecosystem functioning have also been developed, from concepts 

such as species traits or Plant Functional Types (PFTs), to direct observation techniques such 

as Eddy Covariance (EC), and remote sensing. Traditionally, studies on ecosystem functioning 

were approached by grouping species into PFTs based on structural (e.g., biotypes), 

phylogenetic (e.g., coniferous) or functional species traits (e.g., metabolic pathway) that were 

linked to biological processes (Lavorel et al., 2002, 2007). These functional classifications 

aimed to reduce the diversity of biological entities (for instance genes, species or 

ecosystems) (Noss, 1990), and to allow for the identification of homogeneous categorical 

groups that showed a similar and coordinated responses to environmental factors and 

effects on ecological processes (Díaz et al., 2013). The PFT approach has been widely used, 

for instance in land-cover mapping and dynamic vegetation models, to simplify the 

continuum of species traits into a reduced number of discrete categories suitable for 
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regional-to-global synthesis and modeling studies (Wullschleger et al., 2014). However, this 

simplification, although useful, can lead to information loss (Funk et al., 2017) and may not 

be capable of predicting the overall ecosystem functioning (Clark et al., 2016; Virtanen 2017; 

Thomas et al., 2019). Another more recent way to evaluate ecosystem functioning is by using 

direct and continuous observations of the exchanges of mass and/or energy between the 

land surface and the atmosphere measured. For instance, the Eddy Covariance technique 

(EC), a standardized method that uses high-frequency wind and scalar concentration data 

for calculating the Net Ecosystem CO2 Exchange (NEE) between the land surface and the 

atmosphere at the ecosystem level (Baldocchi et al., 2001). This approach is widely used and 

regional (e.g., AmeriFlux, AsiaFlux, ICOS, NEON) and global networks of EC measurements 

have emerged (e.g., FLUXNET; and more recently Fluxnet-CH4) (Franz et al., 2018; Knox et al., 

2019). Although FLUXNET has provided unprecedented information (Baldocchi et al., 2001), 

these measurements are still not enough for assessing ecosystem functioning at regional or 

global scales due to their small footprints (essentially considered as point-scale data) and a 

lack of representativity (Villarreal et al., 2018). In parallel, advances in remote sensing to 

measure plant traits, vegetation functions and ecosystem functional properties are providing 

new opportunities to measure ecosystem functioning and functional diversity from regional 

to global scales (Houborg et al., 2015; Huesca et al., 2015; Lausch et al., 2016; Rocchini et al., 

2018). Consequently, combining field-based measurements (such as EC) with remote sensing 

data may allow for a better integration of information across multiple spatial and temporal 

scales (Running et al., 1999; Wang et al., 2017). Indeed, multiple studies aim to derive global 

wall-to-wall maps from fusing flux measurements with earth observation data, though 

challenges and limitations remain (e.g. FLUXCOM; Jung et al., 2020). 

Ecosystem functioning and functional diversity at the regional scale can be assessed as the 

spatial heterogeneity in functions or in ecosystem functional behaviours by means of 

satellite-derived Ecosystem Functional Types (EFTs) (Paruelo et al., 2001). Conceptually, EFTs 

are defined as patches of the land surface that share similar dynamics of matter and energy 

exchanges between the biota and the physical environment (Alcaraz-Segura et al., 2006, 

https://www.icos-cp.eu/
https://www.neonscience.org/
http://fluxnet.fluxdata.org/
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2013). The concept of EFT is equivalent to the concept of PFTs but applied to a higher level 

of biological organization. That is, just like plant species can be grouped based on shared 

functional traits (e.g. growth rates, nitrogen fixation) into PFTs, ecosystems can be grouped 

based on their common functional dynamics (e.g. productivity, seasonality, phenology) into 

EFTs (Paruelo et al., 2001). Empirically, remote sensing has been used to identify EFTs mainly 

through spectral indices related to the carbon dynamics (Paruelo et al., 2001; Alcaraz-Segura 

ant others 2006; Ivits et al., 2013) but also including other functional aspects such as 

evapotranspiration, surface temperature, and albedo (e.g., Fernández et al., 2010). In practical 

terms, EFTs classify ecosystems according to their functioning, distinguishing classes of 

homogeneous annual dynamics in the land surface spectral properties considered without 

any prior knowledge of vegetation cover (Fernández et al., 2010; Pérez-Hoyos et al., 2014). 

Furthermore, contrary to the static PFT classification, EFTs can be produced on an annual 

basis using the same classification rules, which provides a straightforward way to track 

interannual changes in ecosystem functioning. EFTs have been used to: describe large-scale 

functional biogeographical patterns (Ivits et al., 2013), assess the representativeness of 

environmental observatory networks (Villarreal et al., 2018, 2019), assess the environmental 

and human controls of ecosystem functional diversity (Alcaraz-Segura et al., 2013), evaluate 

the effects of land-use changes on ecosystem functioning (Oki et al., 2012), improve weather 

forecasting (Lee et al., 2013; Müller et al., 2014) and species distribution/abundance models 

(Arenas-Castro et al., 2018, 2019), and to identify geographic priorities for biodiversity 

conservation (Cazorla et al., 2020). 

So far, EFTs have been identified from satellite remote sensing data (but see Bond-Lamberty 

et al., 2016; Petrakis et al., 2018). However, it still remains untested whether such top-down-

identified EFT classes are biologically meaningful in terms of ecological processes measured 

on ground, such as biogeochemical fluxes. That is, whether satellite-derived EFT classes 

empirically differ in their exchanges of energy and matter measured on ground. If so, EFTs 

could be used as biological entities for mapping the heterogeneity of such key ecosystem 

processes at regional scales. Mapping EFTs as biological entities that capture the 
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performance of whole ecosystems opens a tangible and feasible way to visualize and monitor 

the spatial diversity of ecosystem functions from local to global scales, which complements 

the traditional structural and compositional view of ecosystems (Paruelo et al., 2001; Alcaraz-

Segura et al., 2006; Asner et al., 2017). Therefore, linking satellite-derived EFTs identified at 

large scales to biogeochemical fluxes measured at site level could help to strengthen the 

ecological significance of the EFT patterns for ecosystem modelling and functional diversity 

assessments, since it provides empirical evidence for the use of the concept in these areas. 

The goal of this study is to provide field-based empirical evidence for the use of satellite-

derived EFTs as descriptors of regional heterogeneity in ecosystem functioning measured on 

ground (i.e., seasonal dynamics of Net Ecosystem Exchange (NEE) between the biota and the 

physical environment). Our hypothesis was that satellite-derived EFTs should significantly 

differ in their exchanges of energy and matter with the atmosphere, as estimated with in situ 

field observations. That is, we propose that different satellite-derived EFTs should display 

significantly different NEE measured using EC technique, while sites under the same EFT 

should exhibit similar NEE dynamics. If proved, EFTs could serve as biologically meaningful 

mapping entities to characterize spatial diversity in focal ecosystem functions. To achieve 

our goal, we used publicly available data across continental Europe, given its high density of 

EC sites, 1) to characterize the regional patterns of ecosystem functioning by means of 

satellite-derived EFTs; 2) to assess whether different satellite-derived EFTs correspond to 

different NEE dynamics measured on the ground with the EC technique; and 3) to assess how 

EFTs perform compared to traditional PFTs to discriminate among different NEE dynamics. 

 

4.1.2. Methods 

Study area 

We used NEE information of continental Europe as it has one of the largest densities of EC 

sites worldwide (Table 4.1.1). Sites were distributed across four biogeographical regions (EEA 

2016): Mediterranean (12 sites), Continental (21 sites), Atlantic (9 sites), and Alpine (8 sites). 
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Only sites with a long-term (i.e., from 3 to 14 years) NEE time-series were included in the 

analysis (detailed below). 

 

Satellite-derived Ecosystem Functional Types (EFTs) 
 
To characterize the regional heterogeneity in ecosystem functioning across continental 

Europe, we identified Ecosystem Functional Types (EFTs) based on the 2001-2014 time-series 

of satellite images of the Enhanced Vegetation Index (EVI) captured by the MODIS-Terra 

sensor. These images (MOD13Q1.C006 product) provide a maximum composite EVI value 

every 16 days at a ~230 m spatial resolution. EVI is a proxy for canopy greenness and 

vegetation carbon gains or primary production (Huete et al., 1999). Based on the approach 

by Alcaraz-Segura et al., (2013), we identified EFTs using three biologically meaningful 

metrics of the EVI seasonal curve: the EVI annual mean (EVI_mean; an estimator of annual 

primary production), the EVI seasonal standard deviation (EVI_SD; a descriptor of 

seasonality), and the date of maximum EVI (EVI_DMAX; an indicator of phenology).  

The range of values of each EVI metric was divided into four intervals, giving a potential 

number of 64 EFTs (4 × 4 × 4). For EVI_DMAX, the four intervals agreed with the four seasons 

of the year. For EVI_mean and EVI_SD, we extracted the first, second, and third quartiles for 

each year and then calculated their interannual average for the 14-year period. To name 

EFTs, we used two letters and a number: the first capital letter indicates net primary 

production (EVI_mean), increasing from A to D; the second small letter represents seasonality 

(EVI_SD), decreasing from a to d; the numbers are a phenological indicator of the growing 

season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter. To summarize the 

ecosystem functional diversity of the 2001–2014 period, we calculated the dominant EFT (i.e., 

the mode value for each pixel) of the period.  
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Table 4.1.1. Main characteristics of the 50 Eddy Covariance (EC) sites in the study area. Data from FLUXNET 2015 dataset 

ID Site Country PFT  EFT 

code 

Ecoregion n years  

(2001-2014) 

Elevation 

(m) 

Latitude Longitude 

AT-Neu Neustift/Stu

bai Valley 

Austria Grasslands Da2 Alpine 11 (2002-2013) 970 47.116 11.317 

BE-Bra Brasschaat 

(De Inslag 

Trees) 

Belgium Mixed Trees Cc1 Atlantic 14 (2001-2014) 16 51.309 4.520 

BE-Lon Lonzee Belgium Croplands Ba1 Atlantic 11 (2004-2014) 167 50.552 4.744 

BE-Vie Vielsalm Belgium Mixed Trees Bc1 Continental 14 (2001-2014) 439 50.305 5.998 

CH-Cha Chamau 

grassland 

Switzerland Grasslands Db1 Continental 10 (2005-2014) 393 47.210 8.410 

CH-Dav Davos- 

Seehorn 

forest 

Switzerland Evergreen 

Needleleaf 

Trees 

Ac2 Alpine 14 (2001-2014) 1639 46.815 9.855 

CH-Fru Fruebuel 

grassland 

Switzerland Grasslands Da2 Continental 10 (2005-2014) 982 47.115 8.537 

CH-Lae Laegeren Switzerland Mixed Trees Da1 Continental 11 (2004-2014) 689 47.478 8.365 

CH-Oe1 Oensingen1 

grass 

Switzerland Croplands Cb1 Continental 7 (2002-2008) 450 47.285 7.731 

 

  



Result 4.1. - Chapter I 

Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale 

 

 

70 

ID Site Country PFT  EFT 

code 

Ecoregion n years  

(2001-2014) 

Elevation 

(m) 

Latitude Longitude 

CZ-BK1 Bily Kriz- 

Beskidy 

Mountains 

Czech 

Republic 

Evergreen 

Needleleaf 

Trees 

Cc1 Continental 11 (2004-2014) 875 49.502 18.536 

CZ-BK2 Bily Kriz- 

grassland 

Czech 

Republic 

Mixed Trees Ac1 Alpine 9 (2004-2012) 855 49.494 18.542 

CZ-wet CZECHWET Czech 

Republic 

Croplands Ba1 Continental 9 (2004-2012) 426 49.024 14.770 

DE-Akm Anklam Germany Wetlands Ba1 Continental 5 (2010-2014) -1 53.866 13.683 

DE-Geb Gebesee Germany Croplands Ba1 Continental 14 (2001-2014) 161 51.100 10.914 

DE-Gri Grillenburg- 

grass station 

Germany Grassland Da2 Continental 11 (2004-2014) 385 50.949 13.512 

DE-Hai Hainich Germany Mixed Trees Ca1 Continental 12 (2001-2012) 430 51.079 10.452 

DE-Kli Klingenberg Germany Croplands Ba1 Continental 11 (2004-2014) 478 50.892 13.522 

DE-Lkb Lackenberg Germany Evergreen 

Needleleaf 

Trees 

Ab2 Continental 5 (2009-2013) 1308 49.099 13.304 

DE-Lnf Leinefelde Germany Deciduous 

Broadleaf 

Trees 

Da1 Continental 11 (2002-2012) 451 51.328 10.367 
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ID Site Country PFT  EFT 

code 

Ecoregion n years  

(2001-2014) 

Elevation 

(m) 

Latitude Longitude 

DE-RuR Rollesbroich Germany Grasslands Da2 Continental 4 (2011-2014) 515 50.621 6.304 

DE-RuS Selhausen 

Juelich 

Germany Croplands Cb1 Atlantic 4 (2011-2014) 103 50.865 6.447 

DE-Seh Selhausen Germany Croplands Cb1 Atlantic 4 (2007-2010) 103 50.870 6.449 

DE-Spw Spreewald Germany Mixed Trees Ca1 Continental 5 (2010-2014) 61 51.892 14.033 

DE-Tha Tharandt- 

Anchor 

Station 

Germany Evergreen 

Needleleaf 

Trees 

Bc1 Continental 14 (2001-2014) 385 50.963 13.566 

DK-Eng Enghave Denmark Croplands Ca1 Continental 4 (2005-2008) 10 55.690 12.191 

DK-Sor Soroe- 

LilleBogesko

v 

Denmark Deciduous 

Broadleaf 

Trees 

Da1 Continental 14 (2001-2014) 40 55.485 11.644 

ES-Amo Amoladeras Spain Shrublands Ad4 Mediterranea 6 (2007-2012) 58 36.833 -2.252 

ES-LJu Llano de los 

Juanes 

Spain Shrublands Ad1 Mediterranea 10 (2004-2013) 1600 36.926 -2.752 

FR-Fon Fontaineblea

u 

France Deciduous 

Broadleaf 

Trees 

Da1 Atlantic 10 (2005-2014) 103 48.476 2.780 

FR-Gri Grignon   France Croplands Cc1 Atlantic 11 (2004-2014) 125 48.844 1.951 
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ID Site Country PFT  EFT 

code 

Ecoregion n years  

(2001-2014) 

Elevation 

(m) 

Latitude Longitude 

FR-Pue Puechabon France Mixed Trees Cd1 Mediterranea 14 (2001-2014) 270 43.741 3.595 

IT-BCi Borgo Cioffi Italy Croplands Db4 Mediterranea 11 (2004-2014) 20 40.523 14.957 

IT-CA1 Castel 

d`Asso1 

Italy Croplands Bd1 Mediterranea 4 (2011-2014) 200 42.380 12.026 

IT-CA2 Castel 

d`Asso2 

Italy Croplands Cb1 Mediterranea 4 (2011-2014) 200 42.377 12.026 

IT-CA3 Castel 

d`Asso 3 

Italy Croplands Bd1 Mediterranea 4 (2011-2014) 197 42.380 12.022 

IT-Col Collelongo- 

Selva Piana 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Alpine 14 (2001-2014) 1560 41.849 13.588 

IT-Cpz Castelporzia

no 

Italy Evergreen 

Needleleaf 

Trees 

Dd1 Mediterranea 9 (2001-2009) 68 41.705 12.376 

IT-Lav Lavarone 

(after 

3/2002) 

Italy Evergreen 

Needleleaf 

Trees 

Bc1 Alpine 12 (2003-2014) 1353 45.956 11.281 

IT-MBo Monte 

Bondone 

Italy Grasslands Aa1 Alpine 11 (2003-2013) 1550 46.014 11.045 

IT-Noe Sardinia/Arc

a di Noe 

Italy Shrublands Ad1 Mediterranea 11 (2004-2014) 25 40.606 8.151 
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ID Site Country PFT  EFT 

code 

Ecoregion n years  

(2001-2014) 

Elevation 

(m) 

Latitude Longitude 

IT-Ro1 Roccarespa

mpani1 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Mediterranea 8 (2001-2008) 235 42.408 11.930 

IT-Ro2 Roccarespa

mpani2 

Italy Deciduous 

Broadleaf 

Trees 

Da1 Mediterranea 11 (2002-2012) 160 42.390 11.920 

IT-SRo San Rossore Italy Evergreen 

Needleleaf 

Trees 

Cd3 Mediterranea 12 (2001-2012) 6 43.727 10.284 

IT-Tor Torgnon Italy Grassland Aa1 Alpine 7 (2008-2014) 1260 45.844 7.578 

NL-Hor Horstermeer Netherlands Mixed Trees Da1 Atlantic 8 (2004-2011) 2 52.240 5.071 

NL-Loo Loobos Netherlands Evergreen 

Needleleaf 

Trees 

Bd2 Atlantic 14 (2001-2014) 25 52.166 5.743 
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Eddy covariance (EC) sites for net ecosystem exchange (NEE) 

To obtain NEE fluxes, 50 EC sites were selected across our study area from the FLUXNET2015 

dataset (Table 4.1.1). The FLUXNET network (Baldocchi et al., 2001) provides a high-quality, 

community-based globally distributed dataset of exchanges of CO2, H2O, and energy 

between the biosphere and the atmosphere measured using the EC technique (Baldocchi, 

2003). We used data of NEE of CO2 (NEE_VUT_REF, gC m-2 d-1) from the FLUXNET2015 

database, which includes NEE data using a Variable Ustar Threshold (VUT) for each year, 

selected on the basis of the model efficiency (MEF). The MEF analysis is repeated for each 

half-hourly data (Baldocchi et al., 2001). We selected sites that: (a) were located in our study 

area; (b) provided more than three consecutive years of data over the 2001-2014 period; (c) 

provided daily averages of NEE calculated from half-hourly data (DD); and (d) had quality 

control information (i.e. NEE_VUT_REF data with quality control flag QC > 1 were removed 

since they represent medium and poor quality gap filled data).  

To assess whether different satellite-derived EFT classes correspond to different NEE 

dynamics and whether sites under the same EFT exhibit similar NEE dynamics, we applied 

discriminant analysis. Discriminant analysis allowed us to examine the homogeneity within 

each EFT class as well as the differences among EFT classes based on the annual dynamics 

of NEE as a predictor variable (Williams ,1981, 1983). We selected the EFT of the MODIS pixel 

where each EC site was located and its corresponding interannual average of the seasonal 

cycle of NEE for the available years. EC sites fluxes were regarded as the ground truth 

standard against which the satellite data were compared to calculate five performance 

metrics: Kappa, Accuracy, Precision, Recall, and F1 score (Table 4.1.2). 
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Table 4.1.2. Metrics, interpretations and equations used to evaluate and compare results from the 

discriminant analysis, Pr(a) is the relative observed agreement between observations, and Pr(e) is the 

hypothetical probability of agreement by chance. True Positives are the correctly classified as positive, 

True Negative are the correctly classified as negative, Positives are all positives including false positives 

(i.e. including falsely classified as positive, Type I error) and, Negatives are all negatives including false 

negatives (i.e. falsely classified as negative, Type II error). All performances metrics oscillate between 0 

(disagreement) and 1 (maximum agreement). 

 

Metric Meaning Equation 

Kappa Measures the percentage of data values in the main 

diagonal of the contingence table and adjusts these 

values for the amount of agreement that could be 

expected due to chance alone 

K= Pr(a)-Pr(e) / 1-Pr(e) 

  

Accuracy Degree of closeness of measurements of a quantity 

to that quantity's true value 

Accuracy = (True Positives + 

True Negatives )/ 

(Positives+Negatives) 

  

Precision Fraction of relevant instances among the retrieved 

instances (also called positive predictive value, i.e., 

how many EFTs were well discriminated) 

Precision = True Positives / 

(True 

  Positives+False Positives) 

Recall Fraction of relevant instances that have been 

retrieved over the total amount of relevant instances 

Recall = True Positives / (True 

Positives+False 

  Negatives) 

F1 Considers both the Precision and the Recall of the 

test to compute the score 

F1 score= 2 × (Precision × 

Recall) / (Precision 

  + Recall) 
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 Comparing how EFTs and PFTs discriminate different NEE dynamics 

The PFT corresponding to each EC site was assigned by the site’s principal investigators using 

the International Geosphere-Biosphere Programme (IGBP) legend. We verified the assigned 

PFTs using the MODIS MCD12Q1 land cover product. The PFT categories present in the EC 

sites were: cropland (15 sites), deciduous broadleaf trees (6), evergreen needleleaf trees (10), 

grassland (5), mixed trees (8), shrubland (3), and wetland (1) (Table 4.1.1). 

During the comparison of the performance of PFTs and EFTs to discriminate the seasonal 

dynamics of NEE, we took into account the unbalanced sample size due to the different 

number of classes of EFTs (18) and PFTs (7) represented by FLUXNET2015 and to the different 

number of EC sites per class (which ranged between 3 and 31). To do this we considered the 

following steps: 

First, we calculated all possible combinations without repetitions between the 18 EFT and 

the 7 PFT classes (C(18,7) = 31834). Second, we discarded all combinations that had different 

number of EC sites in the EFT and PFT classes being combined. Third, for each combination, 

we applied discriminant analysis to assess how the EFT classification and the PFT classification 

performed to discriminate the seasonal dynamics of NEE. For each discriminant analysis, we 

obtained five metrics of performance (Table 4.1.2). Fourth, to assess whether there existed 

significant differences in the performance metrics between EFTs and PFTs, we applied the 

Wilcoxon non-parametric test. For each combination of number of classes and number of 

EC sites there was a different number of discrimant analysis in the EFT subset and in the PFT 

subset (Table S4.1.1). To account for such unbalanced design during the Wilcoxon test, we 

fixed the sample size to the smaller subset (either from the EFT or the PFT classification) and 

randomly bootstrapped the performance metrics from the bigger one. Fifth, for the final 

report, we calculated the mean and standard deviation of each metric obtained by the EFTs 

and PFTs classifications, the average p-value, and the percentage of times that we obtained 

significant differences (p-value <0.05) between EFTs and PFTs. 
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4.1.3. Results 

Regional heterogeneity in ecosystem functioning by means of satellite-derived EFTs  

The map of the EVI-derived proxies of productivity (EVI_mean), seasonality (EVI_SD) and 

phenology (DMAX) (Figure S4.1.1), and their integration into EFTs (Figure 4.1.1) provided a 

characterization of the spatial patterns of our focal ecosystem function across Europe. At 

continental scale, productivity decreased eastwards and southwards. Seasonality was greater 

in cultivated and mountainous areas, and the most frequent EVI maxima occurred in spring 

and summer.  

The greatest EVI_mean (D) was reached in the Atlantic and Continental biogeographic 

regions, while the lowest EVI_mean (A) occurred in the western part of mediterranean region, 

corresponding to most of the Iberian Peninsula, some parts of the Italian Peninsula the 

mountainous areas of the Alpine region and in the eastern part of the Continental region. 

The greatest seasonality (a) occurred in the highest altitudes of: the Alpine region (peaks of 

Alps), the Continental region (southwestern, northwestern and eastern part), and eastern part 

of the Atlantic region. The lowest seasonality (d) was observed in the western part of 

mediterranean region, specifically in the Iberian Peninsula, in surroundings of the Gulf of 

Lion and in Coastal western places of the Atlantic region. The phenological indicator of the 

growing season, DMAX, showed that most areas of the mediterranean region have the EVI 

maxima in spring (1) and autumn (3). EVI maxima in spring (1) was also observed in the 

Continental and Alpine regions. Maximas in summer (2) were identified in western places of 

the Atlantic region and in most of the Alpine region.  EVI maxima in autumn (3) also occurred 

in western places of the Atlantic region. Maxima in winter (4) were rare and mainly occurred 

in the eastern part of the Atlantic region, where all ranges of maximum greening were found. 
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Figure 4.1.1. Ecosystem Functional Types (EFTs) based on MODIS-EVI dynamics (~230 m resolution) 

and Eddy Covariance (EC) sites corresponding to the 2001–2014 period. Capital letters in the legend 

correspond to the EVI annual mean (EVI_mean) level, ranging from A to D for low to high productivity. 

Small letters show the seasonal standard deviation (EVI_SD), ranging from a to d for high to low 

seasonality of carbon gains. The numbers indicate the season when the maximum EVI took place 

(DMAX): (1) spring, (2) summer, (3) autumn, (4) winter. Places with eddy covariance sites are shown 

with symbols, where each one represents a different plant functional type. Biogeographical regions are 

based on the official European biogeographical regions map (EEA, 2016). 
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Ground-based NEE of the satellite-derived EFTs 

In total, 20 of the 64 potential EFTs, containing 73.10 % of our study area, were represented 

by the network of the 50 long-term EC sites that met our selection criteria (Figure 4.1.2). The 

most abundant EFT, Da1, showed high productivity (D) high seasonality (a) and maximum 

EVI in spring (1) (Figure 4.1.2). Da1 occupied 10.87% of the surface and was distributed 

throughout the study area, but abundantly in the western and southern extremes of the 

Atlantic Region). Da1 was represented by 8 EC sites that exhibited NEE with a strong seasonal 

variability, with a pronounced peak of carbon assimilation between -7.23 and -7.46 gC m-2 

d-1 in spring (Figure 4.1.4), and corresponded with the most abundant ecosystem in Europe, 

the Deciduous Broadleaf and Mixed Trees (Table S4.1.2). The second most abundant EFT, 

Ad1, showed low productivity (A), low seasonality (d) and maximum EVI also in spring (1). 

Ad1 occupied 9.98% of the territory and was located mainly in the Iberian Peninsula (Figure 

4.1.1). Ad1 was represented by 2 EC sites (Figure 4.1.2) that exhibited NEE dynamics with low 

seasonality and peak of carbon assimilation between -0.72 and -1.98 gC m-2 d-1 in spring 

(Figure 4.1.4) and was concentrated in areas dominated by shrub vegetation (Table S4.1.2).  

In terms of abundance in EC sites, the EFT Da1 mentioned above was represented by 8 EC 

sites, followed by EFT Ba1 and Cb1 with 5 EC sites. The first one, EFT Ba1, was also abundant, 

occupying 7.4% of the total surface (Figure 4.1.2), and was located mainly in the eastern part 

of the study area (Atlantic and Continental regions) (Figure 4.1.1). The second one, EFT Cb1, 

was not as abundant as the previous one (3.61%), and was located in central areas of the 

Atlantic and Continental regions. NEE dynamics were characterized by high (a) and medium-

high (b) seasonality and peak time of carbon assimilation between -6.40 and -7.53 gC m-2 d-

1 in spring. In both cases, these places corresponded with cereal crops (Table S4.1.2), and 

NEE dynamics had a higher standard deviation in the annual curve, due to the variability of 

such crops. 
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Figure 4.1.2. Accumulated covered area by the Ecosystem functional types (EFTs; in %) which are 

represented in the study (ordered from highest to lowest). Colours indicated the number of eddy 

covariance (EC) sites and the numbers indicate the area occupied by each of these EC sites (in %). 

 

Our discriminant analysis showed that EFTs significantly differed in NEE measured in situ with 

the EC technique. The average of the performance metrics obtained from the discrimination 

that satellite EFTs made of EC site NEE ranged between 0.953 to 0.978 (Table 4.1.3 a). NEE 

dynamics significantly differed between different EFTs, but was similar within the same EFTs 

(Figure S4.1.2). For example, the EFT “Da1”, which had high productivity, high seasonality and 

spring EVI maxima, also showed high average NEE values, high seasonality in NEE, and 

maximum carbon assimilation in spring (Figure 4.1.4, EC sites DE-Lnf, FR-Fon). The EFT “Bc1”, 

with medium to high productivity, medium seasonality and spring EVI maxima, was also 

characterized by moderate seasonality in terms of NEE and maximum carbon assimilation in 

spring (Figure 4.1.4a for EC sites BE-Vie, DE-Tha). Contrary, the EFT “Ad1”, which had low 

productivity, low seasonality and EVI spring maxima, also showed low average NEE, low 



Result 4.1. - Chapter I 

Satellite-derived Ecosystem Functional Types capture ecosystem functional heterogeneity at regional scale 

 

 
81 

seasonality in NEE, and a peak of maximum carbon assimilation in spring (ES-LJu, IT-Noe). 

As another example, the EFT “Cb1”, with medium productivity, medium-high seasonality, and 

spring EVI maxima, also showed medium to high seasonality in terms of NEE and maximum 

carbon assimilation in spring (Figure 4.1.4a for EC sites DE-Seh, DE-RuS). 

 

Table 4.1.3. Mean performances metrics, their standard deviation (SD) and differences in: Kappa, 

Accuracy, Precision, Recall and F1 values obtained from discriminant analysis of combinations with 

equal number of classes and EC sites of (a) ecosystem functional types (EFTs) and (b) plant functional 

types (PFTs). To assess for significant differences, we applied a Wilcoxon-test (p-values showed), and 

we calculated the percentage of cases in which differences between EFTs or PFTs with NEE were 

significant (% sig), in this case, none. 

 
  a. EFTs            b. PFTs   Difference 

mean SD mean SD p-value % sig 

Kappa 0.953 0.067 0.923 0.078 1 0 

Accuracy 0.972 0.040 0.952 0.051 1 0 

Precision 0.967 0.047 0.959 0.057 1 0 

Recall 0.978 0.033 0.960 0.040 1 0 

F1 0.972 0.040 0.959 0.048 1 0 

 

Comparison between EFTs and PFTs to discriminate NEE measured by EC 

EFTs performed marginally better than PFTs in capturing differences in NEE dynamics 

measured on ground (Table 4.1.3). The average across all discriminant analysis in all 

performance indices was marginally but not significantly higher for EFTs (e.g. mean Kappa = 
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0.953) than for PFTs (e.g. mean Kappa = 0.923) (Table 4.1.3, Figure 4.1.3); but, the standard 

deviation across all discriminant analysis was higher for PFTs (e.g. sd of Kappa = 0.078) than 

for EFTs (e.g. sd of Kappa = 0.067). Although performance indices showed that EFTs 

marginally improved the performance metrics of the analysis, no significant differences 

between the performance metrics of EFTs and PFTs were detected by the Wilcoxon-test in 

any indices (Table 4.1.3). 

 

Figure 4.1.3. Histograms of performances from discriminant analysis for all combinations of Ecosystem 

Functional Types (EFTs) and Plant Functional Types (PFTs) with equal number of classes and EC sites. 

Blue lines correspond to EFTs and green lines to PFTs. 

 

In general, NEE dynamics was similar for the same PFT or EFT across EC sites (Figure 4.1.4), 

though there existed some exceptions, particularly for PFTs (Figure 4.1.4b; Figure S4.1.3). For 

instance, sites corresponding to the PFT “deciduous broadleaf trees” or to the EFT “Da1” 

always showed similar NEE (Figure 4.1.4; Table 4.1.1). However, for PFTs, NEE dynamics for 

“evergreen needleleaf trees” exhibited a different seasonality and maximum carbon 

assimilation across sites (Figure 4.1.4b for EC sites CH-Dav, DE-Lkb). Differences in NEE 
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dynamics across sites were also observed for shrublands where the ES-LJu site (EFT Ad1) was 

assimilating carbon throughout the year, particularly in spring, while the ES-Amo site (EFT 

Ad4) was mostly emitting carbon throughout the year but in the winter. Much bigger 

differences in NEE occurred in croplands, with maximum carbon sequestration occurring 

in different seasons, particularly in april and may (Figure 4.1.4b, for sites CH-Oe1 and CH-

Oe2 (EFT Cb1). 

 

Figure 4.1.4. Comparison of the variability within and across classes of Ecosystem Functional Types 

(EFTs) and Plant Functional Types (PFTs) in the seasonal dynamics of NEE. a) Variability inter EFTs: 
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annual mean of NEE dynamics from different places with the same EFT; and b) variability inter PFTs and 

intra EFTs: annual mean of NEE dynamics from different places with the same PFT and different EFT. 
 

4.1.4. Discussion 

Remotely-sensed EFTs successfully mapped functionally homogeneous land patches in 

terms of NEE dynamics measured in situ with the EC technique. Furthermore, EFTs performed 

marginally better than the commonly used PFTs to discriminate among different NEE 

seasonal dynamics (Table 4.1.3), while having the advantage of being quicker and sensitive 

response to short-term changes in ecosystem performance than composition or structure, 

and can be produced on an annual basis using the same classification rules, which provides 

a straightforward way to track interannual changes in ecosystem functioning (Müller et al., 

2014). Our focal ecosystem function was NEE dynamics, which is related to primary 

production, one of the most essential and integrative descriptors of ecosystem functioning 

(Virginia and Wall, 2010). Hence, satellite-derived EFT classifications could be used to 

monitor the status and changes of the regional heterogeneity or spatial diversity of the 

essential biodiversity variable of ecosystem production, as a surrogate of the overall 

ecosystem performance (Jax, 2010; Pettorelli et al., 2016). 

 

EFTs capture differences in NEE  

EFTs allowed us to characterize the regional heterogeneity of ecosystem functioning 

dynamics (in terms of NEE) across Europe. Twenty out of the 64 EFTs identified in Europe 

(corresponding to 73% of the study area) were represented by at least one EC site in the 

FLUXNET2015 dataset with at least three years of data. Our approach could help to the 

assessment of the carbon dynamics at regional scale by providing homogeneous land areas 

in terms of their primary production dynamics (Running et al., 2004, Zhang et al., 2015). 

Understanding the regional patterns and drivers of the differences in carbon dynamics at the 

regional scale could contribute to reduce the uncertainties on the global carbon balance 

between the atmosphere and the biosphere (Beer et al., 2010). Here, we quantified and 

mapped by means of EFTs the spatio-temporal characteristics of carbon dynamics, a crucial 

https://www.sciencedirect.com/science/article/pii/S0168192316302349?casa_token=gYe-r8lEsp4AAAAA:Jv76ND1NGTKg6QUAumxv7t-uGVscHfODfbEEIHt75nRl-FcXoKjA624vC8AmeXDlMPPnNpwx#bib0270
https://www.sciencedirect.com/science/article/pii/S0168192316302349?casa_token=gYe-r8lEsp4AAAAA:Jv76ND1NGTKg6QUAumxv7t-uGVscHfODfbEEIHt75nRl-FcXoKjA624vC8AmeXDlMPPnNpwx#bib0005
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aspect for biodiversity conservation and ecosystem services maintenance under a global 

change context (Midgley et al., 2010). 

EFTs captured spatial differences in NEE seasonal dynamics as good as or marginally better 

than mainstream approaches such as PFTs. In the real world, different areas may respond 

differently to environmental changes despite being dominated by the same PFT and, 

frequently, ecosystem-process models (parameterized for a specific PFT) may not be able to 

represent these differential responses (Vargas et al., 2013). Normally, the parameterization 

of a particular PFT is homogeneous within such PFT and does not change, for instance, 

according to the ecophysiological status of a particular area or its intrinsic plasticity (Müller 

et al., 2014). In addition, land-cover maps based on a PFT legend are static and difficult to 

update, while EFT are a data-driven classification, through which we can annually detect 

changes in exchange of matter and energy between the ecosystems and the atmosphere in 

response to environmental variability. In this sense, the literature (Bret-Harte et al., 2008; 

Suding et al., 2008; Clark et al., 2016; Saccone and Virtanen 2017; Thomas et al., 2018) has 

pointed out that the PFT approach is not straightforward enough to represent ecosystem 

functional properties at the ecosystem level.  

 

EFT spatial patterns and environmental controls 

EFTs allowed to characterize the regional heterogeneity of ecosystem functioning across 

Europe. In relation to the three descriptive attributes of ecosystem functioning from which 

the EFTs were constructed, we found general patterns determined by environmental 

controls. The role of environmental variables (abiotic and biotic) that control ecosystem 

processes is different according to the level of biological organization and the spatial scale 

considered (Reed et al., 1993; Pearson and Dawson, 2003). Ecosystem processes in natural 

areas are known to be mainly driven by precipitation (Lauenroth et al., 1978), temperature 

(Rosenzweig and Dickinson 1968; Jobbagy et al., 2002), soil characteristics (NoyMeir 1973) 

and vegetation structure (Epstein et al., 1998). In this case, EFTs productivity showed a 

decrease from east to west influenced by rainfall patterns determined by the Gulf Stream 
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(Palter 2015), which also determines changes in vegetation. Regarding seasonality of EVI, it 

increased in relation to two factors: 1) the altitude, having the highest values of seasonality 

in the mountainous areas (influenced by changes in precipitation, temperature and thus, in 

vegetation) and; 2) the crop areas, where management practices, harvests and crop changes 

are responsible of this dynamic and therefore it cannot be explained by natural 

environmental controls. Phenology in Europe was characterized by peaks of maximum EVI in 

spring and summer, when the availability of water (precipitation) and energy (temperature) 

for vegetation is at its optimum (Whittaker et al., 2003). 

Boundaries of the biogeographical regions (EEA 2016) were consistent with the EFTs (Figure 

4.1.1), but while the classification from EEA is static, EFTs provide a data-driven classification 

that could be better coupled to ecosystem functioning. The Alpine region was dominated by 

EFTs with low productivity, high seasonality and maxima in summer. In the high peaks, the 

vegetation is reduced to a low density of highly adapted plants which are able to tolerate 

extreme conditions, i.e. the short growth period and fluctuating air temperature, and 

therefore, has a low productivity, also detected in the global primary productivity patterns 

of Beer et al., (2010) and Zhang et al., (2017). In highest altitudes, snow is present over most 

of the year, leaving only a short time period for the development of the plants, mainly in 

summer, leading to a summer maximum and a high seasonality (Sundseth, 2009a).  

The mediterranean region was characterized by a high heterogeneity of EFTs due to their 

high habitat diversity, i.e high mountains and rocky shores, thick scrub and semi-arid 

steppes, coastal wetlands and sandy beaches, constituting a global biodiversity hotspot 

(Myers et al., 2000). The main driver of ecosystem functional diversity is the climate 

(characterised by hot dry summers and cool winters) (Lionello et al., 2006), in combination 

with human influence, (i.e. livestock grazing, forest cultivation and forest fires) (Blondel and 

Aronson, 1999). 

The Atlantic region was characterized by EFTs with high productivity, high seasonality and 

maximum greening in spring, due to the mild winters, cool summers and predominantly 

westerly winds and moderate rainfall throughout the year (Hurrel, 1995). These conditions 
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favour the presence of non-water limited deciduous species with high productivity, resulting 

in a high seasonality. Due to the anthropogenic influence, agricultural landscapes are very 

common in this region, being one of the five major agricultural regions of Europe according 

to Kostrowicki (1991). Thus, the region’s high productivity must be partly attributed to 

irrigation, and high seasonality is driven by harvest and cropping cycles. 

Finally, in the Continental region the ecosystem functioning varied largely in productivity, 

reflecting regional climatic patterns. In the eastern part of the continental region, extremes 

of hot and cold temperatures, wet and dry conditions, are more frequent and have a strong 

impact on ecosystem functioning (dominant EFT was Aa1, low productivity, high seasonality 

and maximum in spring). In fact, these areas are mountainous and experience sub-alpine 

conditions. Moving west, climate is characterized by relatively small fluctuations of 

temperature due to the buffering effect of the nearby ocean and the flat landscape (Da1 and 

Ca1 in the transition) (Sundseth, 2009b). 

 

Opportunities and limitations of EFTs 

Since EFTs can inform at an annual basis on homogeneous patches on the land surface in 

terms of ecosystem functioning, they offer opportunities to be applied in ecology and 

conservation compared to less dynamic approaches (such as PFTs), but they also have some 

limitations.  

The concept of EFT has been highlighted as “the first serious attempt to group ecosystems 

(at large scales) on the basis of shared functional behaviour” (Mucina, 2019), and its strength 

for being applied as a classification scheme is determined by its ability to translate ecosystem 

functions into discrete entities that can be mapped. EFTs are identified by remote sensing 

tools from aggregated measurements of ecosystem functions at the pixel level, which in 

practice represents information of the performance of the whole ecosystem at that grain 

scale. Having the possibility of mapping entities (EFTs) that reflect the performance of the 

whole ecosystem opens an straightforward, tangible and biologically meaningful way to 

measure ecosystem functions at regional scale, complementing our traditional view of 
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ecosystems (Paruelo et al., 2001; Alcaraz-Segura et al., 2006; Butchart et al., 2010; Asner et 

al., 2017). In particular, satellite-derived dynamic functional classifications, such as EFTs, have 

several advantages over using other static approaches, such as PFTs. Satellite-derived EFAs 

and EFTs 1) are capable of capturing differences in ecosystem processes as measured in the 

field; 2) they provide a useful framework for understanding the mechanisms underlying 

large-scale ecological changes (Cabello et al., 2016; Alcaraz-Segura et al., 2017; Requena-

Mullor et al., 2017, 2018; Arenas-Castro et al., 2018; Lourenço et al., 2018; Vaz et al., 2018); 

3) they offer a faster response than compositional or structural approaches to environmental 

changes (McNaughton, 1989; Mouillot et al., 2013), which are are particularly noticeable at 

the ecosystem level (Vitousek, 1994); 4) they can be more easily monitored and updated than 

structural or compositional ones under a common protocol in space and time, at different 

spatial scales and over large extents  (Paruelo et al., 2001); 5) they can complement 

information on vegetation structure and composition (e.g., canopy architecture, vegetation 

type, PFT), because they constitute complementary dimensions of biodiversity complexity 

(Noss 1990; Pettorelli et al., 2016); 6) they facilitate the direct assessment of ecosystem 

functions and services (Costanza et al., 2006; Dzikiti et al., 2016; Hellmann et al., 2017) and 

would link key dimensions of biodiversity to ecosystem processes including the carbon cycle, 

the water cycle and the provisioning of ecosystem services;7) they have already been 

proposed as essential variables for monitoring biodiversity (Pettorelli et al., 2016; Alcaraz-

Segura et al., 2017). 

However, our approach is still subjected to some challenges. First, EFTs that are represented 

by several EC sites could be parameterized in terms of NEE dynamics, though not all EFTs 

(18%) are represented yet. Second, the footprint or spatial resolution of the EC 

measurements oscillates between 50 m and 200 m (depending on the micrometeorological 

conditions and on the vegetation type, e.g. forest EC sites footprints are generally larger than 

in grassland EC sites), while the MODIS pixel used have a resolution of ~231 m. Such 

limitation could be handled in future works with the use of satellites with higher spatial 

resolution such as Landsat (30 m/pixel) or Sentinel-2 (10 m/pixel). Third, different ecosystems 
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in terms of other functional aspects (e.g. evapotranspiration, heat exchange...) can be 

classified here as the same EFT from the primary production dynamics aspect, since we used 

it as our focal function. However, EFTs could also be identified to characterize the 

spatiotemporal heterogeneity of multiple ecosystem processes and functions at different 

scales, including other functional aspects (e.g. albedo, evapotranspiration, heat exchange) 

(Fernandez et al., 2010). Finally, the incorporation of EFTs in earth system models is difficult, 

since these models can use simple and small numbers of categories in a variable, and some 

models might not be able to run with so many (64) EFT categories, nevertheless there are 

works that incorporate EFTs into earth system models (Lee et al., 2013; Müller et al., 2014). 

The incorporation of these types of variables (dynamic and easily accessible) into the models 

would be useful for the monitoring and sustainable management of carbon reservoirs at 

time scales of in the short to medium term. 

 

4.1.5. Conclusions 

Satellite-derived EFTs are an ecosystem functional classification built from satellite 

observations of radiation exchanges between the land surface and the atmosphere that 

manage to identify homogeneous land patches in terms of an essential ecosystem function, 

ecosystem production measured on ground by means of NEE dynamics. EFTs performed as 

good as or marginally better than PFTs to discriminate different NEE dynamics, what implies 

two main advantages EFTs can be easily updated for any region of the world at an annual 

frequency based on open satellite information, and EFTs maps are more sensitive to 

environmental changes than vegetation composition or structure. 

Our results showed the capability of using ecosystem functional attributes for grouping 

ecosystems at large scales according to their different carbon gains dynamics. Such 

classification, based on the essential biodiversity variable of ecosystem production as a focal 

ecosystem function opens the possibility of assessing and monitoring ecosystem functional 

diversity, the spatial heterogeneity in ecosystem functioning, and carbon-related ecosystem 

services at regional to global scales. Therefore, our study proofs that satellite-derived EFTs 
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provide a validated tool to assess and monitor ecosystem functioning with potential 

applications in ecosystem monitoring and modeling, and in biodiversity and carbon 

managing programs. 
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4.1.7. Appendices 

Table S4.1.1. Number of discriminant analysis (i.e. combinations) for each number of classes and 

number of EC sites in the EFT and in the PFT subsets. 

n 

EC 

sites 
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6 7   2 3 4 5 6 7 
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6      

4 38 56     3 3     

5 24 112     2 6     

6 26 160 392    5 2 3    

7 12 160 536    3 7 2    

8  160 585 1078    9 3 1   

9 10 126 592    1 3 9    

10  96 520 1640    2 7 3   

11 4 82 464 1668   4 3 2 5   

12 1 60 373 1655 3504  6 2 6 2 1  

13  50 320 1466 3868   12 3 3 1  

14  28 238 1312    6 6 6   

15  27 196 1112 3676   5 12 1 3  

16  12 136 922 3396   16 4 6 2  

17  8 100 746  7252  9 17 4  1 

18  2 54 590 2597   2 24 6 2  

19   28 428     8 21   

20   12 267 1817    11 16 6  

21   4 160 1332    15 7 11  

22   1 78 945 4153   4 21 4 2 

23    36 580 3308    13 9 2 

24    10 337     5 17  

25    4 154 1610    12 4 7 

26     70 958     6 5 

27     20      8  

  28     6 232     4 4 

  29      90      2 

 30      25       3 

 31      4       7 
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Table S4.1.2. Contingency table (in %) of EFTs and PFTs. The numbers show the percentage of EFTs 

classified in each PFT. EFTs are coded as follows: capital letters correspond to the EVI annual mean 

(EVI_mean) level, ranging from A to D for low to high productivity. Small letters show the seasonal 

standard deviation (EVI_SD), ranging from a to d for high to low seasonality of carbon gains. The 

numbers indicate the season when the maximum EVI took place (DMAX): (1) spring, (2) summer, (3) 

autumn, (4) winter. 

 %  Cropland 

Deciduous 

broadleaf 

trees 

Evergreen 

needleleaf 

trees 

Grassland 
Mixed 

trees 
Shrubland Wetland 

Aa1    29 12   

Ab2   10     

Ac1   20     

Ac2   10     

Ad1      67  

Ad4     12 33  

Ba1 27      100 

Bc1   20     

Bd1 13    25   

Bd2   10  13   

Ca1 7       

Cb1 33       

Cc1 7  10  13   

Cd1 7    25   

Cd3   10     

Da1  100      

Da2    57    

Db1    14    

Db4 6       

Dd1   10     
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Figure S4.1.1. Ecosystem Functional Attributes based on the 2001-2014 time-series of satellite images of the Enhanced Vegetation Index (EVI) 

captured by the MODIS-Terra sensor (MOD13Q1.C006 product): EVI annual mean (EVI_mean; an estimator of annual primary production), the EVI 

seasonal standard deviation (EVI_SD; a descriptor of seasonality), and the date of maximum EVI (EVI_DMAX; an indicator of 

phenology). Biogeographical regions are based on the official European biogeographical regions map (EEA, 2016).
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Figure S4.1.2. Variability inter EFTs: annual mean of NEE dynamics from different places with the same EFT.  
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Figure S4.1.3. Variability inter PFTs and intra EFTs: Annual mean of NEE dynamics from different 

places with the same PFT and different EFT.  
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Abstract 

Conservation Biology faces the challenge of safeguarding the ecological processes and 

ecosystem functions that sustain the multiple facets of biodiversity. Characterization and 

evaluation of these processes and functions can be carried out through functional attributes 

or traits related to the exchanges of matter and energy between vegetation and the 

atmosphere. Based on this principle, satellite imagery can provide integrative spatiotemporal 

characterizations of ecosystem functions from local to global scales. Here, we provide a 

dataset at protected area level that characterizes the spatial patterns and temporal dynamics 

of ecosystem functioning in Sierra Nevada (Spain), captured through the spectral vegetation 

index EVI (Enhanced Vegetation Index) from 2001 to 2018 (product MOD13Q1.006 from 

MODIS sensor). First, at the annual scale, our database contains three Ecosystem Functional 

Attributes (EFAs) (i.e., descriptors of annual primary production, seasonality, and phenology 

of carbon gains), as well as their integration into a synthetic map of Ecosystem Functional 

Types (EFTs) classes. Second, it also includes two annual measures of ecosystem functional 

diversity: EFT richness and EFT rarity. Finally, it provides inter-annual summaries for all 

previous variables, i.e., their long-term means and inter-annual variabilities. Then, we show 

examples of research and management applications based on EFAs and EFTs from modelling 

climate, ecohydrology and species distributions to setting geographical priorities and early-

warning systems in protected area networks. The datasets are available in two open-source 

sites (PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.904575 (Cazorla et al., 2019) and 

http://obsnev.es/apps/efts_SN.html), and bring to scientists, managers and the general 

public valuable information on the first characterization of the functional diversity based on 

primary production at ecosystem level developed in Sierra Nevada, a biodiversity hotspot in 

the Mediterranean basin. This Biosphere Reserve represents an exceptional natural 

laboratory for ecological research within the Long-Term Ecological Monitoring (LTER) 

network. The long-term data records available on biodiversity, climate, ecosystem services, 

hydrology, land-use changes, and management practices can now be analysed with our 

https://doi.pangaea.de/10.1594/PANGAEA.904575
http://obsnev.es/apps/efts_SN.html


Result 4.2. - Chapter II 

A remote sensing-based dataset to characterize the ecosystem functioning and functional diversity  

 

 
106 

description of ecosystem functioning and functional diversity to explore ecological 

hypotheses and relationships from the landscape to the reserve scales. 

 

KEYWORDS: Ecosystem Functional Types; Ecosystem heterogeneity; Ecosystem variability, 

EFT richness; EFT rarity; Sierra Nevada (Spain). 
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4.2.1. Introduction 

A better characterization of the functional dimension of biodiversity is required to develop 

management approaches that ensure nature contributions to human well-being (Jax, 2010; 

Bennet et al., 2015). To achieve this goal, it is necessary to have a set of essential variables 

that allow for the characterization and monitoring of ecosystem functioning (Pereira et al., 

2013). Such variables are critical to understanding the dynamics of ecological systems 

(Petchey and Gaston, 2006), the links between biological diversity and ecosystem services 

(Balvanera et al., 2006; Haines-Young and Potschin, 2010), and the mechanisms of ecological 

resilience (Mouchet et al., 2010). In addition, the use of ecosystem functioning variables has 

been demanded to assess functional diversity at large scales with the aim of measuring the 

Biosphere integrity (Mace et al., 2014; Steffen et al., 2015), one of the most challenging 

planetary boundaries to quantify (Steffen et al., 2015). Despite the importance of ecosystem 

functioning variables, and the conceptual frameworks developed to promote their use 

(Pettorelli et al., 2018), they have seldom been incorporated to ecosystem monitoring in 

protected areas (but see Alcaraz-Segura et al., 2009; Fernández et al., 2010; Cabello et al., 

2016).  

Characterization and evaluation of ecosystem functioning can be carried out through 

attributes or functional traits related to the exchanges of matter and energy between 

vegetation and the atmosphere (Mueller-Dombois and Ellenberg, 1974). Nowadays, the use 

of satellite imagery provides useful methods to produce a spatially explicit characterization 

of ecosystem functioning and its heterogeneity (i.e., functional diversity) from local 

(Fernández et al., 2010) to regional (Alcaraz-Segura et al., 2006, 2013) and global scales (Ivits 

et al., 2013). Theoretical and empirical models support the relationship between spectral 

indices derived from satellite images (e.g., Enhanced Vegetation Index -EVI-) and essential 

functional variables of ecosystems, such as primary production, evapotranspiration, surface 

temperature, or albedo (Running et al., 2000; Pettorelli et al., 2005; Fernández et al., 2010; 

Lee et al., 2013). Among them, primary production is one of the most integrative and 

essential descriptor of ecosystem functioning (Virginia and Wall, 2001; Pereira et al., 2013), 
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since it has an central role in the carbon cycle (i.e., it is the energy input to the trophic web 

and therefore, the driving force behind many ecological processes). Moreover, primary 

production offers an holistic response to environmental changes and constitutes a synthetic 

indicator of ecosystem health (Costanza et al., 1992; Skidmore et al., 2015).  

To characterize ecosystem functioning through spectral vegetation indices, we can use the 

approach based on Ecosystem Functional Types (EFTs), defined as patches of the land surface 

that share similar dynamics in the exchanges of matter and energy between the biota and 

the physical environment (Paruelo et al., 2001; Alcaraz-Segura et al., 2006). EFTs are derived 

from three Ecosystem Functional Attributes (EFAs) that describe the seasonal dynamics of 

carbon gains: annual mean (a surrogate of annual primary production, the most essential 

and integrative indicator of ecosystem functioning), annual standard deviation (a descriptor 

of seasonality or the differences between the growing and non-growing seasons), and the 

annual date of maximum (a phenological indicator of when in the year is the growing period 

centered). Since the concept appeared in 2001 (Paruelo et al., 2001), the EFT approach (or 

equivalent approaches) applications has exponentially grown to characterize functional 

heterogeneity from local to global scales (Alcaraz-Segura et al., 2006; Karlsen et al., 2006; 

Duro et al., 2007; Fernández et al., 2010; Geerken 2009; Alcaraz-Segura et al., 2013; Ivits et 

al., 2013; Cabello et al., 2013; Pérez-Hoyos et al., 2014; Müller et al., 2014; Wang and Huang, 

2015; Villarreal et al., 2018; Coops et al., 2018; Mucina, 2019).  

This article aims to provide a dataset that describes the spatial heterogeneity and temporal 

variability of ecosystem functioning in terms of primary production dynamics from the intra- 

and inter-annual variation of vegetation greenness captured through spectral vegetation 

indices (e.g., EVI). We introduce as a proof of concept the case of Sierra Nevada Biosphere 

Reserve (SE Spain), a biodiversity hotspot in the Mediterranean basin, that holds a long-term 

ecological monitoring program since 2010. First, for each year, we provide three Ecosystem 

Functional Attributes (EFAs) (i.e., annual primary production, seasonality, and phenology of 

carbon gains), as well as their integration into a synthetic mapping of Ecosystem Functional 

Types (EFTs). Second, based on these functional units, we present two measures of functional 
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diversity: EFT richness and EFT rarity. Finally, in addition to the yearly maps, we calculated 

inter-annual summaries, i.e., inter-annual means and interannual variability, to show the 

average conditions as well as the most stable and variable zones along the period (workflow 

in Figure 4.2.1.).  
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Figure 4.2.1. Workflow to characterize the ecosystem functioning and functional diversity of Sierra 

Nevada. MODIS (Moderate Resolution Imaging Spectroradiometer) sensor product MOD13Q1 was 

used aboard NASA's Terra satellite. This product contains images with 16-day temporal resolution (23 

images per year) and ~231 m spatial resolution from the Enhanced Vegetation Index (EVI). The study 

period was from 2001 to 2018. Three functional attributes describing ecosystem functioning were 
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calculated from the EVI seasonal curve for each year. The range of values for each attribute was divided 

into four intervals, resulting in a potential number of 64 TFEs (4x4x4=64). From EFTs, we derived four 

metrics related to ecosystem functional diversity (EFT richness and rarity) and ecosystem functional 

stability (inter-annual variability and dissimilarity). 

 

4.2.2. Methods  

Site Description 

Sierra Nevada (Andalusia, SE Spain) is a mountainous region covering more than 2000 km2 

with an elevation range of between 860 and 3482 m a.s.l (Figure 4.2.2.). This mountain is one 

of the most important 105 biodiversity hotspots in the Mediterranean region (Blanca et al., 

1998; Cañadas et al., 2014), hosting endemic plant species for a total of 2353 taxa of vascular 

plants (33% and 20% of Spanish and European flora, respectively; Lorite 2016). Forest cover 

in Sierra Nevada is dominated by pine plantations (Pinus halepensis Mill., Pinus pinaster Ait., 

Pinus nigra Arnold subsp. salzmannii (Dunal) Franco, and Pinus sylvestris L.) covering 

approximately 40000 ha. Most of them were planted in the period 1960–1980. The main 

native forests of Sierra Nevada are dominated by the evergreen holm oak Quercus ilex subsp. 

ballota (Desf.) Samp. occupying low and medium mountain areas (8800 ha) and by the 

deciduous Pyrenean oak Quercus pyrenaica Willd ranging from 1100 to 2000 m a.s.l. (about 

2000 ha). Autochthonous pine forests of Pinus sylvestris L. var. nevadensis H. Christ, 

characterized by low tree cover, occurs in small patches in the treeline. Above the treeline, 

plant communities of the Oromediterranean and Crioromediterranean belts (above 1800-

2000 m a.s.l.), dominated by chamaephytes and hemicryptophytes (scrublands, grasslands, 

and cliff and scree communities), are the habitat to many endemic species.  

Sierra Nevada receives legal protection and international recognition in multiple ways: 

UNESCO Biosphere Reserve (1986), Natural Park (1989), National Park (1999), Important Bird 

Area (2003), Special Area of Conservation in Natura 2000 network (2012), and it is in the 

IUCN Green List of Protected Areas (2014), a global standard of best practice for area-based 

conservation. Sierra Nevada is also a site within the European Long Term Ecological Research 
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(LTER) network, with many available ecological data records from multiple disciplines 

(Zamora et al., 2017, LTER_EU_ES_010). The main economic activities in this mountain region 

are agriculture, tourism, livestock raising, beekeeping, mining, and skiing (Bonet et al., 2010).  

Vegetation studies in Sierra Nevada have mainly been developed considering a 

compositional (phytosociological method) or a successional perspective (vegetation 

dynamics). These studies have been beneficial for describing the vegetation heterogeneity 

at the mesoscale (Loidi, 2017), for characterizing habitats of conservation concern (EU 

Directive 92/43/EEC), and for developing ecological restoration actions (Valle et al., 2003). 

However, these traditional approaches are insufficient for monitoring the effects of 

environmental changes or management actions on ecosystem functions, and for assessing 

the role of ecosystems as providers of services and benefits to society (Cabello et al., 2019).  
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Figure 4.2.2. Study area: Sierra Nevada Biosphere Reserve. a) Location in the context of the Iberian 

Peninsula; b) remote view of Sierra Nevada mountain region (image from the International Space 

Station took in December 2014; courtesy of “Earth Science and Remote Sensing Unit, 615 NASA 

Johnson Space Center”); c) delimitation of the Biosphere Reserve and the distribution of the main 

ecosystems (Pérez-Luque et al., 2019) and thermotype bioclimatic belts (Molero-Mesa and Marfil, 

2015). 
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Satellite images of Vegetation Indices (MOD13Q1 data product) 

 The characterization of ecosystem functioning in Sierra Nevada was based on the temporal 

dynamics of the Enhanced Vegetation Index (EVI) from 2001 to 2018. We chose EVI instead 

of any other vegetation index (such as SAVI, ARVI, or NDVI) as an indicator of carbon gains 

since it is more reliable in both low and high vegetation cover situations (Huete et al., 1997). 

EVI reduces the influence of atmospheric conditions on vegetation index values, and EVI 

corrects for canopy background signals.  

EVI is computed following this equation:  

 

where NIR/red/blue are atmospherically-corrected (Rayleigh and ozone absorption) surface 

reflectances; L is the canopy background adjustment that addresses the non-linear and 

differential transfer through a canopy of the NIR and red radiations; and C1, C2 are the 

coefficients of the aerosol resistance term, which uses the blue band to correct for aerosol 

influences in the red band. The coefficients adopted in the MODIS-EVI algorithm are; L=1, 

C1 = 6, C2 = 7.5, and G (gain factor) = 2.5. The EVI values range from -1 to +1, where negative 

values generally correspond to snow, ice, or water, and values closer to +1 represent the 

higher density of green leaves (Huete et al., 2002).  

We obtained EVI from MOD13Q1.006 product of the MODIS sensor (Moderate Resolution 

Imaging Spectroradiometer) onboard NASA’s Terra satellite (Didan, 2015). MOD13Q1.006 

EVI product is computed from atmospherically corrected bi-directional surface reflectances 

by choosing the best available pixel value from all the acquisitions (4 per day) in a 16-day 

period based on quality, cloud presence, and viewing geometry (Huete et al., 1999, Didan et 

al., 2015). In addition, to further remove the potential remaining effect of snow, ice, and water 

in our dataset, we transformed negative EVI values into zeros. Thus, we obtained a maximum-

value composite image every 16 days (23 images per year). Despite its moderate spatial 

resolution (~231 meters spatial resolution, though the nickname is 250 meters pixel), we 

chose the MOD13Q1.006 product as the basis for our data since it offers a long time series 
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(almost 20 years) every 16 days, which allows for the characterization of the temporal 

dynamics of ecosystem functioning (Anderson et al., 2018).  

MOD13Q1.006 images are downloadable from NASA’s LP DAAC (Land Processes Distributed 

Active Archive Center) (https://lpdaac.usgs.gov/products/mod13q1v006/) (Didan, 2015) but 

we process them through the Google Earth Engine platform 

(https://developers.google.com/earth165 engine/datasets/catalog/MODIS_006_MOD13Q1) 

(Gorelick et al., 2017). EVI values are multiplied by 10000 to store them as real numbers to 

occupy less disk space (both in the original MOD13Q1.006 product and in our dataset).  

 

Calculating Ecosystem Functional Attributes (EFAs)  

We identified three EFAs that are known to capture most of the variance in the time series 

of vegetation indices and that are biologically meaningful (Paruelo et al., 2001; Alcaraz-

Segura et al., 2006, 2009). These functional attributes were calculated from the EVI seasonal 

curve or annual dynamics (i.e., 23 measures per year): the EVI annual mean (EVI_mean; an 

estimator of primary production), the EVI seasonal Standard Deviation (EVI_SD; a descriptor 

of seasonality, i.e., the differences between the growing and non-growing seasons), and the 

date of maximum EVI (EVI_DMAX; a phenological indicator of the month with maximum EVI) 

(Figure 4.2.3.). To summarize the EFAs of the 2001-2018 period, we calculated the inter-

annual mean for each attribute.  

https://lpdaac.usgs.gov/products/mod13q1v006/
https://developers.google.com/earth165%20engine/datasets/catalog/MODIS_006_MOD13Q1
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Figure 4.2.3. Seasonal dynamics of Enhanced Vegetation Index (EVI) and EVI derived metrics or 

Ecosystem Functional Attributes (EFAs). The axis “x” corresponds with months and the axis “y” with EVI 

values. EFAs were: the annual mean or the cumulative EVI, an estimator of annual productivity 

(EVI_mean), the EVI seasonal coefficient of variation, i.e. the differences between the minimum and the 

maximum EVI values, a descriptor of seasonality (EVI_SD), and the date of maximum EVI, an indicator 

of phenology (EVI_DMAX). We chose these three EVI metrics or EFAs since they capture most of the 

variance of the EVI time series. 

 

Biologically, these three metrics can be interpreted as surrogates (Paruelo et al., 2001, 

Pettorelli et al., 2005, Alcaraz-Segura et al., 2006) of the total amount and timing (seasonality 

and phenology) of primary production, one of the most integrative indicators of ecosystem 

functioning (Virginia and Wall, 2001). Statistically, these three metrics are highly correlated 

with the first two or three axes (and hence capture most of the variance) of a Principal 

Component Analysis (PCA) carried out on the NDVI or EVI seasonal dynamics in different 

regions (Townshend et al., 1985, Paruelo and Lauenroth, 1998, Paruelo et al., 2001, Alcaraz-

Segura et al., 2006, 2009, Ivits et al., 2013). To know the statistical meaningfulness of these 

metrics in Sierra Nevada Biosphere Reserve, we also examined their correlation with the first 

axes of a PCA run on the EVI annual curve of the average year (12 EVI values, i.e., the inter-
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annual means of the maximum value composites for each month) (see full analysis in 

Appendix A).  

 

Identifying Ecosystem Functional Types (EFTs)  

EFTs were identified by synthesizing in a single map the variability contained in the three 

EFAs following a similar approach to Alcaraz-Segura et al., (2013). The range of values of 

each EFA was divided into four intervals, giving a potential number of 64 EFTs (4 × 4 × 4). 

For EVI_DMAX, the four intervals agreed with the four seasons of the year: January to March 

= Winter, April to June = Spring, July to September = Summer, October to December = 

Autumn. For EVI_mean and EVI_SD, we extracted the first, second, and third quartiles for each 

year and then calculated the inter-annual mean of each quartile (means of the 18-year 

period) (Appendix B, Table B1). To account for the interannual variability in the quartiles and 

to assess how many years were necessary in the study period to get stability in the quartiles, 

we run a sensitivity analysis (see sections below and Appendix B). Finally, the inter-annual 

means of the quartiles were applied to each year as the thresholds for EVI_mean and EVI_SD 

to set EFT classes (Table 4.2.1.). To summarize the EFTs of the 2001–2018 period, we 

calculated the most frequent EFT of the period (i.e., the EFT mode for each pixel). To name 

EFTs, we used two letters and a number: the first capital letter indicates net primary 

production (EVI_mean), increasing from A to D; the second small letter represents seasonality 

(EVI_SD), decreasing from a to d; the numbers are a phenological indicator of the growing 

season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter (Table 4.2.1.). The 

EFT alphanumeric code (Aa1 to Dd4) corresponds to the numeric code (1 to 64) in the .TIF 

files, that is shown in the legend of Figure 4.2.4.d and in the data management plan 

(Appendix D).  
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Table 4.2.1. EFAs range used for the identification of EFTs in the Sierra Nevada Biosphere Reserve. 

For EVI_DMAX, the four intervals agreed with the four seasons of the year. For EVI_mean and EVI_SD, 

we extracted the first, second, and third quartiles for each year and then calculated the inter-annual 

mean of each quartile (their average over the 18-year period). The values of both EVI_mean and 

EVI_SD are multiplied by 10000 in the .TIF files to save disk space. 

Ecosystem 

Functional 

Attribute 

Character code Digit code Range 

EVI Mean 

(Productivity) 

A 100 0 - 0.137 

  B 200 0.137 - 0.187 

  C 300 0.187 – 0.241 

  D 400 > 0.241 

EVI SD 

(Seasonality) 

a 10 > 0.062 

  b 20 0.043 – 0.062 

  c 30 0.030 – 0.043 

  d 40 0 – 0.030 

EVI DMAX 

(Phenology) 

1 1 Spring 

  2 2 Summer 

  3 3 Autumn 

  4 4 Winter 
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Characterizing Ecosystem Functional Diversity  

To characterize ecosystem functional diversity, we used EFT richness and EFT rarity. EFT 

richness was calculated for each year by counting the number of different EFTs in a 4×4-pixel 

moving window around each pixel (top-left center pixel of a 4x4 Kernel) (modified from 

Alcaraz-Segura et al., 2013). Each MOD13Q1.006 pixel received a richness value derived from 

counting how many different EFTs there were in the surrounding 4x4 pixels. We chose a 4x4-

pixel window since it offered the finest spatial resolution without saturating the number of 

EFT classes per Kernel (i.e., smaller Kernel sizes result in a high proportion of moving windows 

saturated with the maximum number of classes) (see sensitivity analysis on Kernel size in 

sections below and Appendix C).  

EFT rarity was calculated as the extension of each EFT compared to the most abundant EFT 

in the study area (Equation 1) (Cabello et al., 2013). Then, the average rarity map of all years 

was obtained.  

 

Rarity of EFTi = (Area_EFTmax–Area_EFTi)/Area_EFTmax (Equation 1) 

 

where Area_EFTmax is the area occupied by the most abundant EFT, and Area_EFTi is the 

area of the i EFT being evaluated, with i ranging from 1 to 64.  

Once we have the rarity value of each EFT (using Equation 1), we assigned to each pixel in 

the EFT map such value according to its EFT class. Hence, the original spatial resolution of 

the EFT rarity map is the same as the resolution of the EFT map (~231 m).  

 

Inter-annual stability in ecosystem functioning  

To identify the most stable and variable areas (either due to inter-annual fluctuations or 

directional trends) in ecosystem functioning, we followed two approaches. First, we recorded 

the number of different EFTs that occurred in the same pixel in the period 2001-2018, i.e., 

inter-annual-variability in EFTs. Second, to consider the changes not only at the pixel but also 
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at the landscape level, the Jaccard similarity index (Jaccard, 1901) (Equation 2) was used in 

4×4-pixel moving windows (924 x 924 m).  

 

Jaccard Index = (the number in both sets) / (the number in either set) * 100 

 

The same formula in notation form is (Equation 3): 

J(X,Y) = |X∩Y| / |X∪Y| 

where the Jaccard index for two data sets (X = set 1; Y =set 2) is equal to the size of the 

intersection divided by the size of the union of the data sets. This measure represents how 

similar the EFT composition that occurs in each window throughout the entire time series 

(2001-2018) is. For each window, the Jaccard index was calculated among all possible 

combinations of years, and then the inter-annual average of all calculated indices was 

obtained.  

In Steps:  

1) Count the number of EFTs which are shared between both windows; 2) Count the total 

number of EFTs in both windows (shared and unshared); 3) Divide the number of shared EFTs 

1) by the total number of EFTs 2); 4) Multiply the number found in step 3) by 100.  

From there, we calculated dissimilarity as (Equation 4):  

 

Dissimilarity = 1 - Jaccard Index Dissimilarity 

 

values range from 0 to 1, with 1 being the highest degree of dissimilarity in composition and 

relative abundance of EFTs and 0 being absent.  
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Sensitivity analyses  

Inter-annual stability in quartiles to set boundaries among EFT classes  

To assess how inter-annual variability affected the quartiles of EVI_mean and EVI_SD (which 

set the boundaries among EFT classes), we determined the minimum number of years that 

were needed in a study period to get stability in all quartiles (see Appendix B). For each 

quartile, we plotted (Figure B1 Appendix B) the maximum inter-annual coefficient of variation 

observed across all possible combinations of consecutive years from 2001 to 2018 (from 17 

combinations of two consecutive years to one combination of 18 years) against the number 

of years considered. That is, starting with two consecutive years, we plotted the maximum of 

17 coefficients of variation (i.e., 2001-2002, 2002- 2003, … 2017-2018); for three consecutive 

years, the maximum of 16 coefficients of variation (i.e., 2001-2002-2003, … 2016-2017-2018); 

etc.  

 

Kernel size and borderline effect on EFT richness  

To assess the effect of the size of the sliding window Kernel on EFT richness, we calculated 

EFT richness with Kernels of 2x2, 3x3, and 4x4 pixels and compared the outputs (see analysis 

in Appendix C).  

Since we only classified pixels within the Biosphere Reserve, external pixels with NoData 

values were not considered as a distinct class to compute EFT richness along the borderline 

of the protected area. For these reasons, it is important to note that the sliding windows 

along the borderline of the protected area could systematically show lower EFT richness in 

our dataset than in reality.  

 

4.2.3 Results and Discussion  

Available dataset  

Overall, the collection of datasets provides a characterization of ecosystem functioning and 

ecosystem functional diversity in Sierra Nevada Biosphere Reserve (SE Spain) through remote 
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sensing. To broaden the use of data, first, we provide data in .TIF format. Second, we have 

incorporated rendered versions of all layers as required by Google Earth Pro (called 

“filename..._forGoogleEarthVisualization.tif”) for visualization. Moreover, we have also 

developed an ad-hoc visualization platform for the inter-annual summaries under the Sierra 

Nevada Global 275 Change Observatory-LTER website. All data are available yearly (2001-

2018) and summarized for the period in EPSG:4326 WGS84 reference system.  

The dataset is structured in three main subsets of variables: Ecosystem Functional Attributes, 

Ecosystem Functional Types, and Ecosystem Functional Diversity (see Table 4.2.2.). For each 

variable, there are two groups of data (two subfolders): one containing the yearly variables, 

and another one 280 containing the summaries for the 18-year period.  

Data were clipped with the shapefile of the Sierra Nevada Biosphere Reserve boundaries, 

whose layer is available in the public database of the Andalusian regional government 

(REDIAM: 

https://descargasrediam.cica.es/07_PATRIMONIO_NATURAL/01_ESPACIOS_PROTEGIDOS).  

All .TIFs files contain the following metadata: raster information (columns and rows, number 

of bands, cell size, uncompressed size, format, source type, pixel type, pixel depth, NoData 

value, pyramids, compression, status), extension (top, left, right, bottom), spatial reference 

(angular unit, datum) and statistics (build parameters, min, max, mean, std dev.). 

Furthermore, a Data Management Plan with the formal metadata of our dataset is also 

available in PANGAEA data repository and in Appendix D.  

 

https://descargasrediam.cica.es/07_PATRIMONIO_NATURAL/01_ESPACIOS_PROTEGIDOS
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Table 4.2.2. Dataset description: Ecosystem Functional Attributes (EVI_mean, EVI_SD and EVI_DMAX provided yearly and summarized for the period); 

Ecosystem Functional Types (EFTs yearly and summarized for the period (mode, interannual variability and dissimilarity); Ecosystem Functional 

Diversity (EFT richness and EFT rarity, provided yearly and summarized for the period). Spatial resolution is ~231 in all cases except in the EFT 

dissimilarity, where it is ~231m x 4 = ~1km2. YYYY refers to year and varies from 2001 to 2018. 

Filename Variable Definition Biological significance Temporal resolution 

EVI_mean_YYYY_C006_MOD13Q1 

_Pixel232 

EVI_mean Mean of the positive 

EVI values in a year 

Primary production in a year Yearly, one image per 

year YYYY 

 

EVI_mean_InterAnnualMean_2001-

2018_C006_MOD13Q1_Pixel232 

EVI_mean Inter-annual mean of 

the annual EVI_mean 

values of the period 

Average annual primary production of 

the period 

 One image for 

the 2001-2018 

period 

EVI_sSD_YYYY_C006_MOD13Q1_ 

Pixel232 

 

EVI_SD Intra-annual standard 

deviation of the positive 

EVI values within a year 

Seasonality in vegetation greenness.  

Differences in carbon gains between 

the growing and non-growing 

seasons in a year 

 Yearly, one 

image per year 

YYYY 

 

EVI_sSD_InterannualMean_2001-

2018_C006_MOD13Q1__Pixel232 

 

EVI_SD Inter-annual mean of 

the annual EVI_SD 

values of a period  

Seasonality.  

Average annual of the differences in 

carbon gains between the growing 

and non-growing seasons throughout 

the period 

 Average of the 

2001-2018 

period 
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Filename Variable Definition Biological significance Temporal resolution 

EVI_DMAX_YYYY_C006_MOD13Q1 

_Pixel232 

EVI_ DMAX Month with maximum 

EVI in a year 

Phenology.  

Date of maximum greenness in a year 

 Yearly, one 

image per year 

YYYY 

EVI_DMAX_InterannualMean_2001-

2018_C006_MOD13Q1_Pixel232 

EVI_ DMAX Inter-annual mean of 

the month with 

maximum EVI of the 

period 

Phenology.  

Average annual of the month with 

maximum greenness throughout the 

period 

 Average of the 

2001-2018 

period 

EFTs_YYYY_C006_MOD13Q1_Pixel232 EFTs Range of EFA’s values 

divided into four 

intervals 4 × 4 × 4 = 64 

potential EFTs in a year  

Patches of land surface that share 

similar dynamics in matter and energy 

exchanges in a year 

 Yearly, one 

image per year 

YYYY 

EFTs_InterannualMode_2001-

2018_C006_MOD13Q1_Pixel232 

EFTs Mode of the range of 

EFA’s values divided 

into four intervals 4 × 4 

× 4 = 64 potential EFTs 

of the period 

Patches of land surface that share 

similar dynamics in matter and energy 

exchanges throughout the period 

 Mode of the 

2001-2018 

period 

EFT_InterannualVariability_2001-

2018_C006_MOD13Q1_Pixel232 

EFT 

interannual 

variability 

Nº of different EFTs that 

occurred in the same 

pixel in the period 

Changes in an ecosystem functioning 

in a period 

 2001-2018 

period 

EFT_InterannualDissimilarity_2001-

2018_C006_MOD13Q1__Pixel232 

EFT 

interannual 

dissimilarit

y 

1 - Jaccard Index 

  

  

Changes in ecosystem functioning a 

landscape level in a period 

 2001-2018 

period 
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Filename Variable Definition Biological significance Temporal resolution 

EFT_Richness_YYYY_C006_MOD13Q1 

_Pixel232 

EFT 

richness 

Nº of different EFTs in a 

4×4-pixel moving 

window around each 

pixel in a year 

Different EFTs represented in the 

land-surface in a year 

 Yearly, one 

image per year 

YYYY 

 

EFT_Richness_InterannualMean_2001

-2018_C006_MOD13Q1_Pixel232 

EFT 

richness 

Nº of different EFTs in a 

4×4-pixel moving 

window (924 x 924 m) 

around each pixel in a 

period 

Different EFTs represented in the land 

surface throughout the period 

 

 Average of the 

2001-2018 

period 

EFT_Rarity_YYYY_C006_MOD13Q1 

_Pixel232 

EFT rarity Rarity of EFTi = 

(Area_EFTmax–

Area_EFTi)/Area_EFTmax 

(in a year) 

EFT geographical extension    Yearly, one 

image per year 

YYYY 

EFT_Rarity_InterannualMean_2001-

2018_C006_MOD13Q1_Pixel232 

EFT rarity Rarity of EFTi = 

(Area_EFTmax–

Area_EFTi)/Area_EFTmax 

(in a period) 

EFT geographical extension   Average of the 

2001-2018 

period 
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Ecosystem Functional Attributes patterns  

Functional attributes of productivity, seasonality, and phenology showed a clear altitudinal 

pattern. Productivity (EVI_mean) was much lower in the high mountain bioclimatic belts 

(Crioro- and Oromediterranean belts) than in lower belts (Supra- and Mesomediterranean 

belts). Productivity also decreased from west to east (Figure 4.2.4.a). Seasonality (EVI_SD) was 

high in the Supramediterranean, decreasing in Meso-, and Thermomediterranean belts, and 

in Crioro- and Oromediterranean (Figure 4.2.4.b). Phenology (EVI_DMAX) was characterized 

by a dominant summer peak in vegetation greenness in the Crioro- and Oromediterranean 

belts, and a late spring peak in the Supra- and Mesomediterranean belts. Dry and semi-arid 

Thermomediterranean areas of the south and east showed greenness peaks in early autumn 

and winter months (Figure 4.2.4.c).  

Figure 4.2.4. Ecosystem Functional Attributes (a-c) and Ecosystem Functional Types (d) describing the 

functioning of the canopy based on the Enhanced Vegetation Index (EVI), derived from MOD13Q1- 

850 TERRA (pixel ~231 m) for the period 2001-2018. 
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Ecosystem Functional Type patterns  

As a result of the combination of the three Ecosystem Functional Attributes, productivity, 

seasonality, and phenology, represented in Figure 4.2.4. a-c, we obtained the EFT map (Figure 

4.2.4.d) that includes a synthetic characterization of the spatial patterns of ecosystem 

functioning from the primary production dynamics. A total of 64 classes were observed. The 

most abundant EFT presented the maximum greenness in spring, with productivity values 

from low to intermediate and with all possible combinations of seasonality: Aa1, Ba1, Cb1, 

Cd1, Ba1, and Cc1 accumulated 30% of the surface. On the contrary, the rarest EFTs were 

Ba4, Aa4 characterized by medium or low productivity, high seasonality, and maximum 

greenness in winter.  

Crioro- and Oromediterranean areas presented EFTs with low and intermediate productivity, 

high seasonality, and moments of maximum greenness mainly in summer, but also in spring. 

Here, extreme conditions characterized by scarce soil (Peinado et al., 2019), high solar 

radiation, extreme temperatures, winds, snow, and ice, give rise to a short vegetative period. 

Such conditions result in scarce vegetation cover, controlled by low temperatures, which can 

only occur in summer, being the plant growth time; hence these areas have been referred to 

as "cold desert" (Blanca et al., 2019). The Supra- and Mesomediterranean levels had 

associated EFTs of intermediate-high productivity, medium-low seasonality, and maximum 

green moment in spring and autumn (e.g., Cc1-3) (Figure 4.2.4.d). The Supramediterranean 

belt is characterized by the presence of deciduous species, e.g., oak groves associated with 

the most productive and seasonal ecosystem functional type of the study area, with the 

maximum in spring (EFT Da1). In the dry and semi-arid thermomediterranean of the eastern 

end, characterized by thermophilic species, which hardly suffer from frost, we detected a 

different functional behavior of the ecosystems. The functioning of this area showed low 

values of productivity, medium-low seasonality, and maximum greenness of the vegetation 

in spring or winter (e.g., Ac1-4). Here, the main control of ecosystem functioning is water 

availability, presenting plant species with a fast response to scarce water inputs (Cabello et 

al., 2012).  
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Stability in ecosystem functioning  

The inter-annual variability ranged from 1 to 17 different EFTs over the 18-years period in 

the same pixel (Figure 4.2.5.a). The number of EFTs observed in the same pixel over 18 years 

was higher in the Supra- and Mesomediterranean levels, coinciding with the altitudinal range 

where inter-annual climate variability is most affected (e.g., they may present much snow in 

cold years and be affected by drought in dry and warm years). The eastern end of the semi-

arid thermomediterranean also highlighted a high inter-annual variability, where there exists 

a more significant climate fluctuation and where small changes in precipitation produce large 

changes in the dynamics of primary production (Houérou et al., 1988; Cabello et al., 2012), 

as well as the area burned in 2005 near Lanjarón, where the fire eliminated the vegetation 

that has been regenerating since then. On the other hand, the most inter-annual stable areas 

(i.e., those that changed the least during the period) were located in the Meso-

Oromediterranean and Crioromediterranean belts, specifically, the oak forests and high-

mountain meadows, ecosystems that are not subject to low human pressure (e.g., low forest 

management and low livestock).  

The results of the inter-annual dissimilarity (1 - Jaccard index) in the EFT composition (Figure 

4.2.5.b), also showed an altitudinal pattern where the dissimilarity was lower in the higher 

mountain landscapes (Oro- and Crioromediterranean belts), as well as in the 

Mesomediterranean oak groves (functional stability already shown by other authors, i. e. 

Requena-Mullor et al, 2018). This pattern of dissimilarity increased towards lower levels, 

finding the highest values of dissimilarity in areas where changes in land use and 

management are significant (Zamora et al., 2016), such as autochthonous pine forests on 

dolomites, coniferous afforestation and mid-mountain (Mesomediterranean belt) holm oak 

forests. In addition, the eastern side of the Sierra Nevada had an area with low dissimilarity 

values, that is, where there were not many changes over the years.  
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Figure 4.2.5. Functional diversity patterns based on the Enhanced Vegetation Index (EVI), derived from 

MOD13Q1-TERRA for the period 2001-2018. a) EFTs inter-annual variability for the period; b) EFTs 

inter-annual dissimilarity (1 - Jaccard index) for the period; c) Spatial EFT richness patterns from a 4x4- 

MODIS-pixel sliding window (〜231m x 4=〜1 km2 ); and d) Spatial EFT rarity patterns. 

 

Functional diversity at the ecosystem level  

Richness oscillated between 1 and 13 EFTs. Highest EFT richness was observed in the Supra- 

and Mesomediterranean belts, particularly in the southern face of the Sierra (Figure 4.2.5.c), 

where the number of vegetation series is also higher than in the rest of the bioclimatic belts 

(Valle et al., 2003). The presence of EFTs hotspots mainly in the mid-mountain, and 

particularly in the southern face, could be related to two factors. On the one hand, many 

Mediterranean mountains show high values of beta diversity up to 1750-1800 m a.s.l. (Wilson 

and Schmida, 1984), when there is an essential structural and compositional replacement of 

their vegetation. On the other hand, in the middle mountain and especially in its southern 

face, there are a very diverse mosaic of different types of natural vegetation mixed with 

different types of reforestation, traditional crops and uses (Camacho et al., 2002), which gives 

them the characteristic of multifunctional landscapes for the provision of ecosystem services 

(García-Nieto et al., 2013; Mastrangelo et al., 2014; Cabello et al., 2019). Molero Mesa et al., 

(1996) and Fernández Calzado et al., (2012) indicated that Sierra Nevada species richness 
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decreases with altitude, while endemic taxa increases (Blanca et al., 2019). Something similar 

can be observed in the functional diversity of ecosystems since the maximum richness is 

found in areas of medium altitude. The areas with the lowest EFT richness were located in 

high-mountain (Oro- and Crioromediterranean belts), and in the eastern semi-arid 

thermomediterranean extreme, where the harsh soil and climatic conditions (Peinado et al., 

2019) diminish floristic diversity although their endemicity increases (Fernández Calzado et 

al., 2012). The lowest values of EFT richness (richness 4-5) were found in the 

Supramediterranean oak groves, (as in Dionisio et al., 2012; Requena-Mullor et al., 2018) may 

be due to the internal homogeneity of their environmental conditions and their floristic 

composition (Pérez-Luque et al., 2015a, Requena-Mullor et al., 2018).  

EFT rarity was highest in the highest peaks (Crioromediterranean belt) and the lowest areas 

of the Eastern side of Sierra Nevada (semi-arid thermomediterranean belt, both areas 

characterized by a high concentration of narrow endemic species. The peaks (above 2800 m 

a.s.l.) are landscapes with very high biodiversity values since they hold the highest 

concentration of local endemisms (Cañadas et al., 2014; Peñas et al., 2019) (Figure 4.2.5.d). 

In these areas, vegetation develops under very limiting ecological conditions that determine 

uncommon types of ecosystem functioning (rarity 0.6; Figure 4.2.5.d), such as, for example, 

in scree slopes, where the percentage of rarity or compositional endemicity rises to 80% 

(Blanca and Algarra, 2011). The semi-arid areas, also show a high concentration of endemic 

species, but in this case from the Iberian arid Southeast (Mota et al., 2004). In the high 

mountain areas (Oromediterranean belt), EFT rarity decreased and reached its minimum 

value, which reflects the fact that they are the largest (i.e., most frequent) landscapes in the 

Biosphere Reserve, and in consequence, broadly distributed ecosystem functional types. 

Mid-mountain areas (Supra- and Mesomediterranean belts) (Figure 4.2.5.d) showed medium 

to high EFT rarity values, corresponding the highest ones to the coniferous and oak forests 

(rarity 0.6). The high rarity of the ecosystem functioning in the coniferous forests of mid- and 

high-mountain was associated with their winter canopy phenology (e.g., Cc1, Dc1), a 

particular phenological behavior of these forests also identified in other areas of the Iberian 
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Peninsula (Aragones et al., 2019). Finally, oaks forest also showed high rarity, due to their 

singular deciduous habit in the context of the Mediterranean region (Dionisio et al., 2012).  

 

Sensitivity analysis  

Inter-annual stability in quartiles to set boundaries among EFT classes  

The inter-annual Coefficient of Variation (CV) of the 2001-2018 period was around 5% for 

the EVI_mean quartiles and around 10% for the EVI_SD quartiles (Table B1, Appendix B). The 

quartiles of EVI_mean (our surrogate for productivity) required at least 14 years to stabilize 

around 5% of CV. The quartiles of EVI_SD (our surrogate for seasonality) required at least 17 

years to stabilize around 10% of CV (Figure B1, Appendix B).  

Despite there exists variation in the quartile values across years, we did not adopt the limits 

among EFT classes to such variation. Adapting the limits between classes to each year would 

not make it possible to compare the classification across the years. Instead, we followed a 

fixed-classification approach with fixed limits among EFT classes for the entire period to 

make the classification capable of detecting such inter-annual changes. For example, if a 

macro wildfire burns the entire protected area in 2020, our use of fixed limits among classes 

for the 2001-2018 period will allow the detection of such disturbance (most pixels would be 

classified as low productivity “A EFT class”). Contrary, if the limits among EFT classes were 

adapted to the data distribution of each year, the classification would not be able to detect 

the effect of wildfire and make the 2020 classification comparable to previous years.  

 

Kernel size effect on EFT richness  

The 4x4-pixel Kernel for the sliding window offered the finest spatial resolution of the EFT 

richness map without saturation of this variable (Figure C1, Appendix C). That is, when the 

size of the sliding window Kernels was 2x2 or 3x3 pixels, there was a high proportion of 

Kernels that reached the highest possible richness value (4 and 9 EFT classes per Kernel, 

respectively), so the EFT richness variable was highly saturated. The use of 5x5-pixel sliding 

windows never reached the maximum number of pixels in a Kernel but resulted in too coarse 
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outputs (grain size of 5x5 MO13Q1 pixels). Hence, the 4x4-pixel Kernels offered a balance 

between output resolution and variable saturation, since we observed a maximum EFT 

richness of 13, while the maximum potential richness in a 4x4- pixel Kernel was 16.  

Nevertheless, any richness assessment depends on the spatial scale. i.e., both grain and 

extent (Arponen et al., 2012). Regarding grain, when using species distributions to identify 

hotspots, the actual values of species richness reached in each cell would increase with grain 

size from a dataset built at 1x1 km to a dataset built at 10x10 km. However, the regional 

spatial patterns of species richness would not widely vary between the two datasets (Rahbek, 

2005). In our analysis, the maximum number of classes per Kernel could vary depending on 

the Kernel size. In the future, once data records of satellite images with higher spatial 

resolution, such as Sentinel-2, get long enough, it will be possible to get a finer resolution 

picture of ecosystem functioning and functional diversity at the protected area level.  

 

Data applications for research and conservation / Example of data usage  

Ecological research based on spectral vegetation indices plays an essential role in 

biodiversity conservation (Cabello et al., 2012; Pettorelli, 2016, 2018) and management 

(Pelkey et al., 2003; Cabello et al., 2016) and for the study of biodiversity and ecosystems 

responses to environmental changes (Alcaraz-Segura et al., 2017; Pérez-Luque et al., 2015a). 

In fact, numerous studies have demonstrated the usefulness of satellite image time series to 

evaluate the functional changes in ecosystems at the regional scale (Alcaraz-Segura et al., 

2009) and at the protected area level (AlcarazSegura et al., 2009; Lourenço et al., 2018). 

Recently, the use of EFAs derived from spectral indices of vegetation in species distribution 

models has made it possible to evaluate with high spatial and temporal precision the 

suitability of habitat for plant species (Arenas-Castro et al., 2018) and animals (Requena-

Mullor et al., 2017; Regos et al., 2019) and may even anticipate expected changes in the 

distribution of plant species threatened as a consequence of climate change (Alcaraz-Segura 

et al., 2017). In addition, based on the EFAs, a monitoring program of the Spanish National 

Parks Network has been designed to identify changes and anomalies in functioning, 
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informing managers of the health and conservation status of ecosystems (Cabello et al., 

2016).  

Furthermore, the EFT approach have been used to characterize spatial and temporal 

heterogeneity of ecosystem functioning at local and regional scales (Fernández et al., 2010; 

Cabello et al., 2013); to describe biogeographical patterns (Alcaraz-Segura et al., 2006; Ivits 

et al., 2013); to evaluate the environmental and human controls of ecosystem functional 

diversity (Alcaraz-Segura et al., 2013); to identify priorities for Biodiversity Conservation 

(Cazorla et al., 2020); to assess the representativeness environmental networks (Villarreal et 

al., 2018); to assess the effects of land-use changes on ecosystem functioning (Oki et al., 

2013); and to improve weather forecast models (Lee et al., 2013; Müller et al., 2014).  

This dataset provides the first characterization of functional diversity at the ecosystem level 

in Sierra Nevada. Our dataset could serve as a reference situation to track ecosystem 

functioning response to global change and management actions, to understand the drivers 

of ecosystem functioning and functional diversity, and to assess the supply of ecosystem 

services (Palomo et al., 2013; IniestaArandia et al., 2014; Cabello et al., 2019). The Global 

Change Observatory of Sierra Nevada is also a long-term ecological research site (name: ES- 

SNE, code: LTER_EU_ES_010) established more than a decade ago (Zamora et al., 2016, 2017). 

It has available data on species distributions and dynamics, climate, ecosystem services, 

hydrology, land-use changes, and management practices (Pérez-Luque et al., 2014, 2015b, 

2015c, 2016; Ros-Candeira et al., 2019, 2020; Lorite et al., 2020). The abundance of long-term 

datasets from multiple disciplines constitutes an opportunity to explore the role of 

ecosystem functioning and functional diversity on ecohydrological and species distribution 

modeling, climate change mitigation and adaptation, ecological resilience, adaptive 

management, and ecosystem services supply.  

 

Data availability  

The datasets described in this article are available in open-access sources. To broaden their 

use, first, we provide data in .tif format. Second, we have incorporated rendered versions of 
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all layers as 470 required by Google Earth Pro (called 

“filename..._forGoogleEarthVisualization.tif”) for visualization. Moreover, we have also 

developed an ad-hoc visualization platform for all the layers. Datasets are available for 

download in PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.904575 (Cazorla et al., 

2019) and for visualization in http://obsnev.es/apps/efts_SN.html.  

The MODIS database used in this work is maintained by NASA (satellite Terra, sensor MODIS, 

475 product MOD13Q1.006) and copied by Google into the Earth Engine servers 

(https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1). 

The Sierra Nevada Biosphere Reserve boundaries shapefile is included in the public 

geodatabase of the Andalusian regional government (REDIAM: 

https://descargasrediam.cica.es/ 07_PATRIMONIO_NATURAL/01_ESPACIOS_PROTEGIDOS.  

 

4.2.4. Conclusions  

This dataset provides a characterization of ecosystem functioning and ecosystem functional 

diversity patterns in terms of primary production, in the Sierra Nevada Biosphere Reserve (SE 

Spain), a biodiversity hotspot and a European Long Term Ecological Research (LTER) 

platform. We based our contribution on the identification of Ecosystem Functional Types 

(EFTs) through the analysis of time series of satellite images of spectral vegetation indices as 

surrogates of the carbon gains dynamics. First, we provided three Ecosystem Functional 

Attributes (EFAs) that describe the spatial and interannual variability in productivity, 

seasonality, and phenology of vegetation greenness. Second, we combined these EFAs into 

a synthetic classification, i.e., Ecosystem Functional Types (EFTs), which integrates into a 

single map the spatial heterogeneity of these descriptors of the seasonal dynamics of carbon 

gains. Finally, by using EFTs as biological entities, the spatial patterns of ecosystem functional 

diversity were assessed using EFT richness and EFT rarity, as well as the inter-annual variability 

in ecosystem functioning through EFT inter-annual variability and EFT inter-annual 

dissimilarity. The Ecosystem Functional Type approach improves the understanding of 

ecosystem processes through environmental gradients, and provides both to the scientific 

https://doi.pangaea.de/10.1594/PANGAEA.904575
http://obsnev.es/apps/efts_SN.html
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1
https://descargasrediam.cica.es/%2007_PATRIMONIO_NATURAL/01_ESPACIOS_PROTEGIDOS
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and managers communities with valuable information of the first characterization of the 

functional diversity at the ecosystem level developed in the entire protected area. 
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4.2.6. Appendices 

Appendix A. Identification of meaningful metrics: Ecosystem Functional Attributes 

To define EFTs we use three meaningful metrics or descriptors of the EVI seasonal dynamics 

(i.e. of annual dynamics in primary production). Biologically, these three metrics can be 

interpreted as surrogates (Paruelo et al. 2001, Pettorelli et al. 2005, Alcaraz-Segura et al. 

2006) of the total amount and timing (seasonality and phenology) of primary production. 

Statistically, these three metrics are known to be highly correlated with the first two or three 

axes (and hence capture most of the variance) of a Principal Component Analysis (PCA) 

carried out on the NDVI or EVI annual dynamics in different regions (Townshend et al. 1985, 

Paruelo and Lauenroth 1998, Paruelo et al. 2001, Alcaraz-Segura et al. 2006, Alcaraz-Segura 

et al. 2009, Ivits et al. 2013). To know the statistical meaningfulness of these metrics in the 

Sierra Nevada Biosphere Reserve, we examined their correlation with the first axes of a PCA 

run on the EVI annual curve of the average year (12 EVI values, i.e. the inter-annual means of 

the maximum value composites for each month). The first two axes cumulated 96.5% of the 

variance (PC1 87.3%, PC2 9.2%). The eigenvectors showed that the weights along the months 

were similar for the first PCA axis (even weights throughout the year), while for the second 

axis they showed a contrast between winter and summer months (Table A1). This indicated 

that PC1 can be related to the total or average amount of EVI, and that PC2 can be related 

to the intra-annual variability of EVI (Figure A1).  
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Table A1. Eigenvectors and cumulative variance explained by the first two components of a principal component analysis (PCA) performed on the 

annual curve of EVI values in Sierra Nevada. 

  Scores  

PCA 

axis %a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 87.3 0.334 0.328 0.333 0.318 0.293 0.246 0.236 0.239 0.242 0.251 0.287 0.325 

2 96.5 0.329 0.365 0.326 0.109 0.244 0.454 0.380 0.301 0.252 0.154 0.007 0.229 

                   a Cumulated variance 
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Figure A1. Eigenvectors of the first two components of a PCA performed on the annual curve of EVI 

values in Sierra Nevada (X axis: months; Y axis: eigenvectors values). The first PCA axis accounted for 

87% of variance and showed even weights throughout the year, while the second PCA axis accounted 

for 9% of the variance and showed a strong contrast between seasons. 

 

In addition, we explored the correlation between the PCA axis and the EVI metrics (i.e., EFAs). 

The EVI metrics showed a high correlation with the PCA axes. PC1 accounted for most of the 

total variance in the seasonal dynamics of the EVI (87.3%) and was strongly correlated with 

the EVI annual mean (PC1 vs. EVI_mean r = 0.94). PC2 accounted for 9.2% of the total variance 

(PC1 and PC2 cumulated 96.5% of total variance) and was related to seasonality and 

phenology metrics (as in Alcaraz-Segura et al. 2006, 2009) (PC2 vs. EVI_SD r = -0.75; PC2 vs 

DMAX_Sine = 0.67; PC2-vs DMAX_Cosine = -0.61) (Table A2). To correlate DMAX with the 

PC axes and keep the continuous nature of the annual period and the relative distance 

between months (i.e. December is as close to January as July is to June, that is, the distance 

between December (12) and January (1) is one month, not eleven months), we transformed 

months into polar coordinates. The entire circumference of a year was divided into 12 

portions and each month was equated to an angle (30º for January and 360º for December). 

DMAX months were therefore characterized by their sine and cosine values.  

In summary, PC1 was very highly correlated to EVI_mean and then can be interpreted as 

annual primary production. PC2 shows a high contrast in the eigenvector values between 
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winter and summer and is highly correlated with EVI_SD and with the Sine and Cosine 

components of DMAX, so it can be interpreted as a combination of seasonality (SD) and 

phenology (DMAX). Mathematically, it could be expressed as follows: PC2 = f( a*SD + 

b*DMAX_Sine + c*DMAX_Cosine + d + e) (Table A1 and A2), and the r-square of this multiple 

regression was 0.70. 

 

Table A2. Correlation values between PCA axis 1 and 2 and Ecosystem Functional Attributes (EFA). 

 EFA PC1 PC2 

EVI_mean 0.94 -0.01 

EVI_SD -0.14 -0.75 

DMAX_Sine -0.10 0.67 

DMAX_Cosine 0.017 -0.61 

 

In addition, the EVI metrics were orthogonal, since the correlation between them was low so 

that each EVI metric contributed independently to explain the variance of the EVI time series 

(Table A3). 

Table A3. Pearson correlation values between metrics. 

  EVI_mean EVI_SD 

EVI_mean 1   

EVI_SD -0.14 1 

EVI_DMAX 0.10 -0.05 
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Appendix B. Variability on quartile boundaries 

B1. Inter-annual stability in quartiles to set boundaries among EFT classes 

We determined the minimum number of years that were needed to reach stability in the 

quartile boundaries among EFT classes. For each quartile of EVI_mean and EVI_SD, we plotted 

the maximum inter-annual Coefficient of Variation (Y-axis) among the n consecutive years 

considered, with n ranging from n= 2 years to n=18 years against the number of years 

considered (X-axis) (i.e. the maximum value of the Coefficient of Variation among all possible 

combinations of two consecutive years, three consecutive years, four, five, etc. throughout 

the 2001-2018 period (Figure B1 a - f). The three EVI_mean quartiles tend to stabilize around 

an inter-annual Coefficient of Variation of 5%, which requires around 14 years of the study 

period. The three EVI_SD quartiles tend to stabilize around an inter-annual Coefficient of 

Variation of 10%, which requires around 17 years of the study period. Hence, the 18-year 

study period provided in this dataset would be enough to serve as a reference situation for 

this protected area. For example, if you want to show time-series of 2001-2020, it would not 

be necessary to derive the quartiles boundaries again for the year 2020, since our 18-year 

study period is representative enough to extrapolate quartiles to the new year.  
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Figure B1. Stabilization of the inter-annual Coefficient of Variation (CV) of the limits (quartiles) among 

ecosystem functional type (EFT) classes as the number of years included in the study period increases. 

For each quartile, we plotted the maximum inter-annual CV (Y axis) among the n consecutive years 

considered, with n ranging from n=2 to n=8 (X axis). The quartiles of EVI_mean (our surrogate for 

productivity) required at least 14 years to stabilize around 5% of CV. The quartiles of EVI_SD (our 

surrogate for seasonality) required at least 17 years to stabilize around 10% of CV. 

 

 

 

B2. Quartile boundaries variability  

To know how variable the quartiles were, we obtained the quartiles of each year, their inter-

annual mean, their inter-annual standard deviation, and their inter-annual Coefficient of 

Variation (Table B1). The variability among years or Coefficient of Variation (CV) was around 

5% for EVI_mean quartiles and lower than 11% for EVI_SD quartiles, increasing in the upper 

quartiles (Table B1). 
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Table B1. Annual quartile boundaries (percentile P25, percentile P50, percentile P75) for EVI_mean and 

EVI_SD and summary of the period (Inter-annual mean, Standard Deviation (SD) and Coefficient of 

Variation (CV)). 

YEAR EVI_

mean 

P25 

EVI_mean 

P50 

EVI_mean 

P75 

EVI_SD 

P25 

EVI_SD 

P50 

EVI_SD 

P75 

2001 0.133 0.187 0.245 0.030 0.044 0.063 

2002 0.139 0.190 0.243 0.031 0.042 0.057 

2003 0.130 0.184 0.242 0.031 0.046 0.068 

2004 0.142 0.197 0.251 0.032 0.047 0.068 

2005 0.123 0.168 0.222 0.023 0.039 0.056 

2006 0.126 0.174 0.229 0.030 0.046 0.066 

2007 0.142 0.184 0.232 0.028 0.038 0.051 

2008 0.133 0.176 0.229 0.029 0.042 0.062 

2009 0.133 0.180 0.235 0.032 0.048 0.070 

2010 0.139 0.190 0.242 0.034 0.048 0.072 

2011 0.149 0.200 0.258 0.032 0.045 0.069 

2012 0.139 0.187 0.238 0.027 0.037 0.052 

2013 0.142 0.197 0.258 0.032 0.044 0.063 

2014 0.130 0.184 0.241 0.026 0.037 0.056 
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2015 0.139 0.194 0.245 0.030 0.042 0.060 

2016 0.134 0.182 0.233 0.024 0.036 0.054 

2017 0.142 0.187 0.238 0.030 0.039 0.057 

2018 0.145 0.206 0.264 0.032 0.047 0.068 

Inter-annual 

mean 

0.137 0.187 0.241 0.030 0.043 0.062 

Inter-annual 

SD 
0.007 0.009 0.011 0.003 0.004 0.006 

Inter-annual 

CV (%) 

5.001 5.103 4.593 10.040 9.597 10.745 
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Appendix C. Effect of Kernel size on EFT richness 

 

Figure C1. EFT Richness for 2x2, 3x3, and 4x4-pixel Kernel sizes. A 4x4-pixel Kernel was chosen since it 

offered the finest spatial resolution that did not saturate the number of EFT classes per Kernel. 
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Abstract 

Conservation biology must set geographic conservation priorities not only based on the 

compositional or structural but also on the functional dimensions of biodiversity. However, 

assessing functional diversity is challenging at the regional scale. We propose the use of 

satellite-derived Ecosystem Functional Types (EFTs), defined here as patches of land surface 

that share similar primary production dynamics, to incorporate such aspects of ecosystem 

functional diversity into the selection of protected areas. We applied the EFT approach to 

the Baja California Peninsula, Mexico, to characterize the regional heterogeneity of primary 

production dynamics in terms of EFTs; to set conservation priorities based on EFT richness 

and rarity; and to explore whether such EFT-based conservation priorities were consistent 

with and/or complementary to previous assessments focused on biodiversity composition 

and structure. EFTs were identified based on three ecosystem functional attributes derived 

from seasonal dynamics of the Enhanced Vegetation Index (EVI): the annual mean (proxy of 

primary production), the seasonal coefficient of variation (descriptor of seasonality), and the 

date of maximum (indicator of phenology). EFT-based priorities identified 26% of the 

peninsula as being of extreme or high priority and reinforced the value of the ecosystem 

functional diversity of areas already prioritized by traditional conservation assessments. In 

addition, our study revealed that biodiversity composition- and structure-based assessments 

had not identified the full range of important areas for EFT diversity and tended to better 

capture areas of high EFT rarity than those of high EFT richness. Our EFT-based assessment 

demonstrates how remotely sensed regional heterogeneity in ecosystem functions could 

reinforce and complement traditional conservation priority setting.  

 

KEYWORDS: Ecosystem functional heterogeneity; Richness; Rarity; Ecosystem functioning; 

Biodiversity congruence; Holistic conservation; Geographic priorities; Remote sensing. 
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4.3.1. Introduction 

Contemporary conservation planning faces the challenge of safeguarding the ecological 

processes required for the persistence of biodiversity over time (GBO4, 2014) and for the 

supply of ecosystem services to people (Costanza, 2012). To this end, protected areas must 

represent the most important areas for in situ global conservation effort (Watson et al., 2014). 

Initially, opportunism and aesthetic values drove protected area creation (Palomo et al., 2014; 

Baldi et al., 2017). More recently, reserve selection under systematic conservation approaches 

(Margules and Pressey, 2000) has mainly relied on compositional and structural dimensions 

of biodiversity (e.g., Rodrigues et al., 2004; Lamoreux et al., 2006). However, despite 

important advances to the design of more comprehensive protected area networks, 

geographic conservation priorities have seldom considered heterogeneity in ecosystem 

functions (Callicott, 1999; Mace, 2014; Turner and Gardner, 2015). The need for more 

representative global protected area networks (Visconti et al., 2019) that account for the 

three dimensions of biodiversity (composition, structure, and function; Noss, 1990) could 

greatly benefit from the explicit inclusion of ecosystem functions and processes that support 

biodiversity and ecosystem services (Meyer, 1997; Cabello et al., 2012; Pettorelli et al., 2018; 

Lecina-Díaz et al., 2019).  

Functional diversity, ranging from gene expression to landscape processes, is an important 

biodiversity component to be assessed by conservation programs, as it links biological 

diversity with ecosystem functioning (Cadotte et al., 2011; Díaz et al., 2007; Chapin et al., 

2010; Asner et al., 2017), services (Balvanera et al., 2006; Duncan et al., 2015), and resilience 

(Mouchet et al., 2010). Functional diversity estimates have been made by grouping species 

into functional types based on structural (e.g., shrubs, trees, etc.), phylogenetic (e.g., 

Coniferae, Poaceae, etc.) or metabolic strategies (e.g., C3, C4, etc.) related to meaningful 

biological processes (Lavorel et al., 2002, 2007) or by using morphofunctional species traits 

(Malaterre et al., 2019). However, the capacity for species functional types and traits to 

represent variations in ecosystem functional properties at regional scales remains a 
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challenge (Wright et al., 2006; Pasari et al., 2013; Reichstein et al., 2014; Asner et al., 2017; 

Malaterre et al., 2019).  

Understanding the causes and consequences of spatial heterogeneity in ecosystem functions 

could help protect the species and communities that they support (Meyer, 1997; Lovett et 

al., 2005; Turner and Gardner, 2015) and elucidate the links between ecosystem 

multifunctionality, ecosystem services (Manning et al., 2018) and ecological stability (Oliver 

et al., 2015). Environmental heterogeneity is a universal driver of taxonomic, phylogenetic, 

and functional diversity (Stein et al., 2014; Stark et al., 2017; Bergholz et al., 2017). However, 

while conserving biophysical setting variability has been suggested to preserve biodiversity 

against rapid environmental change (e.g., Lawler et al., 2015; Littlefield et al., 2019), variation 

in ecosystem functions has received less attention (Lovett et al., 2005). Developing feasible 

approaches to understand and account for heterogeneity in ecosystem functions could 

complement traditional priority settings to achieve the holistic goal of protecting all 

biodiversity facets.   

Satellite remote sensing can guide conservation actions based on the characterization of 

functional diversity not only at the species trait level (Jetz et al., 2016) but also at the 

ecosystem level (Cabello et al., 2012; Alcaraz-Segura et al., 2013; Asner et al., 2017; Gamon 

et al., 2019). First, satellite-derived descriptors of ecosystem functions can be relevant as 

essential biodiversity variables (EBVs, Pettorelli et al., 2016, 2018; Alcaraz-Segura et al., 2017). 

For example, spectral indices are linked to key ecosystem functional descriptors such as 

primary production, evapotranspiration, surface temperature, and albedo (Paruelo et al., 

1997; Fernández et al., 2010; Lee et al., 2013) (Table 4.3.1. - steps 1 and 2). Second, with these 

descriptors, it is possible to identify and map areas sharing similar dynamics of matter and 

energy exchange between biota and physical environments based on so-called satellite-

derived Ecosystem Functional Types (EFTs) (Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 

2013).  

As highlighted by Mucina, (2019), EFTs could represent ‘the first serious attempt to group 

ecosystems (at large scales) on the basis of shared functional behaviour’. EFTs group 
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ecosystems on the basis of shared ecosystem functions without prior knowledge of 

vegetation types or canopy structure (Ivits et al., 2013). As species can be grouped into plant 

functional types based on common morphofunctional traits to derive ecological properties 

at higher biological levels (i.e., a bottom-up strategy), ecosystems can be grouped into EFTs 

to directly map processes and functions at larger scales (i.e., a top-down approach) (Alcaraz-

Segura et al., 2006). EFTs follow a holistic approach (Naeem, 1998, 2002; Loreau 2008) to 

measure the overall performance of an ecosystem (see the review in Jax 2010). EFTs capture 

heterogeneity in ecosystem functions (e.g., primary production, evapotranspiration, or 

disturbance dynamics) and provide complementary information to other metrics such as 

those of vegetation structure and species composition to improve our understanding of the 

multidimensional nature of biodiversity (Noss, 1990). EFTs have already been used to 

characterize the spatial heterogeneity of ecosystem functioning at the global (Ivits et al., 

2013), regional (Paruelo et al., 2001; Alcaraz-Segura et al., 2006; Lara et al., 2017), and 

protected area scales (Fernández et al., 2010; Cabello et al., 2013). 

In this study, we propose the use of Ecosystem Functional Types (EFTs), defined here as 

patches of land surface that share similar primary production dynamics (i.e., productivity, 

seasonality, and phenology, Figure 4.3.1.), to incorporate the spatiotemporal heterogeneity 

of a focal ecosystem function into geographic conservation priorities (conceptual workflow 

shown in Table 4.3.1.). As a proof of concept, we applied the EFT approach to the Baja 

California Peninsula (Mexico): 1) to characterize the regional heterogeneity of primary 

production dynamics using EFTs; 2) to prioritize areas for conservation based on their EFT 

diversity (EFT richness and rarity); and 3) to explore whether such EFT-based priorities were 

congruent with and/or complementary to previous expert and systematic conservation-

based assessments mainly focused on biodiversity composition and structure. 
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Figure 4.3.1. Seasonal dynamics of the Enhanced Vegetation Index (EVI) and of Ecosystem 793 

Functional Attributes (EFAs). The X-axis corresponds to months and the Y-axis corresponds 794 to EVI 

values. EFAs include: the annual EVI mean, an estimator of annual productivity (EVI 795 mean); the 

seasonal EVI coefficient of variation (EVI_sCV), i.e., differences between 796 minimum and maximum 

EVI values, as a descriptor of seasonality; and the date of the 797 maximum EVI (EVI DMAX) as a 

phenological indicator of the growing season. 

 

4.3.2. Methods 

Study area 

We chose the Baja California Peninsula as study area (Figure 4.3.2.a) because it has high 

environmental heterogeneity, low human influence, a large proportion of protected land 

(40%) (Appendix 1) and because two geographic priority assessments have been conducted 

on the area mainly based on biodiversity composition and structure (Arriaga et al., 2000; 

Koleff et al., 2009). The peninsula covers a Mediterranean-desert-tropical climatic transition 

area positioned along a 1400 km latitudinal gradient from 35ºN to 23ºN (González-Abraham 

et al., 2010). The Mediterranean Region (NW) is characterized by annual mean temperatures 

between 8-21ºC, dry summers and mild wet winters with annual rainfall levels ranging from 

100-200 mm at sea level to 500-700 mm in the highest mountains (3100 m) (Peinado et al., 
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2011). The Desert Region extends from NE to S and is characterized by temperatures ranging 

from 20-25ºC, and very low annual rainfall (100-200 mm) concentrated in sporadic events 

that shift from the winter in the N to the summer in the S (Hastings and Turner 1965). The 

Tropical Region at the southern tip is warm year round (15-24ºC) and characterized by a 

nine-month dry season (November to July) followed by the tropical cyclone and storm rains 

with annual rainfall levels ranging from 200 mm at sea level to 700 mm in the highest 

mountains (at 2090 m) (Peinado et al., 2011).  

 

Identifying Ecosystem Functional Types  

Regional heterogeneity in ecosystem functions was characterized by identifying Ecosystem 

Functional Types (EFT) based on the seasonal dynamics of carbon gains following Alcaraz-

Segura et al., (2013). We focused on primary production because it is an integrative 

component of ecosystem functioning (Table 4.3.1. - step 1; Virginia and Wall 2013), and its 

seasonal dynamics can be monitored through spectral vegetation indices. We used 2001-

2017 Enhanced Vegetation Index (EVI) images from the MODIS sensor (MOD13Q1.005 

product: 16-day maximum value composite images at ~231 m pixel size), as it offers a long 

time-series of a robust surrogate for primary production (Shi et al., 2017) (Table 4.3.1. - step 

2). EFTs were derived from three meaningful metrics of the EVI seasonal curve also known as 

Ecosystem Functional Attributes (EFAs) (Figure 4.3.1.; Table 4.3.1. - step 3) (Pettorelli et al., 

2005; Alcaraz-Segura et al., 2013): the annual mean (EVI mean; an estimate of primary 

production), the EVI seasonal coefficient of variation (EVI sCV; a descriptor of seasonality), 

and the date of the maximum EVI (EVI DMAX; an indicator of phenology). The three metrics 

capture most of the variance in EVI seasonal dynamics into three meaningful metrics that 

facilitate ecological interpretation (Paruelo et al., 2001; Alcaraz-Segura et al., 2006).  
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Table 4.3.1. Workflow and rationale for setting geographic conservation priorities based on Ecosystem functional Types to incorporate ecosystem 

functional diversity in a more holistic biodiversity conservation. 

What is the  

goal of this step? 

Why is it needed?  How did we complete it? 

Step 1. To identify the targeted 

functional facets of biodiversity to be 

considered, e.g., ecosystem primary 

production as an essential biodiversity 

variable 

 

Conservation planning based on functional dimensions of 

biodiversity is needed (Noss, 1990) but scarce (Cabello et al., 

2012). Some facets of ecosystem functioning are more essential 

to biodiversity and ecosystem services, offer more available 

information for inventorying and monitoring, and are more 

relevant to particular conservation goals than others 

We chose primary production, as it is the most 

integrative indicator of ecosystem functioning 

(Virginia and Wall, 2013) 

 

Step 2. To choose surrogates for 

targeted functional facets, e.g., 

remotely sensed vegetation indices 

 

Direct measurements of biodiversity variables are usually costly. 

Satellite images of the Earth can be considered biological datasets 

(Geller et al., 2017). Image pixels are sampling plots whose spectral 

information offers indirect, cost-effective estimates of matter and 

energy exchanges between the land surface and the atmosphere, 

which support ecosystem functions and services 

We used the Enhanced Vegetation Index (EVI) 

to estimate photosynthetically active radiation 

absorbed by vegetation (based on the Monteith 

Model, 1972)  

Step 3. To identify simple and 

biologically meaningful metrics of the 

ecosystem functioning surrogates, e.g., 

descriptors of the amount and timing 

of carbon gain dynamics 

 

The dynamics of ecosystem functioning are tracked through full 

time-series of essential variables. Synthesizing and capturing most 

of the variance of these time-series into a few easy to interpret 

metrics reduces complexity, eases interpretability, and promotes 

the metrics standard use 

 

We identified three metrics capturing most of 

the variance in the EVI seasonal dynamics 

(Ecosystem Functional Attributes, EFAs): annual 

production, seasonality and phenology. We 

parametrized yearly seasonal dynamics of the 

EVI for three EFAs: the annual EVI mean, 

seasonal EVI coefficient of variation, and the 

date of the maximum EVI  

 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 

162 

What is the 

goal of this step? 

Why is it needed? How did we complete it? 

Step 4. To group patches of the land 

surface with similar functional 

behaviors by classifying continuous 

metrics into discrete units, e.g., 

Ecosystem Functional Types (EFTs) 

 

Functional classifications synthesize continuous large-scale 

ecological gradients into discrete mapping units in relation to 

common ecosystem functions and processes. Discrete mapping 

units characterize ecosystem diversity at the regional scale and are 

needed for management and decision-making such as in 

systematic conservation planning 

To integrate patterns of productivity, 

seasonality and phenology into a single map, 

we divided the range of values of each EFA into 

four intervals (quartiles), creating a potential 

number of 64 EFTs (4x4x4) 

 

Step 5. To select criteria for assessing 

ecosystem functional diversity at the 

regional scale, e.g., EFT richness and 

rarity 

Measurements of all biodiversity facets are not possible given the 

complex, multidimensional and hierarchical nature of biodiversity 

(Noss, 1990). Biodiversity indices such as richness and rarity are 

easy to interpret, relevant, and objective criteria frequently used 

in conservation assessments 

We calculated EFT richness by counting the 

number of EFTs in a slicing window. EFT rarity 

was calculated as the relative extension of each 

EFT compared to the most abundant EFT 

Step 6. To set geographic conservation 

priorities that capture areas of high 

ecosystem functional diversity, e.g., 

areas of high EFT richness and rarity 

Landscapes of high heterogeneity in ecosystem functions are 

prone to contain multiple ecosystem metabolic and evolutionary 

pathways. Multifunctional landscapes provide more diverse 

ecosystem services (Manning et al., 2018), and functional diversity 

confers ecological stability (resistance and resilience) 

We identified areas of highest (extreme and 

high) conservation priority as those ones with 

high EFT richness and high EFT composition 

rarity 

 

Step 7. To compare priorities based on 

ecosystem functional diversity with 

independent assessments, e.g., 

complementarity and consistency 

between EFT-based priorities and 

previous assessments focused on 

composition and structure 

Priorities based on ecosystem functioning can converge with 

independent priorities focused on biodiversity composition and 

structure so that they reinforce each other. Priorities can also be 

complementary, supporting decision-making by offering 

supplementary arguments for the holistic conservation of 

biodiversity 

We integrated the three approaches into two 

synthetic maps: consistency and 

complementarity. To visualize agreement and 

disagreement between and among approaches, 

we used Venn diagrams 
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To derive EFT classes from EFAs, the range of values of each EFA was divided into four 

intervals that were then combined, generating a potential number of (4 × 4 × 4) 64 EFTs 

(Figure S1D and S2). We used this classification method with fixed boundaries between 

classes to maximize the biological interpretability of EFTs and to apply the same classification 

rules to each year. This way, the classification can be used to track interannual changes in 

spatial heterogeneity of ecosystem functions (Littlefield et al., 2019). As for DMAX since we 

wanted to maintain its ecological sense in our final classification (i.e., the timing or phenology 

of the interception of radiation by vegetation), the four intervals agree with the four seasons 

of the year: spring (April-June), summer (July-September), autumn (October-December), and 

winter (January-March). For EVI_mean and EVI_sCV, we extracted the first, second, and third 

quartiles (i.e., the 25th, 50th, and 75th percentiles, respectively) for each year. Then, we 

calculated the interannual means of the quartiles (average of the 17-year period), which were 

used as thresholds among classes (Figure S1D). The four intervals created for each variable 

produced a relatively low number of potential classes (64) and maintained the EFAs spatial 

patterns (Figure S1 and S2).  

To code EFTs, we used two letters and a number (Figure S1D): the majuscule indicates 

primary production (EVI mean) increasing from A to D; the minuscule represents seasonality 

(EVI sCV) decreasing from a to d; and numbers are a phenological indicator of the growing 

season (EVI DMAX): 1-spring, 2-summer, 3-autumn, and 4-winter. To summarize ecosystem 

function patterns of the 2001–2017 period, for each pixel we calculated the most common 

EFT (the mode) from the 17 annual EFT maps (Table 4.3.1. - step 4). We excluded from 

analyses pixels with human influence according to the human footprint index (HF>0.5) 

(González-Abraham et al., 2015) and those including anthropogenic land-uses in the 2017-

updated land-cover map (INEGI 2017).   

 

Mapping geographic conservation priorities from EFT richness and rarity 

To identify geographic conservation priorities based on spatial heterogeneity in our focal 

ecosystem function (i.e., primary production dynamics), we derived two diversity metrics 
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from the EFT map: EFT richness and EFT rarity (Table 4.3.1. - step 5). Both richness and rarity 

are indices that are easy to interpret, objective, and commonly used in ecology and 

conservation (Perrin and Waldren 2020). Richness measures the different types of entities in 

a sample. EFT richness was calculated by counting the number of different EFTs within an 8 

× 8 pixel-sliding window across the study area, serving as an indicator of spatial 

heterogeneity in primary production dynamics. From the EFT richness of each year, we 

obtained the interannual average of EFT richness (Alcaraz-Segura et al., 2013). We chose this 

window size because it includes 64 pixels, which is the potential maximum number of EFTs 

in our classification. The use of smaller window sizes resulted in many windows reaching the 

maximum number of classes while larger windows produced too coarse outputs (Appendix 

5).  

Rarity has also been a central focus in conservation (Soulé 1986). According to its abundance-

based definition, rarity refers to how frequently an entity is found within an area 

(Kondratyeva et al., 2019). The rarity of each EFT was used as an indicator of distinctive 

characteristics (i.e., singularity) in primary production dynamics, which are likely to exhibit 

unique biodiversity features with conservation interest (Meyer 1997). EFT rarity was 

calculated as the extension of each EFT relative to the most abundant EFT throughout the 

peninsula (Equation 1) (Cabello et al., 2013).  

 

Rarity of EFTi = (Area_EFTmax–Area_EFTi)/Area_EFTmax (Equation 1) 

 

where Area_EFTmax is the area occupied by the most abundant EFT throughout the study 

area, and Area_EFTi is the area of the i EFT evaluated with i ranging from 1 (Aa1) to 64 (Dd4). 

An average rarity map for all years was obtained, serving as our estimate of regional patterns 

of ecosystem functional singularity.  

To determine EFT-based geographic conservation priorities, we searched for areas of high 

EFT richness and rarity (Table 4.3.1. - step 6). First, we stretched (by spatial averaging) the 
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spatial resolution of the EFT rarity map (231 m/pixel) to match the EFT richness map 

resolution (i.e., an aggregated value for 8x8-pixel windows). Second, the range of values of 

both priority-criteria variables was divided into four intervals using quartiles. Third, a decision 

matrix with 4 × 4 = 16 possible combinations of richness and rarity levels was produced. 

Finally, the 16 combinations of richness and rarity levels were grouped into four final priority 

categories (Figure 4.3.3.a): extreme, high, moderate, and low for combinations that summed 

to 8, 7, 6, and 5, respectively. Combinations with lower sums were deemed not a priority.  

 

Assessment of spatial congruence and complementarity between the functional 

approach and previous assessments 

We explored the congruence and complementarity between the EFT-based geographic 

conservation priorities and two previous assessments based on compositional, structural, 

and threat features of biodiversity (Table 4.3.1. - step 7). The “systematic conservation” study 

by Koleff et al., (2009) used robust spatial analysis algorithms in a grid to identify four levels 

of “Priority Sites to Conserve” based on diversity of and threats to vertebrates, plants, and 

vegetation types. The “expert-based” study by Arriaga et al., (2000) identified “Terrestrial 

Priority Regions” through qualitative expert workshops that combined multiple biological 

criteria (i.e., species richness and endemicity, centers of diversification and domestication, 

vegetation types, etc.) with criteria for threats and opportunity (i.e., habitat loss and 

fragmentation, unsustainable management, threatened species, etc.).  

For the congruence analysis, we overlapped the three approaches at an 8 × 8-pixel window-

resolution into two synthetic maps: one that integrated congruence between the approaches 

(where priorities agreed) (Figure 4.3.3.C) and another that revealed complementarity (where 

priorities did not agree) (Figure 4.3.3.D). Congruence with other approaches was defined as 

the existence of a spatial overlap between EFT-based priorities and one or both of the other 

approaches. Complementarity with other approaches was defined as the existence of spatial 

discordance between EFT-based priorities and the previous priorities.  
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To visualize agreement and disagreement between approaches, we used Venn diagrams and 

the Sorensen-Dice similarity index (Figure 4.3.4.). Additionally, to show how our EFT-based 

approach provides useful and orthogonal conservation priority information relative to 

traditional approaches, we explored the characteristics of congruent and complementary 

areas among approaches in terms of EFT richness and rarity (Figure 4.3.5.) and of EFAs and 

EFT frequency (Appendix 4).  

 

Sensitivity analyses 

To assess the effect of the sliding window size (Appendix 5), we calculated EFT richness, rarity, 

and priorities for double and triple window-side lengths (i.e., 8 × 8-, 16 × 16-, and 24 × 24-

pixels). To assess the effect of the number of EFT classes considered (Appendix 6), we 

calculated EFT richness, rarity, and priorities by reducing the number of EFT classes by 86% 

(8 classes) and 58% (27 classes). Both effects were assessed three ways: from Pearson 

correlations between the different output maps, from the spatial consistency among the 

different output maps, and from the total percentage of the peninsula prioritized by each 

output map. Finally, we also assessed the effects of different thresholds of EFT richness and 

rarity on congruence and complementarity between approaches by means of the Sorensen-

Dice similarity F-1 index (Appendix 7). 

 

4.3.3. Results 

Regional patterns of focal ecosystem function by means of EFTs 

All 64 potential EFTs were identified in the Baja California Peninsula (Figure 4.3.2.B) and 

exhibited contrasting distributions across the three main ecoregions of the peninsula (Figure 

4.3.2.a; González-Abraham et al., 2010). In the Mediterranean Region to the northwest, EFTs 

were characterized by moderate-high primary production, moderate-low seasonality, and 

spring EVI maxima (Figures S1 and S2). The central and northeastern Desert Region was 

characterized by EFTs with low primary production, low to moderate seasonality, and winter 

EVI maxima in the center and in various seasons in the northeast. The southern part of the 
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Desert Region was characterized by slightly higher level of primary production and 

seasonality and by summer-autumn EVI maxima. The Tropical Region in the south was 

characterized by high levels of primary production and seasonality and by summer EVI 

maxima (Figures S1 and S2). 

 

Conservation priorities based on EFT richness and rarity 

EFT richness and rarity (Figure 4.3.2.C-D) varied across the peninsula following a combination 

of latitudinal, longitudinal, and topographical gradients (Figure 4.3.2.A) and were found to 

be partially correlated. Areas of high EFT rarity ranged from low to high EFT richness while 

areas of high EFT richness always showed high levels of EFT rarity (Figure S3). EFT richness 

levels ranged from 1 to 26 EFTs per sliding window. Most windows of the highest EFT richness 

(12-26 EFTs) occurred north of 30° N in the Mediterranean Region, where climatic gradients 

translate into high heterogeneity in EFAs, especially along the mountain divide (Figure 

4.3.2.A). An intermittent fringe of high EFT richness was also found along mountains from 

the southern San Felipe Desert to the center of the Desert Region (from 31º N to 27° N) and 

continued southwards along the western desert piedmonts and around wetlands and 

mangroves (from 27º N to 24° N). Moderate EFT richness (7-12 EFTs) was observed in the 

Mediterranean mountains, San Felipe Desert, Colorado Delta, mid-mountains along the Gulf 

Coast (from 26º N to 30º N), and desert areas of the central peninsula. Extensive areas with 

the lowest EFT richness (1-3 EFTs) were found in plains and piedmonts of the Central and 

Vizcaíno Deserts, along the southern desert mountains (Giganta Ranges), and in the Tropical 

Region.  

EFT rarity gradients were more pronounced than EFT richness gradients (Figure 4.3.2.D). The 

highest rarity (0.8-0.9) occurred in the northwestern quarter of the peninsula above 30° N 

(Mediterranean Region), the central-eastern desert transition, and around wetlands and 

mangroves. The Pacific northwestern Central and Vizcaíno Deserts (north from 27ºN) showed 

low rarity (0.4-0.7). The lowest rarity (below 0.3) occurred along Giganta Ranges and in the 

Tropical Region (south of 28ºN). This region, dominated by drought-deciduous plant 
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functional types, was mostly occupied by one extensive EFT with high productivity and 

seasonality and by summer EVI maxima (Da2).  

The highest priority areas were found in heterogeneous areas across the Mediterranean 

Region, the northern and central-eastern Desert Region, and around wetlands and 

mangroves (Figure 4.3.3.a). Extreme priority areas occupied 9.6% of the peninsula 

surrounded by areas of high (16.4%), moderate (18%), and low priority (16.6%). The rest of 

the peninsula (39.5%) was classified as a nonpriority area for EFT diversity.  
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Figure 4.3.2. Spatial heterogeneity of ecosystem functioning in the Baja California Peninsula (Mexico). 

A) Study area showing biogeographical regions of study area and areas mentioned in the text. B) 

Ecosystem Functional Types (EFTs) of the 2001–2017 period (mode). EFT categories (lower left panel) 

are derived from three ecosystem functional attributes related to primary productivity, seasonality and 

the phenology of carbon gains (see maps in Appendix 2, Figure S1, S2); C) EFT richness, quantity of 
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EFTs occurring within 8 × 8-pixel sliding windows; and D) EFT rarity, calculated as the relative rarity of 

each EFT throughout the peninsula. White areas represented anthropogenic pixels removed from the 

analysis. 

 

EFT-based priorities versus composition and structure-based approaches 

EFT-based conservation priorities partially aligned with other approaches (Figure 4.3.3.A-B). 

Five percent of the peninsula was considered to be of the highest priority for all three 

approaches (Figure 4.3.4.) and mainly the Mediterranean Region along mountain tops and 

the Desert Region in isolated areas of mountains, wetlands and mangroves (Figure 4.3.3.C). 

An additional 14% of the peninsula was prioritized by the EFT-based approach and by either 

the systematic conservation approach (7%) or expert-based approach (7%) (Figures 4.3.3.C 

and 4.3.4.). 
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Figure 4.3.3. Comparison of geographic conservation priorities obtained from different biodiversity 

conservation approaches. A) Priority areas based on ecosystem functional diversity by Ecosystem 

Functional Type (EFT) richness and rarity. The matrix shows the percentage of the study area of each 

quartile (Q) combination to obtain priority levels: extreme (red), high (orange), moderate (green), low 

(blue), and non-priority (gray). B) Priority areas mainly based on structural and compositional aspects 
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of biodiversity obtained from assessments by expert-based (Arriaga et al., 2000) and systematic 

conservation planning (Koleff et al., 2009) approaches. C) Congruence among geographic conservation 

priorities obtained by the three approaches (agreement between Figures 4.3.2A and 4.3.2B). D) 

Complementarity among geographic conservation priorities obtained by the three approaches 

(disagreement between Figures 4.3.2A and 4.3.2B). White areas were pixels where none of the 

categories on the map were satisfied. 

 

The EFT-based approach also revealed complementary areas not prioritized by the two 

previous approaches (7% of the peninsula; Figure 4.3.4.). These areas were mainly located 

along mountainsides and piedmonts with riverine systems in the Desert Region: the San 

Felipe Desert to the northeast, the Gulf coastal desert in the center of the peninsula, and 

scattered areas along the southern desert (north and south of Magdalena Bay) (Figure 

4.3.3.C). Conversely, some areas (5% of the peninsula) were prioritized by the two previous 

approaches but not by the EFT-based approach. This occurred mainly in the Mediterranean 

mid-mountains and in coastal plains of the central and southwestern deserts (Figures 4.3.3. 

and 4.3.4.). 
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Figure 4.3.4. Agreement/disagreement between different ways to establish geographic conservation 

priorities for the Baja California Peninsula (Venn diagram). Numbers show the percentage of area in 

Baja California (not influenced by human activities) prioritized for conservation according to each 

approach. Our EFT-based approach focuses on two aspects of ecosystem functional diversity 

(Ecosystem Functional Type richness and rarity) while the two other approaches focus on biodiversity 

(mainly species) composition, structure and threats based on expert knowledge (Arriaga et al., 2000) 

and systematic conservation planning (Koleff et al., 2009). 

 

EFAs and EFTs slightly differed among areas prioritized by each approach (Figures S6 and 

S7). Expert-based priorities (Arriaga et al., 2000) were biased towards EFTs with less primary 

production than the other approaches. Systematic conservation priorities (Koleff et al., 2009) 

were biased towards EFTs with higher primary production than the other approaches. In 

contrast, EFT-based priorities showed a more unbiased distribution of EFA values and EFT 

compositions than previous priorities (Figures S4 and S5).  
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EFT richness and EFT rarity were found to be much higher within areas consistently prioritized 

by the three approaches (6 and 26 EFTs per 8 × 8-pixel sliding window with most richness 

values from 8 to 13 EFTs and with EFT rarity ranging from 0.8 to 1) than within areas 

prioritized by only one of the three approaches (Figure 4.3.5.). In contrast, areas prioritized 

only by traditional approaches were biased towards areas of low EFT richness (less than 6) 

but maintained moderate to high values of EFT rarity (greater than 0.5), especially in the 

systematic conservation approach. Indeed, despite systematic conservation planning and the 

expert-based approach performing very similarly in capturing EFT richness, systematic 

conservation planning tended to better represent areas of high EFT rarity (Figure S6). 

 

Figure 4.3.5. Congruence and complementarity among the three approaches to capture Ecosystem 

Functional Type (EFT) diversity. Density histograms show the frequency EFT richness (A) and rarity (B) 

in areas consistently prioritized by the three approaches (“congruence across all priorities”) and in areas 

exclusively prioritized by one of the approaches but not by the others (“complementarity across 

priorities”). Our EFT-based approach focuses on two aspects of ecosystem functional diversity (EFT 

richness and rarity) while the two other approaches focus on biodiversity composition, structure and 

threats based on expert knowledge (Arriaga et al., 2000) and systematic conservation planning (Koleff 

et al., 2009). 
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Robustness against window size, the number of classes, and priority thresholds 

The sensitivity analyses revealed that our approach to setting priorities was robust against 

changes in window size and the number of EFT classes (Appendices 5 and 6). Correlations of 

EFT richness and EFT rarity across the 8 × 8-pixel window and coarser window sizes ranged 

from 0.84 to 0.98 (Table S2) and those between the 64 EFT classes and fewer classes ranged 

from 0.67 to 0.94 (Table S3). Regional patterns of EFT richness, rarity, and priority were largely 

consistent across window sizes (85% agreement among final priority maps, Figures S7 and 

S8) and the number of EFT classes (70% agreement among final priority maps, Figures S9 

and S10). EFT-based priorities always exhibited more similarities with the more robust 

systematic-conservation approach than with the qualitative expert-based approach 

independent of thresholds of EFT richness and rarity used (Figure S11). 

 

4.3.4. Discussion 

Contemporary conservation paradigms aim to maintain all biodiversity dimensions (Noss 

1990), including the ecological processes and functions that sustain ecosystem services 

(Meyer, 1997; Mace, 2014; Prober et al., 2019). In this study, we used satellite-derived EFTs 

(Paruelo et al., 2001), defined here as functionally homogeneous land patches in terms of 

primary production dynamics, to describe spatial patterns of a focal ecosystem function. We 

used this focal ecosystem function because it is considered to be an integrative surrogate of 

stocks and fluxes of matter and energy derived from biological activity (Virginia and Wall, 

2013) and can be easily characterized by remote sensing. In essence, EFTs allowed us to map 

the spatial patterns of two indicators of ecosystem functional diversity at the regional scale, 

i.e., EFT richness and EFT rarity. From these patterns, we set geographic conservation 

priorities based on an ecosystem function that helped us identify important areas for the 

three dimensions of biodiversity (structure, composition, and function) and highlight 

complementary areas for this ecosystem function not prioritized by traditional approaches. 
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Regional patterns of ecosystem functional heterogeneity 

Maps of EFAs, EFTs, and EFT richness and rarity offer a characterization of ecosystem 

functional heterogeneity of the Baja California Peninsula. This heterogeneity results from a 

combination of latitudinal, longitudinal and topographic gradients. Such gradients 

determine strong differences across the peninsula in terms of seasonal dynamics of radiation, 

temperature, precipitation, evapotranspiration, and vegetation access to groundwater 

(Peinado et al., 2011; Villarreal et al., 2016) and have been identified as important for plant 

diversity (Garcillán and Ezcurra, 2003) and endemism (Riemman and Ezcurra, 2007).   

The highest levels of EFT richness were found where topography and spatiotemporal climate 

variability maximize ecosystem functional heterogeneity, mainly along mountains and 

piedmonts of the Mediterranean and Desert Regions. The Mediterranean climate imposes 

two limitations on plant growth: summer drought and winter cold temperatures (Hastings 

and Turner, 1965). These limiting factors of plant growth are strongly heterogenized by steep 

altitudinal and orientation gradients (Peinado et al., 2011). In the Desert Region, latitude, 

orientation, and access to groundwater impose varying constraints on plant growth. Such 

constraints include the latitudinal change in the proportion of winter and summer rains; the 

influence of coastal fog (Webb and Starr, 2015); and the occurrence of shallow aquifers, 

gullies and dry arroyos embedded within a dryland matrix (León de la Luz et al., 2015). Such 

high contrasts in ecosystem functions between the regional landscape matrix and its 

embedded ecosystems (i.e., less water-limited EFTs within a matrix of dryland EFTs) enhance 

ecological processes of the lateral transfer of matter and energy (Turner and Gardner 2015). 

For these reasons, despite being a desert, such high heterogeneity in environmental factors 

renders the Desert Region very diverse in EFTs, a pattern also found for plant functional types 

and plant communities (Webb and Turner, 2015). 

The lowest levels of EFT richness were found in the tropics due to wetter and highly 

consistent tropical climatic conditions that homogenize vegetation (Peinado et al., 2011). In 

the Tropical Region, strong precipitation seasonality (summer-autumn tropical rains 

followed by a nine-month drought) concentrates the growing season following the cyclone 
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season (León de la Luz et al., 2000). This high level of seasonality neutralizes even the 

altitudinal heterogeneity of the mountains, resulting in a spatial homogenization of primary 

production dynamics throughout the region. Such low EFT richness agrees with high 

similarities in vegetation composition along all topographic gradients, dominated by a few 

dry-deciduous shrubs and trees (Rascón-Ayala et al., 2018). Such an effect penetrates 

northwards along the Giganta Ranges with similar vegetation types to the Tropical Region 

(González-Abraham et al., 2010). In addition, very low EFT richness extended northwards 

along Central and Vizcaíno desert plains and piedmonts. EFT richness in these piedmonts, 

where energy and water were decoupled (winter rains dominate the Pacific northwestern 

Central and Vizcaíno deserts, north from 27ºN), was lower than in piedmonts where energy 

and water were coupled (summer rains dominate the southern half of the peninsula and San 

Felipe Desert to the northeast; Figure S1C). 

EFT rarity was found to be associated with latitude, altitude, and the presence of contrasting 

ecological conditions. The highest EFT rarity of the Mediterranean Region and San Felipe 

Desert were found to be associated with winter precipitation, which creates a rare 

phenological pattern in the peninsula (Peinado et al., 2011) together with the longitudinal 

gradient and topographical heterogeneity (e.g., the only region with areas showing EVI 

maxima in all seasons). In the ecological transitional zone of the center of the peninsula (28-

29º N), the combined influence of summer tropical storms from the south and autumn-to-

spring fronts from the north (González-Abraham et al., 2010) also results in high levels of EFT 

rarity. This ecotone shows singular assemblages of species from tropical and nontropical 

biota (González-Abraham et al., 2010) and a high diversity of distinctive lifeforms (Webb and 

Turner 2015). Finally, the surroundings of wetlands and mangroves in the Desert Region also 

showed rare EFTs, and both Mediterranean-type ecosystems and ecotones around wetlands 

are known to contain singular EFTs in other parts of the world (Cabello et al., 2013). The 

lowest EFT rarity value was measured for the Tropical Region and southern desert mountains 

(Giganta Ranges), where heterogeneity and singularity are only introduced by the presence 
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of endemism-rich evergreen pine forests at the highest altitudes (León de la Luz and 

Domínguez-Cadena, 1989).  

As found at the species level (Riemann and Ezcurra, 2007; Lamoreux et al., 2006), EFT richness 

and rarity were only correlated to a degree but did not always coincide in the peninsula. Such 

spatial aggregation between areas with both high EFT richness and rarity highlights their 

importance for heterogeneity and singularity in primary production. 

 

EFTs for setting geographic conservation priorities 

Three main conclusions can be drawn from our congruence analysis of the three approaches. 

First, our results highlight the importance of congruence areas as probable aggregated 

hotspots for all dimensions and scales of biodiversity, including diversity in essential 

ecosystem functions such as primary production dynamics. Areas with congruence reinforce 

their ecological and conservation value for the expansion of protected area networks 

(Lamoreux et al., 2006). For instance, consistently prioritized areas of the Mediterranean 

mountains have been historically identified as a conservation gap based on plant diversity 

and endemism (e.g., Garcillán and Ezcurra, 2003; Riemann and Ezcurra, 2005). This 

congruence of the Mediterranean Region in North America suggests that some global 

biodiversity hotspots stand out not only as hotspots of endemism but also as heterogeneous 

and singular areas of ecosystem function, even if their identification does not consider 

ecosystem processes (Myers et al., 2000). Second, our results indicate that traditional 

approaches may not identify all important areas of ecosystem functions (Meyer 1997) and 

may tend to better prioritize areas with rarity than those with richness in EFTs. Such an 

incidental focus of traditional approaches on rare EFTs could derive from the dominant role 

that endemicity, often related to singular conditions, plays in conservation planning (e.g., 

Myers et al., 2000). It is interesting that heterogeneity in ecosystem functions has played a 

minor role (Lovett et al., 2005) despite habitat heterogeneity fostering species adaptation 

and persistence (Hanson et al., 2020). Third, our results also suggest that species diversity, as 

in hotspots of the Tropical Region mountains (Riemann and Ezcurra, 2005, 2007), is not 
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necessarily associated with rare or spatially heterogeneous ecosystem functions. In such 

areas, not high environmental heterogeneity but a long history of evolutive isolation under 

stable conditions has mainly driven speciation (Sundaram et al., 2019). 

Conservation efforts must employ spatially explicit and parsimonious ways to incorporate 

heterogeneity in ecosystem functions (Turner and Chapin 2005) to develop theories and 

tools that complement traditional planning and management actions (Possingham et al., 

2005). Our study shows how satellite-derived EFAs and EFTs of a focal ecosystem function 

(here primary production) offer tangible and biologically meaningful qualities of ecosystem 

functional heterogeneity (here EFT richness and rarity) that can complement traditional 

geographic priority approaches. EFAs and EFTs of focal ecosystem functions have already 

been used to assess the comprehensiveness and representativeness of protected areas 

(Cabello et al., 2012, 2013) and of environmental observatory networks (e.g., LTER, NEON, 

Ameriflux, and Mexflux; Villarreal et al., 2018). Previous studies have also shown how EFAs 

and EFTs could facilitate conservation by capturing heterogeneity in the amount and timing 

of key ecosystem functions to model species distributions (e.g., Tuanmu and Jetz 2015; 

Alcaraz-Segura et al., 2017; Arenas-Castro et al., 2018) and abundances (Arenas-Castro et al., 

2019) as well as provisioning, regulating and cultural ecosystem services (Vaz et al., 2020).  

 

Caveats and avenues for future research 

The use of the EFT concept in geographic conservation is still subject to challenges. First, our 

satellite-derived EFT map characterizes the spatial heterogeneity of primary production 

dynamics. However, EFTs can also be identified from other remote sensing indices (e.g., 

Fernández et al., 2010) to characterize the spatiotemporal heterogeneity of multiple 

ecosystem processes and functions at different scales to guide biodiversity and ecosystem 

services policies (Pettorelli et al., 2018). Second, as the environmental observatory network 

expands, EFTs could be parameterized (e.g., Müller et al., 2014) and validated using ground 

measurements (e.g., eddy-covariance estimates of net ecosystem exchange; Villarreal et al., 

2018). Third, EFT richness and rarity maps illustrate diversity and spatiotemporal 
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heterogeneity in the occurrence of ecosystem functions, but additional landscape indices 

could also elucidate the spatial arrangement (Fahrig and Nuttle, 2005), connectivity, and 

lateral transfers (sensu Turner and Gardner, 2015) of energy and matter fluxes at the 

landscape level. Fourth, our study does not assess interannual changes in EFAs, EFTs, or EFT 

richness and rarity, which could help reveal areas suffering from functional diversity 

homogenization, which is a planetary boundary that still needs evaluation (Steffen et al., 

2015). Fifth, the effects of spatial scale (grain and extent) on richness, rarity, and congruence 

with other biodiversity facets should be evaluated. Grain or cell size affects the magnitude, 

location, and spatial congruence of hotspots of species richness and endemicity (Rahbek, 

2005; Arponen et al., 2012; McKerrow et al., 2018; Daru et al., 2020). The extent of the area 

under analysis may show that species-based priorities at one scale (e.g., global) may or not 

overlap with those of other scales (e.g., national or regional) (known as the parochialism 

effect; Pouzols et al., 2014). EFT richness, rarity, and priorities depend on the extent 

considered but seem to be robust against sliding window sizes and the number of EFT classes 

defined (Appendixes 5 and 6). Future works should explore the effect of image pixel size 

(e.g., with Sentinel-2 at 10 m/pixel), hierarchy in EFT classifications, and parochialism on the 

EFT-based approach. Finally, to test their effectiveness as ecosystem-agnostic essential 

biodiversity variable candidates, EFT richness, rarity, and derived priorities should be 

compared to robust systematic conservation-based approaches that consider multiple facets 

of biodiversity, i.e., compositional, structural, functional and phylogenetic, in other 

ecoregions of the world (Pettorelli et al., 2016).  

 

4.3.5. Conclusions 

In conclusion, the remotely sensed EFT approach can be used to incorporate the 

heterogeneity and singularity of ecosystem functions into geographic conservation 

priorities. Such an approach can support decision-making by offering supplementary 

arguments for the holistic conservation of biodiversity through the identification of key areas 

for multiple biodiversity facets (e.g., the Mediterranean Region of Baja California) and of 
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other areas important for ecosystem function that complement existing protected area 

networks (e.g., mountainsides and piedmonts with riverine systems in the Desert Region). 

Priority assessments based on essential variables related to ecosystem function cannot 

replace the use of very valuable systematic conservation approaches based on field records 

of species distributions to assess biodiversity status and change (Pereira et al., 2013). 

However, our approach is useful to complement traditional priority setting, because is simple 

and based on only three satellite-derived meaningful descriptors of ecosystem functioning, 

facilitating computation and interpretation by managers and policymakers (Palumbo et al., 

2017). Future conceptual and empirical development and applications of EFTs should include 

other ecosystem functions, field validation, temporal changes in EFT diversity, and further 

metrics of heterogeneity across scales. 

  

4.3.6. References 

Alcaraz-Segura D, Paruelo JM, Cabello J. 2006. Identification of current ecosystem functional 

types in the Iberian Peninsula. Global Ecology and Biogeography 15: 200–212. 

Alcaraz-Segura D, Paruelo JM, Epstein HE, Cabello J. 2013. Environmental and Human Controls 

of Ecosystem Functional Diversity in Temperate South America. Remote Sensing 5: 127–154. 

Alcaraz-Segura D, Lomba A, Sousa-Silva R, Nieto-Lugilde D, Alves P, Georges D...  Honrado J. P. 

2017. Potential of satellite-derived ecosystem functional attributes to anticipate species 

range shifts. International Journal of Applied Earth Observation and Geoinformation 57: 86–

92. 

Arenas-Castro S, Goncalves J, Alves P, Alcaraz-Segura D, Honrado JP. 2018. Assessing the multi-

scale predictive ability of ecosystem functional attributes for species distribution modelling. 

PLoS One 13(6). 

Arenas-Castro S, Regos A, Gonçalves JF, Alcaraz-Segura D, Honrado J. 2019. Remotely Sensed 

Variables of Ecosystem Functioning Support Robust Predictions of Abundance Patterns for 

Rare Species. Remote Sensing 11(18): 2086. 

Arponen A, Lehtomäki J, Leppänen J, Tomppo E, Moilanen A. 2012. Effects of connectivity and 

spatial resolution of analyses on conservation prioritization across large extents. 

Conservation Biology 26(2): 294–304. 

Arriaga L, Espinoza JM, Aguilar C, Martínez E, Gómez L, Loa E, Larson J. 2000. Regiones 

prioritarias terrestres de México. Comisión Nacional para el Conocimiento y Uso de la 

Biodiversidad. México, DF. 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 
182 

Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F...  Llactayo W. 2017. Airborne 

laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. 

Science 355 (6323): 385–389. 

Baldi G, Texeira M, Martin OA, Grau HR, Jobbágy E. G. 2017. Opportunities drive the global 

distribution of protected areas. PeerJ 5: e2989. 

Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B. 2006. 

Quantifying the evidence for biodiversity effects on ecosystem functioning and services. 

Ecology letters 9 (10): 1146–1156. 

Bergholz K, May F, Giladi I, Ristow M, Ziv Y, Jeltsch F. 2017. Environmental heterogeneity drives 

fine-scale species assembly and functional diversity of annual plants in a semi-arid 

environment. Perspectives in Plant Ecology, Evolution and Systematics 24: 138–146. 

Cabello J, Fernández N, Alcaraz-Segura D, Oyonarte C, Piñeiro G, Altesor A, Delibes M, Paruelo 

J. 2012. The ecosystem functioning dimension in conservation: Insights from remote sensing. 

Biodiversity Conservation 21: 3287–3305. 

Cabello J, Lourenço P, Reyes A, Alcaraz-Segura D. 2013. Ecosystem Services Assessment of 

National Parks Networks for Functional Diversity and Carbon Conservation Strategies Using 

Remote Sensing. In: Earth Observation of Ecosystem Services, Alcaraz-SeguraD, Di Bella CM, 

Straschnoy JV, 179-200. CRC Press - Taylor & Francis Group. Boca Raton. 

Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the 

maintenance of ecological processes and services. Journal of applied ecology 48(5): 1079–

1087. 

Callicott JB, Crowder LB, Mumford K. 1999. Current normative concepts in conservation. 

Conservation Biology 13: 22–35. 

GBO4. Secretariat of the Convention on Biological Diversity. 2014. Global Biodiversity Outlook 

4. Montréal. 

Chapin FS, Carpenter SR, Kofinas GP, Folke C, Abel N, Clark WC...  Berkes F. 2010. Ecosystem 

stewardship: sustainability strategies for a rapidly changing planet. Trends in Ecology & 

Evolution 25 (4): 241–249. 

Costanza R. 2012. The value of natural and social capital in our current full world and in a 

sustainable and desirable future. In Sustainability Science (pp. 99-109). Springer New York. 

Daru BH, Farooq H, Antonelli A, Faurby S. 2020. Endemism patterns are scale dependent. Nature 

Communications 11: 2115. 

Díaz S, Lavorel S, Chapin III, Tecco PA, Gurvich DE, Grigulis K. 2007. Functional diversity—at the 

crossroads between ecosystem functioning and environmental filters. In Terrestrial 

ecosystems in a changing world (pp. 81-91). Springer Berlin Heidelberg. 

Duncan C, Thompson JR, Pettorelli N. 2015. The quest for a mechanistic understanding of 

biodiversity–ecosystem services relationships. Royal Society 282 (1817): 1348–2015. 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 
183 

Fahrig L, Nuttle WK. 2005. Population ecology in spatially heterogeneous environments. In 

Ecosystem function in heterogeneous landscapes (pp. 95-118). Springer, New York, NY. 

Fernández N, Paruelo JM, Delibes M. 2010. Ecosystem functioning of protected and altered 

Mediterranean environments: A remote sensing classification in Doñana, Spain. Remote 

Sensing of Environment 114: 211–220. 

Gamon JA, Somers B, Malenovský Z, Middleton EM, Rascher U, Schaepman ME. 2019. Assessing 

vegetation function with imaging spectroscopy. Surveys in Geophysics 40(3): 489–513. 

Garcillán PP, Ezcurra E. 2003. Biogeographic regions and β‐diversity of woody dryland legumes 

in the Baja California peninsula. Journal of Vegetation Science 14(6): 859–868. 

Geller GN, Halpin PN, Helmuth B, Hestir EL, Skidmore A, Abrams MJ, ... Dawson T. 2017. Remote 

sensing for biodiversity. In The GEO handbook on biodiversity observation networks (pp. 

187-210). Springer, Cham. 

González-Abraham C, Garcillán PP, Ezcurra E. 2010. Ecorregiones de la Península de Baja 

California: Una síntesis. Boletín de la Sociedad Botánica de México 87: 69–82. 

González-Abraham C, Ezcurra E, Garcillán PP, Ortega-Rubio A, Kolb M,  Bezaury CJ. 2015. The 

Human Footprint in Mexico: Physical Geography and Historical Legacies. PloS one 10(3): 

e0121203. 

Hanson JO, Rhodes JR, Butchart SH, Buchanan GM, Rondinini C, Ficetola GF, Fuller RA. 2020. 

Global conservation of species’ niches. Nature 580(7802): 232–234. 

Hastings JR, Turner RM. 1965. Seasonal precipitation regimes in Baja California, Mexico. 

Geografiska Annaler. Series A, Physical Geography 47:204–223. 

INEGI. 2017. Conjunto Nacional de Información de Uso del Suelo y Vegetación Escala 1:250,000, 

Serie VI. Dirección General de Geografía. Instituto Nacional de Estadística, Geografía e 

Informática. Ags., México. 

Ivits E, Cherlet M, Horion S, Fensholt R. 2013. Global biogeographical pattern of ecosystem 

functional types derived from earth observation data. Remote Sensing 5 (7): 3305–3330. 

Jax K. 2010. Ecosystem Functioning. Cambridge University Press. 

Jetz W, Cavender-Bares J, Pavlick R, Schimel D, Davis FW, Asner GP...  Schaepman ME. 2016. 

Monitoring plant functional diversity from space. Nature Plants 2 (3):16024.  

Koleff P, Tambutti M, March IJ, Esquivel R, Cantú C, Lira-Noriega A...  Bezaury-Creel J. 2009. 

Identificación de prioridades y análisis de vacíos y omisiones en la conservación de la 

biodiversidad de México. Capital Natural de México 2: 651–718. 

Kondratyeva A, Grandcolas P, Pavoine S. 2019. Reconciling the concepts and measures of 

diversity, rarity and originality in ecology and evolution. Biological Reviews 94(4): 1317–1337. 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 
184 

Lamoreux JF, Morrison JC, Ricketts TH, Olson DM, Dinerstein E, McKnight MW, Shugart HH. 2006. 

Global tests of biodiversity concordance and the importance of endemism. Nature 440(7081): 

212–214. 

Lara B, Gandini M, Gantes P, Matteucci SD. 2017. Regional patterns of ecosystem functional 

diversity in the Argentina Pampas using MODIS time-series. Ecological Informatics 43: 65–

72. 

Lavorel S, Garnier É. 2002. Predicting changes in community composition and ecosystem 

functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16 (5): 545–556. 

Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S...  Urcelay C. 2007. Plant 

functional types: are we getting any closer to the Holy Grail?. In Terrestrial ecosystems in a 

changing world (pp. 149-164). Springer Berlin Heidelberg. 

Lawler JJ, Ackerly DD, Albano CM, Anderson MG, Dobrowski SZ, Gill JL, ... Weiss SB. 2015. The 

theory behind, and the challenges of, conserving nature's stage in a time of rapid change. 

Conservation Biology 29(3): 618–629. 

Lecina-Diaz J, Alvarez A, De Cáceres M, Herrando S, Vayreda J, Retana, J. 2019. Are protected 

areas preserving ecosystem services and biodiversity? Insights from Mediterranean forests 

and shrublands. Landscape Ecology 34(10): 2307–2321. 

Lee SJ, Berbery EH, Alcaraz-Segura D. 2013. The impact of ecosystem functional type changes 

on the La Plata Basin climate. Advances in Atmospheric Sciences 30 (5): 1387–1405. 

León de la Luz JL, Domínguez-Cadena R. 1989. Flora of the Sierra de La Laguna, Baja California 

Sur, Mexico. Madroño 61–83. 

León de la Luz JL, Luis J, Navarro P, Juan J, Breceda A. 2000. A transitional xerophytic tropical 

plant community of the Cape Region, Baja California. Journal of Vegetation Science 11(4): 

555–564. 

León de la Luz JL, Medel-Narváez A, Domínguez-Cadena R. 2015. Floristic diversity and notes 

on the vegetation of Bahía Magdalena area, Baja California Sur, México. Botanical Sciences 

93(3): 579–600. 

Littlefield CE, Krosby M, Michalak JL, Lawler JJ. 2019. Connectivity for species on the move: 

supporting climate‐driven range shifts. Frontiers in Ecology and the Environment 17(5): 270–

278. 

Loreau M. 2008. Biodiversity and ecosystem functioning: the mystery of the deep sea. Current 

Biology 18 (3): 126–128. 

Lovett GM, Jones CG, Turner MG, Weathers KC. 2005. Ecosystem function in heterogeneous 

landscapes. In Ecosystem function in heterogeneous landscapes (pp. 1-4). Springer, New 

York, NY. 

Naeem S. 1998. Species redundancy and ecosystem reliability. Conservation Biology 12 (1):  39–

45. 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 
185 

Malaterre C, Dussault AC, Rousseau-Mermans S, Barker G, Beisner BE, Bouchard F, ...  Maris V. 

2019. Functional diversity: An epistemic roadmap. BioScience 69(10): 800–811. 

Manning P, van der Plas F, Soliveres S, Allan E, Maestre FT, Mace G, ... Fischer M. 2018. Redefining 

ecosystem multifunctionality. Nature ecology & evolution 2(3): 427–436. 

Margules CR, Pressey RL. 2000. Systematic conservation planning. Nature 405: 243–253. 

McKerrow AJ, Tarr NM, Rubino MJ, Williams SG. 2018. Patterns of species richness hotspots and 

estimates of their protection are sensitive to spatial resolution. Diversity and Distributions 

24(10): 1464–1477. 

Monteith JL. 1972. Solar radiation and productivity in tropical ecosystems. Journal of applied 

ecology 9(3): 747-766. 

Müller OV, Berbery EH, Alcaraz-Segura D,  Ek MB. 2014. Regional model simulations of the 2008 

drought in southern South America using a consistent set of land surface properties. Journal 

of climate 27(17): 6754–6778. 

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. 2000. Biodiversity hotspots for 

conservation priorities. Nature 403(6772): 853. 

Noss RF. 1990. Indicators for monitoring biodiversity: a hierarchical approach. Conservation 

Biology 4 (4): 355–364. 

Mace GM. 2014. Whose conservation?. Science 345(6204): 1558–1560. 

Meyer JL. 1997. Conserving ecosystem function. In: The Ecological Basis of Conservation: 

Heterogeneity, Ecosystems, and Biodiversity. Springer, Boston, MA. pp. 136–145. 

Mouchet MA, Villéger S, Mason NW, Mouillot D. 2010. Functional diversity measures: an 

overview of their redundancy and their ability to discriminate community assembly rules. 

Functional Ecology 24(4): 867–876. 

Mucina L. 2019. Biome: evolution of a crucial ecological and biogeographical concept. New 

Phytologist. doi: 10.1111/nph.15609. 

Oliver TH, Heard MS, Isaac NJ, Roy DB, Procter D, Eigenbrod F, ... Proença V. 2015. Biodiversity 

and resilience of ecosystem functions. Trends in ecology & evolution, 30(11): 673–684. 

Palomo I, Montes C, Martín-López B, González JA, García-Llorente M, Alcorlo P, Mora MRG. 2014. 

Incorporating the social–ecological approach in protected areas in the Anthropocene. 

BioScience 64 (3): 181–191.  

Palumbo I, Rose RA, Headley RM, Nackoney J, Vodacek A, Wegmann M. 2017. Building capacity 

in remote sensing for conservation: present and future challenges. Remote Sensing in 

Ecology and Conservation 3 (1): 21–29. 

Paruelo JM, Epstein HE, Lauenroth WK, Burke IC. 1997. ANPP estimates from NDVI for the Central 

Grassland Region of the United States. Ecology 78: 953–958. 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 
186 

Paruelo JM, Jobbagy EG, Sala OE. 2001. Current distribution of ecosystem functional types in 

temperate South America. Ecosystems 4: 683–698. 

Pasari JR, Levi T, Zavaleta ES... Tilman D. 2013. Several scales of biodiversity affect ecosystem 

multifunctionality. Proceedings of the National Academy of Sciences 110(25): 10219–10222. 

Peinado M, Macías MÁ, Ocaña-Peinado FM, Aguirre JL, Delgadillo J. 2011. Bioclimates and 

vegetation along the Pacific basin of Northwestern Mexico. Plant Ecology 212 (2): 263–281.  

Pereira HM, Ferrier S, Walters M, Geller GN, Jongman RHG, Scholes RJ, ... Coops NC. 2013. 

Essential biodiversity variables. Science 339(6117): 277–278. 

Perrin PM., Waldren S. 2020. Vegetation richness and rarity in habitats of European conservation 

value in Ireland. Ecological Indicators 117:106387. 

Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC. 2005. Using the satellite-

derived NDVI to assess ecological responses to environmental change. Trends in ecology & 

evolution 20(9): 503–510. 

Pettorelli N, Wegmann M, Skidmore A, Mücher S, Dawson TP, Fernandez M...  Jongman R H. 

2016. Framing the concept of satellite remote sensing essential biodiversity variables: 

challenges and future directions. Remote Sensing in Ecology and Conservation 2(3): 122–131. 

Pettorelli N, Schulte to Bühne H, Tulloch A, Dubois G, Macinnis-Ng C, Queirós AM...  

Sonnenschein R. 2018. Satellite remote sensing of ecosystem functions: opportunities, 

challenges and way forward. Remote Sensing in Ecology and Conservation.doi: 

10.1002/rse2.59. 

Possingham HP, Franklin J, Wilson K, Regan TJ. 2005. The roles of spatial heterogeneity and 

ecological processes in conservation planning. In Ecosystem function in heterogeneous 

landscapes (pp. 389-406). Springer, New York, NY. 

Pouzols FM, Toivonen T, Di Minin E, Kukkala AS, Kullberg P, Kuusterä J, ... Moilanen A. 2014. 

Global protected area expansion is compromised by projected land-use and parochialism. 

Nature 516(7531): 383–386. 

Prober SM, Doerr VA, Broadhurst LM, Williams KJ, Dickson F. 2019. Shifting the conservation 

paradigm: a synthesis of options for renovating nature under climate change. Ecological 

Monographs 89(1): e01333. 

Rahbek C. 2005. The role of spatial scale and the perception of large‐scale species‐richness 

patterns. Ecology letters 8(2): 224–239. 

Rascón-Ayala JM, Alanís-Rodríguez E, Mora-Olivo A, Buendía-Rodríguez E, Sánchez-Castillo L, 

Silva-García JE. 2018. Differences in vegetation structure and diversity of a forest in an 

altitudinal gradient of the Sierra La Laguna Biosphere Reserve, Mexico. Botanical Sciences 

96(4): 598–608. 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 
187 

Reichstein M, Bahn M, Mahecha MD, Kattge J, Baldocchi DD. 2014. Linking plant and ecosystem 

functional biogeography. Proceedings of the National Academy of Sciences 111 (38): 13697–

13702. 

Riemann H, Ezcurra E. 2005. Plant endemism and natural protected areas in the Peninsula of 

Baja California, Mexico. Biological Conservation: 122(1): 141–150. 

Riemann H, Exequiel E. 2007. Endemic regions of the vascular flora of the Peninsula of Baja 

California, Mexico. Journal of Vegetation Science 18(3): 327–336. 

Shi H, Li L, Eamus D, Huete A, Cleverly J, Tian X, ... Rotenberg E. 2017. Assessing the ability of 

MODIS EVI to estimate terrestrial ecosystem gross primary production of multiple land cover 

types. Ecological Indicators 72: 153–164. 

Soulé M. E. 1986. Conservation biology: the science of scarcity and diversity. Sinauer Associates, 

Sunderland, Massachusetts. 

Stark J, Lehman R, Crawford L, Enquist B J, Blonder B. 2017. Does environmental heterogeneity 

drive functional trait variation? A test in montane and alpine meadows. Oikos, 126(11): 1650–

1659. 

Stein A, Gerstner K,  Kreft H. 2014. Environmental heterogeneity as a universal driver of species 

richness across taxa, biomes and spatial scales. Ecology letters, 17(7): 866–880. 

Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, ... Folke C. 2015. Planetary 

boundaries: Guiding human development on a changing planet. Science 347(6223): 1259855. 

Sundaram M, Donoghue MJ, Farjon A, Filer D, Mathews S, Jetz W, Leslie AB. 2019. Accumulation 

over evolutionary time as a major cause of biodiversity hotspots in conifers. Proceedings of 

the Royal Society B 286(1912): 20191887. 

Rodrigues AS, Akcakaya HR, Andelman SJ, Bakarr MI, Boitani L, Brooks TM...  Hoffmann M. 2004. 

Global gap analysis: priority regions for expanding the global protected-area network. 

BioScience 54 (12): 1092–1100. 

Tuanmu MN, Jetz W. 2015. A global, remote sensing‐based characterization of terrestrial habitat 

heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography 

24(11): 1329–1339. 

Turner MG, Chapin FS. 2005. Causes and consequences of spatial heterogeneity in ecosystem 

function. In Ecosystem function in heterogeneous landscapes (pp. 9-30). Springer, New York, 

NY. 

Turner MG, Gardner RH. 2015. Landscape Ecology in Theory and Practice, Springer-Verlang, New 

York, 287. 

Vaz AS, Moreno‐Llorca RA, Gonçalves JF, Vicente JR, Méndez PF, Revilla E ... Alcaraz‐Segura D. 

2020. Digital conservation in biosphere reserves: Earth observations, social media, and 

nature's cultural contributions to people. Conservation Letters e12704. 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 
188 

Villarreal S, Vargas R, Yepez EA, Acosta JS, Castro A, Escoto‐Rodriguez M, ... Vivoni ER. 2016. 

Contrasting precipitation seasonality influences evapotranspiration dynamics in water‐
limited shrublands. Journal of Geophysical Research: Biogeosciences 121(2): 494–508. 

Villarreal S, Guevara M, Alcaraz-Segura D, Brunsell NA, Hayes D, Loescher HW, Vargas R. 2018. 

Ecosystem functional diversity and the representativeness of environmental networks across 

the conterminous United States. Agricultural and Forest Meteorology 262: 423–433. 

Virginia RA, Wall DH. 2013. Ecosystem Function, Principles of. Encyclopedia of Biodiversity 2: 90–

95. 

Visconti P, Butchart SH, Brooks TM, Langhammer PF, Marnewick D, Vergara S, ... Watson J. E. 

2019. Protected area targets post-2020. Science 364(6437): 239–241. 

Watson JE, Dudley N, Segan DB, Hockings M. 2014. The performance and potential of protected 

areas. Nature 515 (7525): 67–73. 

Webb RH, Starr G. 2015. Gentry Revisited: The Agaves of the Peninsula of Baja California, 

México. Haseltonia 20: 64–108. 

Webb RH, Turner RM. 2015. Biodiversity of cacti and other succulent plants in Baja California, 

México. Cactus and Succulent Journal 87(5): 206–216. 

Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D. 2006. Conventional 

functional classification schemes underestimate the relationship with ecosystem functioning. 

Ecology Letters 9 (2): 111–120. 

 

 

 

 

 

 

 

 

 



Result 4.3 – Chapter III 

Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed EFTs 

 

189 

4.3.6. Appendices 

Appendix 1. Currently protected areas of the Baja California Peninsula 

Protected 

area 

Year Terrestrial 

surface 

(ha) 

Ecological region 

(González-Abraham 

et al., 2010) 

Altitudinal 

range (m) 

Vegetation type  

(% of surface in the protected 

area according to INEGI series 

III) 

Figure protection and IUCN 

management category 

Sierra de San 

Pedro Mártir 

1947 72910 Mediterranean 773-2927 -Chaparral (47%) 

-Coniferous forest (50%) 

-Gallery forest (1%) 

-Induced grassland (2%) 

National Park 

II 

Constitución 

de 1857 

1962 5009 Mediterranean 1522-1843 -Chaparral (22%) 

-Coniferous forest (67%) 

-Water bodies (11%) 

National Park 

II 

Valle de los 

Cirios 

1980 

and 

2000 

2521987 Desert 0-1799 -Sarcocaulescent scrub (13%) 

-Halophilic vegetation (9%) 

-Desert microphyll scrub (6%)  

-Coastal rosette vegetation (18%) 

-Sandy desert vegetation (3%) 

-Crasicaulescent scrub (43%) 

Flora and Fauna Protection 

Area 

IV 

Alto golfo de 

California y 

1993   934756 Desert 0-349 -Desert microphyll scrub (13%)  Biosphere Reserve 

VI 
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Delta del Río 

Colorado 

-Halophilic-hydrophilic 

vegetation (6%) 

-Without apparent vegetation 

(81%) 

Islas del 

Pacífico 

2016 70139 Desert  -Chaparral (7%) 

-Mangrove (7%) 

-Coastal rosette vegetation (20%) 

-Sarcocrasicaulescent scrub 

(13%) 

-Sarcocaulescent scrub (26%) 

-Coastal dunes vegetation (23%) 

-Halophilic-xerophytic 

vegetation (4%) 

Biosphere Reserve 

VI 

Islas del Golfo 

de California 

1978 374553 Desert 

 

0-104 -Desert microphyll scrub (6%) 

-Halophilic-hydrophilic 

vegetation (2%) 

-Crasicaulescent scrub (45%) 

-Sarcocaulescent scrub (45%) 

-Deciduous rainforest (2%) 

Flora and fauna protection 

area 

IV 

El Vízcaíno 1988 2259002 Desert 0-1934 -Desert microphyll scrub (8%) 

-Without apparent vegetation 

(5%) 

-Halophilic-xerophytic 

vegetation (25%) 

Biosphere Reserve 

Ia 
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-Sandy desert vegetation (14%) 

-Sarcocrasicaulescent scrub (7%) 

-Sarcocaulescent scrub (38%) 

-Coastal dunes vegetation (2%) 

-Mangrove (1%) 

Complejo 

Lagunar Ojo de 

Liebre 

1972 

and 

2000 

79328 Desert 0-16 -Halophilic-hydrophilic 

vegetation (100%) 

 

Biosphere reserve 

VI 

Bahía de 

Loreto 

1996 

and 

2000 

21692 

 

Desert 0-62 -Halophilic-xerophytic 

vegetation (15%) 

-Sarcocaulescent scrub (85%) 

National Park 

II 

Balandra 2012 1319  

 

Tropical 0-306 -Sarcocrasicaulescent scrub 

(34%) 

-Sarcocaulescent scrub (66%) 

Flora and fauna protection 

area 

IV 

Sierra La 

Laguna 

1994 112437 Tropical 116-2072 -Sarcocaulescent scrub (7%) 

-Quercus forest (30%) 

-Deciduous rainforest (63%) 

Biosphere reserve 

VI 

Cabo San 

Lucas 

1973 

and 

2000 

208 Tropical 0-73 -Xerophilous scrub (100%) Flora and fauna protection 

area 

IV 
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Appendix 2. Ecosystem Functional Attributes of the Baja California Peninsula 

 

Figure S1. Patterns of the three key ecosystem functional attributes used to identify Ecosystem 

Functional Types and ecosystem functional diversity in Baja California (Mexico) derived from seasonal 

dynamics of the Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index 

(MODIS-EVI) (230 m pixel). a) EVI annual mean (EVI Mean) as a surrogate of primary productivity; b) 

annual coefficient of variation (EVI sCV) as a descriptor of seasonality; c) date of the maximum EVI (EVI 
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DMAX) as an indicator of phenology; and d) range of functional attributes used in the definition of 

Ecosystem Functional Types (EFTs) for Baja California: the EVI mean, EVI sCV and EVI DMAX. Capital 

letters correspond to the EVI annual mean with A to D denoting low to high EVI means, respectively. 

Small letters show the coefficient of variation of the EVI (EVI sCV) with a to d denoting low to high EVI 

sCV values, respectively. Numbers indicate the season of the date of the maximum EVI (EVI DMAX). 

The three maps show how the peninsula is highly diverse in terms of these three key descriptors of 

ecosystem functioning.  
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Figure S2. Quartile patterns of the three key ecosystem functional attributes used to identify Ecosystem 

Functional Types derived from seasonal dynamics of the Moderate Resolution Imaging 

Spectroradiometer Enhanced Vegetation Index (MODIS-EVI) (230 m pixel). Each attribute was divided 

into four ranges or quartiles (i.e., Q1, Q2, Q3 and Q4 using the 25th, 50th, 75th, and 100th percentiles, 

respectively). A) EVI annual mean (EVI Mean); B) annual coefficient of variation (EVI sCV); and C) date 

of the maximum EVI (EVI DMAX). 
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Appendix 3. Relationship between EFT rarity and EFT richness 

 

 

Figure S3. Scatterplot of EFT rarity (X-axis) versus EFT richness (Y-axis). Each point represents an 8 × 

8-pixel window. Pearson correlation r = 0.45. High values of EFT richness always corresponded to high 

values of EFT rarity while high EFT rarity does not always imply high EFT richness values.  
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Appendix 4. Congruence and complementarity between EFT richness, rarity 

and priorities and previous methods 

To demonstrate that our EFT-based approach provides useful and orthogonal conservation 

priority information relative to other traditional approaches, we assessed the variation in 

EFAs, EFTs, EFT richness and EFT rarity within the priority areas of each approach. 

a) Variation of EFAs within areas prioritized by different approaches. 

In terms of EFAs, Arriaga et al., (2001) prioritize regions with low primary productivity, low-

moderate seasonality and biseasonality in the month of the maximum EVI (mainly in the 

spring and autumn). Systematic conservation (Koleff et al., 2009) prioritizes regions of greater 

primary productivity and seasonality than expert-based conservation (Arriaga et al., 2000) 

and with biseasonality in the month of the maximum EVI (mainly in the spring but also with 

peaks in the autumn). Our approach prioritizes EFA values that fall between those of other 

assessments with moderate values of productivity, low and moderate seasonality and 

biseasonality in the month of the maximum (though distributed across more months) (Figure 

S4). 

 

Figure S4. Variation in the three ecosystem functional attributes (EFAs) used to identify Ecosystem 

Functional Types (EFTs) within areas prioritized by three approaches to set geographic conservation 

priorities. Our approach focused on two aspects of ecosystem functional diversity (EFT rarity and 

richness), and two previous studies focused on biodiversity (mainly species) composition, structure and 
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threats based on expert knowledge (Arriaga et al., 2000) and systematic conservation planning (Koleff 

et al., 2009). The three EFAs derived from EVI (Enhanced Vegetation Index) seasonal dynamics included: 

A) EVI mean or primary productivity; B) EVI sCV or seasonality; and C) EVI DMAX or phenology.  

b) Variation of EFTs in areas prioritized by different approaches. 

In terms of EFTs, all priority exercises showed a wide spectrum of different EFTs. As suggested 

by the EFA histograms, EFTs of expert-based (Arriaga et al., 2000) priority areas were more 

oriented towards low productivity EFTs, systematic conservation priorities (Koleff et al., 2009) 

were oriented towards high productivity EFTs, and EFT-based priorities captured the full 

range of EFTs (Figure S5). 

 

Figure S5. Variation of Ecosystem Functional Types (EFTs) within areas prioritized by three approaches 

to setting geographic conservation priorities. Our approach was focused on two aspects of ecosystem 

functional diversity (EFT rarity and richness) while those of two other studies focused on biodiversity 

(mainly species) composition, structure and threats based on expert knowledge (Arriaga et al., 2000) 

and systematic conservation planning (Koleff et al., 2009). See the color legend and EFT names in Figure 

2D. 

c) Variation of EFT richness and EFT rarity in areas prioritized by different 

approaches 

In terms of EFT richness, the EFT-based approach was biased towards the highest EFT 

richness values with more than 90% of priority areas having EFT richness values of between 
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5 and 26. Priority areas of the two other studies showed significantly lower levels of EFT 

richness with more than half of the area presenting EFT richness values of lower than 5 

(Figure S6). 

In terms of EFT rarity, all approaches were biased towards high EFT rarity values. The EFT-

based approach was more focused on the highest EFT rarity values (areas of 0.7 to 0.9 EFT 

rarity values) followed by those of systematic conservation (Koleff et al., 2009) (more than 

half of the area includes EFT rarity values of greater than 0.8) and expert-based methods 

(Arriaga et al., 2000) (more than half of the area includes EFT rarity values of 0.7 to 0.9) (Figure 

S6). 

 

Figure S6. Variation of ecosystem functional type (EFT) richness (left) and rarity (right) in areas 

prioritized by three approaches to setting geographic conservation priorities. Our approach was 

focused on two aspects of ecosystem functional diversity (EFT rarity and richness) while those of two 

other studies focused on biodiversity (mainly species) composition, structure and threats based on 

expert knowledge (Arriaga et al., 2000) and systematic conservation planning (Koleff et al., 2009). 
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Appendix 5. Assessment of the effect of sliding window size on EFT richness, 

rarity, and priorities 

To assess the effect of sliding window size on EFT richness, rarity and priorities, we doubled 

and tripled the size of the sliding window. First, we calculated EFT richness, rarity and 

priorities for 8 × 8-, 16 × 16- and 24 × 24-pixel sliding windows. Then, we compared these 

maps 1) visually, 2) based on Pearson correlations among them, 3) by calculating the degree 

of overlap between prioritized areas, and 4) by calculating the final percentage of the 

peninsula prioritized. Human-use pixels were masked according to each window size. 

Regional patterns of EFT richness, rarity and priorities were largely consistent across the 

sliding windows of different sizes (Figure S7A-I). Pearson correlations among different 

window sizes were very high for EFT rarity (0.97-0.99) and EFT richness (0.84-0.95) and quite 

high for the derived priorities (0.70-0.79) (Table S2). The percentage of the peninsula of 

extreme and high priority  was also similar across different window sizes (26-28%) (Figure 

S7). Regional priorities were constant in all cases and always focus on the Mediterranean 

area, the mountains of the central desert and mangroves of the southwestern coast (Figure 

S7G-I). 

An overlap analysis of different windows size priorities reached 85% agreement on what is 

to be prioritized and or not. Specifically, all window sizes identify 66% of the peninsula as 

nonpriority sites and a 19% as priority sites (Figure S8A-B). 

Any prioritization exercise depends on the spatial scale (i.e., both grain and extent) of 

assessment (Arponen et al., 2012). In any prioritization exercise, the grain size of the dataset 

affects the output. Regarding grain, when using species distributions to identify hotspots, 

actual values of species richness found in each cell will increase with grain from a dataset 

built at 1 × 1 km to a dataset built at 10 × 10 km. However, regional spatial patterns of 

species richness will not vary widely (Rahbek 2005). In our analysis, regional patterns of EFT 

richness, rarity and derived priorities are very robust against changes in grain size. The 

maximum number of EFTs found in a sliding-window can also vary by window size. When 
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using smaller sliding-window sizes, lower EFT richness values were obtained. By contrast, 

when using a larger pixel size, observed patterns would get generalized while "internal" 

heterogeneity within each pixel was diminished.  

 

Table S2. Pearson correlation coefficients (r) among conservation priority values given by each window 

size. To assess the robustness of our approach against a change in the size of the sliding window, to 

the original size (8x8 pixel-window) we doubled (16x16 pixel-window) and tripled (24 × 24 pixel-

window) the size and we evaluated the resulting effects on EFT richness, rarity and priorities. Spatial 

patterns of EFT richness, rarity and priorities did not vary considerably when different sliding-window 

sizes were applied. 

Pearson 

correlations 

among sliding 

window sizes 

EFT richness EFT rarity EFT priorities 

16x16 24x24 16x16 24x24 16x16 24x24 

8x8 0.95 0.84 0.99 0.97 0.75 0.70 

16x16 - 0.93 - 0.98 - 0.79 
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Figure S7. EFT richness, rarity and priorities for each window size. The last row are shown the surface 

of the study area (in percentage) for each combination of quartiles (Qx) of richness and rarity. Final 

priorities combined Q3 and Q4, and the total area prioritized was the sum of Q3 and Q4*. 
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Figure S8. Proportion of the total land area with overlapping priority at different sliding windows sizes. 

A) Congruence between nonpriority and priority areas for different windows sizes, and B) overlap and 

percentage of area in Baja California Peninsula (not influenced by human activities) prioritized for 

conservation according to each approach: colors show where no approaches overlap, where two sliding 

window approaches overlapped and where all three approaches overlapped. 
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Appendix 6. Assessment of the effect of the number of EFT classes on EFT 

richness, rarity, and priorities. 

To assess the effect of the number of EFT classes on EFT richness, rarity and priorities, we 

reduced the number of EFT classes (64) by 58% (27 classes) and 86% (8 classes). We compare 

2x2x2= 8 EFTs and 3x3x3=87 and 4x4x4=64 EFTs calculating EFT richness, rarity, and 

priorities for each EFT classification. We used the same method as that applied to measure 

the effect of window size but to measure the number of classes. We compared EFT richness, 

rarity and priority maps 1) visually 2) based on Pearson correlations between them, 3) by 

calculating the degree of prioritized area overlap, and 4) by calculating the final percentage 

of the peninsula prioritized. 

Regional patterns of EFT richness, rarity and priorities are largely consistent among the 

different EFT classes (Figure S9 and Table S3). Pearson correlations among different EFT 

classifications were high for EFT rarity (0.72-0.74) and EFT richness (0.62-0.84) and lower for 

derived priority areas (max. 0.65). The percentage of the peninsula of extreme and high 

priority was also similar across different window sizes (25.6-27.3%) (Figure S9). Regional 

priorities remained constant for all approaches, always highlighting the Mediterranean area, 

the mountains of the central desert and mangroves of the southwest coast (Figure S9G-I). 

The overlap analysis of the different approaches showed 70% agreement on what was 

prioritized and what was not. Specifically, all approaches identified 58% of the peninsula as 

nonpriority area and 12% as priority area (Figure S10A-B). 

 

Table S3. Pearson correlation coefficients (r) between conservation priority values given by each 

number of Ecosystem Functional Type (EFT) classes. To assess the robustness of our approach against 

a change in the number of classes, we carried out a sensitivity analysis by reducing the number of EFT 

classes by 86% (from 64 to 8 classes) and 58% (from 64 to 27 classes) and evaluating their effects on 

EFT richness, rarity and priorities. Employing the same rationale adopted to build the 4x4x4 EFT 

classification (quartiles for the EVI mean and EVI sCV, and four seasons for EVI DMAX), we used the 

medians for EVI mean and EVI sCV and two seasons for the EVI peak to obtain a 2x2x2= 8 EFT 
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classification. We also used tertiles on the EVI mean and EVI sCV and three seasons for the EVI peak to 

obtain a 3x3x3 = 87 EFT classification. Spatial patterns of EFT richness, rarity and priorities did not 

greatly vary when different EFT number of classes were applied. 

Pearson 

correlations among 

different numbers 

of EFT classes 

EFT richness EFT rarity EFT priorities 

3x3x3 2x2x2 3x3x3 2x2x2 3x3x3 2x2x2 

4x4x4 0.84 0.67 0.94 0.70 0.65 0.45 

3x3x3 - 0.62 - 0.72 - 0.36 
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Figure S9. EFT richness, rarity and priorities for different numbers of Ecosystem Functional Type (EFT) 

classes. The last row are shown the surface of the study area (as a percentage) for each combination 

of quartiles (Qx) of richness and rarity. Final priorities were combinations of Q3 and Q4, and the total 

area prioritized was the sum of Q3 and Q4*. 
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Figure S10. The proportion of the total land area with overlapping prioritization with different numbers 

of Ecosystem Functional Type (EFT) classes. Numbers show the percentage of area in Baja California 

(not influenced by human activities) prioritized for conservation according to each approach. 
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Appendix 7. Assessment of the effect of priority thresholds on congruence and 

complementarity between approaches. 

 

Figure S11. Sensitivity analysis of the EFT-based priority threshold for agreement/disagreement 

between the three approaches to establish geographic conservation priorities for the Baja California 

Peninsula (Venn Diagram). Numbers show the percentage of the peninsula to be protected by each 

prioritization scheme. Overlapping areas indicate the % of common surface to protect. The diagrams 

show congruence between the prioritized areas in Koleff (systematic conservation) and Arriaga (expert-

based) with different thresholds for Cazorla’s EFT-based priorities: A) our low, moderate, high and 

extreme priority categories, B) our moderate, high and extreme categories, C) our high and extreme 

categories, and D) our extreme category. Under each Venn Diagram, the Sorensen-Dice F-1 coefficient 

is shown for each pair of approaches using Koleff’s Systematic-conservation as a reference. The three 

bottom rows show the total percentage of the surface of the Baja California Peninsula to be protected 

according to each assessment. 
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Abstract 

Large-scale ecological variations across Earth have important consequences for biodiversity 

and therefore, for biological conservation. Despite the widespread use of ecological maps in 

conservation schemes, they have been based mainly on structural and compositional 

features, but scarcely on functional dimensions of life. The incorporation of functional 

variables complements and improves the descriptions of regionalizations and offers a new 

understanding of biodiversity patterns. The development of remote sensing measurement 

allows for the description of the functional patterns of ecosystems through Ecosystem 

Functional Types (EFTs), opening new opportunities to analyze the geography of life. In this 

article, our aim was to examine the relationships between ecological regionalization based 

on components and structure and patterns of ecosystem functioning. As proof of case, we 

chose the Baja California peninsula, whose singularity has generated a rich variety of 

ecological and biogeographical interpretations, mainly based on ecosystem components 

and structure. We hypothesize that patterns in ecosystem functioning reflect 

ecoregionalization based on composition and structure features. We identified Ecosystem 

Functional Types (EFTs), from three descriptors of the seasonal curves of MODIS Enhanced 

Vegetation Index (EVI) from 2001 to 2017. We characterized each ecoregion in terms of 

ecosystem functioning and we carried out a correspondence analysis between the EFTs 

classification and the ecoregions. At large scale, EFTs showed a pattern with three general 

regions from northwest to south, capturing the north-south transition of climatic regimes 

shown in the ecoregions map, from the northwestern Mediterranean area to the tropical 

southern zone, with a desert transition area between them. 

 

KEYWORDS: Conservation; Ecosystem Functional Types; Ecoregions; Functional biodiversity; 

Functional geography; Remote sensing. 
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4.4.1. Introduction 

Understanding how geographical patterns of life and which factors are driving them have 

been for a long time one of the main goals of naturalists, and the foundational roots of 

biogeography as science (Lomolino et al., 2015, 2017). Its interest resides in that large-scale 

variation in vegetation across Earth has important consequences for biodiversity and 

resources availability to support biological conservation and human wellbeing (Olson et al., 

2001). At present, the Earth system has been characterized by large ecological units whose 

boundaries can be defined on the basis of past or current physical and biological forces 

(Whittaker, 1970; Box, 1981; Dinerstein et al., 1995; Olson et al., 2001; Bailey, 2009; Kreft & 

Jetz, 2010). These ecological units or ecoregions can be identified at various spatial scales 

and/or hierarchical levels, which determines our perception of the system (Bailey, 2004). 

Ecoregions have been widely used for guiding management and conservation decision 

making, since it allows us to organize our understanding of how major terrestrial ecosystems 

work and to establish programs to monitor changes (Higgins et al., 2016). Despite the 

widespread use, these units represent human constructs derived from a boundary-setting 

exercise in which there is not always a consensus on how to define it and map their extent 

(Donoghue & Edwards, 2014; Moncrieff et al., 2016), which makes ecological maps 

hypotheses that can be tested and improved (Rowe & Sheard, 1981; Smith et al., 2018). 

Since the pioneering work of Alexander von Humboldt, who departed from habitual 

taxonomic criteria and described patterns of vegetation based on physiognomic attributes 

and coincident climate, scientists have been analyzing geographical patterns of ecosystems 

based mainly on their structural and compositional features, but scarcely on the functional 

dimension of life. The incorporation of functional variables complements and improves the 

descriptions of regionalizations based on structural and compositional features (Noss, 1990) 

and offers a better understanding of spatial and temporal patterns of diversity (Garnier et 

al., 2016). In particular, understanding changes in ecosystem functioning across 

biogeographic gradients can benefit from a greater ability to represent and define biotic 

https://onlinelibrary.wiley.com/doi/full/10.1111/jbi.12701#jbi12701-bib-0053
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communities (Reichstein et al., 2014). This leads the functional classifications to a useful 

framework to understand these large-scale ecological changes in relation to ecosystem 

function and processes. In fact, a growing number of studies have identified the need to 

integrate new concepts and methodologies to connect classical regionalizations with 

ecosystem functioning (Violle et al., 2014). 

Currently, ecologists are better equipped than ever before for exploring functional 

ecosystem dynamics at multiple temporal and spatial scales. Increasing large-datasets 

derived from remote sensing and associated development of analytic tools have opened new 

opportunities to explore the geography of life. A promising analytic approach in this sense 

is the Ecosystem Functional Types proposed by Paruelo et al., (2001) and Alcaraz-Segura et 

al., (2006), which has been considered as the more serious attempt to characterize ecological 

regions from a functional perspective (Mucina, 2019). EFTs are groups or patches of land 

surface that share similar dynamics of matter and energy exchanges between the biota and 

the physical environment (Paruelo et al., 2001; Alcaraz-Segura et al., 2006). The EFT approach 

uses time series of spectral Vegetation Indices (VI), such as Normalized Vegetation Index 

(NDVI) or Enhanced Vegetation Index (EVI), to capture the spatial expression of the carbon 

gain dynamics, considered the most integrative indicator of ecosystem functioning 

(McNaughton et al., 1989; Virginia and Wall 2001). Thus, EFTs are identified by three 

meaningful metrics derived from the annual dynamics of EVI that reflect primary productivity, 

seasonality, and phenology of canopy (Paruelo et al., 2001). EFTs have been used to 

characterize the spatial heterogeneity of ecosystem functions at different scales, e.g., global 

(Ivits et al., 2013), regional (Alcaraz-Segura et al., 2006) or local (Fernández et al., 2010), but 

the formal comparison with regionalizations based on other dimensions of biodiversity (i.e. 

ecoregions) has not yet been evaluated. 

In this study, our aim was to examine the relationships between biological regionalization 

based on the biota components and structure (species distribution, endemisms, vegetation 

types) and patterns of ecosystem functioning revealed by the geographical distribution of 
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EFTs. As proof of case, we chose the Baja California peninsula, a 1300 km-long fringe of land 

which contains the transition from the Californian Mediterranean region to the Tropic. This 

ecologically heterogeneous peninsula has captured the attention of naturalists for a long 

time (Garcillán et al., 2010) and has an extraordinary conservation interest (Arriaga et al., 

2000; Koleff et al., 2009). This extensive history of natural exploration has generated a rich 

variety of ecological and biogeographical interpretations, mainly based on ecosystem 

components and structure, synthesized by González-Abraham et al., (2010). We hypothesize 

that patterns in ecosystem functioning reflect ecoregionalization based on composition and 

structure features, however, the spatial coincidence between these dimensions of 

biodiversity decreases when we compare their patterns at more detailed spatial scales, i.e. 

downwards in the hierarchy of ecological units, from major regions to ecoregions (sub-

regions). 

 

4.4.2. Methods 

Study area and ecoregionalization 

We chose the peninsula of Baja California as study area (Figure 4.4.1.) because it contains 

high ecological heterogeneity governed by processes at different spatial and temporal 

scales, from the north-south transition of mediterranean-desert-tropics to the contrasting 

climatic influence of its two coastal seas (Garcillán et al., 2010). Besides that, its ecological 

geography has been studied for more than two centuries (Garcillán et al., 2010) and recently 

synthesized in an ecoregional map (González-Abraham et al., 2010). Ecoregions have been 

identified at hierarchical levels: level I contains the three major regions, Mediterranean, 

Desert, and Tropical, and level II contains fourteen ecoregions (sub-regions) within the above 

major regions (Figure 4.4.1.). 
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Figure 4.4.1. Study area and ecoregions by González-Abraham et al., (2010). 

Regarding climatology (Figure 4.4.2.), the Mediterranean region, in the northwest, is 

characterized by annual mean temperatures between 8-21ºC, summer drought, and winter 

precipitation, with annual rainfall ranging from 100-200 mm at sea level to 500-700 mm in 

the highest mountains (3100 m) (Hastings & Turner, 1965). The extensive Desert region, 

largely distributed from northeast to south, has temperatures ranging from 20-25ºC, and 

very low annual rainfall (44-200 mm), concentrated in sporadic events that shift from winter 

in the north to summer in the south (Hastings & Turner 1965; Peinado et al., 2011). The 

Tropical region, in the southern tip, is warm year-round (15-24ºC) and is characterized by 
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late summer-early autumn precipitation, mainly derived from tropical cyclones and storms 

(annual rainfall from 200 mm at sea level to 800 mm in the highest mountains -2090 m-, and 

a long dry season (Farfán & Fogel, 2007).  

 

Figure 4.4.2. Climate description of the study area. a) Annual Mean Temperature in ºC; b) Annual Mean 

Precipitation in millimeters (mm); c) Winter-Spring Precipitation (mm); and d) Summer-autumn 

Precipitation. Data from WorldClim version 2.1 (Fick & Hijmans, 2017). 
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Functional geography of ecosystems  

We characterized the geography of a key ecosystem process, terrestrial primary production 

dynamics, using the Ecosystem Functional Types (EFTs) approach (Paruelo et al., 2001; 

Alcaraz-Segura et al., 2006, 2013). For this, we used the 2001-2017 time-series of satellite 

images of the Enhanced Vegetation Index (EVI) obtained by the MODIS sensor, 

MOD13Q1.006 product (16-day maximum value composite images at 230 m pixel size). EFTs 

were identified from three descriptors of functional attributes from the seasonal curves of 

EVI, also known as Ecosystem Functional Attributes (EFAs): annual mean (EVI_surrogate of 

primary production), seasonal coefficient of variation (EVI_sCV, a descriptor of seasonality) 

and the peak of maximum EVI (EVI_DMAX, an indicator of phenology). Following Alcaraz-

Segura et al., (2013), each of the three descriptors was divided into four intervals, whose 

potential combinations result in a total of 64 different EFTs. In the case of phenology, we 

chose as intervals the four seasons, and for primary production and seasonality descriptors, 

we used their respective quartiles. Each EFT was named using the combination of two letters 

and a number: A-D for each class of primary production, increasing value in alphabetic order; 

a-d for seasonality, decreasing value in alphabetic order; and 1-4 for phenology, starting 

with 1 for spring. Therefore, we obtained 17 annual maps of EFTs for the period 2001-2017. 

We elaborated the final map of EFTs selecting for each pixel the median of the seventeen 

annual values. Previously, we excluded the areas under strong anthropic transformations 

according to González-Abraham et al., (2015) (human footprint index>0.5), and with 

anthropogenic categories in the last land-use map for the year 2017 of the Peninsula (INEGI, 

2017).  

Structural and compositional vs. functional geography of ecosystems 

To examine the relationship between the characterization of the ecosystem functioning 

geographical patterns and ecological regionalizations based on structural and compositional 

features of vegetation, we used the ecoregions map by González-Abraham et al., (2010). To 

do so, we first, characterized each ecoregion, at all levels (I and II), in terms of ecosystem 
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functioning, showing the frequency of each EFT in each ecoregion. And second, we carried 

out a Detrended Correspondence Analysis (DCA) (Hill & Gauch, 1980) between EFTs and 

ecoregions (Alcaraz­Segura et al., 2006; Fernández et al., 2010). This analysis represents in a 

multidimensional space reduced the spatial relationship between the classes of both maps. 

DCA prevented that sample units from being grouped together at the extremes of the 

gradient, since it scales the axes and equalizes the variance. Similarly, we prevented the 

problem that rare functions influence the outcome, since it reduces their weight. 

 

4.4.3. Results 

Functional characterization across ecoregions 

EFTs map provided the ecosystem functional characterization of the Baja California Peninsula 

in terms of three key attributes (productivity, seasonality, and phenology) related to the 

primary production dynamics of vegetation. All potential combinations (64 types) were 

present in the peninsula, although some of them were dominants (Figure 4.4.3.). Ten EFTs 

(16% of the total) covered approximately 50% of the total study area and twenty-five (39% 

of the total EFTs) 75% of the peninsula. From these results it was possible to divide the 

dominant ecosystem functioning into two groups: EFTs with high productivity, high 

seasonality and phenology in autumn (e.g. Da3, Ca3, Cb3); and EFTs with low productivity, 

low seasonality and phenology in winter and autumn (e.g. Ac4, Ad3, Ad4, Ba3, Bb3, Bc3...). 

At large scale, EFTs geographical pattern captured roughly the north-south climatic 

transition in the peninsula as shown by the ecoregions map (see EFTs map (Figure 4.4.3.)) 

and Correspondence Analysis (Figure 4.4.5.). In this sense, we could clearly identify the 

northwestern Mediterranean area, the tropical southern zone, and the desert transition areas 

between them. Despite this climate-based pattern, these three functional regions presented 

differences with respect to the boundaries of major ecoregions distribution. The 

geographical limits between the two functional regions in the north (northwest and 

northeast) were very similar to those proposed in the ecoregions map for the Mediterranean 
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and Desert structural and compositional based regions (Gonzalez-Abraham et al., 2010). In 

contrast, the geographical limits in ecosystem functioning of the southern half of the 

peninsula, between Desert and Tropical regions (EFTs map; Figure 4.4.3.) showed significant 

differences with the limits established in the ecoregions map. Spatial references in this 

section to the regions are based upon the ecoregions map by González-Abraham et al., 

(2010). 

The Mediterranean region had the highest EFTs heterogeneity in the peninsula (Figure 

4.4.4.a), showing an altitudinal and latitudinal pattern of productivity. Mountainous 

ecoregions were dominated by high productivity EFTs (D) (e.g. California Mountains), and as 

altitude and latitude decreased, a greater EFTs heterogeneity increased since more 

intermediate productivity EFTs (C-B) also appeared (e.g. Chaparral, Coastal Sage Shrub, and 

Succulent Coastal Shrub). Productivity decreased toward the desert region (i.e. southward) 

where we found the EFTs with the lowest values for this attribute (A) (e.g. Pacific Islands). 

Seasonality values were high in coastal ecoregions (a-b) (Coastal Sage Scrub, Succulent 

Coastal Scrub) and low (d) in the mountain (California Mountains, Chaparral). Peaks of 

greenness occurred mainly in spring (1) followed by autumn (3) and winter (4). This 

geographical pattern of EFTs coupled very well with the ecoregionalization established for 

the Mediterranean by Gonzalez-Abraham et al., (2010). Here was noticeable the precise 

functional delimitation that EFTs made between the coastal ecoregions (Coastal Sage Scrub 

and Succulent Coastal Sage) and mountains ecoregions (Chaparral and California Mountains) 

(EFTs map, Figure 4.4.3.), what suggests a clear functional boundary between these 

ecoregions. 

Desert showed a clear latitudinal pattern of EFTs (in terms of productivity, seasonality, and 

phenology). Productivity was low (A) in the northern part of the region (e.g. Lower Colorado 

Desert, Central, Desert, and Vizaíno Desert) and increased towards the south, getting EFTs 

with high values for this attribute (C-D) (e.g. Gulf Coast, La Giganta Ranges, Magdalena 

Plains). Seasonality was also low (d) in northern ecoregions (e.g. Lower Colorado Desert) and 
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increased southward (a-b) (e.g. La Giganta Ranges). Peaks of greening also differed along 

the latitudinal gradient, whereas northern desert ecoregions showed winter peak (4) (e.g. 

Lower Colorado, Central, and Vizaíno Desert), in the southern desert ecoregions, it occurs 

mainly in autumn (3) (e.g. Gulf Coast, La Giganta Ranges, and Magdalena Plains). Hence, in 

the Desert region, EFTs showed two functional deserts (Figures 4.4.3. and 4.4.4.b): (i) the 

northern part that represented the “typical” Desert (Vizcaíno Desert, Central Desert, and 

Lower Colorado Desert ecoregions) and (ii) the southern “tropical” Desert (that includes Gulf 

Coast Desert, Giganta Ranges, and Magdalena Plains ecoregions), functionally similar to the 

Tropical region.  

Finally, the Tropical region EFTs had the highest homogeneity in ecosystem functioning 

(Figures 4.4.3. and 4.4.4.c) and showed a homogeneous pattern through the three altitudinal 

ecoregions differentiated in the ecoregions map (Sarcrocaulescent Shrubland, Tropical Dry 

Forest and Cape Mountains). Functional differences along the region were only appreciable 

in terms of phenology. High mountain showed its phenological peak in September (summer), 

while low mountain and lowlands showed this peak during October-November (autumn). 

The region had a few different EFTs with high productivity (D), high seasonality (a), and the 

peaks of the maximum EVI in summer (2) and autumn (3). 
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Figure 4.4.3. Ecosystem Functional Types based on EVI-MODIS dynamics for 2001-2017 period 

(230x230 m pixel). EFT categories were indicated in the legend. Human transformed areas appeared in 
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white. 

Figure 4.4.4. Functional characterization of ecoregions. EFT frequency histograms in major regions 

(level I) and sub-regions (level II) ordered in a latitudinal range: a) Mediterranean; b) Desert; and c) 

Tropical. Colours correspond to the EFTs, see legend in Figure 4.4.3. 
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Correspondence between geographical patterns of ecosystem functioning and 

ecoregions 

Detrended Correspondence Analysis (DCA) (Figure 4.4.5.) showed that three major regions 

of the Peninsula were distributed along a marked productivity gradient (Figure 4.4.5. and 

Figure S1a). As a general pattern, the Mediterranean ecoregions (top left of Figure 4.4.5.), 

were associated with EFTs corresponding to high and intermediate productivity, low 

seasonality and phenology in spring (EFTs Dd1, Dc1, Cd1). However, two ecoregions 

considered to be Mediterranean by González-Abraham et al., (2010) did not appear in this 

group, being associated with other EFTs. On one hand, Pacific Islands appeared functionally 

separated from the other Mediterranean ecoregions and were associated with those 

corresponding to a climatic desert. On the other hand, Succulent Coastal Scrub, appeared in 

a transition zone between high productivity EFTs (typical of the Mediterranean) and low 

productivity EFTs (typical of the desert).  

Desert ecoregions were grouped in two different places of the DCA (Figure 4.4.5. and Figure 

S1): (i) northern desert ecoregions (bottom right) and (ii) southern desert ecoregions (left). 

The group of northern desert ecoregions, had associated EFTs characterized by low 

productivity, in particular, Vizcaíno Desert was associated to very low productivity (A) and 

high seasonality (a) (EFT Aa4) and Lower Colorado Desert and Central Desert showed EFTs 

with low-medium productivity (B) and low or medium seasonality (c-d) (EFT Bc4). Southern 

desert ecoregions (i.e. Central Gulf Coast, La Giganta Ranges, and Magdalena Plains) were 

placed near to the tropical ecoregions, in a transition zone. Therefore, the southern part of 

Desert region, in the ecoregions map, is functionally more similar to the Tropical region than 

to the northern desert. Here, productivity was remarkably higher (C) than in the rest of desert 

region (A-B), and the phenological peak occurs between September to November (autumn-

3), in a similar way to the tropical region and in contrast to the rest of desert region, where 

it occurred between February to April (mainly winter-4). Furthermore, the southern Desert 

region presents higher seasonality (a-b) than the rest of the Desert, and is similar to the 

Tropical region. 
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Finally, we found the group of tropical EFTs (right in Figure 4.4.5. and Figure S1) associated 

with EFTs of high productivity (D), high seasonality (a) and phenology in summer (2) and 

autumn (3) (EFT Da2, Da3). The most novel result was the functional proximity of the 

ecoregions of the southern desert with the tropical region. 

Figure 4.4.5. Ordination plot of dimension 1 and dimension 2 of the Detrended Correspondence 

Analysis (DCA) run with the contingency matrix between Ecosystem Functional Types, EFTs (circles) and 

ecoregions (triangles) in the Baja California Peninsula. See EFT codes in legend. Dotted circles 

represented the three major regions: Mediterranean in purple, Desert in red and Tropical in green. 

 

4.4.4. Discussion 

We found that in the Baja California Peninsula, at the broad scale, the spatial patterns in 

ecosystem functioning can produce different spatial patterns to the biogeographic 

regionalization established from structural and compositional attributes of the ecosystems. 
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In fact, when we focused on a more detailed scale, some disagreement between the 

functional patterns with ecoregions were more evident. This was particularly evident in the 

Desert - Tropical regions that, in contrast to the Mediterranean ecoregions, did not show 

spatial association with the EFTs that better represented the climatic conditions of the major 

region. Our analysis showed that the southern Desert ecoregions were functionally more 

similar to the Tropical region than to the rest of the desert ecoregions, and ecoregions inside 

Tropical region were functionally similar. These results emphasize the concept that functional 

geography provides new information about ecological systems, bringing us a new vision of 

another dimension of biodiversity. The knowledge of the relationship between the patterns 

of ecoregions and ecosystem functioning is the basis for a better understanding of spatial 

and temporal patterns of multidimensional biodiversity, which may guide towards a better 

regionalization and could aid for management and conservation purposes. 

 

Classical regionalization and functional characterization of ecoregions: are our 

functional observations consistent with ecoregions? 

Nature of tropics and geographical limits 

We found two functional regimes with a transition around 27o-28o N: the northern half driven 

by winter-spring raining season and the southern half by summer-autumn rains. 

There has been a long-time discussion among naturalists about the transition between the 

desert and tropical regions (Shreve, 1951; León de la Luz et al., 2008; González-Abraham et al., 

2010). This transition has been delimited using different indices or attributes (Corlett, 2013; 

Feeley & Stroud, 2018), including climate variables (Hastings & Turner, 1965; Turner et al., 1995), 

species distribution (Garcillán et al., 2003), intra-species genetic changes (Riddle et al., 2000) or 

even geological features (León de la Luz et al., 2000). However, it has not been shown in terms 

of ecosystem functioning.  

The extension of tropicality over the southern half of the peninsula, and its functioning leaves 
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open a promising avenue for the study of the functionally tropical behavior of various parts of 

the desert. Something that has not been clearly explained in ecological terms before. In this 

sense, there are ecoregions not considered tropical until now (but desert), which although they 

do not have the tropicality as marked as the tropical ones (Sarcocaulescent Shrubland, Tropical 

Dry Forest and Cape Mountains), they also have the typical EFT of the tropics (EFT Da1) as the 

most abundant (Gulf Coast, La Giganta Ranges, and Magdalena Plains). Therefore, our results 

suggest that EFTs can help to conceptualize and define limits and dynamics of tropics or other 

ecological regions across different spatio-temporal scales. 

Two functional deserts 

One of the most remarkable results is the empirical evidence of two functionally deserts 

(approx. at 27.5o N) (Figure 4.4.3.). The transition between both functional deserts occurs at 

different latitudes depending on each peninsular coast. Here, ecosystem functioning is 

conditioned by the opposite thermal influence of the Gulf of California and the Pacific Ocean. 

The Northern desert descends southward along the Pacific coast to around 26oN 

characterized by low productivity, low to moderate seasonality and high dependence on 

winter rains (Lower Colorado Desert, Central Desert, and Vizcaíno Desert ecoregions); 

however, in the Gulf Coast, the Southern desert extends to reach next to 28 oN, showing 

higher productivity, seasonality and dependence on summer rains (Gulf Coast, La Giganta 

Ranges, and Magdalena Plains ecoregions). In essence, the presence of the California Current 

on the Pacific coast favours the southern extension along this coast of Mediterranean climate 

characteristics (including frequent fogging), while the high temperature of the Gulf of 

California prolongs the tropical influence towards the north along its coasts (Hastings & 

Turner, 1965; Peinado et al., 1994). On the Pacific coast, it has been shown that the ocean 

surface temperature (fog promoter) and the photosynthetically active radiation portion 

(fPAR) are directly related (Reimer et al., 2015), helping to maintain a minimum of 

productivity in places where precipitation is very scarce or even non-existent for long periods 

of time. Besides the climate transitional character of the Desert region, the scarce and high 
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spatial and temporal variability of its precipitation (Hastings & Turner, 1965; Turner & Brown, 

1982; Peinado et al., 2011) produce the elevated functional heterogeneity observed along 

this region. 

These results can help to understand the controversy that has traditionally existed over the 

classification of southern desert ecoregions. Shreve (1951) considered La Giganta Ranges to 

be tropical, but a later study by Leon de la Luz et al., (2008) suggested that floristically it 

resembled the desert. In the case of Gulf Coast and Magdalena Plains, all studies since the 

work of Shreve (1951) have considered them to be desert ecoregions (see review in Garcillán 

et al., 2010; González-Abraham et al., 2010). However, our analyses showed that these three 

ecoregions functionally have a strong tropical character. The Gulf Coast ecoregion is a narrow 

strip of very long latitude (24-29o N) along the decreasing gradient of summer precipitation. 

These characteristics and the barrier effect of the mountains to the west, make it the most 

heterogeneous ecoregion in the whole Peninsula, hence its difficult classification. The 

Giganta Ranges was also identified as a zone of discrepancy in González-Abraham et al., 

(2010), but this did not happen for Magdalena Plains. Therefore, the identification of 

functionally tropicaloid features in this last ecoregion makes it necessary to reconsider its 

classification. 

EFTs captured internal heterogeneity in Mediterranean ecoregions but not in tropical 

ecoregions 

Inside the Mediterranean region, EFTs analysis showed a heterogeneous spatial pattern similar 

to the regionalization established in the ecoregions map, which is mainly structured by the 

double effect of coast and topography. In coastal ecoregions the presence of fog constitutes a 

climatic factor that conditions the adaptations of the organisms (Hastings & Turner, 1965; 

Martorell & Ezcurra, 2002). Furthermore, there exists a climate gradient in altitude (Peinado et 

al., 2011) that modifies the vegetation types and determines the different functional traits 

behaviors within the region.   
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Despite the similarity with the structural/compositional approaches, two ecoregions 

previously classified as Mediterranean were grouped with the others due to their peculiarities 

in ecosystem functioning. First, Succulent Coastal Scrub, located in the Pacific Coast between 

29.5o and 31o N, has been long considered a transitional region (González-Abraham et al., 

2010). In fact, in our CA appeared in a transition zone between EFTs characteristics of 

Mediterranean and Desert. Here, chaparral species extend southward to where moisture 

remains enough (Shreve, 1936), while the northern range of the desert species seems to 

depend on the absence of frost and some availability of water in summer (e.g. Shreve, 1936; 

Raven & Axelrod, 1978), probably associated with coastal fogs (Rundel & Mulroy, 1972; 

Garcillán et al., 2013). Second, Pacific Islands, which González-Abraham et al., (2010) already 

identified as one of the areas of discrepancy between authors. Its biological and 

biogeographical uniqueness is unquestionable. Most of the extension of these islands is 

occupied by semi-desert vegetation. However, biogeographically it is interesting that there 

an important proportion of Mediterranean flora (Epling & Lewis, 1942; Wallace, 1985; Smith 

et al., 1990; Oberbauer, 1993), which has led to consider it as a Mediterranean ecoregion in 

desert latitudes (González-Abraham et al., 2010). In terms of EFTs, its composition was very 

different from the rest of the mediterranean ecoregions (Figure 4.4.4.), showing low 

productivity EFTs, typical of the desert. Here, precipitation from fog condensation hybridizes 

the mediterranean regime of rains and allows the coexistence of these mediterranean species 

with the desert flora component, producing the mixed functional behavior that we observed. 

The mediterranean conditions, in terms of the topographic gradient (approx. 3000 m) and 

coastal proximity, also occurred in the tropical region. But here EFTs did not show the 

heterogeneity mentioned in mediterranean, instead, they were functionally homogeneous. 

Although the annual precipitation variation associated with altitudinal gradient is even 

higher in the Tropical region (from less than 200 to 700 mm) than in Mediterranean region 

(from 270 to 650 mm), the homogeneity in ecosystem functioning could be due to the 

seasonality in the precipitation regime and the similarity in the phenological peak. Here, rain 

is concentrated in the summer and early autumn months (July to October) and there is an 
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existence of a season without rain ("dry" season) of between five and eight months (Farfán 

& Fogel, 2007). Therefore, in this area, climatic controls are more important than altitudinal 

ones, which is reflected by the ecosystem functioning, i.e. in the presence of the same coastal 

and altitudinal factors, the ecosystem functioning is more homogeneous than mediterranean 

areas due to seasonality in rainfall patterns. In fact, the combination between the altitudinal 

range and heterogeneous distribution of precipitation and hence, phenology through the 

year, could be the reason for the high internal heterogeneity of EFTs in this region. 

 

The role of ecosystem functioning in biological regionalization exercises 

In the last decade, functional analysis of ecosystems has gained attention because it is a useful 

perspective for assessing and monitoring the effects of global change on diversity (Cabello et 

al., 2012; Pereira et al., 2013). Furthermore, incorporating functional aspects into regionalization 

practice offers a great potential for improving our understanding of spatial and temporal 

diversity patterns (Garnier et al., 2016); and implementing new programs for the conservation 

of ecological processes (Asner et al., 2017). EFT concept has been highlighted as “the first serious 

attempt to group ecosystems (at large scales) on the basis of shared functional behavior” 

(Mucina, 2019), and its strength for a better understanding of ecological systems providing new 

information derives from its ability to capture ecosystem functioning into discrete entities that 

can be mapped. Mapping such entities (EFTs) that reflect the performance of the whole 

ecosystem opens a straightforward, tangible and biologically meaningful way for incorporating 

ecosystem functioning in regionalizations, based on the regional heterogeneity of functional 

attributes at ecosystem level. EFT represents a new and complementary approach to long-

established ones based on the compositional (e.g. species richness) and structural (e.g. 

vegetation types) characterizations of biodiversity, but also to the more recent functional 

approaches based on functional traits at species level.  

The differences with these approaches derive both from the attributes of biodiversity reported 

by EFTs and the method used to do so. First, EFT considers ecosystem attributes related to the 

stocks and flows of matter and energy derived from biological activity taking place on plots of 
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land, providing integrative information on the functional facets of biodiversity living on those 

plots. Second, EFTs capture temporal dynamics that are difficult to map through compositional 

or structural regionalization approaches, since they are a static measure with a fixed time interval 

(i.e. they measure conditions through the legacy of geological and evolutionary history). Third, 

EFTs are identified by remote sensing tools from aggregated measurements of ecosystem 

functions at the pixel level, which in practice represents information of the performance of the 

whole ecosystem. Remote sensing tools can offer more integrative functional measures of the 

whole ecosystem performance (productivity, evapotranspiration, etc.) that complement our 

traditional view of ecosystems (Butchart et al., 2010; Asner et al., 2017).  

 

4.4.5. Conclusions 

Our work highlights that differences between the proposals, rather than being a disadvantage, 

is the result of diverse approaches based on the different levels of ecological and 

biogeographical organization in the region, and their differences are highly informative. 

Ecosystem Functional Types allowed us to understand the relationship between different 

dimensions of biodiversity in regionalization exercises, i.e. between biological regionalization 

based on the biota components and structure (species distribution, endemisms, vegetation 

types) and patterns of ecosystem functioning (EFTs). The regionalization schemes have been 

widely used for guiding management and conservation decision-making since it allows us to 

organize our understanding of how major terrestrial ecosystems work. In this sense, due to the 

development of new techniques based on remote sensing, functional features measured at 

regional scales could be incorporated, allowing us to complement our traditional view of 

ecosystems, providing the basis for a more comprehensive regionalization of geographical 

patterns of life and therefore, improving also the future conservation purposes. 
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4.4.7. Appendices 

 

Figure S1. Ordination plot of dimension 1 and dimension 2 of the Detrended Correspondence Analysis 

(DCA) run with the contingency matrix between Ecosystem Functional Types, EFTs (circles) and 

ecoregions (triangles) in the Baja California Peninsula and colored by the three ecosystem functional 

attributes from which EFTs are derived. a) DCA colored by EVI mean, as surrogate of productivity, from 

A to D increasing; b) DCA colored by EVI sCV, indicator of seasonality from a to d decreasing and; c) 

DCA colored by EVI DMAX, indicating the peak of maximum EVI (SP-Spring, SU-Summer, AU-Autumn, 

WI-Winter).
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5. GENERAL DISCUSSION 

This PhD thesis provides a remote-sensing based conceptual and methodological advance 

to incorporate the functional dimension of biodiversity at ecosystem level in ecology and 

conservation biology through the application of the Ecosystem Functional Type (EFT) 

concept. The results have provided new ways for the regional assessment of ecosystem 

functional patterns, ecological regionalization and setting geographic conservation 

priorities. Here, we discuss three main issues that have emerged along the study: 1) the role 

of ecosystem functioning in ecology and biodiversity science; 2) the conservation paradigm 

of ecosystem functioning, and 3) challenges and future research on EFT. 

5.1. The role of ecosystem functioning in ecology and biodiversity science 

This thesis aims to incorporate ecosystem functioning in biodiversity science and 

conservation and to facilitate the understanding of the relationship among the 

compositional, structural and functional facets of biodiversity, a central issue in ecological 

and environmental sciences during the last decades. Here, Ecosystem Functional Types have 

been proved to be a useful tool for assessing patterns of ecosystem heterogeneity (Chapter 

I), for identifying relevant areas in terms of ecosystem functioning (Chapter II and III), and for 

enhancing ecological regionalizations (Chapter IV). Ecosystem Functional Types have also 

been proved to be homogeneous groups that share common matter and energy dynamics 

(Chapter I), and therefore could show a similar and coordinated response to environmental 

factors. Developing a functional classification for ecosystems is relevant since it aims to 

reduce the diversity of biological entities (for instance genes, species or ecosystems) (Noss 

1990), and to allow for the identification of homogeneous categorical groups that showed a 

similar and coordinated responses to environmental factors and effects on ecological 

processes (Díaz et al., 2013). Thus, functional classifications for ecosystems provide a useful 

framework for understanding the large-scale ecological changes (Alcaraz-Segura et al., 2017; 

Requena-Mullor et al., 2017, 2018; Arenas-Castro et al., 2018; Lourenço et al., 2018), since 
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effects of global change are particularly noticeable at the ecosystem level (Vitousek, 1994), 

and have a faster influence on functional than on structural or compositional characteristics 

of ecosystems (McNaughton et al., 1989). Furthermore, functional classifications for 

ecosystems allow the assessment of global change impacts on ecosystem functioning and 

their associated services (Díaz et al., 2013; Hellmann et al., 2017). 

No scientific consensus has been reached on how to track ecosystem functions at regional 

scales (Pettorelli et al., 2018). Although several efforts have focused on monitoring 

ecosystems over the past decades, including ecosystems functions (Oliver et al., 2015), e.g. 

Red List of Ecosystems assessment (Keith et al., 2015), or Essential Biodiversity Variables 

(Pereira et al., 2013), these efforts have not been made in a common way. Hence, this lack of 

clarity has hampered progress in terms of identifying opportunities for ecosystem 

functioning monitoring globally (Pettorelli et al., 2018). A well-known example of this lack of 

consensus that can be found in the framework of Planetary Boundaries (Steffen et al., 2015), 

where the two main dimensions to assess Biosphere Integrity are genetic diversity (for which 

there are targets) and functional diversity (for which there are no targets). Not having 

functional diversity or ecosystem functioning is a potential gap in the framework.  

To address these gaps, we propose the use of the remotely sensed-Ecosystem Functional 

Type concept, which we have demonstrated throughout the thesis, that it is a powerful tool 

to assess and contribute to conserving the ecosystem functioning heterogeneity, i.e. to 

incorporate ecosystem functional diversity dimension in ecology and conservation. To 

ensure and facilitate the incorporation of such functioning, all the metrics developed to 

measure ecosystem functioning, as well as the database with the resulting maps, have been 

provided to the scientific community and managers (Chapter II). Moreover, one essential 

aspect of the concept should be highlighted as a major advantage: according to Pettorelli et 

al., (2018), currently, “remote sensing is the only methodology able to provide global 

coverage and continuous measures at relatively high spatial and temporal resolutions 

(Skidmore et al., 2015; Pettorelli et al., 2016, 2018)”. Additionally, EFTs are defined with a top-

https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.59#rse259-bib-0107
https://zslpublications.onlinelibrary.wiley.com/doi/full/10.1002/rse2.59#rse259-bib-0093


General Discussion 

____________________________________________________________________ 

 
241 

down strategy, which makes use of functional characters of ecosystems identifiable at the 

regional scale, seeking to emphasize the overall performance of the system, and 

complementing our traditional structural view of ecosystems, since it facilitates the 

incorporation of ecosystem functioning into biodiversity science (Chapter III and IV). 

Hence, EFTs provide a measurement of ecosystem functioning that could play an important 

role in the assessment of functional biodiversity at global scale and present improvements 

with respect to other methodologies. Literature has pointed out that other approaches to 

evaluating ecosystem functioning, such as the Plant Functional Types (PFT) approach, is not 

straightforward and accurate enough to represent ecosystem functional properties at the 

ecosystem level (Clark, 2016; Saccone et al., 2017; Thomas et al., 2019). In particular, several 

studies demonstrated that it is inadequate to use data from a single site to estimate the 

parameters of a given PFT for regional applications (Xiao et al., 2011). Jetz et al., 2016 pointed 

out that “scaling up processes from fine-grained local studies to larger regions (and 

ultimately the entire globe) is an urgent challenge for all of the Earth sciences”. Thus, EFTs 

observations from space have the potential to provide a global assessment for functional 

biodiversity, with the advantage of being a quicker and sensitive response to short-term 

changes in ecosystem performance than composition or structure, and can be produced on 

an annual basis providing a straightforward way to track interannual changes in ecosystem 

functioning (Müller and others 2014). 

5.2. Conservation paradigm of ecosystem functioning 

Contemporary conservation schemes face the challenge of safeguarding the ecological 

processes required for the persistence of biodiversity over time (GBO4, 2014; CBD-Target 11; 

Visconti et al., 2019; Prober et al., 2019) and for the supply of ecosystem services to people 

(Costanza, 2012, 2014; Lavorel et al., 2020). In this sense, conservation efforts need to include 

spatially explicit and parsimonious ways to incorporate heterogeneity in ecosystem functions 

(Turner and Chapin, 2005; Harvey et al., 2017) in order to develop theory and tools that 

complement traditional planning and management actions (Possingham et al., 2005). The 
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strength of EFTs for being applied in conservation biology derives from their ability to 

capture ecosystem functioning into discrete entities that can be mapped (Chapter II and III). 

Mapping such entities (EFTs) that reflect the performance of the whole ecosystem opens a 

straightforward, tangible and biologically meaningful way for conservation based on the 

regional heterogeneity of functional attributes at ecosystem level (Turner and Gardner, 

2015). The identification of areas with high functional diversity at the ecosystem level can 

help to expand currently protected area networks using complementary arguments to the 

species richness and ecosystem structure more focused on ecosystem multifunctionality, 

resilience and ecosystem services (Manning et al., 2018; Lecina-Díaz et al., 2019).  

EFTs applied in conservation represent a complementary approach to long-established ones 

based on the compositional (e.g., species richness) and structural (e.g., vegetation types) 

characterizations of biodiversity, but also to the more recent functional approaches based 

on functional traits at species level. The differences with these approaches derive both from 

the attributes of biodiversity reported by EFTs and the method used to do so. First, EFT-

based priorities consider ecosystem attributes related to the stocks and flows of matter and 

energy derived from biological activity taking place on plots of land, providing integrative 

information on the functional facets of biodiversity living on those plots. Second, EFTs are 

identified by remote sensing tools from aggregated measurements of ecosystem functions 

at the pixel level, which in practice represents information of the performance of the whole 

ecosystem (Butchart et al., 2010; Asner et al., 2017). 

In essence, an agreed methodology for the assessment of ecosystem functions, using 

satellite remote sensing, i.e. EFTs, could offer many opportunities to advance ecosystem 

functions conservation, allowing, for example, to identify hotspots in functional diversity and 

functional stability (Chapter II), to incorporate ecosystem functional diversity into geographic 

conservation priorities (Chapter III), and to guide management and decision making actions 

since it allows us to organize our understanding of how major terrestrial ecosystem works 

(Chapter IV). 
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Henceforth, providing effective tools for measuring functions is the initial stage in carrying 

out the policies and management required to safeguard the processes that support 

biodiversity and the services necessary for human well-being (Steffen et al., 2015; Naidoo et 

al., 2019). However, according to Pettorelli et al., (2018), “information on the state of 

ecosystem functions and services available remains scarce from the Biodiversity Indicators 

Partnership, a global initiative to promote and coordinate the development and delivery of 

biodiversity indicators for use by the CBD and other biodiversity‐related conventions, the 

Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, the 

Sustainable Development Goals and national and regional agencies”. While satellite remote 

sensing EFTs could help track progress towards the CBD targets, since it allows yearly 

systematic monitoring across all important sites which could help to determine whether the 

current management regime is effective for conservation or in retaining or restoring a site 

biodiversity value (according to CBD post-2020 targets, Visconti et al., 2019). In this sense, 

efforts of Chapter II are focused on providing both to the scientific and managers 

communities with valuable information of the first characterization of the functional diversity 

at the ecosystem level. In particular, we provide the information and data sources to 

reproduce the methodology in any area of the world. 

5.3. Challenges and future research of EFTs 

The use of the EFT concept in ecology and conservation is still subjected to some challenges. 

First, our satellite-derived EFT map characterizes the spatial heterogeneity of primary 

production dynamics. However, EFTs could also be identified from other remote sensing 

indices (e.g. Fernández et al., 2010), to characterize the spatiotemporal heterogeneity of 

multiple ecosystem processes and functions (e.g. albedo, evapotranspiration or surface 

temperature) at different scales to guide biodiversity and ecosystem services policies 

(Pettorelli et al., 2018). Second, the EFT richness and rarity maps inform on the diversity and 

spatiotemporal heterogeneity in the occurrence of an ecosystem function, but additional 

landscape indices could also inform on the spatial arrangement (Fahrig and Nuttle, 2005), 
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connectivity, and lateral transfers (sensu Turner and Gardner, 2015) of energy and matter 

fluxes at the landscape level. Third, the incorporation of EFTs in earth system models is 

difficult, since these models can use simple and small numbers of categories in a variable 

and 64 are too many, nevertheless it is possible to incorporate it, see Lee et al., (2013) and 

Müller et al., (2014).  

Future works should explore the effect of image pixel size (e.g. with Sentinel-2 at 10 m/pixel), 

hierarchy in the EFT classification, and parochialism (Pouzols et al., 2014) on the EFT-based 

approach, include other ecosystem functions (e.g. albedo, surface temperature), temporal 

changes in EFT diversity, and further metrics of heterogeneity across scales. Another 

challenge for future works is to demonstrate that EFTs show a homogeneous response to 

environmental changes and determine whether patterns remain stable with changes in 

spatial scale. 
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6. GENERAL CONCLUSIONS 

 

1.  Ecosystem functioning descriptors, such as Ecosystem Functional Attributes (EFAs) 

and Ecosystem Functional Types (EFTs), derived from satellite spectral indices (e.g. Enhanced 

Vegetation Index, EVI), demonstrated to be useful and innovative tools to incorporate 

ecosystem functioning at regional scales into ecology and conservation. In particular, EFTs 

are a straightforward approach that builds just on three satellite-derived meaningful 

descriptors of ecosystem functioning, which facilitates computation and interpretation by 

scientists, managers and policymakers. EFTs open a new way for the regional assessment of 

ecosystem functional patterns, heterogeneity and diversity that can be used in ecological 

regionalizations and in setting geographic conservation priorities. 

 

2. EFTs, an ecosystem functional classification built from satellite observations of 

radiation exchanges between the biosphere and the atmosphere, can inform on 

homogeneous patches on the land surface in terms of their NEE dynamics measured on 

ground. Given that NEE dynamics is related to primary production, one of the most essential 

and integrative descriptors of ecosystem functioning, satellite-derived EFTs can then be used 

(as essential variables) to describe, assess and monitor the regional heterogeneity and spatial 

diversity of ecosystem functioning. 

 

3. EFTs allowed us to map the regional spatial patterns of two indicators of ecosystem 

functional diversity, i.e., EFT richness and EFT rarity and two indicators of ecosystem 

functional stability, i.e. EFT interannual variability and dissimilarity at the protected area level, 

providing both scientists and managers with valuable information of the functional diversity 

and their stability at ecosystem level.  

 

4. The EFT approach can be used to incorporate the heterogeneity and singularity of 

ecosystem functions into geographic conservation priority setting. Such functional approach 
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can complement compositional and structural assessments of biodiversity to support 

decision-making by offering supplementary arguments for the holistic conservation of 

biodiversity. Important areas for ecosystem functional diversity were sometimes congruent 

with areas of interest for biodiversity composition and structure, which highlights their 

relevance for the conservation of multiple biodiversity facets, but some other times they were 

not congruent.  That lack of congruence highlights that traditional approaches may not 

identify all the important areas for ecosystem functions, and may tend to better prioritize 

areas with rarity than with richness in EFTs.  

 

5. EFTs allowed us to understand the relationship between different dimensions of 

biodiversity in regionalization exercises, i.e. between biological regionalizations based on 

biodiversity composition and structure (species distribution, endemisms, vegetation types) 

and regional patterns of ecosystem functioning (EFTs). In ecological regionalization, EFTs 

bring a new and complementary vision of the functional dimension of biodiversity. The 

knowledge of the relationship between the patterns of ecoregions and ecosystem 

functioning opens new ways for a better understanding the spatial and temporal patterns of 

multidimensional biodiversity facets, which may help towards more comprehensive and 

operational regionalizations that could serve management and conservation purposes of 

biodiversity and ecosystem services. 

 

6. Future conceptual and empirical development and applications of EFTs should 

include other ecosystem functions, further field validation and EFT parameterization, 

hierarchy in the EFT classification, and parochialism effect on the EFT-based approach, 

temporal changes in EFT diversity, and further metrics of heterogeneity across scales. 

 

 

 



 

 
249 

 

 

 

 

 

 

 

 

7. GENERAL REFERENCES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
250 



General References 

______________________________________________________________________ 

 
251 

Alcaraz, D., Paruelo, J., & Cabello, J. (2006). Identification of current ecosystem functional types 

in the Iberian Peninsula. Global Ecology and Biogeography, 15(2), 200-212.  

Alcaraz-Segura, D., Cabello, J., & Paruelo, J. (2009). Baseline characterization of major Iberian 

vegetation types based on the NDVI dynamics. Plant Ecology, 202(1), 13-29.  

Alcaraz-Segura, D., Paruelo, J. M., Epstein, H. E., & Cabello, J. (2013). Environmental and Human 

Controls of Ecosystem Functional Diversity in Temperate South America. Remote Sensing, 

5(1), 127-154.  

Alcaraz-Segura, D., Lomba, A., Sousa-Silva, R., Nieto-Lugilde, D., Alves, P., Georges, D., … & 

Honrado, J. P. (2017). Potential of satellite-derived ecosystem functional attributes to 

anticipate species range shifts. International Journal of Applied Earth Observation and 

Geoinformation, 57, 86-92.  

Anderson, C. B. (2018). Biodiversity monitoring, earth observations and the ecology of scale. 

Ecology Letters, 21(10), 1572-1585.  

Arenas-Castro, S., Gonçalves, J., Alves, P., Alcaraz-Segura, D., & Honrado, J. P. (2018). Assessing 

the multi-scale predictive ability of ecosystem functional attributes for species distribution 

modelling. PLOS ONE, 13(6), e0199292.  

Arenas-Castro, S., Regos, A., Gonçalves, J. F., Alcaraz-Segura, D., & Honrado, J. (2019). Remotely 

Sensed Variables of Ecosystem Functioning Support Robust Predictions of Abundance 

Patterns for Rare Species. Remote Sensing, 11(18), 2086.  

Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C. B., Sinca, F., … & Llactayo, W. 

(2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide 

conservation. Science, 355(6323), 385-389.  

Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., & Schmid, B. 

(2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and 

services. Ecology Letters, 9(10), 1146-1156.  

Bengtsson, J. (1998). Which species? What kind of diversity? Which ecosystem function? Some 

problems in studies of relations between biodiversity and ecosystem function. Applied Soil 

Ecology, 10(3), 191-199.  

Bongaarts, J. (2019). IPBES, 2019. Summary for policymakers of the global assessment report on 

biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on 

Biodiversity and Ecosystem Services. Population and Development Review, 45(3), 680-681.  

Boschetti, M., Stroppiana, D., Confalonieri, R., Brivio, P. A., Crema, A., & Bocchi, S. (2011). 

Estimation of rice production at regional scale with a Light Use Efficiency model and MODIS 

time series. Italian Journal of Remote Sensing/Rivista Italiana Di Telerilevamento, 43(3). 

Box, E. O., Holben, B. N., & Kalb, V. (1989). Accuracy of the AVHRR vegetation index as a predictor 

of biomass, primary productivity and net CO2 flux. Vegetatio, 80(2), 71-89.  



General References 

______________________________________________________________________ 
 

 
252 

Butchart, S. H. M., Walpole, M., Collen, B., Strien, A. van, Scharlemann, J. P. W., Almond, R. E. A., 

… & Watson, R. (2010). Global Biodiversity: Indicators of Recent Declines. Science, 328(5982), 

1164-1168.  

Cabello, Javier, Fernández, N., Alcaraz-Segura, D., Oyonarte, C., Piñeiro, G., Altesor, … & Paruelo, 

J. M. (2012). The ecosystem functioning dimension in conservation: Insights from remote 

sensing. Biodiversity and Conservation, 21(13), 3287-3305.  

Cabello, J., Alcaraz-Segura, D., Reyes, A., Lourenço, P., Requena, J. M., Bonache, … & Serrada, J. 

(2016). Sistema para el Seguimiento del funcionamiento de ecosistemas en la Red de Parques 

Nacionales de España mediante Teledetección. Revista de Teledetección, 46, 119.  

Cadotte, M. W., Carscadden, K., & Mirotchnick, N. (2011). Beyond species: Functional diversity 

and the maintenance of ecological processes and services. Journal of Applied Ecology, 48(5), 

1079-1087.  

Callicott, J. B., Crowder, L. B., & Mumford, K. (1999). Current normative concepts in 

conservation. Conservation biology, 13(1), 22-35. 

Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., ... & Kinzig, A. P. 

(2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59-67. 

Carwardine, J., Rochester, W. A., Richardson, K. S., Williams, K. J., Pressey, R. L., & Possingham, H. 

P. (2007). Conservation planning with irreplaceability: Does the method matter? Biodiversity 

and Conservation, 16(1), 245-258.  

Ceballos, G., & Brown, J. H. (1995). Global Patterns of Mammalian Diversity, Endemism, and 

Endangerment. Conservation Biology, 9(3), 559-568.  

Chapin, F. S., Carpenter, S. R., Kofinas, G. P., Folke, C., Abel, N., Clark, W. C., … & Swanson, F. J. 

(2010). Ecosystem stewardship: Sustainability strategies for a rapidly changing planet. Trends 

in Ecology & Evolution, 25(4), 241-249.  

Clark, J. S. (2016). Why species tell more about traits than traits about species: Predictive analysis. 

Ecology, 97(8), 1979-1993.  

Convention on Biological Diversity CBD. (1992). United Nations Environmental Program.  

Convention on Biological Diversity, CBD. (2010). Global Biodiversity Outlook 3. Secretariat of the 

Convention on Biological Diversity, Montreal. 

Convention on Biological Diversity CBD. (2011) Conference of the Parties Decision X/2: Plan 

Biodiversity Strategy Paper 2011-2020. 

Coops, N. C., Kearney, S. P., Bolton, D. K., & Radeloff, V. C. (2018). Remotely-sensed productivity 

clusters capture global biodiversity patterns. Scientific Reports, 8(1), 16261.  

Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., García Millán, V. E., … & Michael, F. 

(2015). Remote sensing for mapping natural habitats and their conservation status – New 

opportunities and challenges. International Journal of Applied Earth Observation and 

Geoinformation, 37, 7-16.  



General References 

______________________________________________________________________ 

 
253 

Costanza, R., Norton, B. G., & Haskell, B. D. (1992). Ecosystem Health: New Goals for 

Environmental Management. Island Press. 

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., … & van den Belt, M. 

(1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 

253-260.  

Costanza, R. (2012). Ecosystem health and ecological engineering. Ecological Engineering, 45, 

24-29.  

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., … & Turner, 

R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 

26, 152-158.  

Díaz, S., Lavorel, S., Bello, F. de, Quétier, F., Grigulis, K., & Robson, T. M. (2007). Incorporating 

plant functional diversity effects in ecosystem service assessments. Proceedings of the 

National Academy of Sciences, 104(52), 20684-20689.  

Díaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., … & Pearse, 

W. D. (2013). Functional traits, the phylogeny of function, and ecosystem service vulnerability. 

Ecology and Evolution, 3(9), 2958-2975.  

Didan, K. (2015). MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid 

V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2020-03-25 from 

https://doi.org/10.5067/MODIS/MOD13Q1.006. 

Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS vegetation index user’s guide 

(MOD13 series). University of Arizona: Vegetation Index and Phenology Lab.  

Doak, D. F., Bakker, V. J., Goldstein, B. E., & Hale, B. (2015). What Is the Future of Conservation? 

En G. Wuerthner, E. Crist, & T. Butler (Eds.), Protecting the Wild: Parks and Wilderness, the 

Foundation for Conservation (pp. 27-35). Island Press/Center for Resource Economics.  

Duncan, C., Thompson, J. R., & Pettorelli, N. (2015). The quest for a mechanistic understanding 

of biodiversity–ecosystem services relationships. Proceedings of the Royal Society B: 

Biological Sciences, 282(1817), 20151348. 

Duro, D. C., Coops, N. C., Wulder, M. A., & Han, T. (2007). Development of a large area 

biodiversity monitoring system driven by remote sensing. Progress in Physical 

Geography, 31(3), 235-260. 

Fahrig, L., & Nuttle, W. K. (2005). Population Ecology in Spatially Heterogeneous Environments. 

En G. M. Lovett, M. G. Turner, C. G. Jones, & K. C. Weathers (Eds.), Ecosystem Function in 

Heterogeneous Landscapes (pp. 95-118). Springer.  

Fernández, N., Paruelo, J. M., & Delibes, M. (2010). Ecosystem functioning of protected and 

altered Mediterranean environments: A remote sensing classification in Doñana, Spain. 

Remote Sensing of Environment, 114(1), 211-220.  

https://doi.org/10.5067/MODIS/MOD13Q1.006
https://doi.org/10.5067/MODIS/MOD13Q1.006


General References 

______________________________________________________________________ 
 

 
254 

Gamon, J. A., Somers, B., Malenovský, Z., Middleton, E. M., Rascher, U., & Schaepman, M. E. 

(2019). Assessing Vegetation Function with Imaging Spectroscopy. Surveys in Geophysics, 

40(3), 489-513.  

Garnier, E., Navas, M.-L., & Grigulis, K. (2016). Plant Functional Diversity: Organism Traits, 

Community Structure, and Ecosystem Properties. Oxford University Press. 

Gaston, K. J., & Spicer, J. I. (2013). Biodiversity: An Introduction. John Wiley & Sons. 

GBO4. Secretariat of the Convention on Biological Diversity. (2014). Global Biodiversity Outlook 

4. Montréal. 

Geerken, R. A. (2009). An algorithm to classify and monitor seasonal variations in vegetation 

phenologies and their inter-annual change. ISPRS Journal of Photogrammetry and Remote 

Sensing, 64(4), 422-431.  

Hatfield, J. L., Asrar, G., & Kanemasu, E. T. (1984). Intercepted photosynthetically active radiation 

estimated by spectral reflectance. Remote Sensing of Environment, 14(1), 65-75.  

Harvey, E., Gounand, I., Ward, C. L., & Altermatt, F. (2017). Bridging ecology and conservation: 

from ecological networks to ecosystem function. Journal of Applied Ecology, 54(2), 371-379. 

Hellmann, C., Große-Stoltenberg, A., Thiele, J., Oldeland, J., & Werner, C. (2017). Heterogeneous 

environments shape invader impacts: Integrating environmental, structural and functional 

effects by isoscapes and remote sensing. Scientific Reports, 7(1), 4118.  

Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., … & Wardle, D. A. 

(2005). Effects of Biodiversity on Ecosystem Functioning: A Consensus of Current Knowledge. 

Ecological Monographs, 75(1), 3-35.  

Huete, A. R., Liu, H. Q., Batchily, K. V., & Van Leeuwen, W. J. D. A. (1997). A comparison of 

vegetation indices over a global set of TM images for EOS-MODIS. Remote sensing of 

environment, 59(3), 440-451.  

Huete, A., Justice, C., & Van Leeuwen, W. (1999). MODIS vegetation index (MOD13). Algorithm 

theoretical basis document, 3(213).  

Huete, A, Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the 

radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing 

of Environment, 83(1), 195-213.  

Ivits, E., Cherlet, M., Mehl, W., & Sommer, S. (2013). Ecosystem functional units characterized by 

satellite observed phenology and productivity gradients: A case study for Europe. Ecological 

Indicators, 27, 17-28.  

Jax, K. (2010). Ecosystem Functioning. Cambridge University Press. 

Jetz, W., Cavender-Bares, J., Pavlick, R., Schimel, D., Davis, F. W., Asner, G. P., … & Ustin, S. L. 

(2016). Monitoring plant functional diversity from space. Nature Plants, 2(3), 1-5.  



General References 

______________________________________________________________________ 

 
255 

Jetz, W., McGeoch, M. A., Guralnick, R., Ferrier, S., Beck, J., Costello, M. J., ... & Meyer, C. (2019). 

Essential biodiversity variables for mapping and monitoring species populations. Nature 

Ecology & Evolution, 3(4), 539-551. 

Kaennel, M. (1998). Biodiversity: A Diversity in Definition. En P. Bachmann, M. Köhl, & R. Päivinen 

(Eds.), Assessment of Biodiversity for Improved Forest Planning: Proceedings of the 

Conference on Assessment of Biodiversity for Improved Planning, 7–11 October 1996, held 

in Monte Verità, Switzerland (pp. 71-81). Springer Netherlands.  

Keith, D. A. (2015). Assessing and managing risks to ecosystem biodiversity. Austral Ecology, 

40(4), 337-346.  

Klein, C., Wilson, K., Watts, M., Stein, J., Berry, S., Carwardine, J., … & Possingham, H. (2009). 

Incorporating ecological and evolutionary processes into continental-scale conservation 

planning. Ecological Applications, 19(1), 206-217.  

Lavorel, S., Díaz, S., Cornelissen, J. H. C., Garnier, E., Harrison, S. P., McIntyre, S., … & Urcelay, C. 

(2007). Plant Functional Types: Are We Getting Any Closer to the Holy Grail? En J. G. Canadell, 

D. E. Pataki, & L. F. Pitelka (Eds.), Terrestrial Ecosystems in a Changing World (pp. 149-164). 

Springer.  

Lavorel, S., Locatelli, B., Colloff, M. J., & Bruley, E. (2020). Co-producing ecosystem services for 

adapting to climate change. Philosophical Transactions of the Royal Society B, 375(1794), 

20190119. 

Lecina-Diaz, J., Alvarez, A., De Cáceres, M., Herrando, S., Vayreda, J., & Retana, J. (2019). Are 

protected areas preserving ecosystem services and biodiversity? Insights from Mediterranean 

forests and shrublands. Landscape Ecology, 34(10), 2307-2321.  

Lee, S. J., Berbery, E. H., & Alcaraz-Segura, D. (2013). The impact of ecosystem functional type 

changes on the La Plata Basin climate. Advances in Atmospheric Sciences, 30(5), 1387-1405.  

Liu, H. Q., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy 

background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 

33(2), 457-465.  

Loreau, M. (2008). Biodiversity and Ecosystem Functioning: The Mystery of the Deep Sea. Current 

Biology, 18(3), R126-R128.  

Lourenço, P., Alcaraz-Segura, D., Reyes-Díez, A., Requena-Mullor, J. M., & Cabello, J. (2018). 

Trends in vegetation greenness dynamics in protected areas across borders: What are the 

environmental controls? International Journal of Remote Sensing, 39(14), 4699-4713.  

Lovett, G. M., Jones, C. G., Turner, M. G., & Weathers, K. C. (2005). Ecosystem Function in 

Heterogeneous Landscapes. En G. M. Lovett, M. G. Turner, C. G. Jones, & K. C. Weathers (Eds.), 

Ecosystem Function in Heterogeneous Landscapes (pp. 1-4). Springer.  

Lyashevska, O., & Farnsworth, K. D. (2012). How many dimensions of biodiversity do we need? 

Ecological Indicators, 18, 485-492.  



General References 

______________________________________________________________________ 
 

 
256 

Mace, G. M. (2014). Whose conservation?. Science, 345(6204), 1558-1560. 

Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F. T., Mace, G., … & Fischer, M. (2018). 

Redefining ecosystem multifunctionality. Nature Ecology & Evolution, 2(3), 427-436.  

Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. Nature, 405(6783), 

243-253.  

McNaughton, S. J., Oesterheld, M., Frank, D. A., & Williams, K. J. (1989). Ecosystem-level patterns 

of primary productivity and herbivory in terrestrial habitats. Nature, 341(6238), 142-144. 

MEA (Millennium Ecosystem Assessment). (2005). Ecosystems and Human Well-being: Synthesis. 

Island Press, Washington, DC 

Milchunas, D. G., & Lauenroth, W. K. (1995). Inertia in Plant Community Structure: State Changes 

After Cessation of Nutrient-Enrichment Stress. Ecological Applications, 5(2), 452-458.  

Monteith, J. L. (1972). Solar Radiation and Productivity in Tropical Ecosystems. Journal of Applied 

Ecology, 9(3), 747-766. JSTOR.  

Mucina, L. (2019). Biome: Evolution of a crucial ecological and biogeographical concept. New 

Phytologist, 222(1), 97-114.  

Müller, O. V., Berbery, E. H., Alcaraz-Segura, D., & Ek, M. B. (2014). Regional Model Simulations 

of the 2008 Drought in Southern South America Using a Consistent Set of Land Surface 

Properties. Journal of Climate, 27(17), 6754-6778.  

Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation biology, 12(1), 39-

45. 

Naeem, S. (2002). Ecosystem consequences of biodiversity loss: the evolution of a 

paradigm. Ecology, 83(6), 1537-1552.  

Naeem, S., Prager, C., Weeks, B., Varga, A., Flynn, D. F. B., Griffin, K., … & Schuster, W. (2016). 

Biodiversity as a multidimensional construct: A review, framework and case study of 

herbivory’s impact on plant biodiversity. Proceedings of the Royal Society B: Biological 

Sciences, 283(1844), 20153005.  

Nagendra, H., Lucas, R., Honrado, J. P., Jongman, R. H. G., Tarantino, C., Adamo, M., & Mairota, 

P. (2013). Remote sensing for conservation monitoring: Assessing protected areas, habitat 

extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45-59.  

Naidoo, R., Balmford, A., Costanza, R., Fisher, B., Green, R. E., Lehner, B., … & Ricketts, T. H. (2008). 

Global mapping of ecosystem services and conservation priorities. Proceedings of the 

National Academy of Sciences, 105(28), 9495-9500.  

Naidoo, R., Gerkey, D., Hole, D., Pfaff, A., Ellis, A. M., Golden, C. D., … & Fisher, B. (2019). Evaluating 

the impacts of protected areas on human well-being across the developing world. Science 

Advances, 5(4), eaav3006.  



General References 

______________________________________________________________________ 

 
257 

Navarro, L. M., Fernández, N., Guerra, C., Guralnick, R., Kissling, W. D., Londoño, M. C., … Pereira, 

H. M. (2017). Monitoring biodiversity change through effective global coordination. Current 

Opinion in Environmental Sustainability, 29, 158-169.  

Noble, I. R., & Gitay, H. (1996). A functional classification for predicting the dynamics of 

landscapes. Journal of Vegetation Science, 7(3), 329-336.  

Noss, R. F. (1990). Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conservation 

Biology, 4(4), 355-364.  

O'Connor, B., Secades, C., Penner, J., Sonnenschein, R., Skidmore, A., Burgess, N. D., & Hutton, J. 

M. (2015). Earth observation as a tool for tracking progress towards the Aichi Biodiversity 

Targets. Remote sensing in ecology and conservation, 1(1), 19-28.  

Oki, T., Blyth, E. M., Berbery, E. H., & Alcaraz-Segura, D. (2013). Land Use and Land Cover Changes 

and Their Impacts on Hydroclimate, Ecosystems and Society. En G. R. Asrar & J. W. Hurrell 

(Eds.), Climate Science for Serving Society: Research, Modeling and Prediction Priorities (pp. 

185-203). Springer Netherlands.  

Oliver, T. H., Isaac, N. J., August, T. A., Woodcock, B. A., Roy, D. B., & Bullock, J. M. (2015). Declining 

resilience of ecosystem functions under biodiversity loss. Nature Communications, 6(1), 1-8. 

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, 

E., … & Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A New Map of Life on EarthA 

new global map of terrestrial ecoregions provides an innovative tool for conserving 

biodiversity. BioScience, 51(11), 933-938.  

Paruelo, J. M., & Lauenroth, W. K. (1998). Interannual variability of NDVI and its relationship to 

climate for North American shrublands and grasslands. Journal of Biogeography, 25(4), 721-

733.  

Paruelo, J. M., Jobbágy, E. G., & Sala, O. E. (2001). Current Distribution of Ecosystem Functional 

Types in Temperate South America. Ecosystems, 4(7), 683-698.  

Paruelo, J. M., Texeira, M., Staiano, L., Mastrángelo, M., Amdan, L., & Gallego, F. (2016). An 

integrative index of Ecosystem Services provision based on remotely sensed data. Ecological 

Indicators, 71, 145-154.  

Pelkey, N. W., Stoner, C. J., & Caro, T. M. (2003). Assessing habitat protection regimes in Tanzania 

using AVHRR NDVI composites: Comparisons at different spatial and temporal scales. 

International Journal of Remote Sensing, 24(12), 2533-2558.  

Peñuelas, J., Sabaté, S., Filella, I., & Gracia, C. (2004). Efectos del cambio climático sobre los 

ecosistemas terrestres: observación, experimentación y simulación. Ecología del bosque 

mediterráneo en un mundo cambiante, 425-460. 

Pereira, H. M., Ferrier, S., Walters, M., Geller, G. N., Jongman, R. H. G., Scholes, R. J., …& Wegmann, 

M. (2013). Essential Biodiversity Variables. Science, 339(6117), 277-278.  



General References 

______________________________________________________________________ 
 

 
258 

Pérez-Hoyos, A., Martínez, B., García-Haro, F. J., Moreno, Á., & Gilabert, M. A. (2014). 

Identification of Ecosystem Functional Types from Coarse Resolution Imagery Using a Self-

Organizing Map Approach: A Case Study for Spain. Remote Sensing, 6(11), 11391-11419.  

Petchey, O. L., & Gaston, K. J. (2006). Functional diversity: Back to basics and looking forward. 

Ecology Letters, 9(6), 741-758.  

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. Chr. (2005). Using 

the satellite-derived NDVI to assess ecological responses to environmental change. Trends 

in Ecology & Evolution, 20(9), 503-510.  

Pettorelli, N., Wegmann, M., Skidmore, A., Mücher, S., Dawson, T. P., Fernandez, M., … & Geller, 

G. N. (2016). Framing the concept of satellite remote sensing essential biodiversity variables: 

Challenges and future directions. Remote Sensing in Ecology and Conservation, 2(3), 122-

131.  

Pettorelli, N., Schulte to Bühne, H., Tulloch, A., Dubois, G., Macinnis‐Ng, C., Queirós, A. M., ... & 

Sonnenschein, R. (2018). Satellite remote sensing of ecosystem functions: opportunities, 

challenges and way forward. Remote Sensing in Ecology and Conservation, 4(2), 71-93.  

Pettorelli, N. (2019). Satellite Remote Sensing and the Management of Natural Resources. 

Oxford University Press. 

Possingham, H P, Andelman, S. J., Noon, B. R., Trombulak, S., & Pulliam, H. R. (2000). Making 

Smart Conservation Decisions. 18. 

Possingham, Hugh P., Franklin, J., Wilson, K., & Regan, T. J. (2005). The Roles of Spatial 

Heterogeneity and Ecological Processes in Conservation Planning. En G. M. Lovett, M. G. 

Turner, C. G. Jones, & K. C. Weathers (Eds.), Ecosystem Function in Heterogeneous 

Landscapes (pp. 389-406). Springer.  

Pouzols, F. M., Toivonen, T., Di Minin, E., Kukkala, A. S., Kullberg, P., Kuusterä, J., ... & Moilanen, 

A. (2014). Global protected area expansion is compromised by projected land-use and 

parochialism. Nature, 516(7531), 383-386.  

Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J., & Dickson, F. (2019). Shifting the 

conservation paradigm: A synthesis of options for renovating nature under climate change. 

Ecological Monographs, 89(1), e01333.  

Regos, A., Gagne, L., Alcaraz-Segura, D., Honrado, J. P., & Domínguez, J. (2019). Effects of species 

traits and environmental predictors on performance and transferability of ecological niche 

models. Scientific Reports, 9(1), 4221.  

Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J., & Baldocchi, D. D. (2014). Linking plant and 

ecosystem functional biogeography. Proceedings of the National Academy of Sciences, 

111(38), 13697-13702.  



General References 

______________________________________________________________________ 

 
259 

Requena-Mullor, J. M., López, E., Castro, A. J., Alcaraz-Segura, D., Castro, H., Reyes, A., & Cabello, 

J. (2017). Remote-sensing based approach to forecast habitat quality under climate change 

scenarios. PLOS ONE, 12(3), e0172107.  

Requena-Mullor, J. M., Quintas-Soriano, C., Brandt, J., Cabello, J., & Castro, A. J. (2018). Modeling 

how land use legacy affects the provision of ecosystem services in Mediterranean southern 

Spain. Environmental Research Letters, 13(11), 114008.  

Reynolds, J. F., & Wu, J. (1999). Do landscape structural and functional units exist. Integrating 

hydrology, ecosystem dynamics, and biogeochemistry in complex landscapes. Wiley, 

Chichester, 273-296.  

Rodríguez, J. (2016). Ecología. 4ª Edición. Ediciones Pirámide. Madrid, España.  

Running, S. W., Queen, L., & Thornton, M. (2000). The Earth Observing System and Forest 

Management. Journal of Forestry, 98(6), 29-31.  

Saccone, P., Hoikka, K., & Virtanen, R. (2017). What if plant functional types conceal species-

specific responses to environment? Study on arctic shrub communities. Ecology, 98(6), 1600-

1612.  

Scholes, R. J., Gill, M. J., Costello, M. J., Sarantakos, G., & Walters, M. (2017). Working in networks 

to make biodiversity data more available. In The GEO Handbook on Biodiversity Observation 

Networks (pp. 1-17). Springer, Cham. 

Scholes, R. J., Pickett, G., Ellery, W. N., & Blackmore, A. C. (1997). Plant functional types in African 

savannas and grasslands. In ‘Plant functional types’.(Eds TM Smith, HH Shugart and FI 

Woodward) pp. 255–268. IGBP Book Series No. 1. 

Shugart, H. H. (1997). Plant and ecosystem functional types. Plant functional types: their 

relevance to ecosystem properties and global change. 

Skidmore, A. K., & Pettorelli, N. (2015). Agree on biodiversity metrics to track from space: 

Ecologists and space agencies must forge a global monitoring strategy. Nature, 523(7561), 

403-406. 

Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., ... & Folke, C. 

(2015). Planetary boundaries: Guiding human development on a changing 

planet. Science, 347(6223).  

Stoms, D. M., & Estes, J. E. (1993). A remote sensing research agenda for mapping and 

monitoring biodiversity. International journal of remote sensing, 14(10), 1839-1860.  

Tallis, H., & Lubchenco, J. (2014). Working together: A call for inclusive conservation. Nature 

News, 515(7525), 27. 

Thomas, H. J. D., Myers‐Smith, I. H., Bjorkman, A. D., Elmendorf, S. C., Blok, D., Cornelissen, J. H. 

C., … & Bodegom, P. M. van. (2019). Traditional plant functional groups explain variation in 

economic but not size-related traits across the tundra biome. Global Ecology and 

Biogeography, 28(2), 78-95.  



General References 

______________________________________________________________________ 
 

 
260 

Townshend, J. R. G., Goff, T. E., & Tucker, C. J. (1985). Multitemporal Dimensionality of Images of 

Normalized Difference Vegetation Index at Continental Scales. IEEE Transactions on 

Geoscience and Remote Sensing, GE-23(6), 888-895.  

Tuanmu, M. N., & Jetz, W. (2015). A global, remote sensing-based characterization of terrestrial 

habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and 

Biogeography, 24(11), 1329-1339. 

Tucker, C. J., & Sellers, P. J. (1986). Satellite remote sensing of primary production. International 

journal of remote sensing, 7(11), 1395-1416. 

Turner, M. G., & Chapin, F. S. (2005). Causes and Consequences of Spatial Heterogeneity in 

Ecosystem Function. En G. M. Lovett, M. G. Turner, C. G. Jones, & K. C. Weathers (Eds.), 

Ecosystem Function in Heterogeneous Landscapes (pp. 9-30). Springer.  

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote 

sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18(6), 306-

314.  

Turner, M. G., & Gardner, R. H. (2015). Introduction to Landscape Ecology and Scale. En M. G. 

Turner & R. H. Gardner (Eds.), Landscape Ecology in Theory and Practice: Pattern and Process 

(pp. 1-32). Springer.  

Ustin, S. L., & Gamon, J. A. (2010). Remote sensing of plant functional types. New Phytologist, 

186(4), 795-816.  

Valentini, R., Baldocchi, D. D., Tenhunen, J. D., & Kabat, P. (1999). Ecological controls on land-

surface atmospheric interactions. Integrating Hydrology, Ecosystem Dynamics, and 

Biogeochemistry in Complex Landscapes, 117-145. 

Villarreal, S., Guevara, M., Alcaraz-Segura, D., Brunsell, N. A., Hayes, D., Loescher, H. W., & Vargas, 

R. (2018). Ecosystem functional diversity and the representativeness of environmental 

networks across the conterminous United States. Agricultural and Forest Meteorology, 262, 

423-433.  

Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., & Kattge, J. (2014). The emergence and promise 

of functional biogeography. Proceedings of the National Academy of Sciences, 111(38), 

13690-13696.  

Virginia R. A., & Wall D. H. (2001) Ecosystem function, principles of. Encyclopedia of Biodiversity 

(ed. by S.A.Levin), pp. 345352. Academic Press, San Diego 

Visconti, P., Butchart, S. H. M., Brooks, T. M., Langhammer, P. F., Marnewick, D., Vergara, S., 

Yanosky, A., & Watson, J. E. M. (2019). Protected area targets post-2020. Science, 364(6437), 

239-241.  

Vitousek, P. M. (1994). Beyond global warming: ecology and global change. Ecology, 75(7), 

1861-1876.  



General References 

______________________________________________________________________ 

 
261 

Volante, J. N., Alcaraz-Segura, D., Mosciaro, M. J., Viglizzo, E. F., & Paruelo, J. M. (2012). Ecosystem 

functional changes associated with land clearing in NW Argentina. Agriculture, Ecosystems 

& Environment, 154, 12-22.  

Walker, B. H. (1997). Functional types in non-equilibrium ecosystems. Plant functional types: 

their relevance to ecosystem properties and global change. 

Walters, M., & Scholes, R. J. (Eds.). (2017). The GEO Handbook on Biodiversity Observation 

Networks. Springer International Publishing.  

Wang, Y., & Huang, F. (2015). Identification and analysis of ecosystem functional types in the 

west of Songnen Plain, China, based on moderate resolution imaging spectroradiometer 

data. Journal of Applied Remote Sensing, 9(1), 096096.  

Wu, J., Jenerette, G. D., & David, J. L. (2003). Linking Land-use Change with Ecosystem Processes: 

A Hierarchical Patch Dynamic Model. En S. Guhathakurta (Ed.), Integrated Land Use and 

Environmental Models: A Survey of Current Applications and Research (pp. 99-119). Springer.  

Wullschleger, S. D., Epstein, H. E., Box, E. O., Euskirchen, E. S., Goswami, S., Iversen, C. M., ... & Xu, 

X. (2014). Plant functional types in Earth system models: past experiences and future 

directions for application of dynamic vegetation models in high-latitude ecosystems. Annals 

of botany, 114(1), 1-16.  

Xiao, J., & Moody, A. (2004). Trends in vegetation activity and their climatic correlates: China 

1982 to 1998. International Journal of Remote Sensing, 25(24), 5669-5689.  

Xiao, J., Zhuang, Q., Law, B. E., Baldocchi, D. D., Chen, J., Richardson, A. D., … & Torn, M. S. (2011). 

Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy 

covariance flux measurements and satellite observations. Agricultural and Forest 

Meteorology, 151(1), 60-69.  

 

 

 

 

 

 

 

 

 



 

 
262 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
263 

 

 

 

 

 

 

 

 

8. GENERAL APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
264 

  



 

 

 
265 

 

 

 

 

 

 

 

General Appendix 1.   

Journals copies of the scientific publications derived from the thesis 

 

 

 

 

 

 

 

 

 



 

 
266 

 

 

  



General Appendix 1 

Journal copies of the scientific publications derived from the thesis 

______________________________________________________________________ 
 

 

 
267 

Scientific publication from CHAPTER II. 

Cazorla, P.B., Cabello, J., Guirado, E., Reyes, A., Peñas, J., Pérez-Luque, A., Alcaraz-Segura 

D.(2020) A remote sensing-based dataset to characterize the ecosystem functioning and 

functional diversity of a Biosphere Reserve: Sierra Nevada (SE Spain). Earth System Science 

Data. Discuss., https://doi.org/10.5194/essd-2019-198, in review. 

 

ISSN: 1866-3508 

eISSN: 1866-3516 

 

JCR Categories: 

- Geosciences, Multidisciplinay 

- Meteorology & Atmospheric Sciences 

 

Publisher: Copernicus Publications 

 

Ranking 2019: 

Geosciences, Multidisciplinay: 3/200, Q1 

Meteorology & Atmospheric Sciences: 3/93, Q1 

 

Journal metrics 2019: 

JCR IF: 9.197 

JCR IF 5-year 9.612 

Scopus: CiteScore 12.5 

SNIP: 3.137 

SJR: 4.532 

 

The Chapter II is an improved version of this article based on the comments received from 

the reviewers. The version below is the public discussion version, which is part of the review 

process of this journal. 

https://doi.org/10.5194/essd-2019-198,


 

 
268 

 

  



 

A remote sensing-based dataset to characterize the ecosystem 
functioning and functional diversity of a Biosphere Reserve: 
Sierra Nevada (SE Spain) 
 

Beatriz P. Cazorla1,2, Javier Cabello1,2, Andrés Reyes1, Emilio Guirado1,3, Julio Peñas1,4, 5 

Antonio J. Pérez-Luque5,6, Domingo Alcaraz-Segura1,4,5 

1Andalusian Center for the Assessment and Monitoring of Global Change, University of Almería, 04120, Almería, Spain 
2 Department of Biology and Geology, University of Almería, 04120, Almería, Spain 
3Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, 18071, Granada, 
Spain. 10 
4 Department of Botany, University of Granada, Av. de Fuentenueva, s/n 18071, Granada, Spain 
5 iecolab. Andalusian Institute for Earth System Research (IISTA-CEAMA) – University of Granada, Avda. Mediterráneo s/n, 
E-18006, Granada, Spain. 
6 Terrestrial Ecology Research Group, Department of Ecology, Faculty of Science, University of Granada, Av. Fuentenueva 
s/n, Granada, E‐18071 Spain 15 
 
 

Correspondence to: Beatriz P. Cazorla (b.cazorla@ual.es) and Domingo Alcaraz-Segura (dalcaraz@ugr.es) 
 

Abstract 20 

Conservation Biology faces the challenge of safeguarding the ecological processes that sustain biodiversity. 
Characterization and evaluation of these processes can be carried out through attributes or functional traits related 
to the exchanges of matter and energy between vegetation and the atmosphere. Nowadays, the use of satellite 
imagery provides useful methods to produce a spatially continuous characterization of ecosystem functioning and 
processes at regional scales. Our dataset characterizes the patterns of ecosystem functioning in Sierra Nevada 25 

(Spain) from the vegetation greenness dynamics captured through the spectral vegetation index EVI (Enhanced 
Vegetation Index) since 2001 to 2018 (product MOD13Q1.006 from MODIS sensor). First, we provided three 
Ecosystem Functional Attributes (EFAs) (i.e., descriptors of annual primary production, seasonality, and 
phenology of carbon gains), as well as their integration into a synthetic mapping of Ecosystem Functional Types 
(EFTs). Second, we provided two measures of functional diversity: EFT richness and EFT rarity. Finally, in 30 

addition to the yearly maps, we calculated interannual summaries, i.e., means and inter-annual variabilities. 
Examples of research and management applications of these data sets are also included to highlight the value of 
EFAs and EFTs to improve the understanding and monitoring ecosystem processes across environmental 
gradients. The datasets are available in two open-source sites (PANGAEA: 
https://doi.pangaea.de/10.1594/PANGAEA.904575 (Cazorla et al. 2019) and 35 

http://obsnev.es/apps/efts_SN.html), and bring to scientists, managers and the general public valuable information 
on the first characterization of the functional diversity at ecosystem level developed in a Mediterranean hotspot. 
Sierra Nevada represents an exceptional ecology laboratory of field conditions, where a long-term monitoring 
(LTER) program was established 10 years ago. The data availability on biodiversity, climate, ecosystem services, 
hydrology, land-use changes and management practices from Sierra Nevada, will allow to explore the 40 

relationships between these other environmental data and ecosystem functional data that we provide in this work.  
 

1 Introduction 

 
A better characterization of the functional dimension of biodiversity is required to develop management 45 

approaches that ensure nature contributions to human well-being (Jax, 2010). To achieve this goal, it is necessary 
to have a set of essential variables that characterize and monitor ecosystem functioning (Pereira et al., 2013). Such 
variables are basic to understand the dynamics of ecological systems (Petchey and Gaston, 2006), the links 
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between biological diversity and ecosystem services (Balvanera et al., 2006; Haines-Young and Potschin, 2010), 
and the mechanisms of ecological resilience (Mouchet et al., 2010). In addition, the use of ecosystem functioning 50 

variables has been demanded to assess functional diversity at large scales with the aim of measuring the Biosphere 
integrity (Mace et al., 2014; Steffen et al., 2015), one of the most challenging planetary boundaries to quantify 
(Steffen et al., 2015). Despite the importance of ecosystem functioning variables, and the conceptual frameworks 
developed to promote their use (Pettorelli et al., 2018), they have seldom been incorporated to ecosystem 
monitoring in protected areas (but see Alcaraz-Segura et al., 2009; Fernández et al., 2010; Cabello et al., 2016).  55 

 
Characterization and evaluation of ecosystem functioning can be carried out through attributes or functional traits 
related to the exchanges of matter and energy between vegetation and the atmosphere (Mueller-Dombois and 
Ellenberg, 1974). Nowadays, the use of satellite imagery provides useful methods to produce a spatially 
continuous characterization of ecosystem functioning and functional diversity at local (Fernández et al., 2010), 60 

regional (Alcaraz-Segura et al., 2006, 2013) or global scales (Ivits et al., 2013). Theoretical and empirical models 
support the relationship between spectral indices derived from satellite images (e.g. Enhanced Vegetation Index, 
EVI) and essential functional variables of ecosystems, such as primary production, evapotranspiration, surface 
temperature, or albedo (Running et al., 2000; Pettorelli et al., 2005; Fernández et al., 2010; Lee et al., 2013). 
Among them, primary production is considered the most integrative and essential indicator of ecosystem 65 

functioning (Virginia and Wall, 2001; Pereira et al., 2013), since it has an important role in the carbon cycle (i.e., 
it is the energy input to the trophic web and therefore, the driving force behind many ecological processes). 
Moreover, primary production offers a comprehensive response to environmental changes, and constitutes a 
synthetic indicator of ecosystem health (Costanza et al., 1992; Skidmore et al., 2015). 
 70 

To characterize ecosystem functioning through spectral vegetation indices, we can use the approach based on 
Ecosystem Functional Types (EFTs), defined as patches of the land surface that share similar dynamics in the 
exchanges of matter and energy between the biota and the physical environment (Paruelo et al., 2001; Alcaraz-
Segura et al., 2006). EFTs are derived from three Ecosystem Functional Attributes (EFAs) that describe the 
seasonal dynamics of carbon gains: annual mean (a surrogate of annual primary production, the most essential 75 

and integrative indicator of ecosystem functioning), annual standard deviation (a descriptor of seasonality or the 
differences between the growing and non-growing seasons), and the annual date of maximum (a phenological 
indicator of when in the year is the growing period centered). Since the concept appeared in 2001 (Paruelo et al., 
2001), the EFT  approach (or equivalent approaches) has exponentially grown   to characterize functional 
heterogeneity from local to global scales (Alcaraz-Segura et al., 2006; Karlsen et al., 2006; Duro et al., 2007; 80 

Fernández et al., 2010; Geerken 2009; Alcaraz-Segura et al., 2013; Ivits et al., 2013; Cabello et al., 2013; Pérez-
Hoyos et al., 2014; Müller et al., 2014; Wang and Huang, 2015; Villarreal et al., 2018; Coops et al., 2018; Mucina, 
2019). 
 
This article aims to illustrate how EFAs and EFTs can be used to assess the spatio-temporal heterogeneity and 85 

inter-annual variability of ecosystem functioning in protected areas based on the vegetation dynamics captured 
through spectral vegetation indices (e.g. EVI). We introduce as a proof of concept the case of Sierra Nevada 
Biosphere reserve (SE Spain) from 2001 to 2018. First, for each year, we provide three Ecosystem Functional 
Attributes (EFAs) (i.e., annual primary production, seasonality and phenology of carbon gains), as well as their 
integration into a synthetic mapping of Ecosystem Functional Types (EFTs). Second, we present two measures of 90 

functional diversity: EFT richness and EFT rarity. Finally, in addition to the yearly maps, we calculated 
interannual summaries, i.e., inter-annual means and inter-annual variability, to show the average conditions as 
well as the most stable and variable zones along the period (workflow in Fig. 2). 
 

2 Methods 95 

2.1 Site Description 

 
Sierra Nevada (Andalusia, SE Spain) is a mountainous region covering more than 2,000 km2 with an elevation 
range of between 860 and 3,482 m a.s.l (Fig. 1). It is considered one of the most important biodiversity hotspots 
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in the Mediterranean region (Blanca et al., 1998; Cañadas et al., 2014), hosting 105 endemic plant species for a 100 

total of 2,353 taxa of vascular plants (33% and 20% of Spanish and European flora, respectively; Lorite 2016). 
Forest cover in Sierra Nevada is dominated by pine plantations (Pinus halepensis Mill., Pinus pinaster Ait., Pinus 
nigra Arnold subsp. salzmannii (Dunal) Franco, and Pinus sylvestris L.) covering approximately 40,000 ha. Most 
of them were planted in the period 1960–1980. The main native forests of Sierra Nevada are dominated by the 
evergreen holm oak Quercus ilex subsp. ballota (Desf.) Samp. occupying low and medium mountain areas (8,800 105 

ha.), and by the deciduous Pyrenean oak Quercus pyrenaica Willd ranging from 1,100 to 2,000 m a.s.l. (about 
2,000 ha). Autochthonous pine Pinus sylvestris L. var. nevadensis H. Christ forests can also be found in small 
patches with low tree cover in the treeline. Above the treeline, plant communities of the Oromediterranean and 
Crioromediterranean belts (above 1,800-2,000 m.) are dominated by chamaephytes and hemicryptophytes 
(scrublands, grasslands, and cliff and scree communities), being the habitat to many endemic species. Sierra 110 

Nevada receives legal protection and international recognition in multiple ways: MAB Biosphere Reserve (1986), 
Natural Park (1989),National Park (1999), Important Bird Area (2003), Special Area of Conservation (Natura 
2000 network, 2012), and it is included in the IUCN Green List of Protected Areas (2014) and in the Spanish 
LTER network (Zamora et al. 2017). The main economic activities in this mountain region are agriculture, 
tourism, livestock raising, beekeeping, mining, and skiing (Bonet et al., 2010). 115 

 

In Sierra Nevada, vegetation studies have mainly been developed considering a compositional perspective 
(phytosociological method) or successional perspective (vegetation series). These studies have been very useful 
for describing the vegetation heterogeneity at mesoscale (Loidi, 2017), for characterizing habitats of conservation 
importance (EU Directive 92/43/EEC), and for developing forest restoration policies (Valle et al., 2003). 120 

However, these approaches are difficult to monitor the effects of environmental changes and management actions, 
to understand the environmental gradients at protected area scale that drive biodiversity patterns, and to evaluate 
the role of ecosystems as suppliers of benefits to society (Cabello et al., 2019). 

2.2 Satellite images of Vegetation Indices (MOD13Q1 data product) 

The characterization of ecosystem functioning in Sierra Nevada was based on the temporal dynamics of the 125 

Enhanced Vegetation Index (EVI) from 2001 to 2018. Specifically, we used the MOD13Q1.006 product of the 
MODIS sensor (Moderate Resolution Imaging Spectroradiometer) on board  NASA’s Terra satellite (Didan 2015). 
This product provides maximum value composite images every 16 days (23 images per year) at 231 meters spatial 
resolution and are downloadable from NASA’s LP DAAC (Land Processes Distributed Active Archive Center) 
(http://lpdaac.usgs.gov/lpdaac/get_data) and in Google Earth Engine (DOI: 130 

https://doi.org/10.5067/MODIS/MOD13Q1.006 ). Values of EVI*10,000 are given as real numbers between 0 
and 10,000.  
 
2.3 Calculating Ecosystem Functional Attributes (EFAs)  

We identified three EFAs that are known to capture most of the variance in the time series of vegetation indices 135 

and that are biologically meaningful (Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2009). These attributes 
were calculated from the EVI seasonal curve or annual dynamics. From the EVI seasonal curve of each year, we 
identified three functional attributes: the EVI annual mean (EVI_mean; an estimator of primary production), the 
EVI seasonal Standard Deviation (EVI_sSD; a descriptor of seasonality, i.e., the differences between the growing 
and non-growing seasons), and the date of maximum EVI (EVI_DMAX; a phenological indicator of the month 140 

with maximum EVI) (Fig.3). To summarize the EFAs of the 2001-2018 period, we calculated the inter-annual 
mean and the inter-annual variability for each attribute. 
 

2.4 Identifying Ecosystem Functional Types (EFTs) 

EFTs were identified by synthesizing in a single map the variability contained in the three EFAs following a 145 

similar approach to Alcaraz-Segura et al. (2013). The range of values of each EFA was divided into four intervals, 
giving a potential number of 64 EFTs (4 × 4 × 4). For EVI_DMAX, the four intervals agreed with the four seasons 
of the year. For EVI_mean and EVI_sSD, we extracted the first, second, and third quartiles for each year and then 
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calculated the inter-annual mean of each quartile (means of the 18-year period) (Table 1). These fixed limits 
between EFT classes were applied to each year. To summarize the EFTs of the 2001–2018 period, we calculated 150 

the most frequent EFT of the period (i.e., the EFT mode for each pixel). To name EFTs, we used two letters and 
a number: the first capital letter indicates net primary production (EVI_mean), increasing from A to D; the second 
small letter represents seasonality (EVI_SD), decreasing from a to d; the numbers are a phenological indicator of 
the growing season (EVI_DMAX), with values 1-spring, 2-summer, 3-autumn, 4-winter.  
 155 

2.5 Characterizing Ecosystem Functional Diversity  

To characterize ecosystem functional diversity, we used EFT richness and EFT rarity. EFT richness was calculated 
for each year by counting the number of different EFTs in a 4×4-pixel moving window (924 x 924 m) around 
each pixel (top-left center pixel of the 4x4 Kernel) (modified from Alcaraz-Segura et al., 2013). Then, the average 
richness map of all years was obtained. EFT rarity was calculated for each year as the relative extension of each 160 

EFT compared to the most abundant EFT (Equation 1) (Cabello et al., 2013). Then, the average rarity map of all 
years was obtained. 
 

Rarity of EFTi = (Area_EFTmax–Area_EFTi)/Area_EFTmax (Equation 1) 
 165 

where Area_EFTmax is the area occupied by the most abundant EFT and Area_EFTi is the area of the i EFT being 
evaluated, with i ranging from 1 to 64.  
 

 

2.6 Stability in ecosystem functioning 170 

To identify the most stable and variable areas (either due to inter-annual fluctuations or to directional trends) in 
ecosystem functioning, we provide three approaches. First, we calculated the inter-annual variability of each EFA 
(coefficient of variation for EVI_mean and EVI_sSD, and circular standard deviation for EVI_DMAX). Second, 
we recorded the number of different EFTs that occurred in the same pixel in the period 2001-2018. Third, to 
consider the changes not only at the pixel but also at the landscape level, the Jaccard similarity index (Jaccard, 175 

1901) (Equation 2) was used in 4×4-pixel moving windows (924 x 924 m). 
 

Jaccard Index = (the number in both sets) / (the number in either set) * 100 
 
The same formula in notation is (Equation 3): 180 

J(X,Y) = |X∩Y| / |X∪Y| 
In Steps: 
1) Count the number of EFTs which are shared between both windows; 2) Count the total number of EFTs in both 
windows (shared and unshared); 3) Divide the number of shared EFTs 1) by the total number of EFTs 2); 4) 
Multiply the number found in 3) by 100. 185 

 
This measure represents how similar is the EFT composition that occurs in each window throughout the entire 
time series (2001-2018). For each window, the Jaccard index was calculated among all possible combinations of 
years and then the interannual average of all calculated indices was obtained. Dissimilarity was calculated as 
(Equation 4): 190 

 
Dissimilarity = 1 - Jaccard Index  

 
Dissimilarity values range from 0 to 1, with 1 being the highest degree of dissimilarity in composition and relative 
abundance of EFTs and 0 being absent. 195 
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3 Results and Discussion 200 

 
3.1 Available dataset 
 
Overall, the collection of datasets provides a characterization of ecosystem functioning and ecosystem functional 
diversity in Sierra Nevada Biosphere Reserve (SE Spain) through remote sensing. To broaden the use of data, 205 

first, we provide data in .tif format. Second, we have incorporated rendered versions of all layers as required by 
Google Earth Pro (called “filename..._forGoogleEarthVisualization.tif”) for visualization. And third, we have also 
developed an ad-hoc visualization platform for all the layers.  
All data are available yearly (2001-2018) and summarized for the period, in EPSG:4326 WGS84. 
 210 

The dataset is structured in three main subsets of variables: Ecosystem Functional Attributes, Ecosystem 
Functional Types, and Ecosystem Functional Diversity (see Table 2). For each variable there are two groups of 
data (two subfolders): one containing the yearly variables, and another one containing the summaries for the 18-
year period. 

 215 

3.2 Ecosystem Functional Attributes patterns 
 
Functional attributes of productivity, seasonality and phenology showed a clear altitudinal pattern. Productivity 
(EVI_mean) was much lower in the Crioro- and Oromediterranean bioclimatic belts than in the Supra- and 
Mesomediterranean belts. Productivity also decreased from west to east (Fig. 4a). Seasonality (EVI_sSD) was 220 

high in the Supramediterranean, decreasing in Meso-, and Thermomediterranean belts, and in Crioro- and 
Oromediterranean (Fig. 4b). Phenology (EVI_DMAX) was characterized by a dominant summer peak in 
vegetation greenness in the Crioro- and Oromediterranean belts, and a late spring peak in the Supra- and 
Mesomediterranean belts. Dry and semi-arid thermomediterranean areas of the south and east showed greeness 
peaks in early autumn and winter months (Fig. 4c).  225 

 
3.3 Ecosystem Functional Type patterns 
 
As a result of the combination of the three functional attributes of the canopy, productivity, seasonality and 
phenology, represented in Fig. 4 a-c, we obtained the EFTs map (Fig. 4d) that includes a synthetic characterization 230 

of the spatial patterns of ecosystem functioning. A total of 64 classes were observed. The most abundant EFT 
presented the maximum greenness in spring, with productivity values from low to intermediate and with all 
possible combinations of seasonality: Aa1, Ba1, Cb1, Cd1, Ba1, and Cc1 accumulated 30% of the surface. On the 
contrary, the rarest EFTs were Ba4, Aa4 characterized by medium or low productivity, high seasonality and 
maximum greenness in winter. 235 

 
Crioro and oromediterranean areas presented EFTs with low and intermediate productivity, high seasonality and 
moments of maximum greenness mainly in summer, but also in spring. Here, extreme conditions characterized 
by scarce soil (Peinado et al., 2019), high solar radiation, extreme temperatures, winds, snow and ice, give rise to 
a short vegetative period. This results in scarce vegetation cover, controlled by low temperatures, which can only 240 

occur in summer, being the plant growth time, hence these areas have been referred to as "cold desert" (Blanca et 
al., 2019). The supra- and mesomediterranean levels had associated EFTs of intermediate-high productivity, 
medium-low seasonality and maximum green moment in spring and autumn (e.g., Cc1-3) (Fig. 4d). The 
supramediterranean is characterized by the presence of deciduous species, e.g., oak groves associated with the 
most productive and seasonal ecosystem functional type of the study area, with maximum in spring (EFT Da1). 245 

In the dry and semi-arid thermomediterranean of the eastern end, characterized by thermophilic species, which 
hardly suffer from frost, a different functional behaviour of the ecosystems was detected. The functioning of this 
area showed low values of productivity, medium-low seasonality and maximum greenness of the vegetation in 
spring or winter (e.g., Ac1-4). Here, the main control of ecosystem functioning is water availability, presenting 
plant species with a fast response to scarce water inputs (Cabello et al., 2012). 250 
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3.4 Stability in ecosystem functioning 
 
The interannual variability ranged from 1 to 17 different EFTs over the 18-year period in the same pixel (Fig. 5a). 
The number of EFTs observed in the same pixel over 18 years was higher in the supra- and mesomediterranean 255 

levels, coinciding with the altitudinal range where interannual climate variability is most affected (e.g., they may 
present a lot of snow in cold years and be affected by drought in dry and warm years). The eastern end of the 
semi-arid thermomediterranean also highlighted with high inter-annual variability, where there exists a greater 
climate fluctuation and where small changes in precipitation produce large changes in the dynamics of primary 
production (Houérou et al., 1988; Cabello et al., 2012), as well as the area burned in 2005 near Lanjarón, where 260 

the fire eliminated the vegetation that has been regenerating since then. On the other hand, the most stable 
vegetation types interannual, i.e., those that changed the least during the period, were located in the meso-
oromediterranean and crioromediterranean levels, specifically, the oak and borreguil vegetation types, ecosystems 
that are not subject to anthropic presence (e.g., low forest management and low presence of livestock).  
 265 

The results of the inverse of the Jaccard coefficient to obtain the dissimilarity or functional changes between years 
in the composition of EFTs over the 2001-2018 period (Fig. 5b), showed an altitudinal pattern where the 
dissimilarity between EFTs was lower in the oro and cryoromediterranean levels, as well as in the 
mesomediterranean oak groves (functional stability already shown by other authors, i. e. Requena-Mullor et al, 
2018). This pattern of dissimilarity increased towards lower levels, finding the highest values of dissimilarity (or 270 

greater change) in areas where changes in land use and management are major (Zamora et al., 2016), such as 
autochthonous pine forests on dolomites, coniferous repopulations and meso- and thermomediterranean holm 
oaks. In addition, the eastern end of the Sierra Nevada had an area with low dissimilarity values, that is, where 
there were not many changes over the years and when they occurred they were towards very similar EFTs. 
 275 

3.5 Functional diversity at ecosystem level 
 
Richness oscillated between 1 and 13 EFTs. Highest EFT richness was observed in the supra- and 
mesomediterranean, particularly in the southern face of the Sierra (Fig. 5c), where the number of vegetation series 
is also greater than in the rest of the bioclimatic floors (Valle et al., 2003). The presence EFTs hotspots mainly in 280 

the mid-mountain, and particularly in the southern face, could be related to two factors. On the one hand, many 
Mediterranean mountains show high values of beta diversity up to 1750-1800 m (Wilson and Schmida, 1984), 
when there is an important structural and compositional replacement of their vegetation. On the other hand, in the 
middle mountain and especially in its southern face, there is a very diverse mosaic of different types of natural 
vegetation mixed with different types of reforestation, traditional crops and uses (Camacho et al., 2002), which 285 

gives them the characteristic of multifunctional landscapes from the point of view of the provision of ecosystem 
services (García-Nieto et al., 2013; Mastrangelo et al., 2014; Cabello et al., 2019). Molero Mesa et al., (1996) and 
Fernández Calzado et al., (2012) indicated that Sierra Nevada species richness decreases with altitude, while 
endemic taxa increases (Blanca et al., 2019). Something similar can be observed in the functional diversity of 
ecosystems, since the maximum richness is found in areas of medium altitude. The areas with the lowest EFT 290 

richness were located in the oro and crioromediterranean levels, and in the eastern semi-arid thermomediterranean 
extreme, where the harsh soil and climatic conditions (Peinado et al., 2019) diminish floristic diversity although 
their endemicity increases (Fernández Calzado et al., 2012). The lowest values of EFT richness (richness 4-5) 
were found in the supramediterranean oak groves, (as in Dionisio et al., 2012; Requena-Mullor et al., 2018) maybe 
due to the internal homogeneity of their environmental conditions and their floristic composition (Pérez-Luque et 295 

al., 2015, Requena-Mullor et al., 2018).  
 
EFT rarity was highest in the crioromediterranean level, overlapping the area with the highest concentration of 
endemisms (Cañadas et al., 2014; Peñas et al., 2019) (Fig. 5d). Crioromediterranean vegetation develops under a 
very particular ecological conditions that determine uncommon types of ecosystem functioning (rarity 0.6; Fig. 300 

5d), such as, for example, in relatively mobile rocks and canchales located on steep slopes, where the percentage 
of rarity or compositional endemicity rises to 80% (Blanca and Algarra, 2011). EFT rarity was also high in the 
eastern end of the semi-arid thermomediterranean level, located in the biogeographic sector of Almeria (Peñas et 
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al., 2019) with a high concentration of endemisms typical of the Desert of Tabernas (Mota et al., 2004). In the 
oromediterranean, EFT rarity decreased and reached its minimum, due to the great extension in the Sierra Nevada 305 

of this bioclimatic level, which made its functioning not appear as rare, and increasing again in the supra- and 
mesomediterranean (Fig. 5d). The most rare supra- and mesomediterranean vegetation types corresponded to 
coniferous and holm oak repopulations (rarity 0.6). The high rarity of coniferous repopulations may be due to 
disturbances or management interventions that give rise to unique functions in the different masses of conifers. 
On the other hand, the rarity in holm oaks may be due to their exclusive functioning, i.e. they have very specific 310 

associated EFTs (e.g., Cc1, Dc1). However, the rarity of the different vegetation types (between 0.45 and 0.64) 
was far from the maximum possible (1).  
 

4 Data applications for research and conservation / Example of data usage 

Ecological research based on spectral vegetation indices plays an important role in biodiversity conservation 315 

(Cabello et al., 2012; Pettorelli, 2016, 2018) and management (Pelkey et al., 2003; Cabello et al., 2016) and for 
the study of biodiversity and ecosystems responses to environmental changes (Alcaraz-Segura et al., 2017; Pérez-
Luque et al. 2015). In fact, numerous studies have demonstrated the usefulness of satellite image time series to 
evaluate the functional changes in ecosystems at regional scale (Alcaraz-Segura et al., 2010) and at the protected 
area level (Alcaraz-Segura et al., 2009; Lourenço et al., 2018). Recently, the use of EFAs derived from spectral 320 

indices of vegetation in species distribution models, has made it possible to evaluate with great spatial and 
temporal precision the suitability of habitat for plant species (Arenas-Castro et al., 2018) and animals (Requena-
Mullor et al., 2017; Regos et al., 2019) and may even anticipate expected changes in the distribution of plant 
species threatened as a consequence of climate change (Alcaraz-Segura et al., 2017). In addition, based on the 
EFAs, a monitoring programme of the Spanish National Parks Network has been designed to identify changes 325 

and anomalies in functioning, informing managers of the health and conservation status of ecosystems (Cabello 
et al., 2016). 
 
Furthermore, EFTs  have been used to characterize spatial and temporal heterogeneity of ecosystem functioning 
at local and regional scales (Fernández et al., 2010; Cabello et al., 2013); to describe biogeographical patterns 330 

(Alcaraz-Segura et al., 2006; Ivits et al., 2013); to evaluate the environmental and human controls of ecosystem 
functional diversity (Alcaraz-Segura et al., 2013);  to identify priorities for Biodiversity Conservation (Cazorla et 
al., 2019); to assess the representativeness environmental networks (Villarreal et al., 2018); to assess the effects 
of land-use changes on ecosystem functioning (Oki et al., 2013); or to improve weather forecast models (Lee et 
al., 2013; Müller et al., 2014).  335 

 
The data sets that we are providing give to the scientific community valuable information of the first 
characterization of the functional diversity at ecosystem level developed in the entire protected area. We provided 
a detailed characterization of the functional diversity at ecosystem level for Sierra Nevada, that could be useful to 
monitor the response of ecosystems to global change and management actions, to understand the ecosystem 340 

functioning and functional diversity across the environmental gradients at protected area scale, and to evaluate the 
role of ecosystems in providing ecosystem services (Cabello et al., 2019). Sierra Nevada is also a long-term 
ecological laboratory established 10 years ago (Zamora et al. 2016, 2017), that have available data on biodiversity, 
climate, ecosystem services, hydrology, land-use changes and management practices from Sierra Nevada. This 
will allow to explore the relationships between these other environmental data with the ecosystem functional data 345 

that we provide. 
 
 
5 Data availability 
  350 

The datasets described in this article are available in open-access sources. To broaden their use, first, we provide 
data in .tif format. Second, we have incorporated rendered versions of all layers as required by Google Earth Pro 
(called “filename..._forGoogleEarthVisualization.tif”) for visualization. And third, we have also developed an ad-
hoc visualization platform for all the layers. Datasets available for download in PANGAEA: 
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https://doi.pangaea.de/10.1594/PANGAEA.904575 (Cazorla et al. 2019) and for visualisation in 355 

http://obsnev.es/apps/efts_SN.html. 
 
The MODIS database used in this work are maintained by NASA (satellite Terra, sensor MODIS, product 
MOD13Q1.006), and the geospatial datasets of Sierra Nevada Park are included in public database of the 
Andalusian regional government (REDIAM). 360 

 
 
6 Conclusion 
 
This dataset provides a characterization of ecosystem functioning and ecosystem functional diversity in Sierra 365 

Nevada Biosphere Reserve (SE Spain) through the analysis of time series of satellite images of spectral vegetation 
indices as surrogates of the carbon gains dynamics. First, three Ecosystem Functional Attributes (EFAs) describe 
the spatial and inter-annual variability in productivity, seasonality and phenology of vegetation photosynthetic 
activity. Second, the combination of these EFAs into a synthetic classification, i.e. Ecosystem Functional Types 
(EFTs), integrates in a single map the spatial heterogeneity of these descriptors of the seasonal dynamics of carbon 370 

gains. Finally, by using EFTs as biological entities, the spatial patterns of ecosystem functional diversity were 
assessed by means of EFT richness and EFT rarity, as well as the inter-annual variability in ecosystem functioning 
through EFT inter-annual variability and EFT inter-annual dissimilarity.  
 
Ecosystem Functional Types approach improve the understanding of ecosystem processes through environmental 375 

gradients and provide both the scientific community with valuable information of the first characterization of the 
functional diversity at ecosystem level developed in the entire protected area. 
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Figures 

 
Figure 1. Location (top‐right) and remote view of Sierra Nevada mountain region (image from the 
International Space Station took in December 2014; courtesy of “Earth Science and Remote Sensing Unit, 
NASA Johnson Space Center”). 615 
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Figure 2. Workflow to characterize the ecosystem functioning and functional diversity of Sierra Nevada. 
MODIS (Moderate Resolution Imaging Spectroradiometer) sensor product MOD13Q1 was used aboard 
NASA's Terra satellite. This product contains images with 16-day temporal resolution (23 images per year) 620 

and ~232 m spatial resolution from the Enhanced Vegetation Index (EVI). The study period was from 2001 
to 2018. Three functional attributes describing ecosystem functioning were calculated from the EVI 
seasonal curve for each year. The range of values for each attribute was divided into four intervals, resulting 
in a potential number of 64 TFEs (4x4x4=64). From EFTs, we derived fourth metric related to ecosystem 
functional diversity (EFT richness and rarity) and ecosystem functional stability (interannual variability 625 

and dissimilarity). 
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Figure 3: Seasonal dynamics of Enhanced Vegetation Index (EVI) and EVI derived metrics or Ecosystem 
Functional Attributes (EFAs). The axis “x” corresponds with months and the axis y with EVI values. EFAs 
were: the annual mean or the area under curve, an estimator of annual productivity (EVI_mean), the EVI 630 

seasonal coefficient of variation, i.e. the differences between the minimum and the maximum EVI values, a 
descriptor of seasonality (EVI_sSD), and the date of maximum EVI, an indicator of phenology 
(EVI_DMAX). We chose this three EVI metrics or EFAs due to they capture most of the variance of the 
EVI time series 

 635 
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Figure 4. Ecosystem Functional Attributes (a-c) and Ecosystem Functional Types (d) describing the 
functioning of the canopy based on the Enhanced Vegetation Index (EVI), derived from MOD13Q1-
TERRA (pixel ~232 m) for the period 2001-2018. 

 640 

Figure 5. Functional diversity patterns based on the Enhanced Vegetation Index (EVI), derived from 
MOD13Q1-TERRA for the period 2001-2018. a) EFTs interannual variability for the period; b) EFTs 
interannual dissimilarity or 1 - Jaccard coefficient for the period; c) Spatial EFT richness patterns from a 
4x4 pixel MODIS mobile window (〜1 km2); and d) Spatial EFT rarity patterns.  
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 645 

Table 1. EFAs range used for identification of EFTs in Sierra Nevada. For EVI_DMAX, the four intervals 
agreed with the four seasons of the year. For EVI_mean and EVI_sSD, we extracted the first, second, and 
third quartiles for each year and then calculated the inter-annual mean of each quartile (means of the 18-
year period). 
 650 

Ecosystem 
Functional 
Attribute 

Character 
code 

Digit code Range 

EVI Mean 

(Productivity) 

A 100  0 - 0,137 

B 200 0,137 - 0,187 

C 300 0,187 – 0,241 

D 400 > 0,241 

EVI SD 

(Seasonality) 

a 10 > 0,062 

b 20 0,043 – 0,062 

c 30 0,030 – 0,043 

d 40 0 – 0,030 

EVI MMAX 

(Phenology) 

1 1 Spring 

2 2 Summer 

3 3 Autumn 

4 4 Winter 
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ABSTRACT

Conservation biology must set geographic conser-

vation priorities not only based on the composi-

tional or structural but also on the functional

dimensions of biodiversity. However, assessing

functional diversity is challenging at the regional

scale. We propose the use of satellite-derived

Ecosystem Functional Types (EFTs), defined here as

patches of land surface that share similar primary

production dynamics, to incorporate such aspects

of ecosystem functional diversity into the selection

of protected areas. We applied the EFT approach to

the Baja California Peninsula, Mexico, to charac-

terize the regional heterogeneity of primary pro-

duction dynamics in terms of EFTs; to set

conservation priorities based on EFT richness and

rarity; and to explore whether such EFT-based

conservation priorities were consistent with and/or

complementary to previous assessments focused on

biodiversity composition and structure. EFTs were

identified based on three ecosystem functional at-

tributes derived from seasonal dynamics of the

Enhanced Vegetation Index: the annual mean

(proxy of primary production), the seasonal coef-

ficient of variation (descriptor of seasonality), and

the date of maximum (indicator of phenology).

EFT-based priorities identified 26% of the penin-

sula as being of extreme or high priority and rein-

forced the value of the ecosystem functional

diversity of areas already prioritized by traditional

conservation assessments. In addition, our study

revealed that biodiversity composition- and struc-

ture-based assessments had not identified the full

range of important areas for EFT diversity and

tended to better capture areas of high EFT rarity

than those of high EFT richness. Our EFT-based

assessment demonstrates how remotely sensed re-

gional heterogeneity in ecosystem functions could

reinforce and complement traditional conservation

priority setting.
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Richness; Rarity; Ecosystem functioning; Biodiver-

sity congruence; Holistic conservation; Geographic

priorities; Remote sensing.

HIGHLIGHTS

� Satellite-based Ecosystem Functional Types cap-

ture primary production heterogeneity.

� Ecosystem Functional Type richness and rarity as

estimates of functional diversity.

� Functional conservation priorities reinforce and

complement traditional approaches.

INTRODUCTION

Contemporary conservation planning faces the

challenge of safeguarding the ecological processes

required for the persistence of biodiversity over

time (GBO4 2014) and for the supply of ecosystem

services to people (Costanza 2012). To this end,

protected areas must represent the most important

areas for in situ global conservation effort (Watson

and others 2014). Initially, opportunism and aes-

thetic values drove protected area creation (Palomo

and others 2014; Baldi and others 2017). More

recently, reserve selection under systematic con-

servation approaches (Margules and Pressey 2000)

has mainly relied on compositional and structural

dimensions of biodiversity (for example, Rodrigues

and others 2004; Lamoreux and others 2006).

However, despite important advances to the design

of more comprehensive protected area networks,

geographic conservation priorities have seldom

considered heterogeneity in ecosystem functions

(Callicott and others 1999; Mace 2014; Turner and

Gardner 2015). The need for more representative

global protected area networks (Visconti and others

2019) that account for the three dimensions of

biodiversity (composition, structure, and function;

Noss 1990) could greatly benefit from the explicit

inclusion of ecosystem functions and processes that

support biodiversity and ecosystem services (Meyer

1997; Cabello and others 2012; Pettorelli and oth-

ers 2018; Lecina-Dı́az and others 2019).

Functional diversity, ranging from gene expres-

sion to landscape processes, is an important biodi-

versity component to be assessed by conservation

programs, as it links biological diversity with

ecosystem functioning (Cadotte and others 2011;

Dı́az and others 2007; Chapin and others 2010;

Asner and others 2017), services (Balvanera and

others 2006; Duncan and others 2015), and resi-

lience (Mouchet and others 2010). Functional

diversity estimates have been made by grouping

species into functional types based on structural

(for example, shrubs, trees, and so on), phyloge-

netic (for example, Coniferae, Poaceae, and so on), or

metabolic strategies (for example, C3, C4, and so

on) related to meaningful biological processes (La-

vorel and Garnier 2002, Lavorel and others 2007)

or by using morphofunctional species traits (Ma-

laterre and others 2019). However, the capacity for

species functional types and traits to represent

variations in ecosystem functional properties at

regional scales remains a challenge (Wright and

others 2006; Pasari and others 2013; Reichstein and

others 2014; Asner and others 2017; Malaterre and

others 2019).

Understanding the causes and consequences of

spatial heterogeneity in ecosystem functions could

help protect the species and communities that they

support (Meyer 1997; Lovett and others 2005;

Turner and Gardner 2015) and elucidate the links

between ecosystem multifunctionality, ecosystem

services (Manning and others 2018) and ecological

stability (Oliver and others 2015). Environmental

heterogeneity is a universal driver of taxonomic,

phylogenetic, and functional diversity (Stein and

others 2014; Stark and others 2017; Bergholz and

others 2017). However, although conserving bio-

physical setting variability has been suggested to

preserve biodiversity against rapid environmental

change (for example, Lawler and others 2015; Lit-

tlefield and others 2019), variation in ecosystem

functions has received less attention (Lovett and

others 2005). Developing feasible approaches to

understand and account for heterogeneity in

ecosystem functions could complement traditional

priority settings to achieve the holistic goal of

protecting all biodiversity facets.

Satellite remote sensing can guide conservation

actions based on the characterization of functional

diversity not only at the species trait level (Jetz and

others 2016) but also at the ecosystem level (Ca-

bello and others 2012; Alcaraz-Segura and others

2013; Asner and others 2017; Gamon and others

2019). First, satellite-derived descriptors of ecosys-

tem functions can be relevant as essential biodi-

versity variables (EBVs, Pettorelli and others 2016,

2018; Alcaraz-Segura and others 2017). For

example, spectral indices are linked to key ecosys-

tem functional descriptors such as primary pro-

duction, evapotranspiration, surface temperature,

and albedo (Paruelo and others 1997; Fernández

and others 2010; Lee and others 2013) (Ta-

B. P. Cazorla and others



ble 1—steps 1 and 2). Second, with these descrip-

tors, it is possible to identify and map areas sharing

similar dynamics of matter and energy exchange

between biota and physical environments based on

so-called satellite-derived Ecosystem Functional

Types (EFTs) (Paruelo and others 2001; Alcaraz-

Segura and others 2006, 2013).

As highlighted by Mucina (2019), EFTs could

represent ‘‘the first serious attempt to group

ecosystems (at large scales) on the basis of shared

functional behavior.’’ EFTs group ecosystems on

the basis of shared ecosystem functions without

prior knowledge of vegetation types or canopy

structure (Ivits and others 2013). As species can be

grouped into plant functional types based on

common morphofunctional traits to derive eco-

logical properties at higher biological levels (that is,

a bottom-up strategy), ecosystems can be grouped

into EFTs to directly map processes and functions at

larger scales (that is, a top-down approach) (Al-

caraz-Segura and others 2006). EFTs follow a

holistic approach (Naeem 1998, 2002; Loreau

2008) to measure the overall performance of an

ecosystem (see the review in Jax 2010). EFTs cap-

ture heterogeneity in ecosystem functions (for

example, primary production, evapotranspiration,

or disturbance dynamics) and provide comple-

mentary information to other metrics such as those

of vegetation structure and species composition to

improve our understanding of the multidimen-

sional nature of biodiversity (Noss 1990). EFTs

have already been used to characterize the spatial

heterogeneity of ecosystem functioning at the glo-

bal (Ivits and others 2013), regional (Paruelo and

others 2001; Alcaraz-Segura and others 2006; Lara

and others 2017), and protected area scales (Fer-

nández and others 2010; Cabello and others 2013).

In this study, we propose the use of Ecosystem

Functional Types (EFTs), defined here as patches of

land surface that share similar primary production

dynamics (that is, productivity, seasonality, and

phenology, Figure 1), to incorporate the spa-

tiotemporal heterogeneity of a focal ecosystem

function into geographic conservation priorities

(conceptual workflow shown in Table 1). As a

proof of concept, we applied the EFT approach to

the Baja California Peninsula (Mexico): (1) to

characterize the regional heterogeneity of primary

production dynamics using EFTs; (2) to prioritize

areas for conservation based on their EFT diversity

(EFT richness and rarity); and (3) to explore whe-

ther such EFT-based priorities were congruent with

and/or complementary to previous expert and

systematic conservation-based assessments mainly

focused on biodiversity composition and structure.

MATERIALS AND METHODS

Study Area

We chose the Baja California Peninsula as study area

(Figure 2A) because it has high environmental

heterogeneity, low human influence, a large pro-

portion of protected land (40%) (Table S1) and be-

cause two geographic priority assessments have

been conducted on the area mainly based on biodi-

versity composition and structure (Arriaga and

others 2000; Koleff and others 2009). The peninsula

covers a Mediterranean desert tropical climatic

transition area positioned along a 1400 km latitudi-

nal gradient from 35ºN to 23ºN (González-Abraham

and others 2010). The Mediterranean Region (NW)

is characterized by annual mean temperatures be-

tween 8 and 21�C, dry summers and mild wet win-

ters with annual rainfall levels ranging from 100 to

200 mm at sea level to 500–700 mm in the highest

mountains (3100 m) (Peinado and others 2011).

The Desert Region extends from NE to S and is

characterized by temperatures ranging from 20 to

25�C, and very low annual rainfall (100–200 mm)

concentrated in sporadic events that shift from the

winter in the N to the summer in the S (Hastings and

Turner 1965). The Tropical Region at the southern

tip is warm year round (15–24�C) and characterized

by a nine-month dry season (November–July) fol-

lowed by the tropical cyclone and storm rains with

annual rainfall levels ranging from 200 mm at sea

level to 700 mm in the highest mountains (at

2090 m) (Peinado and others 2011).

Identifying Ecosystem Functional Types

Regional heterogeneity in ecosystem functions was

characterized by identifying Ecosystem Functional

Types (EFTs) based on the seasonal dynamics of

carbon gains following Alcaraz-Segura and others

(2013). We focused on primary production because

it is an integrative component of ecosystem func-

tioning (Table 1—step 1; Virginia and Wall 2013),

and its seasonal dynamics can be monitored

through spectral vegetation indices. We used 2001–

2017 Enhanced Vegetation Index (EVI) images

from the MODIS sensor (MOD13Q1.005 product:

16-day maximum value composite images at

� 230 m pixel size), as it offers a long time-series of

a robust surrogate for primary production (Shi and

others 2017) (Table 1—step 2). EFTs were derived

from three meaningful metrics of the EVI seasonal

curve also known as Ecosystem Functional Attri-

butes (EFAs) (Figure 1; Table 1—step 3) (Alcaraz-

Segura and others 2013; Pettorelli and others

2005): the annual mean (EVI mean; an estimate of
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Table 1. Workflow for Setting Geographic Conservation Priorities Based on Ecosystem Functional Types

What is the goal of this step? Why is it needed? How did we complete it?

Step 1. To identify the targeted func-

tional facets of biodiversity to be

considered, for example, ecosystem

primary production as an essential

biodiversity variable

Conservation planning based on func-

tional dimensions of biodiversity is

needed (Noss 1990) but scarce (Ca-

bello and others 2012). Some facets

of ecosystem functioning are more

essential to biodiversity and ecosys-

tem services, offer more available

information for inventorying and

monitoring, and are more relevant to

particular conservation goals than

others

We chose primary production, as it is

the most integrative indicator of

ecosystem functioning (Virginia and

Wall 2013)

Step 2. To choose surrogates for tar-

geted functional facets, for example,

remotely sensed vegetation indices

Direct measurements of biodiversity

variables are usually costly. Satellite

images of the Earth can be consid-

ered biological datasets (Geller and

others 2017). Image pixels are sam-

pling plots whose spectral informa-

tion offers indirect, cost-effective

estimates of matter and energy ex-

changes between the land surface

and the atmosphere, which support

ecosystem functions and services

We used the Enhanced Vegetation In-

dex (EVI) to estimate photosynthet-

ically active radiation absorbed by

vegetation (based on the Monteith

Model, 1972)

Step 3. To identify simple and biologi-

cally meaningful metrics of the

ecosystem functioning surrogates,

for example, descriptors of the

amount and timing of carbon gain

dynamics

The dynamics of ecosystem functioning

are tracked through full time-series

of essential variables. Synthesizing

and capturing most of the variance of

these time-series into a few easy to

interpret metrics reduce complexity,

ease interpretability, and promote

the metrics standard use

We identified three metrics capturing

most of the variance in the EVI sea-

sonal dynamics (Ecosystem Func-

tional Attributes, EFAs): annual

production, seasonality, and phe-

nology. We parameterized yearly

seasonal dynamics of the EVI for

three EFAs: the annual EVI mean,

seasonal EVI coefficient of variation,

and the date of the maximum EVI

Step 4. To group patches of the land

surface with similar functional

behaviors by classifying continuous

metrics into discrete units, for

example, Ecosystem Functional

Types (EFTs)

Functional classifications synthesize

continuous large-scale ecological

gradients into discrete mapping units

in relation to common ecosystem

functions and processes. Discrete

mapping units characterize ecosys-

tem diversity at the regional scale

and are needed for management and

decision-making such as in system-

atic conservation planning

To integrate patterns of productivity,

seasonality, and phenology into a

single map, we divided the range of

values of each EFA into four inter-

vals (quartiles), creating a potential

number of 64 EFTs (4 9 4 9 4)

Step 5. To select criteria for assessing

ecosystem functional diversity at the

regional scale, for example, EFT

richness and rarity

Measurements of all biodiversity facets

are not possible given the complex,

multidimensional, and hierarchical

nature of biodiversity (Noss 1990).

Biodiversity indices such as richness

and rarity are easy to interpret, rel-

evant, and objective criteria fre-

quently used in conservation

assessments

We calculated EFT richness by count-

ing the number of EFTs in a slicing

window. EFT rarity was calculated as

the relative extension of each EFT

compared to the most abundant EFT
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primary production), the EVI seasonal coefficient of

variation (EVI sCV; a descriptor of seasonality), and

the date of the maximum EVI (EVI DMAX; an

indicator of phenology). The three metrics capture

most of the variance in EVI seasonal dynamics into

three meaningful metrics that facilitate ecological

Figure 1. Seasonal dynamics of the Enhanced Vegetation Index (EVI) and of Ecosystem Functional Attributes (EFAs). The

X axis corresponds to months, and the Y axis corresponds to EVI values. EFAs include: the annual EVI mean, an estimator

of annual productivity (EVI mean); the seasonal EVI coefficient of variation (EVI sCV), that is, differences between

minimum and maximum EVI values, as a descriptor of seasonality; and the date of the maximum EVI (EVI DMAX) as a

phenological indicator of the growing season.

Table 1. continued

What is the goal of this step? Why is it needed? How did we complete it?

Step 6. To set geographic conservation

priorities that capture areas of high

ecosystem functional diversity, for

example, areas of high EFT richness

and rarity

Landscapes of high heterogeneity in

ecosystem functions are prone to

contain multiple ecosystem meta-

bolic and evolutionary pathways.

Multifunctional landscapes provide

more diverse ecosystem services

(Manning and others 2018), and

functional diversity confers ecologi-

cal stability (resistance and resi-

lience)

We identified areas of the highest (ex-

treme and high) conservation prior-

ity as those ones with high EFT

richness and high EFT composition

rarity

Step 7. To compare priorities based on

ecosystem functional diversity with

independent assessments, for exam-

ple, complementarity and consis-

tency between EFT-based priorities

and previous assessments focused on

composition and structure

Priorities based on ecosystem func-

tioning can converge with indepen-

dent priorities focused on

biodiversity composition and struc-

ture so that they reinforce each

other. Priorities can also be comple-

mentary, supporting decision-mak-

ing by offering supplementary

arguments for the holistic conserva-

tion of biodiversity

We integrated the three approaches

into two synthetic maps: consistency

and complementarity. To visualize

agreement and disagreement be-

tween and among approaches, we

used Venn diagrams
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interpretation (Paruelo and others 2001; Alcaraz-

Segura and others 2006).

To derive EFT classes from EFAs, the range of

values of each EFA was divided into four intervals

that were then combined, generating a potential

number of (4 9 4 9 4) 64 EFTs (Figure S1D and

S2). We used this classification method with fixed

boundaries between classes to maximize the bio-

logical interpretability of EFTs and to apply the

same classification rules to each year. This way, the

classification can be used to track interannual

changes in spatial heterogeneity of ecosystem

functions (Littlefield and others 2019). As for

DMAX since we wanted to maintain its ecological

sense in our final classification (that is, the timing

or phenology of the interception of radiation by

vegetation), the four intervals agree with the four

seasons of the year: spring (April–June), summer

(July–September), autumn (October–December),

and winter (January–March). For EVI_Mean and

EVI_sCV, we extracted the first, second, and third

quartiles (that is, the 25th, 50th, and 75th per-

centiles, respectively) for each year. Then, we cal-

culated the interannual means of the quartiles

(average of the 17-year period), which were used

as thresholds among classes (Figure S1D). The four

intervals created for each variable produced a rel-

atively low number of potential classes (64) and

maintained the EFAs spatial patterns (Figure S1

and S2).

To code EFTs, we used two letters and a number

(Figure S1D): the majuscule indicates primary

production (EVI mean) increasing from A to D; the

minuscule represents seasonality (EVI sCV)

decreasing from a to d; and numbers are a pheno-

logical indicator of the growing season (EVI

DMAX): 1—spring, 2—summer, 3—autumn, and

4—winter. To summarize ecosystem function pat-

terns of the 2001–2017 period, for each pixel we

calculated the most common EFT (the mode) from

the 17 annual EFT maps (Table 1—step 4). We

excluded from analyses pixels with human influ-

ence according to the human footprint index

(HF > 0.5) (González-Abraham and others 2015)

and those including anthropogenic land uses in the

2017-updated land cover map (INEGI 2017).

Mapping Geographic Conservation
Priorities from EFT Richness and Rarity

To identify geographic conservation priorities based

on spatial heterogeneity in our focal ecosystem

function (that is, primary production dynamics),

we derived two diversity metrics from the EFT map:

EFT richness and EFT rarity (Table 1—step 5). Both

richness and rarity are indices that are easy to

interpret, objective, and commonly used in ecology

and conservation (Perrin and Waldren 2020).

Richness measures different types of entities in a

sample. EFT richness was calculated by counting

the number of different EFTs within an 8 9 8 pixel

sliding window across the study area, serving as an

indicator of spatial heterogeneity in primary pro-

duction dynamics. From the EFT richness of each

year, we obtained the interannual average of EFT

richness (Alcaraz-Segura and others 2013). We

chose this window size because it includes 64 pix-

els, which is the potential maximum number of

EFTs in our classification. The use of smaller win-

dow sizes resulted in many windows reaching the

maximum number of classes while larger windows

produced too coarse outputs (Appendix 5).

Rarity has also been a central focus in conser-

vation (Soulé 1986). According to its abundance-

based definition, rarity refers to how frequently an

entity is found within an area (Kondratyeva and

others 2019). The rarity of each EFT was used as an

indicator of distinctive characteristics (that is, sin-

gularity) in primary production dynamics, which

are likely to exhibit unique biodiversity features

with conservation interest (Meyer 1997). EFT rar-

ity was calculated as the extension of each EFT

relative to the most abundant EFT throughout the

peninsula (Eq. 1) (Cabello and others 2013).

Rarity of EFTi ¼ Area EFTmax � Area EFTið Þ=Area EFTmax

ð1Þ

where Area_EFTmax is the area occupied by the

most abundant EFT throughout the study area and

Area_EFTi is the area of the i EFT evaluated with i

ranging from 1 (Aa1) to 64 (Dd4). An average rarity

map for all years was obtained, serving as our

estimate of regional patterns of ecosystem func-

tional singularity.

To determine EFT-based geographic conservation

priorities, we searched for areas of high EFT rich-

ness and rarity (Table 1—step 6). First, we stret-

ched (by spatial averaging) the spatial resolution of

the EFT rarity map (230 m/pixel) to match the EFT

richness map resolution (that is, an aggregated

value for 8 9 8-pixel windows). Second, the range

of values of both priority criteria variables was di-

vided into four intervals using quartiles. Third, a

decision matrix with 4 9 4 = 16 possible combi-

nations of richness and rarity levels was produced.

Finally, the 16 combinations of richness and rarity

levels were grouped into four final priority cate-

gories (Figure 3A): extreme, high, moderate, and

low for combinations that summed to 8, 7, 6, and 5,
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respectively. Combinations with lower sums were

deemed not a priority.

Assessment of Spatial Congruence
and Complementarity Between
the Functional Approach and Previous
Assessments

We explored the congruence and complementarity

between the EFT-based geographic conservation

priorities and two previous assessments based on

compositional, structural, and threat features of

biodiversity (Table 1—step 7). The ‘‘systematic

conservation’’ study by Koleff and others (2009)

used robust spatial analysis algorithms in a grid to

identify four levels of ‘‘Priority Sites to Conserve’’

based on diversity of and threats to vertebrates,

plants, and vegetation types. The ‘‘expert-based’’

study by Arriaga and others (2000) identified

‘‘Terrestrial Priority Regions’’ through qualitative

expert workshops that combined multiple biologi-

cal criteria (that is, species richness and endemicity,

centers of diversification and domestication, vege-

tation types, and so on) with criteria for threats and

opportunity (that is, habitat loss and fragmenta-

tion, unsustainable management, threatened spe-

cies, and so on).

For the congruence analysis, we overlapped the

three approaches at an 8 9 8-pixel window reso-

lution into two synthetic maps: one that integrated

congruence between the approaches (where pri-

orities agreed) (Figure 3C) and another that re-

vealed complementarity (where priorities did not

agree) (Figure 3D). Congruence with other ap-

proaches was defined as the existence of a spatial

overlap between EFT-based priorities and one or

both of the other approaches. Complementarity

with other approaches was defined as the existence

of spatial discordance between EFT-based priorities

and the previous priorities.

To visualize agreement and disagreement be-

tween approaches, we used Venn diagrams and the

Sorensen-Dice similarity index (Figure 4). Addi-

tionally, to show how our EFT-based approach

provides useful and orthogonal conservation pri-

ority information relative to traditional approaches,

we explored the characteristics of congruent and

complementary areas among approaches in terms

of EFT richness and rarity (Figure 5) and of EFAs

and EFT frequency (Appendix 4).

Sensitivity Analyses

To assess the effect of the sliding window size

(Appendix 5), we calculated EFT richness, rarity,

and priorities for double and triple window side

lengths (that is, 8 9 8-, 16 9 16-, and 24 9 24-

pixels). To assess the effect of the number of EFT

classes considered (Appendix 6), we calculated EFT

richness, rarity, and priorities by reducing the

number of EFT classes by 86% (8 classes) and 58%

(27 classes). Both effects were assessed three ways:

from Pearson correlations between different output

maps, from the spatial consistency among different

output maps, and from the total percentage of the

peninsula prioritized by each output map. Finally,

we also assessed the effects of different thresholds

of EFT richness and rarity on congruence and

complementarity between approaches by means of

the Sorensen-Dice similarity F-1 index (Appendix

7).

RESULTS

Regional Patterns of Focal Ecosystem
Function by Means of EFTs

All 64 potential EFTs were identified in the Baja

California Peninsula (Figure 2B) and exhibited

contrasting distributions across the three main

ecoregions of the peninsula (Figure 2A; González-

Abraham and others 2010). In the Mediterranean

Region to the northwest, EFTs were characterized

by moderate–high primary production, moderate–

low seasonality, and spring EVI maxima (Figures S1

and S2). The central and northeastern Desert Re-

gion was characterized by EFTs with low primary

production, low to moderate seasonality, and

winter EVI maxima in the center and in various

seasons in the northeast. The southern part of the

Desert Region was characterized by slightly higher

level of primary production and seasonality and by

summer–autumn EVI maxima. The Tropical Region

in the south was characterized by high levels of

primary production and seasonality and by sum-

mer EVI maxima (Figures S1 and S2).

Conservation Priorities Based on EFT
Richness and Rarity

EFT richness and rarity (Figure 2C, D) varied across

the peninsula following a combination of latitudi-

nal, longitudinal, and topographical gradients

(Figure 2A) and were found to be partially corre-

lated. Areas of high EFT rarity ranged from low to

high EFT richness while areas of high EFT richness

always showed high levels of EFT rarity (Fig-

ure S3). EFT richness levels ranged from 1 to 26

EFTs per sliding window. Most windows of the

highest EFT richness (12–26 EFTs) occurred north
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Figure 2. Spatial heterogeneity of ecosystem functioning in the Baja California Peninsula (Mexico). (A) Study area

showing biogeographical regions of study area and areas mentioned in the text; (B) Ecosystem Functional Types (EFTs) of

the 2001–2017 period (mode). EFT categories (lower left panel) are derived from three ecosystem functional attributes

(Figure 1) related to primary productivity, seasonality, and the phenology of carbon gains (see maps in Appendix 2,

Figure S1, S2); (C) EFT richness, quantity of EFTs occurring within 8 9 8-pixel sliding windows; and (D) EFT rarity,

calculated as the relative rarity of each EFT throughout the peninsula. White areas represented anthropogenic pixels

removed from the analysis.
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Figure 3. Comparison of geographic conservation priorities obtained from different biodiversity conservation approaches.

(A) Priority areas based on ecosystem functional diversity by Ecosystem Functional Type (EFT) richness and rarity. The

matrix shows the percentage of the study area of each quartile (Q) combination to obtain priority levels: extreme (red),

high (orange), moderate (green), low (blue), and nonpriority (gray). (B) Priority areas mainly based on structural and

compositional aspects of biodiversity obtained from assessments by expert-based (Arriaga and others 2000) and systematic

conservation planning (Koleff and others 2009) approaches. (C) Congruence among geographic conservation priorities

obtained by the three approaches (agreement between Figure 2A, B). (D) Complementarity among geographic

conservation priorities obtained by the three approaches (disagreement between Figure 2A, B). White areas were pixels

where none of the categories on the map were satisfied.
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of 30� N in the Mediterranean Region, where cli-

matic gradients translate into high heterogeneity in

EFAs, especially along the mountain divide (Fig-

ure 2A). An intermittent fringe of high EFT rich-

ness was also found along mountains from the

southern San Felipe Desert to the center of the

Desert Region (from 31º N to 27� N) and continued

southwards along the western desert piedmonts

and around wetlands and mangroves (from 27º N

to 24� N). Moderate EFT richness (7–12 EFTs) was

observed in the Mediterranean mountains, San

Felipe Desert, Colorado Delta, mid-mountains

along the Gulf Coast (from 26º N to 30º N), and

desert areas of the central peninsula. Extensive

areas with the lowest EFT richness (1–3 EFTs) were

found in plains and piedmonts of the Central and

Vizcaı́no Deserts, along the southern desert

mountains (Giganta Ranges), and in the Tropical

Region.

EFT rarity gradients were more pronounced than

EFT richness gradients (Figure 2D). The highest

rarity (0.8–0.9) occurred in the northwestern

quarter of the peninsula above 30� N (Mediter-

ranean Region), the central eastern desert transi-

tion, and around wetlands and mangroves. The

Pacific northwestern Central and Vizcaı́no Deserts

(north from 27º N) showed low rarity (0.4–0.7).

The lowest rarity (below 0.3) occurred along Gi-

ganta Ranges and in the Tropical Region (south of

28º N). This region, dominated by drought decid-

uous plant functional types, was mostly occupied

by one extensive EFT with high productivity and

seasonality and by summer EVI maxima (Da2).

The highest priority areas were found in

heterogeneous areas across the Mediterranean

Region, the northern and central eastern Desert

Region, and around wetlands and mangroves

(Figure 3A). Extreme priority areas occupied 9.6%

of the peninsula surrounded by areas of high

(16.4%), moderate (18%), and low priority

(16.6%). The rest of the peninsula (39.5%) was

classified as a nonpriority area for EFT diversity.

EFT-Based Priorities Versus Composition
and Structure-Based Approaches

EFT-based conservation priorities partially aligned

with other approaches (Figure 3A, B). Five percent

of the peninsula was considered to be of the highest

priority for all three approaches (Figure 4) and

mainly the Mediterranean Region along mountain

tops and the Desert Region in isolated areas of

mountains, wetlands, and mangroves (Figure 3C).

An additional 14% of the peninsula was prioritized

by the EFT-based approach and by either the sys-

tematic conservation approach (7%) or expert-

based approach (7%) (Figs. 3C and 4).

The EFT-based approach also revealed comple-

mentary areas not prioritized by the two previous

approaches (7% of the peninsula; Figure 4). These

areas were mainly located along mountainsides and

piedmonts with riverine systems in the Desert Re-

gion: the San Felipe Desert to the northeast, the

Gulf coastal desert in the center of the peninsula,

and scattered areas along the southern desert

(north and south of Magdalena Bay) (Figure 3C).

Conversely, some areas (5% of the peninsula) were

prioritized by the two previous approaches but not

by the EFT-based approach. This occurred mainly

in the Mediterranean mid-mountains and in

coastal plains of the central and southwestern de-

serts (Figs. 3 and 4).

EFAs and EFTs slightly differed among areas

prioritized by each approach (Figures S6 and S7).

Figure 4. Agreement/disagreement between different

ways to establish geographic conservation priorities for

the Baja California Peninsula (Venn diagram). Numbers

show the percentage of area in Baja California (not

influenced by human activities) prioritized for

conservation according to each approach. Our EFT-

based approach focuses on two aspects of ecosystem

functional diversity (Ecosystem Functional Type richness

and rarity) while the two other approaches focus on

biodiversity (mainly species) composition, structure, and

threats based on expert knowledge (Arriaga and others

2000) and systematic conservation planning (Koleff and

others 2009).
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Expert-based priorities (Arriaga and others 2000)

were biased toward EFTs with less primary pro-

duction than the other approaches. Systematic

conservation priorities (Koleff and others 2009)

were biased toward EFTs with higher primary

production than the other approaches. In con-

trast, EFT-based priorities showed a more unbi-

ased distribution of EFA values and EFT

compositions than previous priorities (Figures S4

and S5).

EFT richness and EFT rarity were found to be

much higher within areas consistently prioritized

by the three approaches (6 and 26 EFTs per 8 9 8-

pixel sliding window with most richness values

from 8 to 13 EFTs and with EFT rarity ranging from

0.8 to 1) than within areas prioritized by only one

of the three approaches (Figure 5). In contrast,

areas prioritized only by traditional approaches

were biased toward areas of low EFT richness (less

than 6) but maintained moderate to high values of

EFT rarity (greater than 0.5), especially in the sys-

tematic conservation approach. Indeed, despite

systematic conservation planning and the expert-

based approach performing very similarly in cap-

turing EFT richness, systematic conservation plan-

ning tended to better represent areas of high EFT

rarity (Figure S6).

Robustness Against Window Size,
the Number of Classes, and Priority
Thresholds

The sensitivity analyses revealed that our approach to

settingprioritieswas robust against changes inwindow

size and the number of EFT classes (Appendixes 5 and

6). Correlations of EFT richness and EFT rarity across

the 8 9 8-pixel window and coarser window sizes

ranged from0.84 to0.98 (Table S2) and those between

the 64 EFT classes and fewer classes ranged from 0.67

to 0.94 (Table S3). Regional patterns of EFT richness,

rarity, and priority were largely consistent across

window sizes (85% agreement among final priority

maps, Figures S7 and S8) and the number of EFT

classes (70% agreement among final priority maps,

Figures S9 and S10). EFT-based priorities always

exhibited more similarities with the more robust sys-

tematic conservation approach than with the qualita-

tive expert-based approach independent of thresholds

of EFT richness and rarity used (Figure S11).

DISCUSSION

Contemporary conservation paradigms aim to

maintain all biodiversity dimensions (Noss 1990),

including the ecological processes and functions

Figure 5. Congruence and complementarity among the three approaches to capture Ecosystem Functional Type (EFT)

diversity. Density histograms show the frequency of EFT richness (A) and rarity (B) in areas consistently prioritized by the

three approaches (‘‘congruence across all priorities’’) and in areas exclusively prioritized by one of the approaches but not

by the others (‘‘complementarity across priorities’’). Our EFT-based approach focuses on two aspects of ecosystem

functional diversity (EFT richness and rarity, i.e. heterogeneity and singularity) while the two other approaches focus on

biodiversity composition, structure, and threats based on expert knowledge (Arriaga and others 2000) and systematic

conservation planning (Koleff and others 2009).
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that sustain ecosystem services (Meyer 1997; Mace

2014; Prober and others 2019). In this study, we

used satellite-derived EFTs (Paruelo and others

2001), defined here as functionally homogeneous

land patches in terms of primary production

dynamics, to describe spatial patterns of a focal

ecosystem function. We used this focal ecosystem

function because it is considered to be an integra-

tive surrogate of stocks and fluxes of matter and

energy derived from biological activity (Virginia

and Wall 2013) and can be easily characterized by

remote sensing. In essence, EFTs allowed us to map

the spatial patterns of two indicators of ecosystem

functional diversity at the regional scale, that is,

EFT richness and EFT rarity. From these patterns,

we set geographic conservation priorities based on

an ecosystem function that helped us identify

important areas for the three dimensions of biodi-

versity (structure, composition, and function) and

highlight complementary areas for this ecosystem

function not prioritized by traditional approaches.

Regional Patterns of Ecosystem
Functional Heterogeneity

Maps of EFAs, EFTs, and EFT richness and rarity

offer a characterization of ecosystem functional

heterogeneity of the Baja California Peninsula. This

heterogeneity results from a combination of lati-

tudinal, longitudinal and topographic gradients.

Such gradients determine strong differences across

the peninsula in terms of seasonal dynamics of

radiation, temperature, precipitation, evapotran-

spiration, and vegetation access to groundwater

(Peinado and others 2011; Villarreal and others

2016) and have been identified as important for

plant diversity (Garcillán and Ezcurra 2003) and

endemism (Riemann and Exequiel 2007).

The highest levels of EFT richness were found

where topography and spatiotemporal climate

variability maximize ecosystem functional hetero-

geneity, mainly along mountains and piedmonts of

the Mediterranean and Desert Regions. The

Mediterranean climate imposes two limitations on

plant growth: summer drought and winter cold

temperatures (Hastings and Turner 1965). These

limiting factors of plant growth are strongly

heterogenized by steep altitudinal and orientation

gradients (Peinado and others 2011). In the Desert

Region, latitude, orientation, and access to ground-

water impose varying constraints on plant growth.

Such constraints include the latitudinal change in

the proportion of winter and summer rains; the

influence of coastal fog (Webb and Starr 2015); and

the occurrence of shallow aquifers, gullies and dry

arroyos embedded within a drylandmatrix (León de

la Luz and others 2015). Such high contrasts in

ecosystem functions between the regional landscape

matrix and its embedded ecosystems (that is, less

water-limited EFTs within a matrix of dryland EFTs)

enhance ecological processes of the lateral transfer of

matter and energy (Turner and Gardner 2015). For

these reasons, despite being a desert, such high

heterogeneity in environmental factors renders the

Desert Region very diverse in EFTs, a pattern also

found for plant functional types and plant commu-

nities (Webb and Turner 2015).

The lowest levels of EFT richness were found in

the tropics due to wetter and highly consistent

tropical climatic conditions that homogenize vege-

tation (Peinado and others 2011). In the Tropical

Region, strong precipitation seasonality (summer–

autumn tropical rains followed by a nine-month

drought) concentrates the growing season follow-

ing the cyclone season (León de la Luz and others

2000). This high level of seasonality neutralizes

even the altitudinal heterogeneity of the moun-

tains, resulting in a spatial homogenization of pri-

mary production dynamics throughout the region.

Such low EFT richness agrees with high similarities

in vegetation composition along all topographic

gradients, dominated by a few dry deciduous

shrubs and trees (Rascón-Ayala and others 2018).

Such an effect penetrates northwards along the

Giganta Ranges with similar vegetation types to the

Tropical Region (González-Abraham and others

2010). In addition, very low EFT richness extended

northwards along Central and Vizcaı́no desert

plains and piedmonts. EFT richness in these pied-

monts, where energy and water were decoupled

(winter rains dominate the Pacific northwestern

Central and Vizcaı́no deserts, north from 27º N),

was lower than in piedmonts where energy and

water were coupled (summer rains dominate the

southern half of the peninsula and San Felipe De-

sert to the northeast; Figure S1C).

EFT rarity was found to be associated with lati-

tude, altitude, and the presence of contrasting

ecological conditions. The highest EFT rarity of the

Mediterranean Region and San Felipe Desert was

found to be associated with winter precipitation,

which creates a rare phenological pattern in the

peninsula (Peinado and others 2011) together with

the longitudinal gradient and topographical

heterogeneity (for example, the only region with

areas showing EVI maxima in all seasons). In the

ecological transitional zone of the center of the

peninsula (28–29º N), the combined influence of

summer tropical storms from the south and au-

tumn-to-spring fronts from the north (González-
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Abraham and others 2010) also results in high le-

vels of EFT rarity. This ecotone shows singular

assemblages of species from tropical and nontropi-

cal biota (González-Abraham and others 2010) and

a high diversity of distinctive lifeforms (Webb and

Turner 2015). Finally, the surroundings of wet-

lands and mangroves in the Desert Region also

showed rare EFTs, and both Mediterranean-type

ecosystems and ecotones around wetlands are

known to contain singular EFTs in other parts of

the world (Cabello and others 2013). The lowest

EFT rarity value was measured for the Tropical

Region and southern desert mountains (Giganta

Ranges), where heterogeneity and singularity are

only introduced by the presence of endemism-rich

evergreen pine forests at the highest altitudes (León

de la Luz and Domı́nguez-Cadena 1989).

As found at the species level (Riemann and

Exequiel 2007; Lamoreux and others 2006), EFT

richness and rarity were only correlated with a

degree but did not always coincide in the penin-

sula. Such spatial aggregation between areas with

both high EFT richness and rarity highlights their

importance for heterogeneity and singularity in

primary production.

EFTs for Setting Geographic
Conservation Priorities

Three main conclusions can be drawn from our

congruence analysis of the three approaches. First,

our results highlight the importance of congruence

areas as probable aggregated hotspots for all

dimensions and scales of biodiversity, including

diversity in essential ecosystem functions such as

primary production dynamics. Areas with congru-

ence reinforce their ecological and conservation

value for the expansion of protected area networks

(Lamoreux and others 2006). For instance, consis-

tently prioritized areas of the Mediterranean

mountains have been historically identified as a

conservation gap based on plant diversity and en-

demism (for example, Garcillán and Ezcurra 2003;

Riemann and Ezcurra 2005). This congruence of

the Mediterranean Region in North America sug-

gests that some global biodiversity hotspots stand

out not only as hotspots of endemism but also as

heterogeneous and singular areas of ecosystem

function, even if their identification does not con-

sider ecosystem processes (Myers and others 2000).

Second, our results indicate that traditional ap-

proaches may not identify all important areas of

ecosystem functions (Meyer 1997) and may tend to

better prioritize areas with rarity than those with

richness in EFTs. Such an incidental focus of tra-

ditional approaches on rare EFTs could derive from

the dominant role that endemicity, often related to

singular conditions, plays in conservation planning

(for example, Myers and others 2000). It is inter-

esting that heterogeneity in ecosystem functions

has played a minor role (Lovett and others 2005)

despite habitat heterogeneity fostering species

adaptation and persistence (Hanson and others

2020). Third, our results also suggest that species

diversity, as in hotspots of the Tropical Region

mountains (Riemann and Ezcurra 2005, 2007), is

not necessarily associated with rare or spatially

heterogeneous ecosystem functions. In such areas,

not high environmental heterogeneity but a long

history of evolutive isolation under stable condi-

tions has mainly driven speciation (Sundaram and

others 2019).

Conservation efforts must employ spatially ex-

plicit and parsimonious ways to incorporate

heterogeneity in ecosystem functions (Turner and

Chapin 2005) to develop theories and tools that

complement traditional planning and management

actions (Possingham and others 2005). Our study

shows how satellite-derived EFAs and EFTs of a

focal ecosystem function (here primary production)

offer tangible and biologically meaningful qualities

of ecosystem functional heterogeneity (here EFT

richness and rarity) that can complement tradi-

tional geographic priority approaches. EFAs and

EFTs of focal ecosystem functions have already

been used to assess the comprehensiveness and

representativeness of protected areas (Cabello and

others 2012, 2013) and of environmental obser-

vatory networks (for example, LTER, NEON,

Ameriflux, and Mexflux; Villarreal and others

2018). Previous studies have also shown how EFAs

and EFTs could facilitate conservation by capturing

heterogeneity in the amount and timing of key

ecosystem functions to model species distributions

(for example, Tuanmu and Jetz 2015; Alcaraz-Se-

gura and others 2017; Arenas-Castro and others

2018) and abundances (Arenas-Castro and others

2019) as well as provisioning, regulating, and cul-

tural ecosystem services (Vaz and others 2020).

Caveats and Avenues for Future Research

The use of the EFT concept in geographic conser-

vation is still subject to challenges. First, our

satellite-derived EFT map characterizes the spatial

heterogeneity of primary production dynamics.

However, EFTs can also be identified from other

remote sensing indices (for example, Fernández

and others 2010) to characterize the spatiotemporal

heterogeneity of multiple ecosystem processes and

Incorporating Ecosystem Functional Diversity in Conservation Priorities



functions at different scales to guide biodiversity

and ecosystem services policies (Pettorelli and

others 2018). Second, as the environmental

observatory network expands, EFTs could be

parameterized (for example, Müller and others

2014) and validated using ground measurements

(for example, eddy covariance estimates of net

ecosystem exchange; Villarreal and others 2018).

Third, EFT richness and rarity maps illustrate

diversity and spatiotemporal heterogeneity in the

occurrence of ecosystem functions, but additional

landscape indices could also elucidate the spatial

arrangement (Fahrig and Nuttle 2005), connectiv-

ity, and lateral transfers (sensu Turner and Gardner

2015) of energy and matter fluxes at the landscape

level. Fourth, our study does not assess interannual

changes in EFAs, EFTs, or EFT richness and rarity,

which could help reveal areas suffering from

functional diversity homogenization, which is a

planetary boundary that still needs evaluation

(Steffen and others 2015). Fifth, the effects of

spatial scale (grain and extent) on richness, rarity,

and congruence with other biodiversity facets

should be evaluated. Grain or cell size affects the

magnitude, location, and spatial congruence of

hotspots of species richness and endemicity (Rah-

bek 2005; Arponen and others 2012; McKerrow

and others 2018; Daru and others 2020). The ex-

tent of the area under analysis may show that

species-based priorities at one scale (for example,

global) may or not overlap with those of other

scales (for example, national or regional) (known

as the parochialism effect; Pouzols and others

2014). EFT richness, rarity, and priorities depend

on the extent considered but seem to be robust

against sliding window sizes and the number of EFT

classes defined (Appendixes 5 and 6). Future works

should explore the effect of image pixel size (for

example, with Sentinel-2 at 10 m/pixel), hierarchy

in EFT classifications, and parochialism on the EFT-

based approach. Finally, to test their effectiveness

as ecosystem agnostic essential biodiversity variable

candidates, EFT richness, rarity, and derived pri-

orities should be compared to robust systematic

conservation-based approaches that consider mul-

tiple facets of biodiversity, that is, compositional,

structural, functional, and phylogenetic, in other

ecoregions of the world (Pettorelli and others

2016).

In conclusion, the remotely sensed EFT approach

can be used to incorporate the heterogeneity and

singularity of ecosystem functions into geographic

conservation priorities. Such an approach can

support decision-making by offering supplemen-

tary arguments for the holistic conservation of

biodiversity through the identification of key areas

for multiple biodiversity facets (for example, the

Mediterranean Region of Baja California) and of

other areas important for ecosystem function that

complement existing protected area networks (for

example, mountainsides, and piedmonts with

riverine systems in the Desert Region). Priority

assessments based on essential variables related to

ecosystem function cannot replace the use of very

valuable systematic conservation approaches based

on field records of species distributions to assess

biodiversity status and change (Pereira and others

2013). However, our approach is useful to com-

plement traditional priority setting, because is

simple and based on only three satellite-derived

meaningful descriptors of ecosystem functioning,

facilitating computation and interpretation by

managers and policymakers (Palumbo and others

2017). Future conceptual and empirical develop-

ment and applications of EFTs should include other

ecosystem functions, field validation, temporal

changes in EFT diversity, and further metrics of

heterogeneity across scales.
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Lavorel S, Garnier É. 2002. Predicting changes in community

composition and ecosystem functioning from plant traits:

Revisiting the Holy Grail. Functional Ecology 16(5):545–56.

Lavorel S, Dı́az S, Cornelissen JHC, Garnier E, Harrison SP,
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Abstract. Large-scale ecological variations across Earth have important consequences for biodiversity and therefore, for 
biological conservation. Despite the widespread use of ecological maps in conservation schemes, they have been based mainly 
on structural and compositional features, but scarcely on functional dimensions of life. The incorporation of functional 
variables complements and improves the descriptions of regionalizations and offers a new understanding of biodiversity 
patterns. The development of remote sensing measurement allows for the description of the functional patterns of ecosystems 
through Ecosystem Functional Types (EFTs), opening new opportunities to analyze the geography of life. In this article, our 
aim was to examine the relationships between ecological regionalization based on components and structure and patterns of 
ecosystem functioning. As proof of case, we chose the Baja California peninsula, whose singularity has generated a rich 
variety of ecological and biogeographical interpretations, mainly based on ecosystem components and structure. We 
hypothesize that patterns in ecosystem functioning reflect ecoregionalization based on composition and structure features. We 
identified Ecosystem Functional Types (EFTs), from three descriptors of the seasonal curves of MODIS Enhanced Vegetation 
Index (EVI) from 2001 to 2017. We characterized each ecoregion in terms of ecosystem functioning and we carried out a 
correspondence analysis between the EFTs classification and the ecoregions. At large scale, EFTs showed a pattern with three 
general regions from northwest to south, capturing the north-south transition of climatic regimes shown in the ecoregions map, 
from the northwestern Mediterranean area to the tropical southern zone, with a desert transition area between them. 
 
Keywords: Conservation; Ecosystem Functional Types; Ecoregions; Functional biodiversity; Functional geography; Remote 
sensing. 

Patrones de funcionamiento ecosistémico como instrumento de regionalización biológica: el caso de 

la transición mediterráneo-desértico-tropical de Baja California  

Resumen. Las variaciones ecológicas a gran escala en la Tierra tienen importantes consecuencias para la biodiversidad y por 
tanto, para la conservación biológica. A pesar del uso generalizado de los mapas ecológicos en los planes de conservación, 
éstos se han basado principalmente en características estructurales y de composicionales, pero apenas en las dimensiones 
funcionales de la vida. La incorporación de variables funcionales complementa y mejora las descripciones de las 
regionalizaciones y ofrece una nueva comprensión de los patrones de la diversidad biológica. El desarrollo de técnicas de 
teledetección permite la descripción de los patrones del funcionamiento ecosistémico a través del concepto de Tipos 
Funcionales de Ecosistemas (TFEs), abriendo nuevas oportunidades para analizar la geografía de la vida. En este artículo, 
nuestro objetivo fue examinar las relaciones entre la regionalización ecológica basada composición y estructura y los patrones 
de funcionamiento ecosistémico. Para ello, elegimos la Península de Baja California, cuya singularidad ha generado una rica 
variedad de interpretaciones ecológicas y biogeográficas, principalmente basadas en la composición y la estructura del 
ecosistema. Nuestra hipótesis guía, fue que de que los patrones de funcionamiento del ecosistema reflejan la 
ecorregionalización basada en las características composicionales y estructurales de la biodiversidad. Identificamos los Tipos 
Funcionales de Ecosistemas (TFEs), a partir de tres descriptores de las curvas estacionales del Índice de Vegetación Mejorado 
(EVI – Enhanced Vegetation Index) de MODIS de 2001 a 2017. Caracterizamos cada ecorregión en términos de 
funcionamiento ecosistémico y realizamos un análisis de correspondencia segmentado (DCA – Detrended Correspondence 
Analysis) entre la clasificación de TFEs y las ecorregiones. A gran escala, los TFEs mostraron un patrón con tres regiones 
generales desde el noroeste hasta el sur, representando la transición norte-sur de los regímenes climáticos mostrados en el 
mapa de las ecorregiones, desde la zona Mediterránea noroccidental a la zona Tropical meridional, con una zona de transición 
desértica entre ellas. Sin embargo, se identificaron diferencias entre las ecorregiones y la caracterización funcional, en aquellas 
ecorregiones identificadas como áreas de discrepancia entre autores. En particular, algunas ecorregiones consideradas 
Mediterráneas, mostraron un carácter desértico en su funcionamiento, y otras consideradas como Desérticas, resultaron 
Tropicales desde la perspectiva del funcionamiento. Los TFEs obtenidos mediante teledetección a escala regional, constituyen 
la base de una regionalización más integral de los patrones geográficos de la vida y por tanto, una mejora para futuros 
propósitos de conservación. 
 

Palabras clave: Biodiversidad Funcional; Conservación; Ecorregiones; Geografía Funcional; Teledetección; Tipos 
Funcionales de Ecosistemas. 
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Introduction 

 
Understanding how geographical patterns of life and 
which factors are driving them have been for a long 
time one of the main goals of naturalists, and the 
foundational roots of biogeography as science 
(Lomolino et al., 2015, 2017). Its interest resides in 
that large-scale variation in vegetation across Earth has 
important consequences for biodiversity and resources 
availability to support biological conservation and 
human wellbeing (Olson et al., 2001). At present, the 
Earth system has been characterized by large 
ecological units whose boundaries can be defined on 
the basis of past or current physical and biological 
forces (Whittaker, 1970; Box 1981; Dinerstein et al., 
1995; Olson et al., 2001; Bailey, 2009; Kreft & Jetz, 
2010). These ecological units or ecoregions can be 
identified at various spatial scales and/or hierarchical 
levels, which determines our perception of the system 
(Bailey, 2004). Ecoregions have been widely used for 
guiding management and conservation decision 
making, since it allows us to organize our 
understanding of how major terrestrial ecosystems 
work and to establish programs to monitor changes 
(Higgins et al., 2016). Despite the widespread use, 
these units represent human constructs derived from a 
boundary-setting exercise in which there is not always 
a consensus on how to define it and map their extent 
(Donoghue & Edwards, 2014; Moncrieff et al., 2016), 
which makes ecological maps hypotheses that can be 
tested and improved (Rowe & Sheard, 1981; Smith et 
al., 2018). 
 
Since the pioneering work of Alexander von 
Humboldt, who departed from habitual taxonomic 
criteria and described patterns of vegetation based on 
physiognomic attributes and coincident climate, 
scientists have been analyzing geographical patterns of 
ecosystems based mainly on their structural and 
compositional features, but scarcely on the functional 
dimension of life. The incorporation of functional 
variables complements and improves the descriptions 
of regionalizations based on structural and 
compositional features (Noss, 1990) and offers a better 
understanding of spatial and temporal patterns of 
diversity (Garnier et al., 2016). In particular, 
understanding changes in ecosystem functioning 
across biogeographic gradients can benefit from a 
greater ability to represent and define biotic 
communities (Reichstein et al., 2014). This leads the 
functional classifications to a useful framework to 
understand these large-scale ecological changes in 
relation to ecosystem function and processes. In fact, a 
growing number of studies have identified the need to 
integrate new concepts and methodologies to connect 
classical regionalizations with ecosystem functioning 
(Violle et al., 2014). 
 
Currently, ecologists are better equipped than ever 
before for exploring functional ecosystem dynamics at 

multiple temporal and spatial scales. Increasing large-
datasets derived from remote sensing and associated 
development of analytic tools have opened new 
opportunities to explore the geography of life. A 
promising analytic approach in this sense is the 
Ecosystem Functional Types proposed by Paruelo et al., 
(2001) and Alcaraz-Segura et al., (2006), which has 
been considered as the more serious attempt to 
characterize ecological regions from a functional 
perspective (Mucina, 2019). EFTs are groups or patches 
of land surface that share similar dynamics of matter 
and energy exchanges between the biota and the 
physical environment (Paruelo et al., 2001; Alcaraz-
Segura et al., 2006). The EFT approach uses time series 
of spectral Vegetation Indices (VI), such as Normalized 
Vegetation Index (NDVI) or Enhanced Vegetation 
Index (EVI), to capture the spatial expression of the 
carbon gain dynamics, considered the most integrative 
indicator of ecosystem functioning (McNaughton et al., 
1989; Virginia and Wall 2001). Thus, EFTs are 
identified by three meaningful metrics derived from the 
annual dynamics of EVI that reflect primary 
productivity, seasonality, and phenology of canopy 
(Paruelo et al., 2001). EFTs have been used to 
characterize the spatial heterogeneity of ecosystem 
functions at different scales, e.g., global (Ivits et al., 
2013), regional (Alcaraz-Segura et al., 2006) or local 
(Fernández et al., 2010), but the formal comparison 
with regionalizations based on other dimensions of 
biodiversity (i.e. ecoregions) has not yet been evaluated. 
 
In this study, our aim was to examine the relationships 
between biological regionalization based on the biota 
components and structure (species distribution, 
endemisms, vegetation types) and patterns of ecosystem 
functioning revealed by the geographical distribution of 
EFTs. As proof of case, we chose the Baja California 
peninsula, a 1300 km-long fringe of land which 
contains the transition from the Californian 
Mediterranean region to the Tropic. This ecologically 
heterogeneous peninsula has captured the attention of 
naturalists for a long time (Garcillán et al., 2010) and 
has an extraordinary conservation interest (Arriaga et 
al., 2000; Koleff et al., 2009). This extensive history of 
natural exploration has generated a rich variety of 
ecological and biogeographical interpretations, mainly 
based on ecosystem components and structure, 
synthesized by González-Abraham et al., (2010). We 
hypothesize that patterns in ecosystem functioning 
reflect ecoregionalization based on composition and 
structure features, however, the spatial coincidence 
between these dimensions of biodiversity decreases 
when we compare their patterns at more detailed spatial 
scales, i.e. downwards in the hierarchy of ecological 
units, from major regions to ecoregions (sub-regions).   
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Material and Methods 
 
Study area and ecoregionalization 

 
We chose the peninsula of Baja California as study area 
(Figure 1) because it contains high ecological 
heterogeneity governed by processes at different spatial 
and temporal scales, from the north-south transition of 
mediterranean-desert-tropics to the contrasting climatic 
influence of its two coastal seas (Garcillán et al., 2010). 
Besides that, its ecological geography has been studied 
for more than two centuries (Garcillán et al., 2010) and 
recently synthesized in an ecoregional map (González-
Abraham et al., 2010). Ecoregions have been identified 
at hierarchical levels: level I contains the three major 
regions, Mediterranean, Desert, and Tropical, and level 
II contains fourteen ecoregions (sub-regions) within the 
above major regions (Figure 1). 
 

 
Figure 1. Study area and ecoregions by 

González-Abraham et al. (2010). 
 

Regarding climatology (Figure 2), the Mediterranean 
region, in the northwest, is characterized by annual 
mean temperatures between 8-21ºC, summer drought, 
and winter precipitation, with annual rainfall ranging 
from 100-200 mm at sea level to 500-700 mm in the 
highest mountains (3100 m) (Hastings & Turner, 1965). 
The extensive Desert region, largely distributed from 
northeast to south, has temperatures ranging from 20-
25ºC, and very low annual rainfall (44-200 mm), 
concentrated in sporadic events that shift from winter in 
the north to summer in the south (Hastings & Turner 
1965; Peinado et al., 2011). The Tropical region, in the 
southern tip, is warm year-round (15-24ºC) and is 
characterized by late summer-early autumn 

precipitation, mainly derived from tropical cyclones and 
storms (annual rainfall from 200 mm at sea level to 800 
mm in the highest mountains -2090 m-, and a long dry 
season (Farfán & Fogel, 2007).  

 
Functional geography of ecosystems  
 
We characterized the geography of a key ecosystem 
process, terrestrial primary production dynamics, using 
the Ecosystem Functional Types (EFTs) approach 
(Paruelo et al., 2001; Alcaraz-Segura et al., 2006, 2013). 
For this, we used the 2001-2017 time-series of satellite 
images of the Enhanced Vegetation Index (EVI) 
obtained by the MODIS sensor, MOD13Q1.006 product 
(16-day maximum value composite images at 230 m 
pixel size). EFTs were identified from three descriptors 
of functional attributes from the seasonal curves of EVI, 
also known as Ecosystem Functional Attributes (EFAs): 
annual mean (EVI_surrogate of primary production), 
seasonal coefficient of variation (EVI_sCV, a descriptor 
of seasonality) and the peak of maximum EVI 
(EVI_DMAX, an indicator of phenology). Following 
Alcaraz-Segura et al., (2013), each of the three 
descriptors was divided into four intervals, whose 
potential combinations result in a total of 64 different 
EFTs. In the case of phenology, we chose as intervals the 
four seasons, and for primary production and seasonality 
descriptors, we used their respective quartiles. Each EFT 
was named using the combination of two letters and a 
number: A-D for each class of primary production, 
increasing value in alphabetic order; a-d for seasonality, 
decreasing value in alphabetic order; and 1-4 for 
phenology, starting with 1 for spring. Therefore, we 
obtained 17 annual maps of EFTs for the period 2001-
2017. We elaborated the final map of EFTs selecting for 
each pixel the median of the seventeen annual values. 
Previously, we excluded the areas under strong anthropic 
transformations according to González-Abraham et al., 
(2015) (human footprint index>0.5), and with 
anthropogenic categories in the last land-use map for the 
year 2017 of the Peninsula (INEGI, 2017).  
 
Structural and compositional vs. functional 
geography of ecosystems 
 
To examine the relationship between the characterization 
of the ecosystem functioning geographical patterns and 
ecological regionalizations based on structural and 
compositional features of vegetation, we used the 
ecoregions map by González-Abraham et al., (2010). To 
do so, we first, characterized each ecoregion, at all levels 
(I and II), in terms of ecosystem functioning, showing 
the frequency of each EFT in each ecoregion. And 
second, we carried out a Detrended Correspondence 
Analysis (DCA) (Hill & Gauch, 1980) between EFTs 
and ecoregions (Alcaraz-Segura et al., 2006; Fern�ndez 
et al., 2010). This analysis represents in a 
multidimensional space reduced the spatial relationship 
between the classes of both maps. DCA prevented that 
sample units from being grouped together at the 
extremes of the gradient, since it scales the axes and 
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equalizes the variance. Similarly, we prevented the 
problem that rare functions influence the outcome, 
since it reduces their weight. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 2. Climate description of the study area. a) Annual Mean Temperature in ºC; b) Annual Mean Precipitation in 
millimeters (mm); c) Winter-Spring Precipitation (mm); and d) Summer-autumn Precipitation. Data from WorldClim 
version 2.1 (Fick & Hijmans, 2017). 
 

 
Results 

Functional characterization across ecoregions 
 
EFTs map provided the ecosystem functional 
characterization of the Baja California Peninsula in 
terms of three key attributes (productivity, seasonality, 
and phenology) related to the primary production 
dynamics of vegetation. All potential combinations (64 
types) were present in the peninsula, although some of 

them were dominants (Figure 3). Ten EFTs (16% of the 
total) covered approximately 50% of the total study area 
and twenty-five (39% of the total EFTs) 75% of the 
peninsula. From these results it was possible to divide 
the dominant ecosystem functioning into two groups: 
EFTs with high productivity, high seasonality and 
phenology in autumn (e.g. Da3, Ca3, Cb3); and EFTs 
with low productivity, low seasonality and phenology in 
winter and autumn (e.g. Ac4, Ad3, Ad4, Ba3, Bb3, 
Bc3...). 
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Figure 3. Ecosystem Functional Types based on EVI-MODIS dynamics for 2001-2017 period (230x230 m pixel). EFT 
categories were indicated in the legend. Human transformed areas appeared in white.  
 
 
At large scale, EFTs geographical pattern captured 
roughly the north-south climatic transition in the 
peninsula as shown by the ecoregions map (see EFTs 
map (Figure 3)) and Correspondence Analysis (Figure 
5). In this sense, we could clearly identify the 
northwestern Mediterranean area, the tropical southern 
zone, and the desert transition areas between them. 
Despite this climate-based pattern, these three 
functional regions presented differences with respect to 
the boundaries of major ecoregions distribution. The 
geographical limits between the two functional regions 
in the north (northwest and northeast) were very similar 
to those proposed in the ecoregions map for the 
Mediterranean and Desert structural and compositional 
based regions (Gonzalez-Abraham et al., 2010).  

In contrast, the geographical limits in ecosystem 
functioning of the southern half of the peninsula, 
between Desert and Tropical regions (EFTs map; Figure 
3) showed significant differences with the limits 
established in the ecoregions map. Spatial references in 
this section to the regions are based upon the ecoregions 
map by González-Abraham et al., (2010). 
 
The Mediterranean region had the highest EFTs 
heterogeneity in the peninsula (Figure 4a), showing an 
altitudinal and latitudinal pattern of productivity. 
Mountainous ecoregions were dominated by high 
productivity EFTs (D) (e.g. California Mountains), and 
as altitude and latitude decreased, a greater EFTs 
heterogeneity increased since more intermediate  
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Figure 4. Functional characterization of ecoregions. EFT frequency histograms in major regions (level I) and sub-regions 
(level II) ordered in a latitudinal range: a) Mediterranean; b) Desert; and c) Tropical. Colours correspond to the EFTs, see 
legend in Figure 3. 
 
Productivity EFTs (C-B) also appeared (e.g. Chaparral, 
Coastal Sage Shrub, and Succulent Coastal Shrub). 
Productivity decreased toward the desert region (i.e. 
southward) where we found the EFTs with the lowest 
values for this attribute (A) (e.g. Pacific Islands). 
Seasonality values were high in coastal ecoregions (a-b) 
(Coastal Sage Scrub, Succulent Coastal Scrub) and low 
 
 (d) in the mountain (California Mountains, Chaparral). 
Peaks of greenness occurred mainly in spring (1) 

followed by autumn (3) and winter (4). This 
geographical pattern of EFTs coupled very well with the 
ecoregionalization established for the Mediterranean by 
Gonzalez-Abraham et al., (2010). Here was noticeable 
the precise functional delimitation that EFTs made 
between the coastal ecoregions (Coastal Sage Scrub and 
Succulent Coastal Sage) and mountains ecoregions 
(Chaparral and California Mountains) (EFTs map, 
Figure 3), what suggests a clear functional boundary 
between these ecoregions. 
 



Cazorla, B.P. et al. Mediterranean Botany in press  

Desert showed a clear latitudinal pattern of EFTs (in 
terms of productivity, seasonality, and phenology). 
Productivity was low (A) in the northern part of the 
region (e.g. Lower Colorado Desert, Central, Desert, 
and Vizaíno Desert) and increased towards the south, 
getting EFTs with high values for this attribute (C-D) 
(e.g. Gulf Coast, La Giganta Ranges, Magdalena 
Plains). Seasonality was also low (d) in northern 
ecoregions (e.g. Lower Colorado Desert) and increased 
towards the south, getting EFTs with high values for 
this attribute (C-D) (e.g. Gulf Coast, La Giganta 
Ranges, Magdalena Plains). Seasonality was also low 
(d) in northern ecoregions (e.g. Lower Colorado Desert) 
and increased southward (a-b) (e.g. La Giganta 
Ranges). Peaks of greening also differed along the 
latitudinal gradient, whereas northern desert ecoregions 
showed winter peak (4) (e.g. Lower Colorado, Central, 
and Vizaíno Desert), in the southern desert ecoregions, 
it occurs mainly in autumn (3) (e.g. Gulf Coast, La 
Giganta Ranges, and Magdalena Plains). Hence, in the  
Desert region, EFTs showed two functional deserts  
 
(Figures 3 and 4b): (i) the northern part that represented 
the “typical” Desert (Vizcaíno Desert, Central Desert, 
and Lower Colorado Desert ecoregions) and (ii) the 

southern “tropical” Desert (that includes Gulf Coast 
Desert, Giganta Ranges, and Magdalena Plains 
ecoregions), functionally similar to the Tropical region. 
 
Finally, the Tropical region EFTs had the highest 
homogeneity in ecosystem functioning (Figure 3 and 4c) 
and showed a homogeneous pattern through the three 
altitudinal ecoregions differentiated in the ecoregions 
map (Sarcrocaulescent Shrubland, Tropical Dry Forest 
and Cape Mountains). Functional differences along the 
region were only appreciable in terms of phenology. 
High mountain showed its phenological peak in 
September (summer), while low mountain and lowlands 
showed this peak during October-November (autumn). 
The region had a few different EFTs with high 
productivity (D), high seasonality (a), and the peaks of 
the maximum EVI in summer (2) and autumn (3). 

Correspondence between geographical patterns of 
ecosystem functioning and ecoregions 
 

Detrended Correspondence Analysis (DCA) (Figure 5) 
showed that three major regions of the Peninsula were  
 
 

Figure 5. Ordination plot of dimension 1 and dimension 2 of the Detrended Correspondence Analysis (DCA) run with the 
contingency matrix between Ecosystem Functional Types, EFTs (circles) and ecoregions (triangles) in the Baja California 
Peninsula. See EFT codes in legend. Dotted circles represented the three major regions: Mediterranean in purple, Desert in 
red and Tropical in green 
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distributed along a marked productivity gradient 
(Figure 5 and Figure S1a). As a general pattern, the 
Mediterranean ecoregions (top left of Figure 5), were 
associated with EFTs corresponding to high and 
intermediate productivity, low seasonality and 
phenology in spring (EFTs Dd1, Dc1, Cd1). However, 
two ecoregions considered to be Mediterranean by 
González-Abraham et al., (2010) did not appear in this 
group, being associated with other EFTs. On one hand, 
Pacific Islands appeared functionally separated from the 
other Mediterranean ecoregions and were associated 
with those corresponding to a climatic desert. On the 
other hand, Succulent Coastal Scrub, appeared in a 
transition zone between high productivity EFTs (typical  
of the Mediterranean) and low productivity EFTs 
(typical of the desert).  
 
Desert ecoregions were grouped in two different places 
of the DCA (Figure 5 and Figure S1): (i) northern 
desert ecoregions (bottom right) and (ii) southern desert 
ecoregions (left). The group of northern desert 
ecoregions, had associated EFTs characterized by low 
productivity, in particular, Vizcaíno Desert was 
associated to very low productivity (A) and high 
seasonality (a) (EFT Aa4) and Lower Colorado Desert 
and Central Desert showed EFTs with low-medium 
productivity (B) and low or medium seasonality (c-d) 
(EFT Bc4). Southern desert ecoregions (i.e. Central 
Gulf Coast, La Giganta Ranges, and Magdalena Plains) 
were placed near to the tropical ecoregions, in a 
transition zone. Therefore, the southern part of Desert 
region, in the ecoregions map, is functionally more 
similar to the Tropical region than to the northern 
desert. Here, productivity was remarkably higher (C) 
than in the rest of desert region (A-B), and the 
phenological peak occurs between September to 
November (autumn-3), in a similar way to the tropical 
region and in contrast to the rest of desert region, where 
it occurred between February to April (mainly winter-
4). Furthermore, the southern Desert region presents 
higher seasonality (a-b) than the rest of the Desert, and 
is similar to the Tropical region. 
 
Finally, we found the group of tropical EFTs (right in 
Figure 5 and Figure S1) associated with EFTs of high 
productivity (D), high seasonality (a) and phenology in 
summer (2) and autumn (3) (EFT Da2, Da3). The most 
novel result was the functional proximity of the 
ecoregions of the southern desert with the tropical 
region. 

 
Discussion 

 
We found that in the Baja California Peninsula, at the 
broad scale, the spatial patterns in ecosystem 
functioning can produce different spatial patterns to the 
biogeographic regionalization established from 
structural and compositional attributes of the 
ecosystems. In fact, when we focused on a more 
detailed scale, some disagreement between the 
functional patterns with ecoregions were more evident.  
 
 
 

This was particularly evident in the Desert - Tropical 
regions that, in contrast to the Mediterranean ecoregions, 
did not show spatial association with the EFTs that better 
represented the climatic conditions of the major region. 
Our analysis showed that the southern Desert ecoregions 
were functionally more similar to the Tropical region 
than to the rest of the desert ecoregions, and ecoregions 
inside Tropical region were functionally similar. These 
results emphasize the concept that functional geography 
provides new information about ecological systems, 
bringing us a new vision of another dimension of 
biodiversity. The knowledge of the relationship between 
the patterns of ecoregions and ecosystem functioning is 
the basis for a better understanding of spatial and 
temporal patterns of multidimensional biodiversity, 
which may guide towards a better regionalization and 
could aid for management and conservation purposes. 

Classical regionalization and functional 
characterization of ecoregions: are our functional 
observations consistent with ecoregions? 
 
- Nature of tropics and geographical limits 

 
We found two functional regimes with a transition 
around 27o-28o N: the northern half driven by winter-
spring raining season and the southern half by summer-
autumn rains. 
 
There has been a long-time discussion among naturalists 
about the transition between the desert and tropical 
regions (Shreve, 1951; León de la Luz et al., 2008; 
González-Abraham et al., 2010). This transition has been 
delimited using different indices or attributes (Corlett, 
2013; Feeley & Stroud, 2018), including climate 
variables (Hastings & Turner, 1965; Turner et al., 1995), 
species distribution (Garcillán et al., 2003), intra-species 
genetic changes (Riddle et al., 2000) or even geological 
features (León de la Luz et al., 2000). However, it has 
not been shown in terms of ecosystem functioning.  
 
The extension of tropicality over the southern half of the 
peninsula, and its functioning leaves open a promising 
avenue for the study of the functionally tropical behavior 
of various parts of the desert. Something that has not 
been clearly explained in ecological terms before. In this 
sense, there are ecoregions not considered tropical until 
now (but desert), which although they do not have the 
tropicality as marked as the tropical ones 
(Sarcocaulescent Shrubland, Tropical Dry Forest and 
Cape Mountains), they also have the typical EFT of the 
tropics (EFT Da1) as the most abundant (Gulf Coast, La 
Giganta Ranges, and Magdalena Plains). Therefore, our 
results suggest that EFTs can help to conceptualize and 
define limits and dynamics of tropics or other ecological 
regions across different spatio-temporal scales. 
 
- Two functional deserts 

 
One of the most remarkable results is the empirical 
evidence of two functionally deserts (approx. at 27.5o N)  
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(Figure 3). The transition between both functional 
deserts occurs at different latitudes depending on each 
peninsular coast. Here, ecosystem functioning is 
conditioned by the opposite thermal influence of the 
Gulf of California and the Pacific Ocean. The Northern 
desert descends southward along the Pacific coast to 
around 26oN characterized by low productivity, low to 
moderate seasonality and high dependence on winter 
rains (Lower Colorado Desert, Central Desert, and 
Vizcaino Desert ecoregions); however, in the Gulf 
Coast, the Southern desert extends to reach next to 28 
oN, showing higher productivity, seasonality and 
dependence on summer rains (Gulf Coast, La Giganta 
Ranges, and Magdalena Plains ecoregions). In essence, 
the presence of the California Current on the Pacific 
coast favours the southern extension along this coast of 
Mediterranean climate characteristics (including 
frequent fogging), while the high temperature of the 
Gulf of California prolongs the tropical influence 
towards the north along its coasts (Hastings & Turner, 
1965; Peinado et al., 1994). On the Pacific coast, it has 
been shown that the ocean surface temperature (fog 
promoter) and the photosynthetically active radiation 
portion (fPAR) are directly related (Reimer et al., 
2015), helping to maintain a minimum of productivity 
in places where precipitation is very scarce or even non-
existent for long periods of time. Besides the climate 
transitional character of the Desert region, the scarce 
and high spatial and temporal variability of its 
precipitation (Hastings & Turner, 1965; Turner & 
Brown, 1982; Peinado et al., 2011) produce the 
elevated functional heterogeneity observed along this 
region. 
 
These results can help to understand the controversy 
that has traditionally existed over the classification of 
southern desert ecoregions. Shreve (1951) considered 
La Giganta Ranges to be tropical, but a later study by 
Leon de la Luz et al., (2008) suggested that floristically 
it resembled the desert. In the case of Gulf Coast and 
Magdalena Plains, all studies since the work of Shreve 
(1951) have considered them to be desert ecoregions 
(see review in Garcillán et al., 2010; González-
Abraham et al., 2010). However, our analyses showed 
that these three ecoregions functionally have a strong 
tropical character. The Gulf Coast ecoregion is a narrow 
strip of very long latitude (24-29o N) along the 
decreasing gradient of summer precipitation. These 
characteristics and the barrier effect of the mountains to 
the west, make it the most heterogeneous ecoregion in 
the whole Peninsula, hence its difficult classification. 
The Giganta Ranges was also identified as a zone of 
discrepancy in González-Abraham et al., (2010), but 
this did not happen for Magdalena Plains. Therefore, 
the identification of functionally tropicaloid features in 
this last ecoregion makes it necessary to reconsider its 
classification. 
 
 
 
 
 
 
 

 
- EFTs captured internal heterogeneity in 

Mediterranean ecoregions but not in tropical 
ecoregions 
 

Inside the Mediterranean region, EFTs analysis showed  
A heterogeneous spatial pattern similar to the 
regionalization established in the ecoregions map, which 
is mainly structured by the double effect of coast and 
topography. In coastal ecoregions the presence of fog 
constitutes a climatic factor that conditions the 
adaptations of the organisms (Hastings & Turner, 1965; 
Martorell & Ezcurra, 2002). Furthermore, there exists a 
climate gradient in altitude (Peinado et al., 2011) that 
modifies the vegetation types and determines the 
different functional traits behaviors within the region.   

 
Despite the similarity with the structural/compositional 
approaches, two ecoregions previously classified as 
Mediterranean were grouped with the others due to their 
peculiarities in ecosystem functioning. First, Succulent 
Coastal Scrub, located in the Pacific Coast between 29.5o 
and 31o N, has been long considered a transitional region 
(González-Abraham et al., 2010). In fact, in our CA 
appeared in a transition zone between EFTs 
characteristics of Mediterranean and Desert. Here, 
chaparral species extend southward to where moisture 
remains enough (Shreve, 1936), while the northern range 
of the desert species seems to depend on the absence of 
frost and some availability of water in summer (e.g. 
Shreve, 1936; Raven & Axelrod, 1978), probably 
associated with coastal fogs (Rundel & Mulroy, 1972; 
Garcillán et al., 2013). Second, Pacific Islands, which 
González-Abraham et al., (2010) already identified as 
one of the areas of discrepancy between authors. Its 
biological and biogeographical uniqueness is 
unquestionable. Most of the extension of these islands is 
occupied by semi-desert vegetation. However, 
biogeographically it is interesting that there an important 
proportion of Mediterranean flora (Epling & Lewis, 
1942; Wallace, 1985; Smith et al., 1990; Oberbauer, 
1993), which has led to consider it as a Mediterranean 
ecoregion in desert latitudes (González-Abraham et al., 
2010). In terms of EFTs, its composition was very 
different from the rest of the mediterranean ecoregions 
(Figure 4), showing low productivity EFTs, typical of the 
desert. Here, precipitation from fog condensation 
hybridizes the mediterranean regime of rains and allows 
the coexistence of these mediterranean species with the 
desert flora component, producing the mixed functional 
behavior that we observed. 
 
The mediterranean conditions, in terms of the 
topographic gradient (approx. 3000 m) and coastal 
proximity, also occurred in the tropical region. But here 
EFTs did not show the heterogeneity mentioned in 
mediterranean, instead, they were functionally 
homogeneous. Although the annual precipitation 
variation associated with altitudinal gradient is even 
higher in the Tropical region (from less than 200 to 700 
mm) than in Mediterranean region (from 270 to 650  
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mm), the homogeneity in ecosystem functioning could 
be due to the seasonality in the precipitation regime and 
the similarity in the phenological peak. Here, rain is 
concentrated in the summer and early autumn months 
(July to October) and there is an existence of a season 
without rain ("dry" season) of between five and eight 
months (Farfán & Fogel, 2007). Therefore, in this area, 
climatic controls are more important than altitudinal 
ones, which is reflected by the ecosystem functioning, 
i.e. in the presence of the same coastal and altitudinal 
factors, the ecosystem functioning is more 
homogeneous than mediterranean areas due to 
seasonality in rainfall patterns. In fact, the combination 
between the altitudinal range and heterogeneous 
distribution of precipitation and hence, phenology 
through the year, could be the reason for the high 
internal heterogeneity of EFTs in this region. 

 
- The role of ecosystem functioning in biological 

regionalization exercises 
 

In the last decade, functional analysis of ecosystems has 
gained attention because it is a useful perspective for 
assessing and monitoring the effects of global change 
on diversity (Cabello et al., 2012; Pereira et al., 2013). 
Furthermore, incorporating functional aspects into 
regionalization practice offers a great potential for 
improving our understanding of spatial and temporal 
diversity patterns (Garnier et al., 2016); and 
implementing new programs for the conservation of 
ecological processes (Asner et al., 2017). EFT concept 
has been highlighted as “the first serious attempt to 
group ecosystems (at large scales) on the basis of 
shared functional behavior” (Mucina, 2019), and its 
strength for a better understanding of ecological 
systems providing new information derives from its 
ability to capture ecosystem functioning into discrete 
entities that can be mapped. Mapping such entities 
(EFTs) that reflect the performance of the whole 
ecosystem opens a straightforward, tangible and 
biologically meaningful way for incorporating 
ecosystem functioning in regionalizations, based on the 
regional heterogeneity of functional attributes at 
ecosystem level. EFT represents a new and 
complementary approach to long-established ones 
based on the compositional (e.g. species richness) and 
structural (e.g. vegetation types) characterizations of 
biodiversity, but also to the more recent functional 
approaches based on functional traits at species level.  
 
The differences with these approaches derive both from 
the attributes of biodiversity reported by EFTs and the 
method used to do so. First, EFT considers ecosystem 
attributes related to the stocks and flows of matter and 
energy derived from biological activity taking place on 
plots of land, providing integrative information on the 
functional facets of biodiversity living on those plots. 
Second, EFTs capture temporal dynamics that are 
difficult to map through compositional or structural 

regionalization approaches, since they are a static 
measure with a fixed time interval (i.e. they measure 
conditions through the legacy of geological and 
evolutionary history). Third, EFTs are identified by 
remote sensing tools from aggregated measurements of 
ecosystem functions at the pixel level, which in practice 
represents information of the performance of the whole 
ecosystem. Remote sensing tools can offer more 
integrative functional measures of the whole ecosystem 
performance (productivity, evapotranspiration, etc.) that 
complement our traditional view of ecosystems 
(Butchart et al., 2010; Asner et al., 2017).  
 
Conclusions 
 
Our work highlights that differences between the 
proposals, rather than being a disadvantage, is the result 
of diverse approaches based on the different levels of 
ecological and biogeographical organization in the 
region, and their differences are highly informative. 
Ecosystem Functional Types allowed us to understand 
the relationship between different dimensions of 
biodiversity in regionalization exercises, i.e. between 
biological regionalization based on the biota components 
and structure (species distribution, endemisms, 
vegetation types) and patterns of ecosystem functioning 
(EFTs). The regionalization schemes have been widely 
used for guiding management and conservation decision-
making since it allows us to organize our understanding 
of how major terrestrial ecosystems work. In this sense, 
due to the development of new techniques based on 
remote sensing, functional features measured at regional 
scales could be incorporated, allowing us to complement 
our traditional view of ecosystems, providing the basis 
for a more comprehensive regionalization of 
geographical patterns of life and therefore, improving 
also the future conservation purposes. 
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Supplementary material 

Figure S1. Ordination plot of dimension 1 and dimension 2 of the Detrended Correspondence Analysis (DCA) run with the contingency 

matrix between Ecosystem Functional Types, EFTs (circles) and ecoregions (triangles) in the Baja California Peninsula and colored by the 

three ecosystem functional attributes from which EFTs are derived. a) DCA colored by EVI mean, as surrogate of productivity, from A to 

D increasing; b) DCA colored by EVI sCV, indicator of seasonality from a to d decreasing and; c) DCA colored by EVI MMAX, 

indicating the peak of maximum EVI (SP-Spring, SU-Summer, AU-Autumn, WI-Winter). 
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capítulo 15

Funcionamiento de la vegetación 
y diversidad funcional de los 
ecosistemas de Sierra Nevada

Beatriz P. Cazorla1,2, Javier Cabello, J.1,2, Julio Peñas1,3, 
Emilio Guirado1, Andrés. Reyes1*, Domingo Alcaraz-Segura1,3,4

*In memoriam: 
A Andrés Reyes, por cada momento contigo, 

grande en todos los sentidos. Gracias mil y una veces. 

Resumen

La Biología de la Conservación se enfrenta al desafío de salvaguardar los 
procesos ecológicos que sustentan la biodiversidad. Este capítulo caracteriza 
los patrones de funcionamiento de los ecosistemas de Sierra Nevada, pro-
porcionando además la primera caracterización de la diversidad funcional a 
nivel de ecosistema realizada en Sierra Nevada. Para caracterizar el funcio-
namiento de los ecosistemas utilizamos el enfoque basado en Tipos Fun-
cionales de Ecosistemas (TFEs), parches de la superficie terrestre que po-
seen dinámicas similares en los intercambios de materia y energía entre la 
biota y el ambiente físico. Los TFEs se identificaron a partir de tres atribu-
tos funcionales del dosel vegetal relacionados con la producción primaria, 
estacionalidad y fenología del ecosistema, derivados del índice de espectral 
de vegetación EVI (Enhanced Vegetation Index) para el periodo 2001-2016. 
El funcionamiento de los ecosistemas nevadenses muestran un claro patrón 
altitudinal caracterizado por un descenso de la productividad de los ecosis-
temas y un aumento en la estacionalidad con la altitud. Excepto en el ex-
tremo oriental termomediterráneo, donde a pesar de ser cotas de menor 
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altitud, la productividad también es baja y la estacionalidad alta. La riqueza 
de TFEs es mayor en la media montaña, descendiendo con la altitud, a la 
vez que aumenta la rareza de TFEs. El empleo de los TFEs como entida-
des biológicas permite analizar los patrones espaciales del funcionamiento, 
su diversidad funcional y la variabilidad interanual en la diversidad funcio-
nal a nivel de ecosistema, revelando la existencia de puntos calientes de ri-
queza y rareza funcional en Sierra Nevada. 

Palabras clave: Funcionamiento ecosistémico, teledetección, Tipos Fun-
cionales de Ecosistemas, Sierra Nevada.

Introducción

La biodiversidad de cualquier área es susceptible de ser estudiada a través 
sus tres dimensiones, composición, estructura y función, y a todos los ni-
veles de la organización biológica, desde los genes, individuos, poblaciones, 
comunidades y ecosistemas, hasta los paisajes y ecorregiones (Noss, 1990).  
Mientras que el estudio de los aspectos estructurales y composicionales 
de la biodiversidad (como la fisionomía de la vegetación o la composición 
florística; (Mueller-Dombois y Ellenberg, 1974; Stephenson, 1990) han con-
tado tradicionalmente con una gran atención, no ocurre lo mismo con la 
dimensión funcional, cuyo análisis es mucho más reciente y requiere aún 
de un mayor desarrollo metodológico (e.g., Cabello et al., 2012a). Esta di-
mensión de la biodiversidad engloba a los procesos ecológicos y evoluti-
vos que tienen lugar en el ecosistema, desde los intercambios de informa-
ción (por ejemplo, el flujo de genes) hasta los intercambios de materia y 
energía entre la biota y el ambiente (Jax, 2010). Si atendemos a los niveles 
más altos de la organización biológica, por ejemplo, el funcionamiento de 
la vegetación, vemos que este ha sido escasamente estudiado en compa-
ración con su composición y estructura (Soulé y Wilcox, 1980). De hecho, 
desde los inicios de la Biología de la Conservación, se viene apelando a la 
necesidad de incorporar los procesos ecológicos y funciones de los ecosis-
temas a las prácticas de conservación tradicionales, basadas en especies in-
dividuales (Pettorelli et al., 2016).

Actualmente, al desafío de salvaguardar los procesos ecológicos necesa-
rios para la persistencia de la biodiversidad a lo largo del tiempo (CDB, 2010; 
GBO4, 2014) se une la preocupación general por mantener la capacidad de 
los ecosistemas para sostener y regular sus funciones (Chapin et al., 2010) 
y servicios (Naidoo et al., 2008; Costanza, 2012). De hecho, un número cre-
ciente de compromisos internacionales, como el Convenio sobre la Diversi-
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dad Biológica o las Metas de Aichi requieren planes específicos de gestión 
que aborden específicamente el funcionamiento de los ecosistemas (Frid et 
al., 2008; CDB, 2011). Además, desde el punto de vista de la planificación 
y la gestión, también se señala la importancia de incorporar los procesos y 
funciones ecosistémicas en la planificación sistemática de la conservación, 
la gestión ecosistémica y la gestión adaptativa (Margules y Pressey, 2000; 
Jax, 2010). Finalmente, se ha constatado que desde el punto de vista de la 
evaluación y adaptación a los impactos de cambio global, los indicadores 
funcionales de la biodiversidad pueden ser especialmente relevantes gra-
cias a su respuesta más rápida ante los cambios ambientales (Aspizua et al., 
2012; Cabello et al., 2016; Alcaraz-Segura et al., 2017, Pettorelli et al., 2017). 

La caracterización y evaluación del funcionamiento a nivel de ecosistema 
se puede llevar a cabo a través de atributos o rasgos funcionales relacio-
nados, por ejemplo, con el intercambio de materia y energía entre la vege-
tación y la atmósfera (Mueller-Dombois y Ellenberg, 1974). Actualmente, el 
uso de imágenes de satélite proporciona métodos adecuados para producir 
una caracterización del funcionamiento ecosistémico, espacialmente continua 
y a escala regional (Alcaraz-Segura et al., 2006; 2013). Tanto modelos teóri-
cos como empíricos apoyan la relación entre índices espectrales derivados 
de imágenes de satélite y atributos funcionales de los ecosistemas como la 
producción primaria, la evapotranspiración, la temperatura superficial, o el 
albedo (Running et al., 2000; Pettorelli et al., 2005). Entre ellos, la produc-
ción primaria está considerada como el indicador más integrador y esencial 
del funcionamiento de los ecosistemas (Virginia y Wall, 2001; Pereira et al., 
2013), ya que posee un papel fundamental en el ciclo del carbono, siendo 
la base energética de la cadena trófica y, por tanto, el motor de inicio de 
muchos procesos ecológicos. Además, al presentar una respuesta integral 
ante los cambios ambientales, constituye un indicador sintético de la salud 
del ecosistema (Costanza et al., 1992; Skidmore et al., 2015). 

Entre los índices espectrales derivados de imágenes de satélite más im-
portantes y utilizados se encuentran los índices de vegetación, como el EVI 
(Enhanced Vegetation Index o Índice de Vegetación Mejorado). Este índice 
se puede utilizar para estimar la fracción de la radiación fotosintéticamente 
activa absorbida por la vegetación (fAPAR), que representa el control prin-
cipal de la producción primaria (Monteith, 1972), debido a la relación li-
neal existente entre ambas variables (Hatfield et al.,1984). 

Las investigaciones ecológicas basadas en índices espectrales de vegetación 
poseen un gran valor en Biología de la Conservación (Cabello et al., 2012a; 
Pettorelli, 2016; 2018), como apoyo a la gestión (Pelkey et al., 2003; Cabello 
et al., 2016) y en el estudio de respuestas de la biodiversidad frente a cam-
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bios ambientales (Alcaraz-Segura et al., 2017). Entre las numerosas ventajas 
que presenta el uso de estos índices para estudiar la variabilidad espacial 
y temporal de la dinámica de la vegetación está el empleo de protocolos 
comunes en toda la Tierra (Pettorelli et al., 2018), su gran sensibilidad y rá-
pida respuesta ante los cambios ambientales (Milchunas y Lauenroth, 1995), 
su claro significado biológico (Pettorelli et al. 2005; Bagnato et al., 2019) y 
su conexión con la evaluación de las funciones y servicios de los ecosiste-
mas (Volante et al., 2012; Paruelo et al., 2016 ). De hecho, numerosos tra-
bajos han demostrado la capacidad de las series temporales de imágenes 
de satélite para evaluar la existencia de cambios funcionales en los ecosis-
temas tanto a nivel regional (Alcaraz-Segura et al., 2010) como de área pro-
tegida (Alcaraz-Segura et al., 2009a; Lourenço et al., 2018). Recientemente, 
el empleo de Atributos Funcionales de los Ecosistemas derivados de índi-
ces espectrales de vegetación en modelos de distribución de especies está 
permitiendo evaluar con gran precisión espacial y temporal la idoneidad 
del hábitat para especies de plantas (Arenas-Castro et al., 2018) y animales 
(Regos et al., 2019) pudiendo incluso anticipar los cambios esperados en 
la distribución de especies de plantas amenazadas como consecuencia del 
cambio climático (Alcaraz-Segura et al., 2017). Además, a partir los Atribu-
tos Funcionales de los Ecosistemas, se ha diseñado un programa de segui-
miento de la Red de Parques Nacionales de España, que permite identificar 
los cambios y anomalías en el funcionamiento, informando a los gestores de 
la salud y estado de conservación de los ecosistemas (Cabello et al., 2016).

Para caracterizar la heterogeneidad regional en el funcionamiento de los 
ecosistemas mediante índices espectrales de vegetación podemos utilizar el 
enfoque basado en Tipos Funcionales de Ecosistemas (TFEs), desarrollado 
por Paruelo et al., (2001) y Alcaraz-Segura et al., (2006, 2013). Conceptual-
mente, los Tipos Funcionales de Ecosistemas (TFEs) fueron definidos como 
parches de la superficie terrestre que poseen dinámicas similares en los in-
tercambios de materia y energía entre la biota y el ambiente físico (Alcaraz-
Segura et al., 2006). Metodológicamente, el empleo de teledetección permite 
identificar TFEs a partir de tres descriptores sintéticos del funcionamiento 
ecosistémico derivados de la curva anual o dinámica estacional de índices 
espectrales de vegetación (Figura 1). Estos atributos funcionales, relaciona-
dos con la producción primaria anual, la estacionalidad y fenología de las 
ganancias de carbono, capturan la mayor parte de la varianza de la serie 
temporal de los índices de vegetación (Paruelo et al., 2001; Alcaraz-Segura 
et al., 2006; 2009b). Investigaciones recientes (Cazorla et al., 2019a) han de-
mostrado cómo esta aproximación para identificar TFEs permite obtener 
clases de ecosistemas homogéneos en términos de su dinámica del inter-
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cambio neto de CO2 medido en campo con torres de covarianza de torbe-
llinos (eddy covariance), ofreciendo una separación entre distintas dinámicas 
ligeramente superior a la que proporciona el esquema tradicional basado 
en tipos funcionales de plantas. Esta capacidad de los TFEs para capturar 
la diversidad funcional de los ecosistemas ha sido empleada para evaluar 
la representatividad de redes de seguimiento ambiental (como Ameriflux y 
NEON en Estados Unidos; Villarreal et al., 2018) y para establecer priorida-
des geográficas en conservación (en la red de áreas protegidas de Baja Ca-
lifornia; Cazorla et al., 2019b).

Desde que apareció el concepto de TFE en 2001 (Paruelo et al., 2001), 
su implementación o la de metodologías similares no ha parado de cre-
cer para caracterizar la heterogeneidad funcional a escala regional (Alca-
raz-Segura et al., 2006; Karlsen et al., 2006; Duro et al., 2007; Fernández et 
al., 2010; Geerken, 2009; Alcaraz-Segura et al., 2013; Ivits et al., 2013; Pérez-
Hoyos et al., 2014; Müller et al., 2014; Wang y Huang, 2015; Villarreal et al., 
2018; Coops et al., 2018; Mucina, 2018).

En España, son clásicos los estudios del paisaje vegetal bajo una perspec-
tiva composicional (método fitosociológico) o sucesional (series de vegeta-

Figura 1. Flujo de trabajo para la construcción de los Tipos Funcionales de Ecosis-
temas. Se utilizó el producto MOD13Q1 del sensor MODIS (Moderate Resolution 
Imaging Spectroradiometer) a bordo del satélite Terra de la NASA. Este producto 
contiene imágenes con resolución temporal de 16 días (23 imágenes por año) y re-
solución espacial de 231 x 231 m del Enhanced Vegetation Index (EVI). El periodo 
de estudio fue de 2001 a 2016. A partir de la curva estacional del EVI para cada 
año se calcularon tres atributos funcionales descriptores del funcionamiento de los 
ecosistemas. El rango de valores de cada atributo se dividió en cuatro intervalos, 
que dan lugar al número potencial de 64 TFEs (4x4x4=64).
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ción). Estos estudios han sido muy útiles para describir la heterogeneidad 
de la vegetación a mesoescala (Valle et al., 2003; Loidi, 2017), han estado en 
la base de la caracterización de los hábitats de interés para la conservación 
(Directiva 92/43/EEC), y sirvieron para el desarrollo de políticas de restaura-
ción forestal orientadas a la recuperación de la diversidad vegetal (Valle et 
al., 2004). Sin embargo, estas aproximaciones son difíciles de usar para moni-
torear la respuesta de los ecosistemas frente al cambio global, y la caracteri-
zación y cartografía de la vegetación desde el punto de vista de la provisión 
de servicios ecosistémicos (Cabello et al., 2019). Este es el caso de Sierra Ne-
vada, una montaña que cuenta con excelentes descripciones de la vegetación, 
pero no dispone de estudios de los patrones de funcionamiento de la vege-
tación. El estudio de estos patrones puede ayudar al seguimiento de los efec-
tos de las acciones de gestión, a la comprensión de los gradientes ambienta-
les a escala de área protegida que subyacen a la biodiversidad, y a evaluar el 
papel de los ecosistemas proveyendo beneficios a la sociedad.

Este capítulo persigue contribuir a la descripción de la heterogeneidad 
espacial y variabilidad temporal del funcionamiento de los ecosistemas de 
Sierra Nevada a partir de la dinámica del verdor de la vegetación, propor-
cionando además la primera caracterización de la diversidad funcional a 
nivel de ecosistema realizada como área protegida. En primer lugar, el capí-
tulo analiza los patrones espaciales de tres atributos funcionales de los eco-
sistemas, como son la producción primaria anual, la estacionalidad y la fe-
nología de las ganancias de carbono por parte de la vegetación, así como 
su integración en una cartografía sintética de tipos funcionales de ecosis-
temas (TFEs). En segundo lugar, para identificar los puntos calientes de ri-
queza y rareza funcional en Sierra Nevada, se muestran dos formas de des-
cribir la diversidad funcional a nivel de ecosistemas, como son la riqueza 
y la rareza de tipos funcionales de ecosistemas (ver fórmula utilizada más 
adelante). A continuación, para mostrar cuáles son las zonas más estables 
y más variables entre años (ya sea por cambios direccionales o por fluc-
tuaciones) en términos del funcionamiento ecosistémico, se evaluó la va-
riabilidad interanual en el funcionamiento de los ecosistemas a partir de 
dos medidas, el número de TFEs que fueron observados durante el periodo 
2001-2016 a nivel de píxel, y la similitud interanual en la composición de 
TFEs a nivel de paisaje. En todos los casos, para facilitar al lector la inter-
pretación de los patrones espaciales hallados, se proporciona una compa-
ración con los tipos de vegetación natural de Sierra Nevada. Por último, se 
identifican las implicaciones que una evaluación funcional de los ecosiste-
mas puede tener para la conservación y gestión del Espacio Natural prote-
gido de Sierra Nevada.
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¿Cómo abordar el estudio 
del funcionamiento de los ecosistemas
a nivel de paisaje en Sierra Nevada?

Para caracterizar el funcionamiento de los ecosistemas de Sierra Nevada 
se emplearon series temporales de imágenes de satélite para el Enhanced 
Vegetation Index (EVI). Concretamente, se usó el producto MOD13Q1 del 
sensor MODIS (Moderate Resolution Imaging Spectroradiometer) a bordo 
del satélite Terra de la NASA. Este producto consiste en imágenes con re-
solución temporal de 16 días (23 imágenes por año) y resolución espacial 
de 231 x 231 m. El periodo de estudio fue de 2001 a 2016. A partir de la 
curva estacional del EVI para cada año se calcularon tres atributos funcio-
nales descriptores del funcionamiento de los ecosistemas (Figura 1): el EVI 
medio anual como estimador de la producción primaria anual (EVI_medio), 
el coeficiente de variación estacional del EVI como descriptor de la esta-
cionalidad (EVI sCV), y el momento de máximo EVI como indicador de 
la fenología del máximo verdor anual (EVI MMAX). Se eligieron estos tres 
atributos porque capturan la mayor parte de la varianza en las series tem-
porales de índices de vegetación y guardan un claro significado biológico 
(Paruelo et al., 2001; Alcaraz-Segura et al., 2006; 2009a).

Los TFEs se identificaron siguiendo la metodología de Alcaraz-Segura et 
al. (2013) (Figura 1) a partir de los tres atributos funcionales de los ecosis-
temas anteriores. El rango de valores de cada atributo se dividió en cuatro 
intervalos, que dan lugar al número potencial de 64 TFEs (4x4x4=64). Para 
EVI MMAX se usaron las cuatro estaciones del año. En el caso de EVI medio 
y EVI sCV se empleó la mediana interanual del primer, segundo y tercer 
cuartiles obtenidos en cada año. Para nombrar cada TFE se utilizó la termi-
nología sugerida por Alcaraz-Segura et al., (2013), basada en dos letras y un 
número. La primera letra, en mayúscula (A-D), indica la producción prima-
ria y corresponde con el valor medio del índice de vegetación (EVI medio), 
incrementando en orden alfabético su valor (de menor a mayor producti-
vidad). La segunda letra, en minúscula (a-d), muestra la estacionalidad (EVI 
sCV), decreciendo en orden alfabético su valor (de mayor a menor estacio-
nalidad). Los números son un indicador fenológico de la estación de creci-
miento, momento del máximo EVI (1-4 para primavera, verano, otoño e in-
vierno). Por ejemplo, el TFE Aa1 posee una baja productividad (A), elevada 
estacionalidad (a) y momento del máximo EVI en primavera (1). Una vez 
que se han fijado los límites entre los intervalos de cada variable, se aplica-
ron a las imágenes de los tres atributos para cada año, obteniendo así una 
serie temporal de 16 mapas de TFEs, uno por año (2001-2016). Para ob-
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tener un solo mapa que represente la heterogeneidad funcional caracterís-
tica del período se seleccionó la moda interanual de los 16 mapas anuales.

Para evaluar la correspondencia espacial entre los TFEs y los tipos de 
vegetación, se empleó un análisis de correspondencias sin tendencia (De-
trended Correspondence Analysis, DCA) (Legendre y Legendre, 2012) a par-
tir de la tabla de contingencia entre ambos mapas (Alcaraz-Segura et al., 
2006; Fernández et al., 2010). El análisis de correspondencias sin tendencia 
representa en un espacio multidimensional reducido la relación espacial 
existente entre las clases de ambos mapas. Por tanto, este espacio visua-
liza la relación espacial entre cada TFE y un tipo de vegetación estructu-
ral. Así, si un grupo de TFEs y tipo de vegetación aparecen cercanas entre 
sí en el DCA, y distantes de otro grupo, es porque existe un alto grado 
de correspondencia espacial o solapamiento entre ellas. Usamos un DCA 
para evitar que las unidades muestrales se agrupen en los extremos del 
gradiente, ya que reescala los ejes e iguala la varianza. El mapa de tipos 
de vegetación que se utilizó fue elaborado a partir del mapa de vegeta-
ción de Andalucía 1:10000 (1996-2006) (Bonet et al., 2010). Los tipos de 
vegetación considerados fueron: pastizales, canchales y roquedos de alta 
montaña; borreguiles; matorral de alta montaña; pastos de media mon-
taña; matorral de media montaña; pinares autóctonos de Pinus sylvestris 
subsp. nevadensis (H.Christ) Heywood; pinares autóctonos sobre dolomías; 
repoblaciones de coníferas; robledales; encinares; y cultivos de montaña 
extensivos (Figura 3 c y d).

Para caracterizar la diversidad funcional de ecosistemas y poder identi-
ficar los puntos calientes de riqueza y rareza funcional, se utilizó la riqueza 
y la rareza de TFEs como indicador de la diversidad de tipos de funciona-
miento ecosistémico que ocurren en el paisaje. El mapa de riqueza de TFEs 
se calculó contando el número de TFEs que existen dentro de una ventana 
móvil de 4x4 píxeles MODIS (924 x 924 m; ~1 km2) a través de toda el área 
de estudio. El mapa de rareza de TFEs se obtuvo calculando el valor de ra-
reza relativa de cada TFE (Rareza_TFEi; Cabello et al., 2013) como: 

Rareza_TFEi = (A_TFEmax − A_TFEi) / A_TFEmax 
donde i es el TFE en cuestión, A_TFEmax es el área ocupada por el TFE 

más abundante y A_TFEi es el área del TFE en cuestión. Este índice de ra-
reza posee valores entre 0 y 1, siendo 0 el tipo de funcionamiento ecosis-
témico más abundante, y 1 el tipo de funcionamiento ecosistémico más 
raro o poco común. 

Para mostrar cuáles son las zonas más estables y con mayor variabili-
dad interanual (ya sea por cambios direccionales o por fluctuaciones) en el 
funcionamiento de los ecosistemas, se calculó el número de TFEs diferen-
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tes que tuvieron lugar en un mismo píxel en el periodo 2001-2016. Como 
medida adicional de la variación interanual que tuviera en cuenta no sólo 
los cambios que experimenta un píxel sino también los movimientos en 
el funcionamiento ecosistémico que pudieran ocurrir a nivel de paisaje, se 
empleó el índice de similitud de Jaccard (Jaccard, 1901) en ventanas móvi-
les de 4x4 píxeles MODIS (924 x 924 m; ~1 km2). Esta medida representa 
cómo de parecidos son los TFEs que ocurren en dicha ventana a lo largo 
de toda la serie temporal (2001-2016). Para cada ventana, primero se cal-
culó el índice de Jaccard entre todas las combinaciones posibles de años 
y después se obtuvo la media interanual de todos los índices calculados. 
Para obtener una medida igual a la variabilidad interanual, se calculó la dis-
militud, es decir, 1-coeficiente de Jaccard. Los valores de disimilitud osci-
lan entre 0 y 1, siendo 1 el mayor grado de disimilitud en la composición 
y abundancia relativa de TFEs y 0 ausencia de la misma.

Patrones espaciales del funcionamiento
de la vegetación

Atributos descriptores del funcionamiento
del dosel vegetal

Los atributos funcionales indicadores de la producción primaria anual, 
la estacionalidad y fenología de los ecosistemas mostraron un claro patrón 
altitudinal (Figura 2). Así, los valores más bajos productividad primaria se 
registraron en el crioro- y oromediterráneo (Figura 3 a y b), en pastizales, 
canchales, roquedos de alta montaña y borreguiles. Los valores más altos 
se observaron en el supra- y mesomediterráneo asociados a los robledales, 
encinares, repoblaciones de coníferas y pinares autóctonos de Pinus sylves-
tris subsp. nevadensis. En los extremos este y oeste del espacio protegido, 
en los pisos termo- y mesomediterráneos (Figura 3 a) se obtuvieron valo-
res intermedios de productividad, siendo medio-altos en la zona occiden-
tal, y medio-bajos en la oriental, ambas dominadas por matorral, y pastos 
de media montaña (Figura 2 a y b).

Para la estacionalidad (Figura 2 c y d), entendida como coeficiente de 
variación de EVI, encontramos un patrón inverso al de la productividad, es 
decir, valores altos en el crioro- y oromediterráneo que disminuyen con-
forme bajamos en altitud hacia los pisos supra-, meso- y termomediterrá-
neo (Figura 3 a). El crioro- y oromediterráneo se caracterizan por los eco-
sistemas más estacionales, como pastizales, canchales y roquedos de alta 
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Figura 2. Atributos descriptores del funcionamiento del dosel vegetal basados en 
el índice de vegetación EVI (Enhanced Vegetation Index), derivado del producto 
MOD13Q1-TERRA (píxel 230 m) para el periodo 2001-2016. En el margen izquierdo 
aparecen los patrones espaciales de cada atributo funcional (EVI medio, sCV y 
MMAX) y en el margen derecho los valores medios de cada atributo por ecosis-
tema. 1: PaCaRo AltMon: Pastizales, canchales y roquedos de alta montaña; Borreg: 
2: Borreguiles; 3: Mat AltMon: Matorral de alta montaña; 4: Pas MedMon: Pastizal 
de media montaña; 5: Mat MedMon: Matorral de media montaña; 6: Pin Syl: Pina-
res autóctonos de Pinus sylvestris subsp. nevadensis; 7: Pin Dol: Pinares autóctonos 
sobre dolomías; 8: Rep Con: Repoblaciones de coníferas; 9: Rob: Robledal; 10: Enc: 
Encinar; 11: Cult MedMon: Cultivos de media montaña extensivos. Mapa de vege-
tación de Andalucía 1:10000 (1996-2006) (Bonet et al., 2010).

montaña, borreguiles, y matorral de alta montaña, donde las nevadas son 
el factor limitante determinante. En los pisos supra- y mesomediterráneo 
(Figura 3 a) encontramos también valores altos de estacionalidad debido 
a la presencia de robledales. Además, aparecen los pinares autóctonos de 
Pinus sylvestris subsp. nevadensis y los pastos de media montaña con valo-
res medios de estacionalidad, y los encinares, las plantaciones de coníferas 
y los matorrales de media montaña con baja estacionalidad (Figura 2 d). 
Al descender más en altitud, hacia la parte oriental del espacio protegido, 
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en los pisos meso- y termomediterráneo, los valores de estacionalidad vol-
vieron a ser medio-altos (Figura 2 c).

Respecto a la fenología, en el crioro- y oromediterráneo, en los tipos de 
vegetación de pastizales, canchales, roquedos y borreguiles, dominó el mo-
mento de máximo verdor de la vegetación en verano (julio-agosto) (Figura 
2 e). En el supra- y mesomediterráneo, asociados a los pastizales y matorra-

Figura 3. Clasificaciones ecológicas de Sierra Nevada. a) Pisos bioclimáticos y b) 
área ocupada por cada categoría; c) Tipos de vegetación y d) área ocupada por 
cada categoría; e) Tipos Funcionales de ecosistemas basados en el índice de ve-
getación EVI (Enhanced Vegetation Index), derivado del producto MOD13Q1-TE-
RRA para el periodo 2001-2016 y d) Abundancia relativa de cada TFE. Las clases 
de TFEs están indicadas en la leyenda. PaCaRo AltMon: Pastizales, canchales y ro-
quedos de alta montaña; Borreg: Borreguiles; Mat AltMon: Matorral de alta mon-
taña; Pas MedMon: Pastizal de media montaña; Mat MedMon: Matorral de media 
montaña; Pin Syl: Pinares autóctonos de Pinus sylvestris subsp. nevadensis; Pin Dol: 
Pinares autóctonos sobre dolomías; Rep Con: Repoblaciones de coníferas; Rob: Ro-
bledal; Enc: Encinar; Cult MedMon: Cultivos de media montaña extensivos. Mapa 
de vegetación de Andalucía 1:10000 (1996-2006) (Bonet et al., 2010).
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les de media montaña, pinares autóctonos, robledales y encinares, el mo-
mento de máximo verdor de la vegetación solía ocurrir en primavera tar-
día (mayo-junio). No obstante, algunos valles del oeste y del sur mostraron 
pequeñas zonas con máximo verdor durante los meses de otoño e invierno 
temprano, llegando incluso a ser de invierno en el extremo oriental termo-
mediterráneo semiárido (Figura 2 f). 

Tipos funcionales de ecosistemas
y su relación con los tipos de vegetación
natural

Resultado de la combinación de los tres atributos funcionales del dosel ve-
getal, productividad media, estacionalidad y fenología, representados en la 
Figura 2, se obtuvo el mapa de TFEs (Figura 3 e) que recoge una caracteri-
zación sintética de los patrones espaciales del funcionamiento ecosistémico. 
Se observaron un total de 62 clases de las 64 posibles. Los TFEs más abun-
dantes presentaron el máximo verdor en primavera, con valores de pro-
ductividad de baja a intermedia y bajo todos los grados de estacionalidad 
posibles: Aa1, Ba1, Cb1, Cd1, Bb1, y Cc1 acumularon el 37% de la superfi-
cie de la Sierra. Por el contrario, los TFEs más raros fueron Bc2, Ca4 y Ba3, 
caracterizados por una productividad media, estacionalidad media o alta y 
un máximo de verano, invierno y otoño respectivamente. Por último, los 
que no aparecieron representados en el área de estudio correspondieron a 
ecosistemas poco productivos, muy estacionales y máximo de verdor en in-
vierno: Aa4 y Ba4 (Figura 3 f). 

El análisis de correspondencias sin tendencia (Detrended Correspondence 
Analysis (DCA)) (Figura 4) usado evaluar el grado de asociación entre los 
TFEs y los tipos de vegetación, ordenó los tipos de vegetación de Sierra Ne-
vada con un marcado gradiente altitudinal de productividad. El primer eje 
(Dimensión 1) del DCA representó el 61% de la varianza de los datos y el 
segundo eje (Dimensión 2) el 24%. El gráfico está dividido en cuatro cua-
drantes, donde los tipos de vegetación y funcionamiento de alta montaña 
se situaron en la margen derecha y los de media montaña en el centro y 
la margen izquierda. Por un lado, los tipos de vegetación del crioro- y oro-
mediterráneo, presentaron TFEs de productividad baja e intermedia, muy 
estacionales y con momentos de máximo verdor principalmente en verano, 
pero también en primavera. En particular, los tipos de vegetación pastizales, 
canchales y roquedos se asociaron con los TFEs Aa2, Ab2, Ac3, mientras 
que los borreguiles con los TFEs Aa1, Ba1 y los matorrales de alta montaña 
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con Ba1, Bb3 (Figura 4). Las extremas condiciones para la vida en este am-
biente, caracterizadas por escasa presencia de suelo (Martín Peinado et al., 
2019), una elevada radiación solar, temperaturas extremas, fuertes vientos y 
precipitaciones en invierno en forma de nieve y hielo, dan lugar a un corto 
periodo vegetativo. Esto se traduce en la existencia de una escasa cober-
tura vegetal, limitada por las bajas temperaturas, que únicamente desarrolla 
su periodo vegetativo en verano, de ahí que estas áreas se hayan denomi-
nado como “desierto de frío” (Blanca et al., 2019). Los tipos de vegetación 
del supra- y mesomediterráneo, tuvieron asociados TFEs de productividad 
intermedia-alta, media-baja estacionalidad y momento de máximo verdor 
en primavera y otoño (e.g., Cc1-3) (Figura 4). El piso supramediterráneo se 
caracteriza por la presencia de especies de hoja caduca, e.g., robledales que 

Figura 4. Análisis de correspondencias sin tendencia (Detrended Correspondece 
Analysis, DCA) entre funcionamiento (TFEs, ver leyenda de colores en la Figura 3) 
y tipos de vegetación. El primer eje (Dimensión 1) del DCA representó el 61% de la 
varianza de los datos y el segundo eje (Dimensión 2) el 24%. Las asociaciones signi-
ficativas están marcadas con el mismo símbolo para el TFE y el tipo de vegetacion.
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fueron los tipos funcionales de ecosistemas más productivos y estaciona-
les de la Sierra, con máximo en primavera (TFE Da1). El mesomediterráneo 
es donde tienen su óptimo las comunidades vegetales perennifolias (Rivas-
Martínez y Arnáiz, 1984; Salazar y Valle, 2019). Ahí se diferenció un grupo 
de TFEs muy productivos, TFEs Cd1, Dc1, Da4, Db3, correspondientes a en-
cinares y repoblaciones de coníferas. Además, encontramos pinares autóc-
tonos asociados con el TFE Bb1, acompañados de pastos de media mon-
taña y matorrales de media montaña, que se asociaron con los TFEs Bc3, 
Bc1, Bb1. En el termomediterráneo seco y semiárido del extremo oriental, 
caracterizado por especies termófilas, que apenas sufren heladas, se detectó 
un comportamiento funcional de los ecosistemas diferente. Este área pre-
sentó valores bajos de productividad, estacionalidad medio-baja y máximo 
verdor de la vegetación en primavera o invierno (e.g., Ac1-4). Aquí, el prin-
cipal control de funcionamiento ecosistémico es la disponibilidad de agua, 
con especies vegetales que presentan una rápida respuesta a los escasos 
aportes hídricos (Cabello et al., 2012b) (Figura 4).

Diversidad funcional a nivel de ecosistema

La riqueza osciló entre 1 y 12 TFEs por ventana móvil de ~1 km2. La mayor 
riqueza de TFEs se observó en los pisos supra- y mesomediterráneo, parti-
cularmente en la cara sur de la Sierra (Figura 5 a), donde el número de se-
ries de vegetación también es mayor que en otros pisos bioclimáticos (Valle 
et al., 2003). La presencia de puntos calientes de riqueza de TFEs principal-
mente en la media montaña, y en particular en la cara sur, podría estar re-
lacionada con dos factores. Por un lado, muchas montañas mediterráneas 
muestran altos valores de diversidad beta hasta los 1750-1800 m (Wilson 
y Schmida, 1984; Peñas et al., 1995), y a partir de estas cotas existe un im-
portante reemplazamiento en la estructura y composición de la vegetación. 
Por otro lado, en la media montaña y especialmente en su cara sur existe 
un mosaico muy diverso de distintos tipos de vegetación natural mezclada 
con diferentes tipos de repoblaciones forestales, cultivos y aprovechamien-
tos tradicionales (Camacho et al., 2002), lo que les confiere el calificativo 
de paisajes multifuncionales desde el punto de vista del suministro de ser-
vicios ecosistémicos (García-Nieto et al., 2013; Mastrangelo et al., 2014; Ca-
bello et al., 2019).

Molero Mesa et al. (1996) y Fernández Calzado et al. (2012) señalaron 
que la riqueza florística de Sierra Nevada decrece con la altitud, al tiempo 
que se incrementa el porcentaje de taxones endémicos (Blanca et al., 2019). 
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En la diversidad funcional de ecosistemas se observa algo similar, ya que 
la máxima riqueza se encuentra en pisos de altitud media. Concretamente, 
como tipos de vegetación con alta riqueza funcional, aparecen los pinares 

Figura 5. Patrones de diversidad funcional basados en el índice de vegetación EVI 
(Enhanced Vegetation Index), derivado del producto MOD13Q1-TERRA para el pe-
riodo 2001-2016. a) Patrones espaciales de riqueza de TFEs a partir de una ventana 
móvil de 4x4 píxeles MODIS (~ 1 km2) y b) valores de riqueza por ecosistema; c) 
Patrones espaciales de rareza de TFEs y d) valores por ecosistema; e) Variabilidad 
interanual de TFEs para el periodo y f) valores por ecosistema; g) Disimilitud inte-
ranual de TFEs o 1 - coeficiente de Jaccard para el periodo y h) valores por eco-
sistemas. PaCaRo AltMon: Pastizales, canchales y roquedos de alta montaña; Bo-
rreg: Borreguiles; Mat AltMon: Matorral de alta montaña; Pas MedMon: Pastizal de 
media montaña; Mat MedMon: Matorral de media montaña; Pin Syl: Pinares au-
tóctonos de Pinus sylvestris subsp. nevadensis; Pin Dol: Pinares autóctonos sobre 
dolomías; Rep Con: Repoblaciones de coníferas; Rob: Robledal; Enc: Encinar; Cult 
MedMon: Cultivos de media montaña extensivos. Mapa de vegetación de Andalu-
cía 1:10000 (1996-2006) (Bonet et al., 2010).
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autóctonos sobre dolomías (riqueza 7), que también han sido identificados 
como zonas de elevada riqueza de especies endémicas (Mota et al., 1996; 
2019). También muestran alta riqueza funcional los pinares de repoblación 
(riqueza 6-7), lo que se explica porque las masas de coníferas de Sierra Ne-
vada funcionan de maneras muy distinta entre ellas (Cabello et al., 2016; 
Reyes et al., 2016). Esto muestra que pese a la alta densidad, monoespecifi-
cidad y coetaneidad de las repoblaciones de coníferas (Zamora et al., 2015), 
las distintas especies utilizadas (Aragonés et al., 2019), las condiciones lo-
cales (e.g., el suelo), las perturbaciones (e.g., plagas, incendios, decaimiento 
forestal) (Hódar et al., 2012), y con total seguridad las acciones de gestión 
(e.g., naturalización y diversificación de las masas de pinares durante la úl-
tima década) (Bonet et al., 2009; Gómez-Aparicio et al., 2009) han modifi-
cado el funcionamiento de estas manchas de forma diferente en distintos 
lugares, consiguiendo que, al menos a nivel de funcionamiento ecosistémico, 
sean bastante heterogéneas a escala regional (Figura 5 b). 

Los matorrales de alta montaña, y los pastizales de media montaña tam-
bién estuvieron entre los tipos de vegetación más ricos en TFEs diferentes 
(riqueza 6). Los primeros son zonas con gran riqueza de flora endémica (Lo-
rite, 2001; 2016), mientras que los segundos se han utilizado tradicional-
mente para la actividad ganadera, cuya intensidad ha cambiado en los úl-
timos años (Camacho et al., 2002), lo que podría reflejarse en los distintos 
tipos de funcionamiento observados. 

Las zonas con menor riqueza de TFEs se situaron en los pisos oro- y 
crioromediterráneo, y en el extremo oriental termomediterráneo semiárido, 
donde las duras condiciones edafoclimáticas (Martín Peinado et al., 2019) 
causan una disminución en la diversidad florística, aunque promuevan una 
alta endemicidad (Fernández Calzado et al., 2012). Por ecosistemas, los va-
lores más bajos de riqueza de TFEs (riqueza 4-5), se dieron en los roble-
dales supramediterráneos. La baja heterogeneidad espacial observada en el 
funcionamiento ecosistémico de cada una de las manchas de robledal, ob-
servada también por Dionisio et al., (2012) y Requena-Mullor et al., (2018), 
puede deberse tanto a la homegeneidad interna de sus condiciones am-
bientales, como de su composición florística (Pérez-Luque et al., 2015; Re-
quena-Mullor et al., 2018). 

La rareza de TFEs fue máxima en el crioromediterráneo, coincidiendo 
con el área con mayor concentración de endemismos nevadenses (Caña-
das et al., 2014; Peñas et al., 2019) (Figura 5 c). La vegetación crioromedite-
rránea se desarrolla bajo unas condiciones ecológicas muy particulares que 
determinan unos tipos de funcionamiento ecosistémico poco comunes (ra-
reza 0,6; Figura 4 d), como por ejemplo, en los roquedos y canchales rela-
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tivamente móviles situados en fuertes pendientes, donde el porcentaje de 
rareza o endemicidad de especies se eleva hasta un 80% (Blanca y Alga-
rra, 2011). La rareza de TFEs también fue muy alta en el extremo oriental 
termomediterráneo semiárido, situado ya en el sector biogeográfico Alme-
riense (Peñas et al., 2019), con alta concentración de endemismos propios 
del Desierto de Tabernas (Mota et al., 2004) (Figura 5 c). En el oromedite-
rráneo la rareza de TFEs disminuyó bruscamente, alcanzando su mínimo, 
debido a la gran extensión en Sierra Nevada de este piso bioclimático (Fi-
gura 3 a y b), que hizo que su funcionamiento no apareciese como raro, 
y volviendo a aumentar en el supra- y mesomediterráneo (Figura 5 c). Los 
tipos de vegetación supra- y mesomediterráneas de mayor rareza se corres-
pondieron con repoblaciones de coníferas y encinares (rareza 0,6), las cua-
les también se diferenciaron del resto en el análisis de correspondencias sin 
tendencia (Figura 4, Figura 5 d). La elevada rareza promedio de las repo-
blaciones de coníferas puede deberse a que, en el contexto del espacio na-
tural protegido, las perturbaciones o intervenciones de gestión dan lugar a 
funcionamientos singulares en las distintas masas de coníferas, por los mo-
tivos mencionados anteriormente. Por otro lado, la rareza en los encinares 
puede deberse a que su funcionamiento es muy exclusivo, es decir, tienen 
TFEs muy concretos asociados (e.g., Cc1, Dc1). No obstante, la rareza pro-
medio de los distintos tipos de vegetación (entre 0,45 y 0,64) quedó lejos 
del máximo posible de rareza (1). 

Estabilidad en el funcionamiento
de los ecosistemas

La variabilidad interanual osciló entre 1 y 15 TFEs diferentes a lo largo del 
periodo de 16 años para un mismo píxel (Figura 5 e y f). El número de 
TFEs que se observó en un mismo píxel a lo largo de los 16 años fue mayor 
en los pisos supra- y mesomediterráneos, coincidiendo con el rango altitu-
dinal donde más afecta la variabiliadad climática interanual (e.g., pueden 
presentar mucha nieve en años fríos y verse afectados por sequía en años 
secos y cálidos). En estas zonas, los tipos de vegetación que más variaron 
su funcionamiento durante el periodo de estudio fueron los encinares, las 
repoblaciones de coníferas (quizá por las mismas razones explicadas ante-
riormente en relación a la riqueza y rareza de TFEs, como las perturbacio-
nes y las acciones de gestión), los pastos de media montaña y el matorral 
de alta montaña (ecosistemas sometidos a importantes cambios en los usos 
y manejo del suelo, especialmente drásticos en el caso de la ganadería du-
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rante las últimas décadas). Alcaraz-Segura et al., (2015) ya identificaron las 
plantaciones de coníferas y los encinares como zonas con tendencias signi-
ficativas en el índice de vegetación, lo que también produciría una mayor 
variabilidad interanual relacionada con ese cambio direccional. También des-
taca la gran variabilidad interanual del extremo oriental termomediterráneo 
semiárido, donde existe una mayor fluctuación del clima y donde peque-
ños cambios en la precipitación producen grandes cambios en la dinámica 
de la producción primaria (Houérou et al., 1988; Cabello et al., 2012b), al 
igual que el área incendiada en 2005 cerca de Lanjarón, donde el incendio 
eliminó la vegetación que se viene regenerando desde entonces. Por otro 
lado, los tipos de vegetación más estables interanualmente, es decir, los que 
menos cambiaron durante el periodo, se situaron en los pisos meso- oro-
mediterráneo y crioromediterráneo, concretamente robledales y borregui-
les, ecosistemas sometidos a una baja presión antrópica (e.g., baja gestión 
forestal y baja presencia de ganado). 

Los resultados de la inversa del coeficiente de Jaccard para obtener la di-
similitud o los cambios funcionales entre años en la composición de TFE a 
lo largo del periodo 2001-2016 (Figura 5 g y h), mostraron un patrón alti-
tudinal donde la disimilitud entre TFEs fue menor en el piso oro- y crioro-
mediterráneo (pastizales, canchales y roquedos de alta montaña junto con 
borreguiles), así como en los robledales del mesomediterráneo (estabilidad 
funcional ya mostrada por otros autores, i.e. Requena-Mullor et al., 2018). 
Dicho patrón de disimilitud aumentó hacia pisos inferiores, encontrando los 
valores más altos de disimilitud (o mayores de cambio) en zonas donde los 
cambios de uso y manejo del suelo son más importantes (Zamora et al., 
2015). Como ocurre en los pinares autóctonos sobre dolomías, las repobla-
ciones de coníferas y los encinares meso- y termomediterráneos. Además, 
el extremo Este del Sierra Nevada tuvo un área con bajos valores de disi-
militud, es decir, no existieron cambios significativos a lo largo de los años.

Conclusión

Este estudio proporciona una caracterización del funcionamiento de los 
ecosistemas de Sierra Nevada mediante el análisis de series temporales de 
imágenes de satélite de índices espectrales que recogen la actividad foto-
sintética de la vegetación. La combinación de los atributos funcionales en 
una clasificación sintética de Tipos Funcionales de Ecosistemas, integra en 
un solo mapa la heterogeneidad espacial y temporal de las ganancias de 
carbono por parte de la vegetación. Por otro lado, el empleo de los TFEs 
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como entidades biológicas permitió analizar los patrones espaciales y la va-
riabilidad interanual en la diversidad funcional a nivel de ecosistema y reveló 
la existencia de puntos calientes de riqueza y rareza funcional en la Sierra, 
así como de zonas más estables y otras con mayor variabilidad entre años. 

Conocer y describir las dinámicas del funcionamiento ecosistémico del 
conjunto de Sierra Nevada sienta las bases para poder conservar y gestio-
nar la biodiversidad funcional de manera eficaz y para incorporar los pro-
cesos ecológicos a escala de ecosistema en la gestión del área protegida. 
De hecho, ya existen programas de seguimiento basados en índices de ve-
getación, derivados de imágenes de satélite, (e.g., sistema REMOTE, Cabe-
llo et al., 2016) cuyo objetivo es informar a los tomadores de decisiones y 
gestores de la Red de Parques Nacionales de España de la salud y estado 
de conservación de los ecosistemas de cada parque, entre los que se in-
cluye Sierra Nevada. 
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