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Abstract: Landslides are generated by natural causes and by human action, causing various geo-
morphological changes as well as physical and socioeconomic loss of the environment and human
life. The study, characterization and implementation of techniques are essential to reduce land
vulnerability, different socioeconomic sector susceptibility and actions to guarantee better slope
stability with a significant positive impact on society. The aim of this work is the bibliometric analysis
of the different types of landslides that the United States Geological Survey (USGS) emphasizes,
through the SCOPUS database and the VOSviewer software version 1.6.17, for the analysis of their
structure, scientific production, and the close relationship with several scientific fields and its trends.
The methodology focuses on: (i) search criteria; (ii) data extraction and cleaning; (iii) generation of
graphs and bibliometric mapping; and (iv) analysis of results and possible trends. The study and
analysis of landslides are in a period of exponential growth, focusing mainly on techniques and
solutions for the stabilization, prevention, and categorization of the most susceptible hillslope sectors.
Therefore, this research field has the full collaboration of various authors and places a significant
focus on the conceptual evolution of the landslide science.

Keywords: landslides; bibliometric analysis; co-citation analysis; science mapping

1. Introduction

Landslides are disasters that cause damage to anthropic activities and innumerable
loss of human life globally [1]. Mass movement processes cause significant changes in the
Earth’s relief, causing economic losses due to landslides in mountainous areas with a dense
population [2,3], and even in the direct and indirect cost of buildings or infrastructure on
an urban scale [4–6].

In the evolution of the reliefs, landslides are considered to be intrinsic processes, and
among other dynamics, they favor the formation of valleys [7], and the contribution of
river sediments and ecological renewal. The degree of physical, biological and chemical
weathering, earthquakes, and extraordinary rains (among other natural processes) can
cause slope instability [8,9].

Landslides have caused costly damage and loss of life worldwide, yet the most
devastating disasters occur in developing countries [10]. Therefore, the implementation of
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techniques to reduce geological risks and natural vulnerability is essential for developing
disaster prevention and mitigation strategies on various scales [11–14].

This research field has different approaches and objectives that have evolved over
the last decades [15]. Some studies have been based on satellite images in remote sens-
ing [16], geomorphological mapping [17,18], its relationship with earthquakes [9], con-
tinuous monitoring of places susceptible to landslides [19,20], triggering of landslides
due to extraordinary precipitation events [21–23] and various methods for stabilizing
slopes [24,25].

There are other studies of a preventive nature, such as real-time warnings of landslides
due to the action of rains in winter [26] and in unsaturated areas above the water table [27],
which are of great support for adequate management of these disasters. The consequences
caused by landslides (centralized in an environmental and socioeconomic framework)
show that their impacts have greater intensity in areas with higher population density [28].
Across the world, there is a great number of landslides that have affected the population
from cold, temperate and tropical regions [13,29–35].

According to the United States Geological Survey (USGS), the material involved
in a landslide and its type of mass movement is a significant basis for the classification
of landslides [36]. Therefore, given the internal mechanics that predominates in mass
movements, the landslides are classified as: falls, topples, slides, spreads, and flows
(Figure 1).

Figure 1. Classification scheme based on the literature review of the USGS landslide manual. Source: [36].

The academic field of landslides is broad, where some researchers have made efforts
to understand their structure [37], addressing literature reviews [11] and their classifica-
tion [36,38,39], as well as the bibliometric analysis of various landslide concepts through
the Science Citation Index-Expanded (SCIE) and Social Sciences Citation Index (SSCI)
databases (1991–2014) [13]. Over time, various studies have been carried out regarding
landslides, but very few have highlighted their structure and intellectual growth. Therefore,
a new bibliometric study would allow a new approach to its structure and updates on its
different research scopes.

The use of bibliometric methods is considered for the analysis of scientific activity
in an academic field. Derek J. de Solla Price initially exhibited the bibliometric analysis
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in 1965 [40]. The proposal focuses on the quantitative evaluation of an academic field of
study by analyzing its structure, characteristics and existing relationships, which allows
examining its behaviour between the disciplines of a specific field of study [41,42]. The bib-
liometric analysis allows identifying research areas (current and future) and the analysis of
their multidisciplinary production, achieving a more systematic comprehensive evaluation
in the field of study [43,44].

Due to the above, the research question arises: How has the intellectual/conceptual
structure of the various types of landslides developed over time?

The present study aims to evaluate the intellectual structure of the landslide through
performance analysis and bibliometric mapping to determine the development, patterns
and trends of its scientific structure. Thus, to analyze the scientific production and intellec-
tual structure of the field of study, managing to provide a transparent, updated, reliable
and high-quality study for its transdisciplinary use.

This study has been structured in five sections, starting with an introductory frame-
work of the problem, highlighting its objective and investigative question to support at
the end of this work, followed by Section 2, in which the materials and the implemented
methodology are described (three phases: research criteria and source identification, soft-
ware and data extraction, and data analysis and interpretation). Section 3 represents the
results and their analysis, to later be discussed in Section 4 and, finally, Section 5 concludes
with the scientific trends of this research field.

2. Materials and Methods

A systematic review allows an exploration of the intellectual territory of existing
studies in the face of a problem raised, evaluating the contributions and synthesizing the
data obtained to provide reliable knowledge of a particular field of study [45,46]. This
exhaustive and rigorous procedure is similar to the protocol presented in the bibliometric
analysis [47,48].

The bibliometric analysis allows evaluating the scientific production of journals [49,50]
or understanding the intellectual structure of various fields of knowledge such as man-
agement [51–53], environment [54–56], natural science [57] and health [58]. Employing
analytical techniques that allow an exploration of the tendencies of investigation and
interpretation of new perspectives in the investigative field [59,60].

The methodology proposed in this work is shown in Figure 2. Its structure comprises
three phases that allow the proposed bibliometric analysis to be carried out: (i) Research
criteria; (ii) reprocessing of data and software; and (iii) analysis and interpretation of data.

2.1. Phase I. Research Criteria and Database Use

For this research, a bibliographic search of the classification of landslides was estab-
lished based on the internal mechanics of the mass movement. These requirements are
encompassed by the USGS, which establishes a classification according to the internal
mechanics present in landslides, such as fall, topple, slide, spread and flow [36]. The
selection of these terms allows the compilation of the base documents to be considered in
this study.

The selection of documents should be made based on choosing a reliable, quality
database with comprehensive coverage. The databases used for bibliometric studies are the
Web of Science and Scopus, which differ in volume of information, journal coverage and
subject areas [61]. The Scopus database was selected due to its comprehensive coverage in
years, journals in various areas of knowledge [62–65], an intuitive search system, easy data
download and high-quality standards [66,67], which allows a more precise bibliometric
evaluation in the domain of any subject to be analyzed.

The search carried out in Scopus focuses on the titles of the publications that contain
the term “landslide” with the terms of: fall, fall, slide, spread and flow. The search topic is
as follows: (TITLE (fall*) OR TITLE (topple*) OR TITLE (slide*) OR TITLE (spread*) OR
TITLE (flow*) AND TITLE (landslide*)).
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Figure 2. Bibliometric research methodology applied in this study.

The landslide research field is vast, so it is necessary to obtain more exact results and
synthesize the study approach; therefore, the search in Scopus focuses only on the title
of the publications with the previously established terms [68,69]. In this way, a total of
661 publications were obtained, to which inclusion criteria such as all types of document,
language, years and study area were applied [13], in addition to an exclusion criterion such
as the year 2021 (year still in progress), obtaining a final database of 641 documents.

2.2. Phase II. Data and Software Reprocessing

The selected records are downloaded in csv format (comma separated values) from the
Scopus database for analysis using the Microsoft Excel software from Office 365 ProPlus [70].
Since the downloaded database contains miles of data from various variables (e.g., authors
name, document title, year, keywords, abstracts, among others), a review and cleaning
of the data is required to ensure precision in analysis results [71,72]. Cleaning consists of
eliminating duplicated values, incomplete or erroneous records that cannot be completed
manually [73]. A total of 9 deleted records and 632 documents to be analyzed were
established.

The new csv files were entered in VOSviewer, an open access and reliable software
that allows the construction and visualization of bibliometric networks in various fields of
study, allowing a comprehensive bibliometric mapping in any research branch [74,75]. This
software allows an analysis of the structure of the research field through co-occurrence [76],
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co-citations [77–80], and bibliographic coupling [81]. This software has been used in
different scientific areas such as: sustainability [82], natural and cultural resources [83],
geosciences [55,84], medicine [76] and the circular economy [85], among others. Its analysis
is carried out only for articles in English, obtaining a total of 354 documents.

2.3. Phase III. Data Analysis and Interpretation

The results were examined using the two classic approaches to bibliometric analysis:
Performance Analysis and Science Mapping [42,86].

• Performance analysis allows an evaluation of its scientific production (authors, coun-
tries, journals) and its scientific impact [87,88];

• sciences mapping allows the graphic representation of the cognitive structure of the
study field and its evolution [41,89]. It is considered to apply a triangulation method
that allows an analysis of this structure by examining its micro (keywords), meso
(articles and authors) and macro (journals) components [90].

3. Results
3.1. Performance Analysis
3.1.1. Scientific Production

From 1952 to 1990 (Figure 3), landslides have been analyzed from a descriptive
perspective, considering the internal mechanics and the mass movement type that is
generated according to the lithology and the material involved [91–93]. Its leading causes
are determined, such as the hydraulic gradient and earthquakes [94–97]. There is also the
beginning of geotechnical and geomorphological studies and the elaboration of models to
understand the internal mechanics of the different triggered landslides [93,98,99]. Given
this analysis, this period is considered to be the beginning of studies that will be the basis
for further research.

Figure 3. Growth of scientific production of landslides.

Figure 3 shows a progressive growth in 1990–2020, determining three different periods
that frame the studies.

Period I (1990–2000) focuses on researches related to the debris flows, managing to
generate models for the understanding and prediction of landslides, and the volume of
material deposited in a sector [100,101]. It considers different aspects such as the mechanical
process of mass movement [102,103], data in the field (rainfall, vegetation cover, slope
inclination, distance, elevation), coefficient of internal friction, among others [104–107].
This period is the basis for continuous studies and analysis of future landslide models.
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In period II (2001–2010), the exponential research growth and a significant focus
on the classification of landslides is observed. These classifications focus on the area of
engineering and speed of landslide for the elaboration of physical models [108], considering
the material involved (gravel, sand, silt and clay) and its variations (debris, earth and mud,
peat and rock), thus managing to formalize definitions that allow identifying the present
types of landslides [109–112]. In 2008, a relevant study to the global analysis of rainfall was
presented, which made it possible to study rainfall and its influence on shallow landslides
and debris flows [113]. These studies are the basis of all landslide warning systems
throughout the world [114–116]. From this, the mathematical prediction models have been
considered of great importance worldwide, calculating and predicting the trajectory, speed
and depth that landslides would have [117–119].

Finally, period III (2011–2020) focuses on the improvement and combination of dif-
ferent numerical models, managing to represent the reality of the environment and the
mechanical behavior of the landslides for their respective analysis in field and risk assess-
ment [120–123]. In this way, at the end of this period, these investigations and improved
models allow us to understand the behavior of different landslides types [124–126]. In
addition, the geomorphological, tectonic and hydrodynamic processes involved in mass
movement processes were explained in detail [127,128]. Different experimental research
was conducted considering the pressure of the pore fluid, type of grain, rainfall and a
large amount of on-site and laboratory investigations, assuring the validity of the re-
sults [129–134].

3.1.2. Language and Types of Documents

In the areas of knowledge related to Life Science and Earth Science, the English
language is predominant [135]. Landslide is no exception; despite presenting studies in
15 languages, 81.8% of its studies are written in English. This predilection for language is
due to its relevance in scientific communication as there is an overrepresentation of English-
speaking journals, and it is the common nexus for international collaboration [136,137]. The
second language is Chinese (13.45%), due to its high national collaboration on topics of de-
bris flow and flow-type landslides in national indexed journals (e.g., Yantu Lixue/Rock and
Soil Mechanics, Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics
and Engineering, Journal of Natural Disasters).

Another characteristic of landslide studies is that they mostly constitute journal articles
(74%) since these documents are considered certified knowledge, as they are examined
by peer reviewers who have expertise in the field of knowledge [138]. Other types of
documents are shown in Figure 4.

Figure 4. Types of scientific publications.

3.1.3. Contribution by Country

The analysis of the contribution of the countries allows us to understand their rela-
tionships in knowledge generation [87]. This product is developed by the collaboration of
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64 countries (see Figure 5), in which most of the research is related to developed countries. The
map was generated through ArcMap 10.5 software, using data from the authors’ affiliations.

Figure 5. Contribution by countries, world map.

China has the most significant academic contribution on landslides (Figure 5), collabo-
rating with 47 countries, especially Italy, the United Kingdom and the United States. The
contributions with Italy are related to numerical modelling in the propagation of flow-like
landslides [139–141]. Concerning the United Kingdom, studies focus on modelling debris
flow and submarine landslides and as a flow influenced by precipitation, earthquakes,
or tectonic movements, e.g., [142–144]. The third international partner, the United States,
focuses on landslide monitoring and numerical modelling based on the smoothed particle
hydrodynamics (sph) method, e.g., [145–147]. China has experienced sustained economic
growth over the last 30 years, allowing broad knowledge development in various academic
fields [148].

In Italy, as the second country with more contributions in the analyzed topic, repre-
sentative authors such as Guzzetti F., Cuomo S., Cascini L., Sorbino G., Crosta G.B. present
studies focused on numerical modelling, the application of sph and GEOtop-FS, run-out
analysis and trigger factors in shallow landslides and debris flows [117–119,149,150]. Japan
is the third country with a scientific contribution, with authors such as Imaizumi F., Sassa K.,
Wuang G. who highlight the effects of landslides and shallow landslides as a consequence
of deforestation, groundwater flow, earthquakes, rainfall and flow path [151–155]. Other
countries contributing in this area can be observed in Figure 5.

3.2. Bibliometric Mapping Analysis

The construction of bibliometric maps, depending on what is established in the
methodology. Only articles and the English language are considered given their broad
domain in various areas of knowledge [156,157].

3.2.1. Co-Occurrence Author Keyword Network

This type of analysis allows visualizing the study area (its history and evolution) and
its possible trends [158–160].

Figure 6 shows the co-occurrence network of author keywords, where 25 nodes
(represents each author-keyword with at least four co-occurrences) and four clusters
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(groupings of nodes of the same color) are observed [161]. The figure allows a visualization
of the intellectual structure of landslides to be examined in greater detail.

Figure 6. Visualization of the co-occurrence network by assigning a representative color for each cluster. Red color (shallow
landslide), green color (flow like landslide), blue color (debris flow) and yellow color (landslide).

Cluster 1 (red color) shows studies of landslides caused by precipitation and pore
pressure in the subsoil studied, due to the topography and water flow caused by rain-
fall [94,115,162–164]. These studies were carried out based on: (i) post-failure in deposits
of colluvial, weathered and pyroclastic origin [118]; (ii) simulation of the probability of
occurrence in hydrographic basins using GEOtop-FS [117]; (iii) the quantification of mor-
phology and hydrological conditions [165]; and (iv) an evaluation of susceptibility and
slope stability for landslide prevention [166]. Other studies reflect the slope instability
that can cause significant hazards, mainly influenced by the deposit type, the rapid flows
generated by seismic movements [167–169], large-scale deforestation [170], groundwater
fluctuation, and different triggering scenarios [132,171].

Studies focusing on this cluster have led to improved mapping, understanding, in-
terpretation and prediction of landslides, such as the movement direction through the
hydraulic gradient [172], the influence of rainfall, soil saturation [125,173] and continuous
monitoring for preventive decisions in potential hazardous landslides [174].
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Cluster 2 (green color) focuses on landslides with a non-Newtonian flow behavior,
demonstrated through numerical modelling, geological study and its geodynamic behav-
ior [121,175–177]. These movements and trajectories are influenced by different factors such
as: (i) rheology and topography [139]; (ii) hydrometeorological events such as heavy rain-
fall [113,178]; (iii) soil saturation in gravelly and sandy materials [178]; (iv) pore pressure
impact caused by earthquakes [155,179,180]; and (v) the frontal plowing phenomenon [140].
These landslides have a natural, rapid and irregular behavior with devastating dynamics.
This cluster provides the scientific community with resources to understand flow-like
landslides through numerical and 3D models [181]. Models considering the smoothed
particle hydrodynamics (SPH) [77,182–184] and the use of satellite images using meth-
ods such as InSAR [185–187]. These studies have allowed the modelling of submarine
landslides [188,189] and landslides in landfills caused by seismic action [182]. In addition,
they facilitate the affected area mapping and evaluate the intensity of the danger for the
planning of adequate risk management [190].

Cluster 3 (blue color), these landslides can be generated by: (i) earth rubble and intense
added rainfall [131,191] or when they come in contact with the mainstream [116]; (ii) failures
in the landslide dam [192,193]; and (iii) the material traction on a slope, liquefaction or even
due to temperature changes [105]. For its understanding, various experiments were carried
out, such as the use of differential equations for the dynamics of the system [129], analysis
of the theory of the critical state in the mobilization of debris flows due to the increase in
the basal pressure of pores [194], and the generation of dynamic models to understand the
evolution of the system [112]. For a further understanding of debris flow, maps used that are
supported by Geographic Information Systems (GIS) [195,196], geophysical studies [197]
and statistical methods such as logistic regression (LR) [198,199] and Multivariate Adaptive
Regression Splines (MARS) were explored [200], allowing us to understand the formation
or prevention of landslide dams [201–203] and debris flows, which can also be generated
by shallow landslides, which are identified through susceptibility mapping [124,204,205].

Cluster 4 (yellow color), covers the topics written in other clusters given its great diver-
sity or classification [36]. Its studies focus on numerical simulations for the understanding
and prediction of landslides [206–208], which allows an understanding of the groundwater
flow affectation [209,210], the infiltration of water by rainfall [211,212] and wave propaga-
tion (tsunamis) due to the collapse of slopes in bodies of water [181,213]. Recently, scientific
contributions regarding landslides have been present. Multiphase flow models present
submarine landslides, especially on the type and size of particles (rheology) [188]. Regard-
ing groundwater or what is percolated by high rainfall, it is considered in Critical Rainfall
Threshold (CRT) analysis, monitoring system by video camera systems and the generation
of two-dimensional mathematical models by the finite difference method [214–216].

3.2.2. Co-Citation Analysis

Co-citation analysis is one of the most widely used methods in bibliometric analy-
sis [41]. It allows us to explore the relationships between documents, to know the knowl-
edge base and the intellectual structure of a field of study [217,218]. Co-citation analyzes
the number of times two documents are co-cited by another subsequent document [79].
When frequently cited in other publications, documents show a close relationship, which
allows us to consider that they belong to the same field of research [219,220]. However, this
relevance does not imply that the ideas shared by the various authors coincide with each
other [221].

In this work, two co-citation methods are used: author co-citation analysis and Journal
co-citation analysis, which are presented below:

Author Co-Citation Analysis (ACA)

This analysis is an adaptation of work by H. Small [79], done by White and Grif-
fith [222] using the authors of the papers. ACA considers that by citing two authors more
frequently in several papers, it is very likely that their fields of research are similar [223].
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This makes it possible to discover the co-citation groups of reference authors that make up
the knowledge base of the intellectual structure studied [73,224]. Furthermore, it allows
the discovery of the academic community linked to confirming this knowledge base [225].

Figure 7 shows this co-citation network of authors. Its construction is carried out with
the VOSviewer software version 1.6.17, which uses a proprietary technique called VOS to
allow a grouping of the units of analysis using similarities [74]. The nodes represent the
authors’ names, which may represent topics, schools of thought or specialties [226]. The
structure presents six clusters, with 235 authors possessing more than 20 co-citations.

Figure 7. Visualization of the co-citation network assigning a representative color for each cluster. according to the
number of interconnected authors. Red, green, blue, yellow, purple and light blue (in order of highest importance by
VOSviewer software version 1.6.17).

Cluster 1 (red color) consists of 60 authors. The studies in this cluster focus on the
research area of shallow landslides and debris flow influenced by rainfall or hydrological
triggers [227–229]. These authors include Guzzetti F. (157 co-citations), in studies related to
precipitation and shallow landslides [113,230]; Crosta G.B. (128) in numerical modelling
and debris flow [231,232]; and Godt J.W. (107), in map generation and modelling of shallow
landslides for landslide risk prevention and assessment [233,234].

Cluster 2 (green color) has 44 authors. This cluster has studies focused on the internal
mechanics of landslides and debris flows, and the factors that affect the movement or
detachment of material [235–239], in addition, it considers the run-out analysis of rock and
soil slides [121,240,241]. These research topics are cover by various authors such as Sassa
K., Xu Q and Wang G. with 131, 97 and 90 citations.

Cluster 3 (blue color) consists of 39 authors, some of the authors, such as: Pastor M.
(126), consider the stabilization of slopes using models [119,242–244], while Cascini L. (122)
and Evans S.G. (115), focus on modelling and studies regarding debris flow [245–250].

Cluster 4 (yellow color) is distant from the rest of the clusters, located at the extreme
right of Figure 7. This cluster comprises 37 authors, such as Masson D.G. (79 co-citations)
and his studies in the underwater landslides are influenced by groundwater [251–253].
Grilli S.T. (49) and Hager W.H. (46) focus on the generation of modelling and numerical sim-
ulations linked to the movement of underwater masses and subsequent tsunamis [254–256].

Cluster 5 (purple color) is in the central part of the structure and has 32 authors, such
as Hungr O. (259), who researches runout analysis and the generation of models for risk
assessment [257–259]. Iverson R.M. (248) and Reid M.E. (77) focused on the study of debris
flow and hydrological factors such as groundwater hydraulics [260–262].
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Cluster 6 (light blue color) has 23 authors, such as Takahashi T. (73), Rickenmann D.
(61) and Sidle R.C. (61), where the topics of interest highlight the study and analysis of
debris flow [263–265].

Journal Co-Citation Analysis (JCA)

This analysis considers the relevance and similarity of journals in a field of study to
reveal the intellectual structure [225,266]. JCA studies the number of times two journals
are co-cited by another journal, revealing the various research fields that make up the
intellectual structure [67,267].

Figure 8 shows this co-citation network of journals. The VOSviewer software version
1.6.17 is used to construct and visualize the connections between the various journals
represented by nodes. This network shows 69 journals with at least 20 co-citations displayed
in four clusters.

Figure 8. Visualization of the co-citation network assigning a representative color for each cluster (topics) and nodes
(journals). According to the structure built using the VOSviewer software version 1.6.17. The colors red, green, blue and
yellow appear in order of importance.

Cluster 1 of red color consists of 20 journals with 1239 citations, in which the following
stand out: “Journal of Geophysical Research” in the category of Agricultural and Biological
Sciences, Earth and Planetary Sciences, and Environmental Science; the “Journal of Fluid
Mechanics” in Physics and Astronomy; and the “Journal of Hydraulic Engineering” in
Environmental Science. The latter converge in the category of Engineering.

Cluster 2 (green color) contains 20 journals and 3526 citations, focusing mainly on the
category of Earth and Planetary Sciences, such as the journals of: “Engineering Geology”,
“Geomorphology” and “Landslides”.

Cluster 3 (blue color) focuses on the Earth and Planetary Sciences category and consists
of 17 journals with 622 citations such as: “Marine Geology”, “Geological Society of America
Bulletin” and “Geology”.

Cluster 4 (yellow color) has 12 journals and 834 citations, such as “Canadian Geotech-
nical Journal”, in the Engineering category, and “Environmental and Engineering Geo-
science”, which have a focus on Environmental Sciences. These are intertwined with
the “Geotechnique” journal in the Earth and Planetary Sciences category, reflecting the
interconnection with the other clusters in Figure 8.
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4. Discussion

This study shows a consistent increase in scientific research on a landslide, thanks
to the contribution of 64 countries spread over five continents (Figure 5), in 15 languages,
mostly in scientific articles and in the English language.

During the 90s, scientific production entered an introductory period, where Iver-
son R.M., Crosta G., and other authors contributed to the scientific community with the
results of their analyses and studies (theoretical, laboratory and field) on the dynamic
behavior of debris flows and landslides [101,105]. According to the Scopus database, this
scientific production has experienced considerable growth since 2001 (representing 90.2%
of publications).

In the decade 2001–2010, scientific research increased (Figure 3), prioritizing the
update of old studies such as the global rainfall threshold [113], the classification of land-
slides [109] and the generation of models [117,119], which in this period are essential for
understanding and preventing landslides. Over the last decade (2011–2020), the increase in
its scientific production has been stable, improving the development and combination of
models generated in the previous period [125,126]. In this way, the analysis of landslides
and the dynamic behavior of the debris flow, shallow landslides and their movement as a
flow was perfected (Figure 6).

The analysis of the intellectual structure of this field of study is conducted through
three scientific maps:

In the analysis of co-occurrence of authors keywords, the application of geographic
information systems (gis) and numerical simulations are a means for the study and analysis
of landslides, debris flow and flow-like landslides, e.g., [184,213]. The sph (smoothed
particle hydrodynamic) method is also part of this type of analysis, in conjunction with im-
plementing sector rheology, e.g., [149]. Numerical models are the most common method for
analyzing the main issues in each cluster, focusing on modelling, erosion, slope stabilization
and rainfall among others, for such study, e.g., [174].

Secondly, the author co-citation analysis allows an observation of the interconnections
that the various authors have in the entire landslide field (Figure 7), which has international
collaboration mainly from countries in Asia, Europe and North America (Figure 5). One
of the main topics of study is the shallow landslides, which since 1988 has focused on
the analysis of propagation and transformation in debris flows [268]. This issue is related
to the duration and intensity of rainfall analyzed by Guzzetti, et al., (2008) [113]. The
authors characteristic of this analysis, such as Sassa (green cluster), Hungr (purple cluster),
Takahashi (sky cluster), Guzzetti (red cluster), among others (Figure 7), focus on the
main hydrological and hydraulic, seismic and geomechanical factors causing the shallow
landslide, debris flow, and consequently, the development of numerical models for risk
prevention and assessment [229,232,234,235,238,241,264,265,269]. These topics are related
to the red and blue clusters in Figure 6.

In addition, the existence of small groups that are isolated from those previously men-
tioned is observed, which we detail below: (a) the group of Pastor, Cascini and Evans (blue
cluster, Figure 7), they analyzed issues related to landslide dams, erosion, the susceptibility
and stabilization of slopes referring to debris flows (blue cluster, Figure 6) [244,250], which
is done through simulations [243,245] and mathematical models (e.g., smoothed-particle
hydrodynamics—SHP [119,245]). (b) Masson, Grilli and Hager’s group (yellow cluster,
Figure 6) study the action of groundwater and its influence on mass movement (underwa-
ter and on the surface), which can trigger the generation of tsunamis or the propagation
of landslides such as flows, which can be analyzed using models and numerical simu-
lations [251,254–256]. These topics are closely related to the green and yellow clusters
(Figure 6).

Third, in the journal co-citation analysis (Figure 8), the red cluster is observed with
a broad domain about the rest of the clusters in the categories of: Engineering, Agricul-
tural and Biological Sciences, Physics and Astronomy, Earth and Planetary Sciences, and
Environmental Science. Another field of study is that of Earth and Planetary Sciences
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(green and blue cluster, Figure 8), focusing on the hydraulic and geotechnical properties of
the material and its formation environment (geological and geomorphological) [270–272].
The green and blue clusters are intertwined with the yellow cluster (Earth and Planetary
Sciences, Figure 8), focusing on understanding landslides, improving the models in the
assessment, and their classification [273–275]. Instead, given the diversity of the landslide
science representing the red cluster (Figure 8), it focuses on the behavior of the landslide,
similar to that of a flow and the engineering analysis of the mechanical and hydraulic
characteristics of the material [276–280]. This study is related to the group of authors
Masson, Grilli and Hager (yellow cluster, Figure 7).

In this way, the entire intellectual structure and its topics of interest are analyzed, such as
shallow landslide, debris flow, landslide and flow like landslide (Figure 4), which cover the five
classifications made by the USGS (fall, topple, slide, spread, and flow) (Figure 1) [36].

5. Conclusions

This work analyses the scientific production of the research field of landslides, accord-
ing to the classification addressed by the USGS. It allows an exploration and analysis of the
intellectual structure of 632 publications from the Scopus database, which is feasible for
a bibliometric study. When performing the performance analysis, its constant evolution
is visualized between 1952–2020 (Figure 3), with a significant increase in the last 20 years.
The 74% corresponds to scientific articles (Figure 4), the majority of which are in English.
The scientific contribution is concentrated in 64 countries, led by China (Figure 5).

The debris flow is a type of landslide generated by various causes, such as precipitation
and collapse of landslide dams. This field of study analyzes the material’s hydraulics,
geodynamics and geological properties in the face of hydrometeorological and seismic
events, which are an essential part of the propagation of landslides with a flow behavior
and subsequent generation of debris flow (Figure 6). Some authors present studies related
to the subject, such as Guzzetti F., Crosta G.B., Godt J.W., Sassa K. and Wang G., among
others (see Figure 7).

The shallow landslide is an area of study supported since 1980 by Nel Caine and
by Guzzetti et al., 2008, who analyze this type of landslides as a consequence of the
duration and intensity of rains. This research area is in a period of growth. Therefore, it
links the material’s hydrological processes and hydraulic conditions as its main triggering
factors. Therefore, the implementation of numerical models for slope stabilization and
risk prevention enhances their importance (Figure 6). In addition, the group of co-cited
authors, such as Guzzetti, Crosta and Godt (red cluster, Figure 7), analyze a large part of
these landslides, which may be the basis for understanding debris flow formation and
other types of landslide.

It is essential to mention that the intellectual structure of this research field made it
possible to point out or list topics of interest that can increase scientific knowledge of this
subject, such as:

• The analysis of the hydraulic properties and the circumstances by which landslides
can be generated as a flow;

• a deeper analysis in the study of shallow landslides and their propagation in debris
flow and flow-like landslides;

• analysis of landslides from the point of view of rheology, focusing on the movement
of materials caused by earthquakes and rainfalls, among others;

• generation of models through the Smoothed-Particle Hydrodynamics (SPH) method,
which has been widely used for cases such as debris flow, shallow landslides, and
other types of mass movements such as flows;

• implementation of satellite images in the areas of the different landslides, where the
most widely implemented methods are: Interferometric Synthetic Aperture Radar
(InSAR), Unmanned Aerial Vehicle (UAV), and Geographic Information System (GIS);

• stabilization studies in landslide dams, which can be caused by rainfalls and subse-
quent generation of debris flow;
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• a technical and geological analysis on topics related to submarine landslides, among
which run-out analysis and the propagation of tsunamis due to landslides and earth-
quakes stand out, this being an area of study that is evolving.

We consider that this study is a contribution to the academic literature due to: (i) The
possibility of getting to know different researchers in specific topics of this field of study,
which allows the establishment of collaboration networks; (ii) to know the experiences
validated by the different authors, using techniques and methods of study that enrich
scientific knowledge; and (iii) the study serves as a guide for novice researchers who wish
to know in brief outlines this general structure of knowledge.

Finally, there are some limitations to this work: (a) restriction due to the classification
of landslides, only to the contribution of the USGS; and (b) the use of the database (Scopus),
without considering other existing bases in the academic world such as the Web of Science
or Dimensions. Considering these limitations, future research is estimated using different
databases and other classifications related to landslides.
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Smart Innovation, Systems and Technologies; Springer: Singapore, 2021; pp. 95–107.
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102. Tadić, B. Temporally disordered granular flow: A model of landslides. Phys. Rev. E 1998, 57, 4375–4381. [CrossRef]

http://doi.org/10.1002/asi.21421
http://doi.org/10.1007/s11192-017-2300-7
http://www.ncbi.nlm.nih.gov/pubmed/28490825
http://doi.org/10.1097/BRS.0000000000003381
http://www.ncbi.nlm.nih.gov/pubmed/31972744
http://doi.org/10.1002/smj.397
http://doi.org/10.1002/asi.4630240406
http://doi.org/10.1177/030631277700700202
http://doi.org/10.1108/K-12-2018-0696
http://doi.org/10.3390/su11051377
http://doi.org/10.3390/su12020724
http://doi.org/10.1016/j.ecolecon.2021.107050
http://doi.org/10.1007/BF02459614
http://doi.org/10.3390/w13091283
http://doi.org/10.3390/su10020494
http://doi.org/10.1002/asi.21525
http://doi.org/10.1371/journal.pone.0190228
http://doi.org/10.1680/geot.1966.16.4.329
http://doi.org/10.1016/0013-7952(73)90040-9
http://doi.org/10.2113/gsecongeo.47.5.548
http://doi.org/10.1080/04353676.1980.11879996
http://doi.org/10.1130/0016-7606(1987)99&lt;579:RGFASM&gt;2.0.CO;2
http://doi.org/10.1002/esp.3290140613
http://doi.org/10.1144/GSL.QJEG.1989.022.04.02
http://doi.org/10.1029/JB094iB02p01703
http://doi.org/10.1061/(ASCE)0733-9429(1997)123:5(410)
http://doi.org/10.1103/PhysRevE.57.4375


Int. J. Environ. Res. Public Health 2021, 18, 9445 18 of 24

103. Sousa, J.; Voight, B. Computational Flow Modeling for Long-Runout Landslide Hazard Assessment, with an Example from
Clapière Landslide, France. Environ. Eng. Geosci. 1992, 29, 131–150. [CrossRef]

104. Straub, S. Predictability of long runout landslide motion: Implications from granular flow mechanics. Geol. Rundsch. 1997, 86,
415–425. [CrossRef]

105. Iverson, R.M.; Reid, M.E.; LaHusen, R.G. Debris-Flow Mobilization from Landslide. Annu. Rev. Earth Planet. Sci. 1997, 25, 85–138.
[CrossRef]

106. Phien-Wej, N.; Nutalaya, P.; Aung, Z.; Zhibin, T. Catastrophic landslides and debris flows in Thailand. Bull. Int. Assoc. Eng. Geol.
1993, 48, 93–100. [CrossRef]

107. Bovis, M.J.; Jakob, M. The July 29, 1998, debris flow and landslide dam at Capricorn Creek, Mount Meager Volcanic Complex,
southern Coast Mountains, British Columbia. Can. J. Earth Sci. 2000, 37, 1321–1334. [CrossRef]

108. Helmstetter, A.; Sornette, D.; Grasso, J.-R.; Andersen, J.V.; Gluzman, S.; Pisarenko, V. Slider block friction model for landslides:
Application to Vaiont and La Clapière landslides. J. Geophys. Res. Solid Earth 2004, 109, B02409. [CrossRef]

109. Hungr, O.; Evans, S.G.; Bovis, M.J.; Hutchinson, J.N. A review of the classification of landslides of the flow type. Environ. Eng.
Geosci. 2001, 7, 221–238. [CrossRef]

110. Klubertanz, G.; Laloui, L.; Vulliet, L. Identification of mechanisms for landslide type initiation of debris flows. Eng. Geol. 2009,
109, 114–123. [CrossRef]

111. Haeberlin, Y.; Turberg, P.; Retière, A.; Senegas, O.; Parriaux, A. Validation of Spot-5 satellite imagery for geological hazard
identification and risk assessment for landslides, mud and debris flows in Matagalpa, Nicaragua. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci 2004, 35, B1.

112. McDougall, S.; Boultbee, N.; Hungr, O.; Stead, D.; Schwab, J.W. The Zymoetz River landslide, British Columbia, Canada:
Description and dynamic analysis of a rock slide–debris flow. Landslides 2006, 3, 195. [CrossRef]

113. Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity–duration control of shallow landslides and debris flows:
An update. Landslides 2008, 5, 3–17. [CrossRef]

114. Crosta, G.B.; Frattini, P. Rainfall-induced landslides and debris flows. Hydrol. Process. 2008, 22, 473–477. [CrossRef]
115. Baum, R.L.; Godt, J.W. Early warning of rainfall-induced shallow landslides and debris flows in the USA. Landslides 2010, 7,

259–272. [CrossRef]
116. Chen, H.; Dadson, S.; Chi, Y.-G. Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology 2006, 77,

112–125. [CrossRef]
117. Simoni, S.; Zanotti, F.; Bertoldi, G.; Rigon, R. Modelling the probability of occurrence of shallow landslides and channelized

debris flows using GEOtop-FS. Hydrol. Process. 2008, 22, 532–545. [CrossRef]
118. Cascini, L.; Cuomo, S.; Pastor, M.; Sorbino, G. Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type. J. Geotech.

Geoenviron. Eng. 2010, 136, 85–98. [CrossRef]
119. Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V. A depth-integrated, coupled SPH model for flow-like landslides

and related phenomena. Int. J. Numer. Anal. Methods Geomech. 2009, 33, 143–172. [CrossRef]
120. Moretti, L.; Mangeney, A.; Capdeville, Y.; Stutzmann, E.; Huggel, C.; Schneider, D.; Bouchut, F. Numerical modeling of the Mount

Steller landslide flow history and of the generated long period seismic waves. Geophys. Res. Lett. 2012, 39. [CrossRef]
121. Huang, Y.; Zhang, W.; Xu, Q.; Xie, P.; Hao, L. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan

earthquake using smoothed particle hydrodynamics. Landslides 2012, 9, 275–283. [CrossRef]
122. Dai, Z.; Huang, Y.; Cheng, H.; Xu, Q. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide

propagation triggered by the 2008 Wenchuan earthquake. Eng. Geol. 2014, 180, 21–33. [CrossRef]
123. Zhang, X.; Krabbenhoft, K.; Sheng, D.; Li, W. Numerical simulation of a flow-like landslide using the particle finite element

method. Comput. Mech. 2015, 55, 167–177. [CrossRef]
124. Iovine, G.; Mangraviti, P. The CA-model FLOW-S* for flow-type landslides: An introductory account. In Proceedings of the 18th

World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009.
125. Long, J.; Liu, Y.; Li, C.; Fu, Z.; Zhang, H. A novel model for regional susceptibility mapping of rainfall-reservoir induced landslides

in Jurassic slide-prone strata of western Hubei Province, Three Gorges Reservoir area. Stoch. Environ. Res. Risk Assess. 2020, 35,
1403–1426. [CrossRef]

126. Chen, C.-Y. Event-based rainfall warning regression model for landslide and debris flow issuing. Environ. Earth Sci. 2020, 79, 127.
[CrossRef]

127. Ling, S.; Chigira, M. Characteristics and triggers of earthquake-induced landslides of pyroclastic fall deposits: An example from
Hachinohe during the 1968 M7.9 tokachi-Oki earthquake, Japan. Eng. Geol. 2020, 264, 105301. [CrossRef]

128. Song, J.; Alves, T.M.; Omosanya, K.O.; Hales, T.C.; Ze, T. Tectonic evolution of strike-slip zones on continental margins and
their impact on the development of submarine landslides (Storegga Slide, northeast Atlantic). GSA Bull. 2020, 132, 2397–2414.
[CrossRef]

129. Iverson, R.M. Scaling and design of landslide and debris-flow experiments. Geomorphology 2015, 244, 9–20. [CrossRef]
130. Sorbino, G.; Nicotera, M.V. Unsaturated soil mechanics in rainfall-induced flow landslides. Eng. Geol. 2013, 165, 105–132.

[CrossRef]
131. Cui, P.; Zhou, G.G.D.; Zhu, X.H.; Zhang, J.Q. Scale amplification of natural debris flows caused by cascading landslide dam

failures. Geomorphology 2013, 182, 173–189. [CrossRef]

http://doi.org/10.2113/gseegeosci.xxix.2.131
http://doi.org/10.1007/s005310050150
http://doi.org/10.1146/annurev.earth.25.1.85
http://doi.org/10.1007/BF02594981
http://doi.org/10.1139/e00-042
http://doi.org/10.1029/2002JB002160
http://doi.org/10.2113/gseegeosci.7.3.221
http://doi.org/10.1016/j.enggeo.2009.06.007
http://doi.org/10.1007/s10346-006-0042-3
http://doi.org/10.1007/s10346-007-0112-1
http://doi.org/10.1002/hyp.6885
http://doi.org/10.1007/s10346-009-0177-0
http://doi.org/10.1016/j.geomorph.2006.01.002
http://doi.org/10.1002/hyp.6886
http://doi.org/10.1061/(ASCE)GT.1943-5606.0000182
http://doi.org/10.1002/nag.705
http://doi.org/10.1029/2012GL052511
http://doi.org/10.1007/s10346-011-0285-5
http://doi.org/10.1016/j.enggeo.2014.03.018
http://doi.org/10.1007/s00466-014-1088-z
http://doi.org/10.1007/s00477-020-01892-z
http://doi.org/10.1007/s12665-020-8877-9
http://doi.org/10.1016/j.enggeo.2019.105301
http://doi.org/10.1130/B35421.1
http://doi.org/10.1016/j.geomorph.2015.02.033
http://doi.org/10.1016/j.enggeo.2012.10.008
http://doi.org/10.1016/j.geomorph.2012.11.009


Int. J. Environ. Res. Public Health 2021, 18, 9445 19 of 24

132. Wu, L.Z.; Zhu, S.R.; Peng, J. Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-
induced landslides. Appl. Math. Model. 2020, 80, 408–425. [CrossRef]

133. Luino, F.; De Graff, J.; Roccati, A.; Biddoccu, M.; Cirio, C.G.; Faccini, F.; Turconi, L. Eighty Years of Data Collected for the
Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water 2020, 12, 133.
[CrossRef]

134. Jianjun, G.; Zhang, Y.X.; Xiao, L. An application of the high-density electrical resistivity method for detecting slide zones in
deep-seated landslides in limestone areas. J. Appl. Geophys. 2020, 177, 104013. [CrossRef]

135. Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A
systematic comparison of citations in 252 subject categories. J. Inform. 2018, 12, 1160–1177. [CrossRef]

136. Patton, A.I.; Rathburn, S.L.; Capps, D.M. Landslide response to climate change in permafrost regions. Geomorphology 2019, 340,
116–128. [CrossRef]

137. Vera-Baceta, M.-A.; Thelwall, M.; Kousha, K. Web of Science and Scopus language coverage. Scientometrics 2019, 121, 1803–1813.
[CrossRef]

138. Mesdaghinia, A.; Younesian, M.; Nasseri, S.; Nodehi, R.N.; Hadi, M. Analysis of the microbial risk assessment studies from 1973
to 2015: A bibliometric case study. Scientometrics 2015, 105, 691–707. [CrossRef]

139. Shen, W.; Li, T.; Li, P.; Shen, Y.; Lei, Y.; Guo, J. The influence of the bed entrainment-induced rheology and topography changes on
the propagation of flow-like landslides: A numerical investigation. Bull. Eng. Geol. Environ. 2019, 78, 4771–4785. [CrossRef]

140. Shen, W.; Li, T.; Li, P.; Berti, M.; Shen, Y.; Guo, J. A two-layer numerical model for simulating the frontal plowing phenomenon of
flow-like landslides. Eng. Geol. 2019, 259, 105168. [CrossRef]

141. Li, P.; Shen, W.; Hou, X.; Li, T. Numerical simulation of the propagation process of a rapid flow-like landslide considering bed
entrainment: A case study. Eng. Geol. 2019, 263, 105287. [CrossRef]

142. Li, J.; Chen, N. The model for dilution process of landslide triggered debris flow —A case of Guanba river in tibet southeastern
plateau. Earth Sci. Res. J. 2018, 22, 103–111. [CrossRef]

143. Xia, X.; Liang, Q. A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes.
Eng. Geol. 2018, 234, 174–191. [CrossRef]

144. Qiao, L.; Meng, X.; Chen, G.; Zhang, Y.; Guo, P.; Zeng, R.; Li, Y. Effect of rainfall on a colluvial landslide in a debris flow valley.
J. Mt. Sci. 2017, 14, 1113–1123. [CrossRef]

145. Wang, J.; Ward, S.N.; Xiao, L. Numerical modelling of rapid, flow-like landslides across 3-D terrains: A Tsunami Squares approach
to El Picacho landslide, El Salvador, September 19, 1982. Geophys. J. Int. 2015, 201, 1534–1544. [CrossRef]

146. Hu, M.; Liu, M.B.; Xie, M.W.; Liu, G.R. Three-dimensional run-out analysis and prediction of flow-like landslides using smoothed
particle hydrodynamics. Environ. Earth Sci. 2015, 73, 1629–1640. [CrossRef]

147. Jin, Y.-Q.; Xu, F. Monitoring and Early Warning the Debris Flow and Landslides Using VHF Radar Pulse Echoes From Layering
Land Media. IEEE Geosci. Remote Sens. Lett. 2011, 8, 575–579. [CrossRef]

148. Barth, M.; Haustein, S.; Scheidt, B. The life sciences in German–Chinese cooperation: An institutional-level co-publication analysis.
Scientometrics 2014, 98, 99–117. [CrossRef]

149. Cascini, L.; Cuomo, S.; Pastor, M.; Sorbino, G.; Piciullo, L. SPH run-out modelling of channelised landslides of the flow type.
Geomorphology 2014, 214, 502–513. [CrossRef]

150. Cascini, L.; Cuomo, S.; Sala Della, M. Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case
of Sarno-Quindici, Italy. Geomorphology 2011, 126, 148–158. [CrossRef]

151. Suzuki, K.; Higashi, S. Groundwater flow after heavy rain in landslide-slope area from 2-D inversion of resistivity monitoring
data. Geophysics 2001, 66, 733–743. [CrossRef]

152. Imaizumi, F.; Tsuchiya, S.; Ohsaka, O. Behaviour of debris flows located in a mountainous torrent on the Ohya landslide, Japan.
Can. Geotech. J. 2005, 42, 919–931. [CrossRef]

153. Imaizumi, F.; Masui, T.; Yokota, Y.; Tsunetaka, H.; Hayakawa, Y.S.; Hotta, N. Initiation and runout characteristics of debris flow
surges in Ohya landslide scar, Japan. Geomorphology 2019, 339, 58–69. [CrossRef]

154. Igwe, O.; Wang, F.; Sassa, K.; Fukuoka, H. The laboratory evidence of phase transformation from landslide to debris flow. Geosci.
J. 2014, 18, 31–44. [CrossRef]

155. Wang, G.; Sassa, K. Seismic loading impacts on excess pore-water pressure maintain landslide triggered flowslides. Earth Surf.
Process. Landf. 2009, 34, 232–241. [CrossRef]

156. Carrión-Mero, P.; Montalván-Burbano, N.; Paz-Salas, N.; Morante-Carballo, F. Volcanic Geomorphology: A Review of Worldwide
Research. Geoscience 2020, 10, 347. [CrossRef]

157. Kirchik, O.; Gingras, Y.; Larivière, V. Changes in publication languages and citation practices and their effect on the scientific
impact of Russian science (1993–2010). J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1411–1419. [CrossRef]

158. Zhang, Q.; Rong, G.; Meng, Q.; Yu, M.; Xie, Q.; Fang, J. Outlining the keyword co-occurrence trends in Shuanghuanglian injection
research: A bibliometric study using CiteSpace III. J. Tradit. Chin. Med. Sci. 2020, 7, 189–198. [CrossRef]

159. Nobanee, H.; Al Hamadi, F.Y.; Abdulaziz, F.A.; Abukarsh, L.S.; Alqahtani, A.F.; AlSubaey, S.K.; Alqahtani, S.M.; Almansoori, H.A.
A Bibliometric Analysis of Sustainability and Risk Management. Sustainability 2021, 13, 3277. [CrossRef]

160. Carrión-Mero, P.; Montalván-Burbano, N.; Herrera-Narváez, G.; Morante-Carballo, F. Geodiversity and Mining Towards the
Development of Geotourism: A Global Perspective. Int. J. Des. Nat. Ecodyn. 2021, 16, 191–201. [CrossRef]

http://doi.org/10.1016/j.apm.2019.11.043
http://doi.org/10.3390/w12010133
http://doi.org/10.1016/j.jappgeo.2020.104013
http://doi.org/10.1016/j.joi.2018.09.002
http://doi.org/10.1016/j.geomorph.2019.04.029
http://doi.org/10.1007/s11192-019-03264-z
http://doi.org/10.1007/s11192-015-1692-5
http://doi.org/10.1007/s10064-018-01447-1
http://doi.org/10.1016/j.enggeo.2019.105168
http://doi.org/10.1016/j.enggeo.2019.105287
http://doi.org/10.15446/esrj.v22n2.68177
http://doi.org/10.1016/j.enggeo.2018.01.011
http://doi.org/10.1007/s11629-016-4142-9
http://doi.org/10.1093/gji/ggv095
http://doi.org/10.1007/s12665-014-3513-1
http://doi.org/10.1109/LGRS.2010.2093598
http://doi.org/10.1007/s11192-013-1147-9
http://doi.org/10.1016/j.geomorph.2014.02.031
http://doi.org/10.1016/j.geomorph.2010.10.038
http://doi.org/10.1190/1.1444963
http://doi.org/10.1139/t05-019
http://doi.org/10.1016/j.geomorph.2019.04.026
http://doi.org/10.1007/s12303-013-0049-4
http://doi.org/10.1002/esp.1708
http://doi.org/10.3390/geosciences10090347
http://doi.org/10.1002/asi.22642
http://doi.org/10.1016/j.jtcms.2020.05.006
http://doi.org/10.3390/su13063277
http://doi.org/10.18280/ijdne.160209


Int. J. Environ. Res. Public Health 2021, 18, 9445 20 of 24

161. Van Eck, N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact: Methods and Practice; Ding, Y.,
Rousseau, R., Wolfram, D., Eds.; Springer: Cham, Switzerland, 2014; pp. 285–320. ISBN 978-3-319-10377-8.

162. Luo, Y.; He, S.; Chen, F.; Li, X.; He, J. A physical model considered the effect of overland water flow on rainfall-induced shallow
landslides. Geoenviron. Disasters 2015, 2, 8. [CrossRef]

163. Kim, S.; Kim, M.; An, H.; Chun, K.; Oh, H.-J.; Onda, Y. Influence of subsurface flow by Lidar DEMs and physical soil strength
considering a simple hydrologic concept for shallow landslide instability mapping. Catena 2019, 182, 104137. [CrossRef]

164. Kim, M.S.; Onda, Y.; Uchida, T.; Kim, J.K. Effects of soil depth and subsurface flow along the subsurface topography on shallow
landslide predictions at the site of a small granitic hillslope. Geomorphology 2016, 271, 40–54. [CrossRef]

165. Bogner, C.; Bauer, F.; Trancón y Widemann, B.; Viñan, P.; Balcazar, L.; Huwe, B. Quantifying the morphology of flow patterns in
landslide-affected and unaffected soils. J. Hydrol. 2014, 511, 460–473. [CrossRef]

166. An, H.; Viet, T.T.; Lee, G.; Kim, Y.; Kim, M.; Noh, S.; Noh, J. Development of time-variant landslide-prediction software
considering three-dimensional subsurface unsaturated flow. Environ. Model. Softw. 2016, 85, 172–183. [CrossRef]

167. Crosta, G.B.; Imposimato, S.; Roddeman, D.; Chiesa, S.; Moia, F. Small fast-moving flow-like landslides in volcanic deposits: The
2001 Las Colinas Landslide (El Salvador). Eng. Geol. 2005, 79, 185–214. [CrossRef]

168. Evans, S.G.; Bent, A.L. The Las Colinas landslide, Santa Tecla: A highly destructive flowslide triggered by the January 13, 2001, El
Salvador earthquake. In Natural Hazards in El Salvador; Rose, W.I., Bommer, J.J., López, D.L., Carr, M.J., Major, J.J., Eds.; Geological
Society of America: Washington, DC, USA, 2004; Volume 375, ISBN 9780813723754.

169. Fan, R.L.; Zhang, L.M.; Shen, P. Evaluating volume of coseismic landslide clusters by flow direction-based partitioning. Eng. Geol.
2019, 260, 105238. [CrossRef]

170. Imaizumi, F.; Sidle, R.C.; Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of
central Japan. Earth Surf. Process. Landf. 2008, 33, 827–840. [CrossRef]

171. Kalenchuk, K.S.; Hutchinson, D.J.; Diederichs, M.S. Downie Slide: Numerical simulation of groundwater fluctuations influencing
the behaviour of a massive landslide. Bull. Eng. Geol. Environ. 2013, 72, 397–412. [CrossRef]

172. Ran, Q.; Su, D.; Qian, Q.; Fu, X.; Wang, G.; He, Z. Physically-based approach to analyze rainfall-triggered landslide using
hydraulic gradient as slide direction. J. Zhejiang Univ. Sci. A 2012, 13, 943–957. [CrossRef]

173. Yang, H.; Yang, T.; Zhang, S.; Zhao, F.; Hu, K.; Jiang, Y. Rainfall-induced landslides and debris flows in Mengdong Town, Yunnan
Province, China. Landslides 2020, 17, 931–941. [CrossRef]

174. Qiao, S.; Xu, P.; Teng, J.; Sun, X. Numerical Study of Optimal Parameters on the High Filling Embankment Landslide Reinforced
by the Portal Anti-Slide Pile. KSCE J. Civ. Eng. 2020, 24, 1460–1475. [CrossRef]

175. Forte, G.; Pirone, M.; Santo, A.; Nicotera, M.V.; Urciuoli, G. Triggering and predisposing factors for flow-like landslides in
pyroclastic soils: The case study of the Lattari Mts. (southern Italy). Eng. Geol. 2019, 257, 105137. [CrossRef]

176. Wang, L.; Zaniboni, F.; Tinti, S.; Zhang, X. Reconstruction of the 1783 Scilla landslide, Italy: Numerical investigations on the
flow-like behaviour of landslides. Landslides 2019, 16, 1065–1076. [CrossRef]

177. Wang, W.; Yin, Y.; Zhu, S.; Wei, Y.; Zhang, N.; Yan, J. Dynamic analysis of a long-runout, flow-like landslide at Areletuobie, Yili
River valley, northwestern China. Bull. Eng. Geol. Environ. 2019, 78, 3143–3157. [CrossRef]
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