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Abstract

The present work has two fundamental goals: the construction of a probability mea-

sure from a fractal structure and, on the other hand, the development of a theory of

probability distribution functions in linearly ordered topological spaces. That is why this

dissertation is divided into two parts, each of them with the task of treating one of the

two mentioned objectives. However, the first two chapters, which do not belong to either

of the two parts as such, serve as a starting point, since they provide the theoretical

framework and an introduction to the problems which are faced in the rest of the disser-

tation (see Chapter 1), as well as the mathematical concepts and results which are used

along it (see Chapter 2). The second chapter will have to do with quasi-pseudometrics,

fractal structures, measure theory, ordered sets, as well as with the Dedekind-MacNeille

completion.

The content of each of the parts of the doctoral thesis is detailed below, in a fairly

synthetic way, according to the chapters into which its content is divided, commenting

on the sub-goals and main results treated in each of them.

The first part, whose aim is, as it was already mentioned, to introduce a method

to construct probability measures from a space with a fractal structure, begins with a

chapter (the third of the work) whose first goal is the construction of the completion of

the space provided with that structure. We will see that this completion, which always

exists, is unique up to fractal isomorphism. This completion will be the starting point

until a probability measure is defined on the original space. In fact, in Chapter 4 we

see how to define a probability measure on the completion of the space. We can do

this in two ways: first, starting from a family of balls and a pre-measure defined on

it and, moreover, we can build a new measure, also in the completion, but starting

from the elements of a tiling fractal structure. Once we have done this, the next step

in this theoretical development is to explore conditions so that the restriction of the
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probability measure that we already have to the original space is, actually, a probability

measure. Furthermore, we will prove that each probability measure defined on the

space can be constructed from a certain pre-measure following the procedure we have

introduced. That is, precisely, what the fifth chapter will be devoted to, together with

several examples in order to illustrate the construction that has been developed, as well

as the suitability of certain hypotheses imposed until a probability measure is achieved in

the starting space. To finish with this first part, Chapter 6 shows some applications that

arise from the theory that has been developed in the previous chapters. For example,

the generation of probability measures from fractal structures allows us to develop a

new parameter estimation method which, while it supports the predictions made by the

well-known maximum likelihood method, offers better results when the given sample

contains data which is completely unrelated to the distribution whose parameters we

want to estimate. Furthermore, it is possible to generate samples of a certain probability

distribution or design a goodness-of-fit test, both based on the construction exposed in

Chapters 4 and 5.

The second part deals with the elaboration of a theory of distribution functions in a

more general context than the one known on the real line, which we will refer to as the

classical case. This context has to do with linearly ordered topological spaces. In Chapter

7 we start from a probability measure on a separable linearly ordered topological space to

define a probability distribution function in that space. Furthermore, the pseudo-inverse

of a distribution function is defined and the properties of both functions are studied,

comparing them with those that they have in the classical case. In fact, one of the

limitations of the pseudo-inverse of a distribution function is that it is not always defined

for all values of the unit interval, since the existence of the infimum and the supremum

of any subset of the starting space is not guaranteed. Therefore, we need an environment

where the definition of the inverse makes complete sense, since it is a tool that will allow,

among other things, to generate samples of a certain probability distribution by using a

similar procedure to the inverse transform method, known in the case of real distribution

functions of real variable, and used to generate random samples. Precisely, in Chapter

8 we study the Dedekind-MacNeille completion (or completion by cuts) of a separable

linearly ordered topological space, and we see how to extend the distribution function,

defined on the original space, to that completion. In fact, that completion turns out

to be a compactification of the original space. This completion makes it possible to
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define the inverse of a distribution function in terms of cuts and so that it is well defined

for each point at [0, 1]. Following this research line, it makes sense to ask ourselves

under what conditions we can guarantee that there is a one-to-one relationship between

probability measures and distribution functions in the context in which we are working.

This study is carried out in Chapter 9. Furthermore, conditions will be determined to

guarantee that a certain function is the inverse of the distribution function of a certain

probability measure on the Borel σ-algebra of the space. In Chapter 10 we introduce

two applications that have arisen from the theory developed in Chapters 7, 8 and 9. On

the one hand, it can be shown that each distribution function in a separable linearly

ordered topological space can be written as the convex sum of two distribution functions,

each one with a certain peculiarity in terms of its continuity and, on the other hand,

we describe a goodness-of-fit test, similar to the Kolmogorov-Smirnov test, known in

the classical case. Finally, Chapter 11 serves as a meeting point between both parts of

the work. Specifically, it shows how to build a fractal structure from a linearly ordered

topological space and vice versa. This connection between both topological structures

makes it possible to move from a probability measure to a distribution function, and

vice versa, in both environments, so that the applications shown in each part of the work

make perfect sense when they are developed in the context that the researcher prefers.

The work finishes with the pertinent conclusions and the corresponding bibliography,

among whose references there are six research articles, in which the candidate for the

title of doctor through this work appears as author: [29], [30], [31], [32], [33] and [34].

These works support most of the content of this thesis.
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Resumen

El presente trabajo tiene dos objetivos fundamentales: la construcción de una medida

de probabilidad a partir de una estructura fractal y, por otra parte, el desarrollo de una

teoŕıa de funciones de distribución de probabilidad en espacios topológicos linealmente

ordenados. Es por ello que esta memoria se encuentra estructurada en dos partes,

cada una de ellas con el cometido de abordar uno de los dos objetivos mencionados

previamente. No obstante, los dos primeros caṕıtulos, no pertenecientes a ninguna de

las dos partes como tal, sirven como punto de partida, puesto que proporcionan el

marco teórico y una introducción a los problemas a los que nos enfrentamos en el resto

de la memoria (véase el Caṕıtulo 1), aśı como los conceptos y resultados matemáticos

utilizados a lo largo de ésta (véase el Caṕıtulo 2). El segundo caṕıtulo tendrá que ver

con casi-seudométricas, estructuras fractales, teoŕıa de la medida, conjuntos ordenados,

aśı como con la completación de Dedekind-MacNeille.

A continuación se detalla, de una manera bastante sintética, el contenido de cada

una de las partes de la tesis doctoral de acuerdo con los caṕıtulos en que se divide su

contenido, comentando los subobjetivos y resultados principales tratados en cada uno

de ellos.

La primera parte, en la que se pretende, como ya se ha comentado, presentar un

método para construir medidas de probabilidad a partir de un espacio con una estruc-

tura fractal, comienza con un caṕıtulo (el tercero del trabajo) cuyo objetivo primero

es la construcción de la completación del espacio dotado de dicha estructura. Veremos

que dicha completación, que siempre existe, es única salvo isomorfismos fractales. Dicha

completación será el punto de partida hasta conseguir definir una medida de probabili-

dad en el espacio original. De hecho, en el Caṕıtulo 4 vemos cómo definir una medida

de probabilidad en la completación del espacio. Esto lo podemos hacer de dos formas:

primero partiendo de una familia de bolas y de una premedida definidas sobre éste y,
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además, podemos construir una nueva medida, también en la completación, pero a partir

de los elementos de una estructura fractal teselación. Hecho esto, el siguiente paso de

este desarrollo teórico es explorar condiciones para que la restricción de la medida de

probabilidad de la que ya disponemos al espacio original sea, efectivamente, una medida

de probabilidad. Es más, probaremos que cualquier medida de probabilidad definida

en el espacio puede construirse a partir de cierta premedida siguiendo el procedimiento

presentado. Eso es, precisamente, a lo que se dedicará el quinto caṕıtulo, el cual se

acompañará de varios ejemplos con el fin de ilustrar la construcción llevada a cabo,

aśı como la idoneidad de ciertas hipótesis impuestas hasta la consecución de una me-

dida de probabilidad en el espacio de partida. Para finalizar esta primera parte, en el

Caṕıtulo 6 se ponen de manifiesto algunas aplicaciones que surgen de la teoŕıa desarrol-

lada en los caṕıtulos previos. Por ejemplo, la generación de medidas de probabilidad a

partir de estructuras fractales nos permite desarrollar un nuevo método de estimación

de parámetros que, si bien apoya las predicciones realizadas por el conocido método

de máxima verosimilitud, ve mejorados los resultados cuando la muestra de la que se

parte contiene datos completamente ajenos a la distribución cuyos parámetros quere-

mos estimar. Además, es posible generar muestras de una determinada distribución de

probabilidad o diseñar un test de bondad de ajuste, ambos basados en la construcción

expuesta en los Caṕıtulos 4 y 5.

La segunda parte trata sobre la elaboración de una teoŕıa de funciones de distribución

en un contexto más general que el conocido sobre la recta real, al que nos referiremos

como caso clásico. Dicho contexto tiene que ver con los espacios topológicos linealmente

ordenados. En el Caṕıtulo 7 se parte de una medida de probabilidad en un espacio

topológico linealmente ordenado y separable para definir una función de distribución

de probabilidad en dicho espacio. Además, se define la inversa de una función de dis-

tribución y se estudian las propiedades de ambas funciones, comparándolas con las que

éstas presentan en el caso clásico. De hecho, una de las limitaciones que presenta la

inversa de una función de distribución es que no siempre está definida para todos los

valores del intervalo unidad, dado que no tenemos garantizada la existencia del ı́nfimo y

del supremo de cualquier subconjunto del espacio de partida. Por ello, surge la necesidad

de disponer de un ambiente donde la definición de la inversa tenga completo sentido,

puesto que es una herramienta que permitirá, entre otras cosas, generar muestras de

una determinada distribución de probabilidad a partir de un procedimiento similar al

XVI



de la transformada inversa, conocido en el caso de funciones de distribución reales de

variable real, y utilizado para generar muestras aleatorias. Precisamente, en el Caṕıtulo

8 estudiamos la completación de Dedekind-MacNeille (o completación por cortaduras)

de un espacio topológico linealmente ordenado y separable, y vemos cómo extender la

función de distribución, definida en el espacio original, a dicha completación. De hecho,

dicha completación resulta ser una compactación del espacio de partida. Dicha com-

pletación posibilita la definición de la inversa de una función de distribución en términos

de cortaduras y de forma que está bien definida para todo punto en [0, 1]. Siguiendo esta

ĺınea de investigación, tiene sentido plantearse bajo qué condiciones podemos garantizar

que existe una relación biuńıvoca entre medida de probabilidad y función de distribución

en el contexto en el que nos enmarcamos. Este estudio se lleva a cabo en el Caṕıtulo

9. Es más, se determinarán condiciones para garantizar que cierta función es la inversa

de la función de distribución de cierta medida de probabilidad en la sigma álgebra de

Borel del espacio. En el Caṕıtulo 10 se presentan dos aplicaciones que han surgido de

la teoŕıa desarrollada en los Caṕıtulos 7, 8 y 9. Por una parte, se puede demostrar que

toda función de distribución en un espacio topológico linealmente ordenado y separable

se puede expresar como la suma convexa de dos funciones de distribución, cada una de

ellas con cierta peculiaridad en cuanto a su continuidad y, por otro lado, diseñamos un

test de bondad de ajuste, similar al test de Kolmogorov-Smirnov, conocido en el caso

clásico. Finalmente, el Caṕıtulo 11 sirve como punto de encuentro entre ambas partes

del trabajo realizado. Concretamente, se muestra cómo construir una estructura fractal

a partir de un espacio topológico linealmente ordenado y viceversa. Esta conexión entre

ambas estructuras topológicas hace posible dar el paso de medida de probabilidad a

función de distribución, y al contrario, tanto en un ambiente como en otro, de forma que

las aplicaciones mostradas en cada parte del trabajo cobran perfecto sentido a la hora

de desarrollarse en el contexto preferido por el investigador.

El trabajo culmina con las conclusiones pertinentes y la correspondiente bibliograf́ıa,

entre cuyas referencias se encuentran seis art́ıculos de investigación, en los que figura

como autor el que es el aspirante al t́ıtulo de doctor mediante este trabajo: [29], [30],

[31], [32], [33] y [34]. Dichos trabajos respaldan la mayor parte del contenido de esta

tesis.
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Chapter 1

Introduction

The theory of probability measures and cumulative distribution functions is basic

and well established in Statistics, Probability and Mathematics in general. Indeed,

as it is well known, there is an equivalence between probability measures, cumulative

distribution functions and random variables in the classical theory. For further reference

about the classical theory on probability measures and cumulative distribution functions

see, for example, [19] and [52].

However, while it is true that a probability distribution is characterized in terms of

any of the previous three tools, working with a cumulative distribution is quite handy,

since it is a usual function and not a set function (probability measure) or a function

which is linked to structures like a σ-algebra (random variable). Moreover, defining a

probability measure on a given space is not simple. Recall that it is a function which must

satisfy some properties: it must be a non-negative and σ-additive set mapping defined

on a σ-algebra such that the measure of the empty set is zero. That is the reason why,

in the first part of this dissertation (see Chapters 3, 4, 5 and 6), we give a new way

to construct probability measures as well as some applications of this theory. For that

purpose, the first step is considering a fractal structure on the space where we want the

probability measure to be defined. In what follows, we motivate the use of the fractal

structure as a starting point in the new way to construct probability measures. Fractal

structures were introduced by F. G. Arenas and M. A. Sánchez-Granero in [2] in order to

study the structure of self-similar sets and fractals in general. Furthermore, this type of

topological structure became of great interest, since it lets us study topological properties
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of the space and, in particular, it is related to structures which have to do with Asymetric

Topology, such as non-archimedean quasi-pseudometrics. In fact, while fractal structures

have been used when studying metrization (see [4] and [5]), completeness (see [6] and

[7]), topological dimension (see [8]) and other topological properties (see [55]), one of the

most interesting properties of them is their recursive character. This recursive nature

is, indeed, what lets us start from a given mass (equal to 1) on the space, which will

be distributed along it by dividing it into different sets induced by the fractal structure.

Although this procedure seems direct, we have to be careful so that the mass is not

lost while dividing it into the different sets in which the space is divided according to

the fractal structure. For that purpose, we need some notions and results which involve

completeness, so we first need to ensure that the mass gives us a probability measure

on the completion of the space. Once we have done this, we look for conditions so that

the mass is not lost in the following steps or, equivalently, when we work in the original

space where we want the measure to be defined. In the literature, similar procedures can

be found. For example, in [24] a method to construct a mass distribution on a subset of

Rn, which consists of repeating a subdivision of a mass between parts of a bounded Borel

set, can be found. Another similar construction is the one made to define multiplicative

cascades. [17], [18] and [46] are good references for further study of this topic.

On the other hand, a cumulative distribution function lets us calculate the measure

of certain (measurable) sets in a quite simple way. Hence, it becomes preferable to work

with a cumulative distribution function (once we know the properties that characterize

it) instead of with the probability measure as such. Another reason to work with a

cumulative distribution function, instead of its probability measure, has to do with its

application to the generation of samples of a random variable. For that purpose, we

use the pseudo-inverse of the corresponding cumulative distribution function. Generat-

ing samples of a given distribution is essential, for example, in Montecarlo simulations.

What is more, in Statistics, several goodness-of-fit tests arise from considering a cumu-

lative distribution function as the null-hypothesis of the test. One example of this is

the Kolmogorov-Smirnov test. We can also describe some methods to estimate the un-

known parameters of a distribution once we are given a random sample of it. Definitely,

a cumulative distribution function plays a key role in several applications of Probability

Theory. Moreover, note that working with a cumulative distribution function implies

considering an order on the space and a topology so that we can talk about continuity of
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it. Hence, it seems natural to consider, as a more general context, the one which has to

do with linearly ordered topological spaces in order to define a cumulative distribution

function. In fact, it is worth noting that the study of measures on topological spaces

(see [13]) lies in the intersection of Functional Analysis, Measure Theory, General Topol-

ogy and Probability Theory and is a very wide research field, with multiple connections

between fields. According to the previous comments, the main goal of the second part

of this dissertation (see Chapters 7, 8, 9 and 10) is developing a theory on a cumula-

tive distribution function on this type of topological space. Recall that, in the classical

theory, a cumulative distribution function F is a real-valued function which is monoton-

ically non-decreasing, right-continuous (which is equivalent to F (a) = limx→a+ F (x) for

each a ∈ R) and such that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1. However, these

conditions are not enough to define a cumulative distribution function in the context

of linearly ordered topological spaces, so it does make sense to explore sufficient and

necessary conditions so that, as it happens in the classical case, there is a one-to-one

relationship between probability measures and cumulative distribution functions. Given

a cumulative distribution, we can define its pseudo-inverse and use it to generate samples

of a certain distribution. The main problem of this function is that, when working with

a linearly ordered topological space, it is not defined for each point in the unit interval,

so we need additional properties of the original space such as compactness. In fact, we

can solve the problem by extending the definition of the cumulative distribution function

and the pseudo-inverse to the Dedekind-MacNeille completion of the space, and look-

ing for conditions so that the equivalence between probability measures and cumulative

distribution functions holds.

Finally, in Chapter 11 we establish the connection between both parts of the work.

Indeed, we show that given a space with a fractal structure, we can define an order

which is compatible with this structure and, conversely, given a linearly ordered topo-

logical space, we can define a fractal structure so that everything works fine, since the

reasearcher can work in the preferred context.

3



4



Chapter 2

Preliminaries

2.1 Fractal structures and quasi-pseudometrics

Fractal structures were introduced in [2] for a topological space. The definition that

we use in this work has been previously used in other works and is defined on a set

instead of a topological space.

We will use the following notations:

� Let X be a nonempty set and Γ a covering of X. We define St(x,Γ) =
⋃
{A ∈ Γ :

x ∈ A} and St(A,Γ) =
⋃
{B ∈ Γ : B ∩ A 6= ∅} for each x ∈ X and A ⊆ X.

� UΓ = {(x, y) ∈ X ×X : y 6∈
⋃
{A ∈ Γ : x 6∈ A}}, where Γ is a cover of a set X.

� A cover Γ2 is a strong refinement of another cover Γ1, written as Γ2 ≺≺ Γ1, if Γ2 is

a refinement of Γ1 (that is, each element of Γ2 is contained in some element of Γ1),

denoted by Γ2 ≺ Γ1, and for each B ∈ Γ1 it holds that B =
⋃
{A ∈ Γ2 : A ⊆ B}.

Definition 2.1. A fractal structure on a set X is a countable family of coverings Γ =

{Γn : n ∈ N} such that Γn+1 ≺≺ Γn. Cover Γn is called the level n of the fractal

structure.

A fractal structure induces a transitive base of a quasi-uniformity given by {UΓn :

n ∈ N}.

Moreover, we say that Γ is a finite fractal structure if Γn has a finite number of

elements for each n ∈ N.

5
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In what follows, we introduce two simple examples of fractal structures. The first one

is defined on [0, 1] and its levels are given by Γn = {[ k
2n
, k+1

2n
] : k = 0, . . . , 2n−1} for each

n ∈ N. Note that the previous fractal structure is finite. However, if we consider the

Euclidean space R, it is defined as the countable family of coverings Γ = {Γn : n ∈ N},
where Γn = {[ k

2n−1 ,
k+1
2n−1 ] : k ∈ Z} for each n ∈ N. In both cases, Γ is known as the

natural fractal structure.

Let now Γ = {Γn : n ∈ N} be a fractal structure on a set X. For each n ∈ N, we

define Uxn = UΓn(x) = X\
⋃
x/∈A,A∈Γn

A.

Let d : X × X → R+
0 be a function on X, where R+

0 denotes, as usual, the set of

non-negative reals. Next, we include some properties of d for any x, y, z ∈ X in order to

characterize different types of distance functions.

1. d(x, x) = 0.

2. d(x, z) ≤ d(x, y) + d(y, z).

3. d(x, y) = d(y, x).

4. d(x, y) = 0 implies that x = y.

5. d(x, y) = 0 = d(y, x) implies that x = y.

6. d(x, z) ≤ max{d(x, y), d(y, z)}.

Definition 2.2. d is a metric on X if 1, 2, 3 and 4 are satisfied.

d is a pseudometric on X if 1, 2 and 3 are satisfied.

d is a quasi-metric on X if 1, 2 and 4 are satisfied.

d is a quasi-pseudometric on X if 1 and 2 are satisfied.

d is a T0-quasi-metric on X if 1, 2 and 5 are satisfied.

Moreover, if one of the previous distance functions satisfies 6, it will be called non-

archimedean. A non-archimedean metric is also called an ultrametric.

The non-archimedean quasi-pseudometric dΓ induced by Γ is defined by (see [2])
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dΓ(x, y) =



1
2n

if y ∈ Uxn\Ux,n+1

1 if y /∈ Ux1

0 otherwise

We will denote it simply by d if there is no confusion on the fractal structure Γ.

First, note that B(x, 1
2n

) = Ux,n+1 and, also, that d satisfies the inequality d(x, z) ≤
max{d(x, y), d(y, z)} for each x, y, z ∈ X, which gives us that d is a non-archimedean

quasi-pseudometric. In addition, we can consider the conjugate quasi-pseudometric,

d−1(x, y) = d(y, x), and the supremum pseudometric, d∗(x, y) = max{d(x, y), d(y, x)},
which is a non-archimedean pseudometric (or ultrapseudometric).

We will use the notation U−1
xn = {y ∈ X : x ∈ Uyn} and U∗xn = Uxn ∩ U−1

xn . Note that

U−1
xn = Bd−1(x, 1

2n−1 ) and U∗xn = Bd∗(x,
1

2n−1 ).

When we work with a fractal structure, we can consider the topologies induced by

d, d−1 or d∗. If we refer to a topological property in a space with a fractal structure,

we will always refer to the topology induced by d (a neighborhood base of a point x is

{Uxn : n ∈ N}), unless a direct reference to another topology is used.

Next, we gather some properties of these sets.

Proposition 2.3. Let Γ be a fractal structure on X, x, y ∈ X and n ∈ N. Then:

1. ([2, Prop. 3.2]) U−1
xn =

⋂
x∈A,A∈Γn

A.

2. ([2, Prop. 2.1]) {U∗xn : x ∈ X} is a partition of X, that is, it covers X and, given

x, y ∈ X, it follows that U∗xn = U∗yn or U∗xn ∩ U∗yn = ∅.

3. ([2, Prop. 3.5]) Let x, y ∈ X and n ∈ N. Suppose that y ∈ Uxn. Then Uyn ⊆ Uxn.

4. ([2, Lemma 3.7]) Uxm ⊆ Uxn for each m ≥ n. As a consequence, U−1
xm ⊆ U−1

xn and

U∗xm ⊆ U∗xn for each m ≥ n.

5. U∗xn =
⋂
x∈A,A∈Γn

A\
⋃
x/∈A,A∈Γn

A.

6. U∗xn ∩ U∗yn 6= ∅ ⇔ y ∈ U∗xn ⇔ U∗xn = U∗yn ⇔ x ∈ U∗yn.
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Note that the last two items are direct consequences of the previous ones.

There are different notions of completeness available for a fractal structure. For

example, we can use any of the completeness notions for the induced quasi-uniformity

(bicomplete, complete, convergent complete, left or right K-complete, etc.). We refer

the reader to [27] as the basic reference for quasi-uniformities and quasi-pseudometrics,

where some concepts of completeness are discussed, including the construction of the

bicompletion. If we want to study a completeness property based only on the fractal

structure, we can use the following one introduced in [7].

Definition 2.4. Let Γ = {Γn : n ∈ N} be a fractal structure on X. Γ is said to be

Cantor complete if for each decreasing sequence (An) (which means that An+1 ⊆ An for

each n ∈ N) of subsets of X with An ∈ Γn, it holds that
⋂
n∈NAn 6= ∅.

2.2 Measure theory

Let X be a set.

Definition 2.5. Suppose that R is a nonempty collection of subsets of X. Then R is

said to be a ring if A ∪B ∈ R and A \B ∈ R for each A,B ∈ R.

Definition 2.6. A σ-ring is a ring closed under the formation of countable unions.

Definition 2.7. Suppose that Q is a nonempty collection of subsets of X. Then Q is

said to be an algebra if it is a ring such that X ∈ Q.

Definition 2.8. Suppose that A is a nonempty collection of subsets of X. Then A is

said to be a σ-algebra if it is closed under complement and countable union and X ∈ A.

Definition 2.9. Let (X, τ) be a topological space. Then B = σ(τ) is the Borel σ-algebra

of the space, that is, it is the σ-algebra generated by the open sets of X.

Definition 2.10. Given a measurable space (Ω,A), a measure µ is a non-negative and

σ-additive set mapping defined on a σ-algebra, A, such that µ(∅) = 0. Moreover, if it

holds that µ(Ω) = 1, then µ is said to be a probability measure on Ω.

A set mapping is said to be σ-additive if µ(
⋃∞
n=1An) =

∑∞
n=1 µ(An) for each count-

able collection {An}∞n=1 of pairwise disjoint sets in A.
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A measure is monotonic (which means that if A,B ∈ A are such that A ⊆ B,

then µ(A) ≤ µ(B)). It is also continuous from below: if (An) is a monotonically

non-decreasing sequence of sets (which means that An ⊆ An+1 for each n ∈ N), then

µ(An) → µ(
⋃
n∈NAn). Moreover, it is continuous from above: if (An) is monotonically

non-increasing (which means that An+1 ⊆ An for each n ∈ N) and µ(A1) < ∞, then

µ(An)→ µ(
⋂
n∈NAn).

Now, if P(X) denotes the power set of X (that is, the set of all subsets of X including

∅ and X itself), a given space, an outer measure on X is simply a map µ : P(X)→ [0,∞]

such that it is monotone, sub-σ-additive (that is, whenever A ∈ P(X), and (An)∞n=1 is a

sequence in P(X) with A ⊂
⋃∞
n=1An, it follows that µ(A) ≤

∑∞
n=1 µ(An)) and µ(∅) = 0.

Definition 2.11. Let (X, d) be a metric space. An outer measure µ on X is said to be

a metric outer measure if for each pair of sets A,B ⊂ X such that d(A,B) > 0, it holds

that µ(A ∪ B) = µ(A) + µ(B), where d(A,B) denotes the distance between A and B,

that is, d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

Next, we recall from [22] two theorems on construction of outer measures.

Let X be a set and letA be a family of subsets of X that covers X. Let c : A → [0,∞]

be any function. The theorem on construction of outer measures (Method I) is as follows:

Theorem 2.12. ([22, Th. 5.2.2]) There is a unique outer measure M on X such that

1. M(A) ≤ c(A) for each A ∈ A.

2. If N is any outer measure on X with N (A) ≤ c(A) for each A ∈ A, then N (B) ≤
M(B) for each B ⊆ X.

Furthermore, for any subset B of X, the definition of the outer measure M is given by

M(B) = inf
∑

A∈D c(A), where the infimum is over all countable covers D of B by sets

of A .

Proposition 2.13. ([22, Ex. 5.4.1]) Let A ⊆ B two covers of X and let c : B → [0,∞]

be a set function. If M is the method I outer measure defined by c and A, and if N is

the method I outer measure defined by c and B, then M(A) ≥ N (A) for each A ⊆ X.

Now, we recall Method II. Let A be a family of subsets of a metric space S and

suppose that, for each x ∈ S and ε > 0, there exists A ∈ A with x ∈ A and diam(A) ≤ ε.
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Suppose c : A → [0,∞] is a given function. An outer measure will be constructed based

on this data. For each ε > 0, let Aε = {A ∈ A : diam(A) ≤ ε}. Let Mε be the Method

I outer measure determined by c using the family Aε. Then, by Proposition 2.13, for

a given set E, when ε decreases, Mε(E) increases. Define M(E) = limε→0Mε(E) =

supε>0Mε(E).

Theorem 2.14. ([22, Th. 5.4.2]) The set function M defined by the previous method

is a metric outer measure.

Let us take into account the next theorem which is related to the uniqueness of a

measure.

Theorem 2.15. ([35, Th. A Section 13]) If µ is a σ-finite measure on an algebra R, then

there is a unique measure µ on the σ-algebra σ(R) such that, for E in R, µ(E) = µ(E);

the measure µ is σ-finite.

Moreover, each measure on an algebra gives us an outer measure, as the next result

shows.

Theorem 2.16. ([35, Th. A Section 10]) If µ is a measure on an algebra R and if, for

every E ⊆ X, µ∗(E) = inf{
∑∞

n=1 µ(En) : En ∈ R, n = 1, 2, . . . , E ⊂
⋃∞
n=1 En} then µ∗

is an extension of µ to an outer measure on X. µ∗ is called the outer measure induced

by the measure µ.

Definition 2.17. ([14, Def. 1.5.1]) Suppose that µ is a non-negative set function on

domain A ⊂ P(X). A set A is called µ-measurable (or Lebesgue measurable with respect

to µ) if, for any ε > 0, there exists Aε ∈ A such that µ∗(A 4 Aε) < ε, where µ∗ is

the outer measure defined by µ∗(A) = inf {
∑∞

n=1 µ(An) : An ∈ A, A ⊂
⋃∞
n=1An} and 4

denotes the symmetric difference, that is, A 4 B = (A \ B) ∪ (B \ A). The class of

µ-measurable sets is denoted by Aµ.

Proposition 2.18. ([14, Section 1.5]) Every set A ∈ Aµ can be made a measure space

by restricting µ to the class of µ-measurable subsets of A, which is a σ-algebra in A.

Definition 2.19. ([14, Def. 2.1.3]) Let (X1,A1) and (X2,A2) be two spaces with σ-

algebras. A mapping f : X1 → X2 is called measurable (with respect to the pair (A1,A2))

if f−1(B) ∈ A1 for all B ∈ A2.
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Definition 2.20. ([14, Section 3.6]) Let X and Y be two spaces with σ-algebras A1 and

A2 and let f : X → Y be a measurable function. Then, for any bounded (or bounded

from below) measure µ on A1, the formula µ ◦ f−1 given by µ(f−1(B)) for each B ∈ A2,

defines a measure on A2 called the image of the measure µ under the mapping f .

2.3 Ordered sets

First, we recall the definition of a linear order and a linearly ordered topological

space.

Definition 2.21. ([53, Chapter 1]) A partially ordered set (P,≤) (that is, a set P with

the binary relation ≤ that is reflexive, antisymmetric and transitive) is totally ordered if

every x, y ∈ P are comparable, that is, x ≤ y or y ≤ x. In this case, the order is said to

be total or linear.

For further reference about partially ordered sets see, for example, [21]. Moreover,

[15] is a useful reference about ordered sets.

Definition 2.22. ([44, Section 1]) A linearly ordered topological space (abbreviated

LOTS) is a triple (X, τ,≤), where (X,≤) is a linearly ordered set and where τ is the

topology of the order ≤.

The definition of the order topology is the following one.

Definition 2.23. ([64, Part II, 39]) Let X be a set which is linearly ordered by <.

We define the order topology τ on X by taking the subbase {{x ∈ X : x < a} : a ∈
X} ∪ {{x ∈ X : x > a} : a ∈ X}.

Given a linear order ≤ on X, we define the next sets.

Definition 2.24. Let a, b ∈ X with a ≤ b, we define the set ]a, b] = {x ∈ X : a < x ≤ b}.
Analogously, we define ]a, b[, [a, b] and [a, b[. Moreover, (≤ a) is given by (≤ a) = {x ∈
X : x ≤ a}. (< a), (≥ a) and (> a) are defined similarly.

Definition 2.25. Let a ∈ X. We will also use ]a,∞[ and [a,∞[ to denote (> a) and

(≥ a), respectively. Similarly, ]−∞, a[ and ]−∞, a] will also denote (< a) and (≤ a),

respectively.
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Remark 2.26. Note that an open base of X with respect to τ is given by {]a, b[: a <
b, a, b ∈ (X ∪ {−∞,∞})}.

2.4 Cuts and the Dedekind-MacNeille completion

First, we recall the definition of a complete lattice.

Definition 2.27. ([60, Def. 8.1, Section 8.1]) Let L be a partially ordered set. Then

L is called a lattice if and only if any two elements of L have a supremum and an

infimum. L is called a complete lattice if and only if any subset of L has a supremum

and an infimum.

Definition 2.28. ([60, Defs. 2.16, 2.17]) Let P be an ordered set and let A ⊆ P . Then:

1. l is called a lower bound of A if and only if we have l ≤ a for each a ∈ A.

2. u is called an upper bound of A if and only if we have u ≥ a for each a ∈ A.

Definition 2.29. Given an ordered set X and A ⊆ X, we denote by Al and Au, respec-

tively, the set of lower and upper bounds of A.

Definition 2.30. ([60, Def. 3.18]) Let P be an ordered set and let A ⊆ P . Then:

1. The point u is called the lowest upper bound or supremum or join of A if and only

if u is the minimum of the set Au.

2. The point u is called the greatest lower bound or infimum or meet of A if and only

if l is the maximum of the set Al.

Proposition 2.31. ([64, Part II, 39]) The order topology on X is compact if and only

if the order is complete, that is, if and only if every nonempty subset of X has a greatest

lower bound and a least upper bound.

The Dedekind-MacNeille completion of X consists of all subsets A ⊆ X for which

(Au)l = A. Such subsets are called cuts. More formally, it can be defined as follows:

Definition 2.32. ([60, Def. 8.21 Section 8.3]) Let P be a partially ordered set. We

define the Dedekind-MacNeille completion of P to be DM(P ) = {A ⊆ P : A = (Au)l}
ordered by inclusion, that is, given A,B ∈ DM(X), it holds that A ≤ B if and only if

A ⊆ B. It is also referred to as the MacNeille completion or the completion by cuts.
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From now on, we will denote the order topology on DM(X) by τ ′.

Definition 2.33. ([60, Def. 1.30]) Let P,Q be ordered sets. Then f : P → Q is called

an (order) embedding if and only if the following hold.

1. f is injective.

2. For all p1, p2 ∈ P , we have p1 ≤ p2 if and only if f(p1) ≤ f(p2).

Theorem 2.34. ([60, Th. 8.23]) Let P be an ordered set. Then DM(P ) is a complete

lattice. Moreover, the map φDM : P → DM(P ), which is defined by φDM(p) = (≤ p) is

an embedding that preserves all suprema and infima that exist in P . Throughout what

follows, we write φ := φDM for simplicity.

Another way to describe the Dedekind-MacNeille completion is by using cuts in

pairs. We say that (A,B) is a cut if Au = B and Bl = A. Cuts let us give an

alternative definition of Dedekind-MacNeille completion. Indeed, if (A,B) is a cut,

then (Au)l = Bl = A. We will work with the notation we have introduced previously.

See [45] for more reference about cuts and [53] for more about the Dedekind-MacNeille

completion.

For our study we need to introduce some terminology related to a linearly ordered

set (X,≤).

Definition 2.35. ([44, Section 1]) A subset C ⊆ X is said to be convex in X if, whenever

a, b ∈ C with a ≤ b, then {x ∈ X : a ≤ x ≤ b} is a subset of C.

Proposition 2.36. ([64, Part II, 39]) Any subset A ⊆ X can be uniquely expressed as

a union of disjoint, nonempty, maximal convex sets in A, called convex components.

Definition 2.37. ([27, Section 4.1]) We say that a set A ⊆ X is decreasing (respectively

increasing) if given a ∈ A and x ≤ a (respectively x ≥ a), then x ∈ A.

The definition of interval is the following one.

Definition 2.38. ([44, Section 1]) An interval of X is a convex subset of X with two

endpoints in X, which can belong to the interval or not.

For convention, we will assume that ∞ and −∞ can be the endpoints of intervals.
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Part I

Generating a probability measure

from a fractal structure
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Fractal structures were introduced in [2] and allow us to characterize non-archimedean

quasi-metrization, though the analysis and study of fractal structures have been extended

to a wide range of applications in General Topology and different areas where fractals

have been detected. Some of this applications include metrization, topological and

fractal dimension, self-similar sets (fractals), compactification, completeness, transitive

quasi-uniformities, or inverse limits (see, for example, [54] and its references). However,

one of the most interesting aspects of a fractal structure is its recursive character, which

allows to make iterative constructions. An example of this can be found in [54], where

it is given a recursive method to construct continuous mappings, which can be useful to

get filling space curves or other continuous maps.

Similar ideas exist in the literature. For example, in [24] a method to construct a

mass distribution on a subset of Rn can be found. It consists of repeating a subdivision

of a mass between parts of a bounded Borel set E. Let ε0 consist of the single set E.

For k = 1, 2, . . . we let εk be a collection of disjoint Borel subsets of E such that each set

U ∈ εk is contained in one of the sets of εk−1 and contains a finite number of the sets in

εk+1. We suppose that the maximum diameter of the sets in εk tends to 0 as k → ∞.

We define a mass distribution on E by repeated subdivision as we see in Figure 2.1.

We let µ(E) satisfy 0 < µ(E) < ∞, and we slipt this mass between the sets

U1, . . . , Um in ε1 by defining µ(Ui) in such a way that
∑m

i=1 µ(Ui) = µ(E). Similarly, we

assign masses to the sets of ε2 so that if U1, . . . , Um are the sets of ε2 contained in a set

U of ε1, then
∑m

i=1 µ(Ui) = µ(U). In general, we assign masses so that
∑

i µ(Ui) = µ(U)

for each set U of εk, where the {Ui} are the disjoint sets in εk+1 contained in U .

For each k, we let Ek be the union of the sets in εk, and we let µ(Rn \ Ek) = 0.

Let ε denote the collection of sets that belong to εk for some k together with the sets

Rn \ Ek. The above procedure defines the mass µ(A) of every set A ∈ ε, and it should

seem reasonable that, by building up sets from the sets in ε, it specifies enough about

the distribution of the mass µ across E to determine µ(A) for any Borel set A. [24, Prop.

1.7] shows that µ(A) can be determined as µ(A) = inf{
∑

i µ(Ui) : A ⊂ ∪iUi and Ui ∈ ε}.

A similar procedure is used to define multiplicative cascades (see, for example, [17],

[18] and [46]).
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Figure 2.1: Mass distribution

In the first part of this work we use the recursive nature of a fractal structure in order

to get a mass distribution on a space. One of the keys of this approach is the use of the

completion of a space with a fractal structure (see Chapter 3). From the construction

and study of the completion, and according to our purpose, we need to follow some

steps to construct a probability measure on the original space, which will be described

in Chapters 4 and 5.



Chapter 3

Completion of a fractal structure

The content of this chapter corresponds to [29].

A fractal structure induces a non-archimedean quasi-pseudometric (see the previous

chapter), so we can always work with the bicompletion (or any other kind of completion)

of the induced quasi-pseudometric and, then, we can have the fractal structure induced

by the (non-archimedean) quasi-pseudometric on the bicompletion.

From the point of view of quasi-uniformities everything works fine with that ap-

proach, but if we need to preserve a stronger structure like the fractal structure itself,

we need a new way to construct a completion of a fractal structure. In fact, we will face

this issue in Chapter 4, when trying to define a probability measure on a space from

a pre-measure defined on the elements of each level of a fractal structure, we need to

define it first on the completion and all the structures induced by the fractal structure

which are involved.

The goal of this chapter is to provide such a construction in a way that all struc-

tures induced by the fractal structure (quasi-pseudometric, metric, topology, the fractal

structure itself, etc.) are extended nicely.

First of all, we gather other properties of the sets induced by d, d−1 and d∗ that have

not been explicitly stated before, though some of them may have been implicitly used.

Proposition 3.1.

1. Let n ∈ N, A ∈ Γn and x ∈ A. Then U∗xm ⊆ U−1
xm ⊆ A for each m ≥ n.

2. Let n ∈ N and A ∈ Γn. Then A =
⋃
x∈A U

∗
xn and A =

⋃
x∈A U

−1
xn .
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3. A is open in τd−1 and closed in τd for each A ∈ Γn and each n ∈ N. Consequently,

A is open and closed in τd∗ for each A ∈ Γn and each n ∈ N.

4. U∗xn is open and closed in (X, d∗) for each x ∈ X and n ∈ N.

5. Given n ∈ N, A ∈ Γn and x ∈ X, it follows that U∗xn ⊆ A or U∗xn ∩ A = ∅. As a

consequence, U∗xn ⊆ A if and only if x ∈ A.

Proof. 1. Let n ∈ N, A ∈ Γn and x ∈ A. By definition of U∗xm, it is clear that U∗xm ⊆
U−1
xm and, by Proposition 2.3, it follows that U−1

xm ⊆ U−1
xn =

⋂
x∈B,B∈Γn

B ⊆ A.

2. Let n ∈ N and A ∈ Γn. It is obvious that A ⊆
⋃
x∈A U

∗
xn ⊆

⋃
x∈A U

−1
xn , so let us

show that
⋃
x∈A U

−1
xn ⊆ A.

Let x ∈ A. Then U−1
xn ⊆ A by the previous item and, hence,

⋃
x∈A U

−1
xn ⊆ A.

3. Let n ∈ N and A ∈ Γn. First, we show that A is closed in τd. Let x ∈ ClτdA

(ClτdA is the closure of A with respect to τd). Then Uxn ∩ A 6= ∅. Since Uxn =

X \
⋃
B∈Γn;x 6∈B B, then x ∈ A and, hence, ClτdA = A, so A is closed in τd.

Next, we show that A is open in τd−1 . Let x ∈ A. Since U−1
xn ⊆ A by the first item,

it follows that A is open in τd−1 , since it is a neighborhood of each of its points in

τd−1 .

Finally, since τd ⊆ τd∗ and τd−1 ⊆ τd∗ , it follows that A is open and closed in τd∗ .

4. Let n ∈ N and x ∈ X. Given y ∈ U∗xn, then U∗yn = U∗xn by Proposition 2.3. In

particular, U∗yn ⊆ U∗xn and U∗xn is open in τd∗ . On the other hand, if y ∈ Clτd∗ (U∗xn),

then U∗yn∩U∗xn 6= ∅ and, by Proposition 2.3, it follows that y ∈ U∗xn. It follows that

Clτd∗ (U
∗
xn) = U∗xn and, hence, U∗xn is closed in τd∗ .

5. Let n ∈ N, A ∈ Γn and x ∈ X and suppose that U∗xn ∩ A 6= ∅. Then there exists

y ∈ U∗xn ∩A and, hence, by item 1, x ∈ U∗yn ⊆ A. Since U∗xn = U∗yn, by Proposition

2.3, we conclude that U∗xn ⊆ A.

Let Γ be a fractal structure on X. Next, we introduce some characterizations for the

properties T0, T1 and T2 of X in terms of the fractal structure.
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Proposition 3.2. X is T0 if and only if for each x, y ∈ X with x 6= y, there exist n ∈ N

and A ∈ Γn such that A contains one of the points (x or y) but not the other one.

Proof. ⇒) Let X be a T0 space and x, y ∈ X. Then there exists n ∈ N such that y /∈ Uxn
or x /∈ Uyn. Suppose that y /∈ Uxn. Then x /∈ U−1

yn =
⋂
A∈Γn,y∈AA, which implies that

there exists A ∈ Γn such that y ∈ A and x /∈ A. Analogously, suppose that x /∈ Uyn.

Then y /∈ U−1
xn , which implies that there exists A ∈ Γn such that x ∈ A and y /∈ A.

⇐) Conversely, let x, y ∈ X with x 6= y. By hypothesis, there exists A ∈ Γn such

that x ∈ A and y /∈ A (or y ∈ A and x /∈ A), which implies that y /∈
⋂
B∈Γn,x∈B B = U−1

xn

and, then, x /∈ Uyn (analogously in the other case). It follows that X is T0.

Proposition 3.3. X is T1 if and only if for each x, y ∈ X with x 6= y, there exist n ∈ N

and A ∈ Γn such that x ∈ A and y /∈ A.

Proof. ⇒) Let X be a T1 space and x, y ∈ X with x 6= y. Then there exists n ∈ N such

that x /∈ Uyn. Since x /∈ Uyn, y /∈ U−1
xn and, then, there exists A ∈ Γn such that x ∈ A

and y /∈ A.

⇐) Let x, y ∈ X with x 6= y. By hypothesis, there exist n ∈ N and A ∈ Γn such that

x ∈ A and y /∈ A, which implies that y /∈ U−1
xn and, then, x /∈ Uyn.

On the other hand, there exist m ∈ N and B ∈ Γm such that y ∈ B and x /∈ B,

which implies that x /∈ U−1
ym and, then, y /∈ Uxm.

Consequently, X is T1.

The characterization of the T2 property is a bit more cumbersome.

Proposition 3.4. X is T2 if and only if for each x, y ∈ X with x 6= y, there exists

n ∈ N such that for each z ∈ X, there exists A ∈ Γn with z ∈ A which does not contain

both x and y.

Proof. As we know, Uxn ∩ Uyn = ∅ if and only if there exists no z ∈ Uxn ∩ Uyn if and

only if there exists no z such that x, y ∈ U−1
zn if and only if there exists no z such that,

for each A ∈ Γn with z ∈ A, it holds that A contains both x and y.
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A sufficient condition for the T2 property is the following one.

Proposition 3.5. X is T2 if for each x, y ∈ X with x 6= y, there exists n ∈ N such that

there exists no element A ∈ Γn which contains both x and y.

Proof. Suppose that X is not T2. Then there exist x, y ∈ X with x 6= y and such that

Uxn ∩ Uyn 6= ∅ for each n ∈ N.

Given n ∈ N, it follows that Uxn ∩ Uyn 6= ∅, so there exists z ∈ Uxn ∩ Uyn and,

hence, x, y ∈ U−1
zn . Then any A ∈ Γn with z ∈ A must contain both x and y, but this

contradices the hypothesis and, hence, X is T2.

Note that if the fractal structure is irreducible (that is, each level is an irreducible

cover, which means that it has no proper subcovers), then the converse of the previous

proposition is also true. Thus, we can prove the next result.

Proposition 3.6. Let X be a T2 space and Γ be an irreducible fractal structure on X.

Then, for each x, y ∈ X with x 6= y, there exists n ∈ N such that there exists no element

A ∈ Γn which contains both x and y.

Proof. Suppose that there exist x, y ∈ X with x 6= y and such that, for each n ∈ N, there

exists A ∈ Γn with x, y ∈ A. Since Γ is irreducible, there exists z ∈ A \
⋃
B∈Γn,B 6=AB.

By Proposition 3.4, we have that X is not T2, which is a contradiction.

Remark 3.7. Let Γ be a fractal structure on X. Note that dΓ is T0 if and only if d∗Γ is

T2.

3.1 Fractal preserving maps

Given a fractal structure Γ on a space X and Y ⊆ X, the fractal structure induced

by Γ on Y is defined by Γ|Y = {{A ∩ Y : A ∈ Γn} : n ∈ N}. Note that Γ|Y is a fractal

structure by [2, Prop. 3.3].

On the other hand, given Γ a fractal structure on X and f : X → Y , the fractal

structure induced by f and Γ on f(X) is defined by f(Γ) = {f(Γn) : n ∈ N}, where

f(Γn) = {f(A) : A ∈ Γn} for each n ∈ N.
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By a lack of reference we prove the next result.

Proposition 3.8. Let Γ be a fractal structure on X and f : X → Y be a map. Then

f(Γ) is a fractal structure on f(X).

Proof. Let ∆ = f(Γ). Next, we check that ∆n+1 ≺≺ ∆n for each n.

� ∆n+1 ≺ ∆n.

Let C ∈ ∆n+1. Then C = f(A) for some A ∈ Γn+1. Now, since Γ is a fractal

structure on X, there exists B ∈ Γn such that A ⊆ B. Thus, f(A) ⊆ f(B) ∈ ∆n.

� C =
⋃
{D ∈ ∆n+1 : D ⊆ C} for each C ∈ ∆n.

⊆) Let C ∈ ∆n and x ∈ C. By definition of ∆, we have that C = f(A) for some

A ∈ Γn. Then x ∈ f(A), which implies that x = f(a) for some a ∈ A. Moreover,

there exists B ∈ Γn+1 such that a ∈ B ⊆ A. That means that x ∈ f(B) ⊆ f(A).

It follows that x ∈
⋃
{D ∈ ∆n+1 : D ⊆ C}, since f(B) ∈ ∆n+1.

⊇) Let x ∈
⋃
{D ∈ ∆n+1 : D ⊆ C}. It is clear that x ∈ C.

Now, we introduce new maps that preserve fractal structures.

Definition 3.9. Let ∆ be a fractal structure on Y , Γ a fractal structure on X and

f : X → Y a mapping. Then f is fractal-preserving if ∆|f(X) = f(Γ).

Moreover, if f is injective, f is said to be a fractal embedding. If f is bijective, f is

said to be a fractal isomorphism.

Remark 3.10. Note that if f is a fractal isomorphism, then f−1 is also a fractal iso-

morphism.

Proposition 3.11. Let ∆ be a fractal structure on Y , Γ a fractal structure on X and

f : X → Y be a fractal-preserving mapping such that f(x) ∈ f(A) implies that x ∈ A
for each A ∈ Γn and for each n ∈ N. Then the following statements are true:

1. y ∈ Uxn if and only if f(y) ∈ Uf(x)n.
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2. y ∈ U−1
xn if and only if f(y) ∈ U−1

f(x)n.

3. y ∈ U∗xn if and only if f(y) ∈ U∗f(x)n.

4. f is an isometry with respect to d. It also follows that f is an isometry with respect

to d−1 and d∗.

5. f(Uxn) = Uf(x)n ∩ f(X).

6. f(U−1
xn ) = U−1

f(x)n ∩ f(X).

7. f(U∗xn) = U∗f(x)n ∩ f(X).

Proof. We prove that y ∈ Uxn if and only if f(y) ∈ Uf(x)n, since this item implies all the

other ones.

⇒) Let y ∈ Uxn. Then x ∈ U−1
yn . Now, let B ∈ ∆n be such that f(y) ∈ B.

Then f(y) ∈ B ∩ f(X) = f(A) for some A ∈ Γn . Since f(y) ∈ f(A), by hypothesis

it follows that y ∈ A, which implies that x ∈ A (since x ∈ U−1
yn ). Consequently,

f(x) ∈ f(A) = B ∩ f(X), so f(x) ∈ B. It follows that f(x) ∈
⋂
B∈∆n,f(y)∈B B = U−1

f(y)n,

which implies that f(y) ∈ Uf(x)n.

⇐) Let f(y) ∈ Uf(x)n. Then f(x) ∈ U−1
f(y)n. Let A ∈ Γn be such that y ∈ A.

Then f(y) ∈ f(A) = B ∩ f(X) for some B ∈ ∆n. Since f(y) ∈ B, it follows that

f(x) ∈ B (since f(x) ∈ U−1
f(y)n), this means that f(x) ∈ B ∩ f(X) = f(A). Finally, since

f(x) ∈ f(A), x ∈ A by hypothesis, so x ∈
⋂
A∈Γn,y∈AA = U−1

yn . Therefore, y ∈ Uxn.

In particular, if f is injective, then we have the following result.

Remark 3.12. Note that if f : X → Y is a fractal embedding, then the previous

statements are true.

3.2 The construction of a completion for a fractal

structure

In this section we recall the construction of X̃ from [2] and, then, we define a fractal

structure on it. In what follows, we assume that Γ = {Γn : n ∈ N} is a fractal structure
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on a set X.

For each n ∈ N, let Gn = {U∗xn : x ∈ X}. In Gn we define the partial order U∗xn ≤ U∗yn

if and only if y ∈ Uxn. Then (Gn,≤) is a poset (that is, a partially ordered set).

Now, we define the maps ρn : X → Gn by ρn(x) = U∗xn and φn : Gn+1 → Gn, given by

φn(ρn+1(x)) = ρn(x). Finally, the inverse limit, lim←−Gn, is defined, as usual, by lim←−Gn =

{(g1, g2, . . .) ∈
∏∞

n=1Gn : φn(gn+1) = gn, ∀n ∈ N}. We will use the notation X̃ = lim←−Gn

from now on. Finally, we define the mapping ρ : X → X̃ by ρ(x) = (ρn(x))n∈N.

Now, we see how to extend a fractal structure on X to a fractal structure on X̃.

Let Γ̃ = {Γ̃n : n ∈ N}, where Γ̃n = {Ã : A ∈ Γn} and, for each A ∈ Γn, Ã is defined

by Ã = {(ρn(xn))n∈N ∈ X̃ : xn ∈ A}.

Next, we prove that Γ̃ is a fractal structure on X̃.

Lemma 3.13. Let n ∈ N, A ∈ Γn and a = (ρn(xn))n∈N ∈ X̃ be such that xk ∈ A for

some k ≥ n. Then xi ∈ A for each i ≥ n.

Proof. Let i ≥ n. By definition of inverse limit, U∗xin = U∗xnn (1). Moreover, U∗xnn = U∗xkn

(2) due to the same fact, since k ≥ n.

On the other hand, U∗xkn ⊆ U−1
xkn
⊆ A (3). If we join expressions (1), (2) and (3),

since xi ∈ U∗xin, xi ∈ A.

Lemma 3.14. Let A ∈ Γn+1 and B ∈ Γn be such that A ⊆ B. Then Ã ⊆ B̃.

Proof. Let a ∈ Ã. Then a = (ρi(xi))i∈N with xn+1 ∈ A, so xn+1 ∈ A ⊆ B. By Lemma

3.13, xn ∈ B. It follows that a = (ρi(xi))i∈N ∈ B̃.

The above statements will help us proving the following result.

Proposition 3.15. Γ̃ is a fractal structure on X̃.

Proof. It is clear that Γ̃n is a covering of X̃, since Γn is a covering of X. Now, let n ∈ N

and let us prove that Γ̃n+1 ≺≺ Γ̃n. This will be true if the next statements are satisfied:

1. Γ̃n+1 ≺ Γ̃n.
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Let Ã ∈ Γ̃n+1. Then A ∈ Γn+1 so that there exists B ∈ Γn such that A ⊆ B. By

Lemma 3.14, we conclude that Ã ⊆ B̃, and it is clear that B̃ ∈ Γ̃n.

2. B̃ =
⋃
{Ã ∈ Γ̃n+1 : Ã ⊆ B̃} for each B ∈ Γn.

Let B ∈ Γn.

⊇) It is obvious.

⊆) Let b ∈ B̃. Then b = (ρi(xi))i∈N, with xn ∈ B. By Lemma 3.13, xn+1 ∈ B.

Since Γn+1 ≺≺ Γn, there exists A ∈ Γn+1 such that xn+1 ∈ A ⊆ B. It follows that

b ∈ Ã. Therefore, b ∈ Ã ⊆ B̃ by Lemma 3.14, and it is clear that Ã ∈ Γ̃n+1.

Let us denote by d̃ = dΓ̃ the non-archimedean quasi-pseudometric induced by Γ̃

on X̃, Ũn to be the transitive base of the quasi-uniformity induced by Γ̃ on X̃, so

Ũxn = X \
⋃
x 6∈Ã,Ã∈Γ̃n

Ã for each x ∈ X̃ and n ∈ N, τ̃ to be the topology induced by d̃

and τ̃ ∗ to be the topology induced by d̃∗.

The next proposition gather some relations between elements of X and its extensions

to X̃.

Proposition 3.16.

1. Let (ρn(xn))n∈N, (ρn(yn))n∈N ∈ X̃ be such that (ρn(xn))n∈N = (ρn(yn))n∈N, and let

m ∈ N and A ∈ Γm. Then xm ∈ A if and only if ym ∈ A (roughly speaking, the

definition of Ã does not depend on the sequence (xn)).

2. Let x = (ρn(xn)) ∈ X̃ and A ∈ Γk. Then x ∈ Ã if and only if xk ∈ A.

3. Let x = (ρn(xn))n∈N ∈ X̃. Then ρ(xn) ∈ Ũ∗xn for each n ∈ N.

4. Let x = (ρn(xn))n∈N ∈ X̃. Then ρ(xn)
τ̃∗−→ x.

5. Let (xn)n∈N be a sequence in X such that xn+1 ∈ U∗xn for each n ∈ N. Then

(ρn(xn))n∈N ∈ X̃.

6. Let x ∈ X, n ∈ N and A ∈ Γn. Then ρ(x) ∈ Ã if and only if x ∈ A. In particular,

Ã ∩ ρ(X) = ρ(A) for each A ∈ Γn and each n ∈ N (roughly speaking, Γ is the

restriction of Γ̃ to X). This means that ρ is a fractal-preserving mapping between

X and X̃.
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7. Let x, y ∈ X and n ∈ N. Then ρ(y) ∈ Ũρ(x)n if and only if y ∈ Uxn. In particular,

Ũρ(x)n ∩ ρ(X) = ρ(Uxn) for each x ∈ X and n ∈ N (roughly speaking, Uxn is

the restriction of Ũρ(x)n to X). It also follows that Ũ−1
ρ(x)n ∩ ρ(X) = ρ(U−1

xn ) and

Ũ∗ρ(x)n ∩ ρ(X) = ρ(U∗xn) for each x ∈ X and n ∈ N.

8. Let x = (ρn(xn))n∈N ∈ X̃. Then Ũ∗xn = Ũ∗ρ(xn)n.

9. Ã = Clτ̃∗(ρ(A)) for each A ∈ Γn.

10. d̃(ρ(x), ρ(y)) = d(x, y) for each x, y ∈ X (that is, ρ : (X, d) → (X̃, d̃) is an

isometry). It also follows that ρ : (X, d−1) → (X̃, d̃−1) and ρ : (X, d∗) → (X̃, d̃∗)

are isometries.

11. ρ(X) is dense in (X̃, d̃∗).

12. If X is T0, then ρ is injective and, hence, ρ is a fractal embedding.

13. (X̃, Γ̃) is T0.

14. If X is not T0, then ρ(X) is homeomorphic to the T0-reflection of X.

Proof. 1. By hypothesis, U∗xnn = U∗ynn for each n ∈ N. Now, let m ∈ N and A ∈ Γm:

⇒) Suppose that xm ∈ A. Then ym ∈ U∗xmm ⊆ U−1
xmm =

⋂
B∈Γm,xm∈B B, which

implies that ym ∈ A.

⇐) Conversely, suppose that ym ∈ A. Then xm ∈ U∗ymm ⊆ U−1
ymm =

⋂
B∈Γm,ym∈B B,

which implies that xm ∈ A.

2. ⇐) If xk ∈ A, since x = (ρn(xn)), we have that x ∈ Ã by definition of elements of

Γ.

⇒) If x ∈ Ã, there exists yn ∈ X such that x = (ρn(yn)) with yk ∈ A. By the

previous item, since yk ∈ A, xk ∈ A.

3. Let x = (ρn(xn)) ∈ X̃. We have that ρ(xn) ∈ Ũ∗xn if and only if ρ(xn) ∈ Ũxn and

ρ(xn) ∈ Ũ−1
xn .

� On the one hand, ρ(xn) ∈ Ũxn if and only if x ∈ Ũ−1
ρ(xn)n =

⋂
Ã∈Γ̃n,ρ(xn)∈Ã Ã.

Let now Ã ∈ Γ̃n be such that ρ(xn) = (ρk(xn))k∈N ∈ Ã. Then xn ∈ A by item

2 and, hence, x ∈ Ã.
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� On the other hand, let Ã ∈ Γ̃n be such that x ∈ Ã, which implies that, by item

2, xn ∈ A and this means that ρ(xn) ∈ Ã. Therefore, ρ(xn) ∈
⋂
Ã∈Γ̃n,x∈Ã Ã =

Ũ−1
xn .

4. Let x = (ρn(xn)) ∈ X̃. By the third item, ρ(xn) ∈ Ũ∗xn, so that d̃∗(ρ(xn), x) ≤ 1
2n

for each n ∈ N, and, hence, ρ(xn)
τd∗−→ x.

5. By definition of inverse limit it follows that (ρn(xn))n∈N ∈ X̃ if φn(ρn+1(x)) =

ρn(x). Moreover, φn(ρn+1(x)) = ρn(x) if and only if U∗xn+1n
= U∗xnn. If we prove

the last equality, we will have that (ρn(xn))n∈N ∈ X̃.

Since xn+1 ∈ U∗xnn it follows that U∗xn+1n
= U∗xnn by Proposition 2.3.

6. Let x ∈ X, n ∈ N and A ∈ Γn.

Suppose that x ∈ A. Then ρ(x) = (ρi(x))i∈N ∈ X̃ and, hence, ρ(x) ∈ Ã.

Conversely, suppose that ρ(x) ∈ Ã. Then ρ(x) = (ρi(x))i∈N and, by item 2, x ∈ A.

7. It is clear by Proposition 3.11.

8. By item 3, we have that ρ(xn) ∈ Ũ∗xn for each n ∈ N. Moreover, by Proposition

2.3.3, it follows that Ũ∗xn = Ũ∗ρ(xn)n.

9. Let A ∈ Γn.

⊆) Let x ∈ Ã. Then x = (ρi(xi))i∈N with xn ∈ A. By item 4, ρ(xi)
τ̃∗−→ x. On

the other hand, by Lemma 3.13, xm ∈ A for each m ≥ n. We conclude that

x ∈ Clτ̃∗(ρ(A)).

⊇) ρ(A) = Ã ∩ ρ(X) by item 6. Thus, ρ(A) ⊆ Ã and, hence, Clτd∗ (ρ(A)) ⊆
Clτd∗ (Ã). Since Ã is a closed set with respect to τd∗ , Clτd∗ (Ã) = Ã and, conse-

quently, Clτd∗ (ρ(A)) ⊆ Ã.

10. It follows from Proposition 3.11.

11. Let x = (ρn(xn))n∈N ∈ X̃. By item 4, ρ(xn)
τ̃d∗−→ x. It follows that ρ(X) is dense

in (X̃, d̃∗).

12. Suppose that X is T0 and let ρ(x) = ρ(y). Then ρn(x) = ρn(y) for each n ∈ N, that

is, U∗xn = U∗yn for each n ∈ N. Suppose that x 6= y. Since X is T0, by Proposition

3.2, it follows that there exist n and A ∈ Γn such that x ∈ A and y /∈ A (or x /∈ A
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and y ∈ A). If x ∈ A, then U∗xn ⊆ A, that is, U∗yn ⊆ A and this means that y ∈ A,

which is a contradiction. Therefore, x = y and ρ is injective.

13. Let x = (ρn(xn)) and y = (ρn(yn)) with x 6= y. Then U∗xnn 6= U∗ynn for some n ∈ N.

It follows that yn /∈ U∗xnn = Uxnn ∩ U−1
xnn. This implies one of the following facts:

� yn /∈ Uxnn, which implies that xn /∈ U−1
ynn and, hence, there exists A ∈ Γn such

that yn ∈ A and xn /∈ A. It follows, by item 2, that y ∈ Ã and x /∈ Ã. Thus,

x /∈ Ũ−1
yn =

⋂
y∈Ã,Ã∈Γ̃n

Ã and, consequently, y /∈ Ũxn.

� yn /∈ U−1
xnn, which implies (analogously to the previous case) that x /∈ Ũyn.

Hence, X̃ is T0.

14. Let the equivalence relationship x ∼ y if and only if {x} = {y}. Then X/ ∼ is the

T0-reflection of X. Next, we show that f : ρ(X)→ X/ ∼ such that f(ρ(x)) = [x]

is an homeomorphism:

First, we show that f is well defined. Let x, y ∈ X be such that ρ(x) = ρ(y), then,

U∗xn = U∗yn for each n ∈ N. Thus, x ∈ U∗yn and y ∈ U∗xn for each n ∈ N, which

implies that {x} = {y}, so [x] = [y] and, hence, f(ρ(x)) = f(ρ(y)).

Now, we prove that f is continuous. Let G be an open set in X/ ∼ and y ∈ f−1(G).

Then there exists x ∈ X such that ρ(x) = y. Moreover, f(ρ(x)) = [x] ∈ G. Let

Π : X → X/ ∼ be the quotient map. Since Π is continuous, Π−1(G) is an open

set. Therefore, there exists n such that Uxn ⊆ Π−1(G).

Next, we see that ρ(X)∩ Ũρ(x)n ⊆ f−1(G). We know that ρ(X)∩ Ũρ(x)n = ρ(Uxn).

Let z ∈ ρ(Uxn). Then we can write z = ρ(z′) with z′ ∈ Uxn. Furthermore

z′ ∈ Uxn ⊆ Π−1(G). Consequently, Π(z′) ∈ G and f(z) = f(ρ(z′)) = Π(z′) ∈ G.

Thus, z ∈ f−1(G). Therefore, ρ(X)∩Ũρ(x)n = ρ(Uxn) ⊆ f−1(G) and, hence, f−1(G)

is a neighborhood of each of its points and, then, it is an open set. Therefore, f is

continuous.

Next, we prove that f is bijective.

On the one hand, it is clear that f is onto. Let [x] ∈ X/ ∼. If we consider ρ(x),

we have that f(ρ(x)) = [x].

On the other hand, let [x] = [y], then:
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� y ∈ {x}.

� x ∈ {y}.

From the first item it follows that Uyn∩{x} 6= ∅ and, hence, x ∈ Uyn for each n ∈ N.

From the second item, we conclude that y ∈ Uxn for each n ∈ N. Consequently,

U∗xn = U∗yn for each n ∈ N, which implies that ρ(x) = ρ(y). Therefore, f is injective.

To conclude we show that f−1 is continuous. We first recall item 10 in order to

remember that ρ is an isometry and, hence, it is continuous. Moreover, Π(x) = Π(y)

implies ρ(x) = ρ(y), as we proved previously. Thus, f−1 is continuous due to the

universal property of the quotient topology.

3.3 The bicompletion

First, we recall a well-known result which is useful in order to prove that a metric

space is complete.

Lemma 3.17. Let A be a dense subset of a metric space X. Then X is complete if and

only if each Cauchy sequence (an)n∈N with an ∈ A is convergent.

Now, we can prove that our completion is the bicompletion of the (non-archimedean)

quasi-pseudometric induced by the fractal structure.

Proposition 3.18. If (X, d) is T0, then (X̃, d̃∗) is the completion of (X, d∗).

Proof. By Proposition 3.16, we only have to prove that (X̃, d̃∗) is complete.

We will use Lemma 3.17, so let (ρ(xn))n∈N be a Cauchy sequence in (ρ(X), d̃∗). Since

ρ is an isometry by Proposition 3.16.10, (xn)n∈N is a Cauchy sequence in (X, d∗). Then:

There exists n0 ∈ N such that d∗(xp, xq) <
1
2

for each p, q ≥ n0. We define σ(1) = n0.

There exists n1 ≥ σ(1) such that d∗(xp, xq) < 1
22 for each p, q ≥ n1. We define

σ(2) = n1.

By recursion we can define σ : N → N such that d∗(xσ(p), xσ(q)) <
1

2min{p,q} for each

p, q and σ(n + 1) ≥ σ(n). In particular, σ is increasing and d∗(xσ(n+1), xσ(n)) <
1

2n
.

This implies that xσ(n+1) ∈ U∗xσ(n)n
and, by Proposition 3.16.5, z = (ρn(xσ(n))) ∈ X̃. By
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Proposition 3.16.4, ρ(xσ(n))
τ̃∗−→ z. Since (ρ(xσ(n)))n∈N is convergent, (ρ(xn))n∈N is also

convergent (each Cauchy sequence (xn) which has a convergent subsequence xσ(n) → x

is convergent and its limit is x). We conclude that d̃∗ is complete.

If we take into account that a quasi-pseudometric d is said to be bicomplete if the

pseudometric d∗ is complete, we get, as an immediate consequence of the previous result,

the following one.

Corollary 3.19. If (X, d) is T0, then (X̃, d̃) is the bicompletion of (X, d).

3.4 Other completeness properties of the comple-

tion

In this section we find conditions in order to get that the completion constructed in

the previous sections is Cantor complete. First, we will need some definitions.

Recall that a cover Γ of a topological space is said to be point finite if each point

belong to a finite number of elements of Γ. Γ is said to be locally finite if each point has

a neighborhood which only meets a finite number of elements of Γ.

For our purposes, we need a concept that is related to the previous ones, which is

the following one.

Definition 3.20. Let Γ be a covering of X. Γ is said to be cover-finite if the set

{B ∈ Γ : B ∩ A 6= ∅} is finite for each A ∈ Γ.

Note that, by the previous definitions, if Γ is a finite cover, then Γ is cover-finite.

Moreover, if Γ is cover-finite, it follows that Γ is point finite.

Definition 3.21. A fractal structure Γ = {Γn : n ∈ N} is said to be locally finite

(respectively finite, cover-finite) if Γn is locally finite (respectively finite, cover-finite) for

each n ∈ N.

Note that a fractal structure Γ = {Γn : n ∈ N} such that each level Γn is point finite,

is locally finite, since for each A ∈ Γn it follows that a point x ∈ X belongs to A if and

only if Uxn ∩A 6= ∅ (and, of course, Uxn is a neighborhood of x). It follows that a finite

fractal structure is cover-finite and a cover-finite fractal structure is locally finite.
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From the definition of a cover-finite fractal structure we have the next result.

Lemma 3.22. If Γ is a cover-finite fractal structure, then {U∗xn : U∗xn ⊆ A} is finite for

each A ∈ Γn and each n ∈ N .

Proof. Let n ∈ N, A ∈ Γn and x ∈ X. By Proposition 2.3, U∗xn ⊆ A or U∗xn ∩ A = ∅.
Now, we will show how to construct an injective map between {U∗xn : U∗xn ⊆ A} and

P({B ∈ Γn : B ∩ A 6= ∅}), whence it will follow that {U∗xn : U∗xn ⊆ A} is finite, where

P(Y ) is the family of all subsets of Y .

Note that U∗xn ⊆ A if and only if x ∈ A, so let x ∈ A. Then U∗xn =
⋂
x∈B,B∈Γn

B \⋃
x/∈B,B∈Γn

B. Moreover, if x ∈ B, then B ∩ A 6= ∅. Now, we define φ : {U∗xn : U∗xn ⊆
A} → P({B ∈ Γn : B ∩ A 6= ∅}) given by φ(U∗xn) = {B : x ∈ B}. Now, we show that it

is injective.

Let U∗xn 6= U∗yn. Then y /∈ U−1
xn =

⋂
x∈B,B∈Γn

B or x /∈ U−1
yn . Hence, there exists

B ∈ Γn such that x ∈ B and y /∈ B, or x /∈ B and y ∈ B. This implies that

φ(U∗xn) 6= φ(U∗yn) and φ is injective.

Now, we can prove that for a cover-finite fractal structure the completion is Cantor

complete.

Theorem 3.23. Let Γ be a cover-finite fractal structure on X such that (X, d) is T0.

Then (X̃, Γ̃) is Cantor complete.

Proof. First, recall from Proposition 3.1.5 that for each n ∈ N, A ∈ Γn and x ∈ X,

U∗xn ⊆ A if and only if x ∈ A.

Let (Ãn)n∈N be a sequence with Ãn ∈ Γ̃n satisfying Ãn+1 ⊆ Ãn. We prove that⋂
n∈N Ãn 6= ∅. Note that An+1 ⊆ An, since ρ(An) = Ãn ∩ ρ(X) by Proposition 3.16.6

and ρ is injective by Proposition 3.16.12.

Let us construct a sequence of points in An so that we get an element in
⋂
n∈N Ãn.

By Proposition 3.1, A1 =
⋃
{U∗x1 : U∗x1 ⊆ A1}. By Lemma 3.22, the set {U∗x1 : U∗x1 ⊆ A1}

is finite, so there exists x1 ∈ A such that U∗x11∩An 6= ∅ for each n ∈ N. Now, U∗x11∩A2 =⋃
{U∗y2 : y ∈ U∗x11∩A2}. Since the set {U∗y2 : y ∈ U∗x11∩A2} ⊆ {U∗y2 : U∗y2 ⊆ A2}, then it is

finite by Lemma 3.22 and nonempty by construction. So there exists x2 ∈ A2∩U∗x11 such

that U∗x22∩An 6= ∅ for each n ∈ N. Recursively we define xn such that xn ∈ An∩U∗xn−1,n−1

and U∗xnn ∩ Ak 6= ∅ for each k ∈ N.
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Since xn+1 ∈ U∗xnn, it follows from Proposition 3.16 that (ρi(xi)) ∈ X̃ and we also

have that (ρi(xi)) ∈ Ãn for each n ∈ N, since xn ∈ An for each n ∈ N. Therefore,

(ρi(xi)) ∈
⋂
n∈N Ãn and, hence, Γ̃ is Cantor complete.

The following example shows that being locally finite is not enough to ensure that Γ̃

is Cantor complete.

Example 3.24. Let Γ = {Γn : n ∈ N}, where Γn = {] − ∞,−k] : k ≥ n} ∪ {[k,∞[:

k ≥ n} ∪ {
[
i

2n
, i+1

2n

]
: i = −n2n, . . . , n2n − 1} for each n ∈ N. Then Γ is a locally finite

fractal structure but Γ̃ is not Cantor complete.

First, we prove that Γ is locally finite. Let n ∈ N and x ∈ X. We have the following

options:

� x ∈
[
i

2n
, i+1

2n

]
for some i, and, hence, x belong to at most two elements of Γn.

� x ∈ ∪{[k,∞[: k ≥ n}, which implies that x can only belongs to [n,∞[, . . . [bxc,∞[

or
[
n2n−1

2n
, n
]

if x = n, which is a finite number of elements of Γn, where bac is the

largest integer not greater than x.

� x ∈ ∪{] − ∞,−k] : k ≥ n}, which implies that x can only belongs to ] −
∞,−n], . . .] − ∞,−bxc] or

[
−n, −n2n+1

2n

]
if x = −n, which is a finite number of

elements of Γn.

So Γn is locally finite by the previous discussion on the relation between locally finite

and point finite for a fractal structure.

Now, we show that Γ̃ is not Cantor complete.

Let An =]−∞,−n] ∈ Γn. Then Ãn ∈ Γ̃n and, by Lemma 3.14, since An+1 ⊆ An, it

follows that Ãn+1 ⊆ Ãn. Let x = (ρn(xn)) ∈ X̃ and suppose that x ∈
⋂
n∈N Ãn. Then

x ∈ Ãn for each n ∈ N. Moreover, by Proposition 3.16 it follows that xn ∈ An for

each n ∈ N and, hence, U∗xnn = {xn} if xn = −n, U∗xnn =]bxnc − 1, bxnc] if xn ∈ Z or

U∗xnn =]bxnc, bxnc+ 1] otherwise. Since x = (ρn(xn)) ∈ X̃, it follows that xk ∈ U∗xnn for

each k ≥ n. For k ≥ −bxnc + 1 we get that xk ∈ Ak =] −∞,−k] ⊆] −∞, bxnc − 1]

which is a contradiction with xk ∈ U∗xnn. Consequently,
⋂
Ãn = ∅ and Γ̃ is not Cantor

complete.
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3.5 Uniqueness of the bicompletion

Next, we give a theorem of uniqueness related to the bicompletion of a fractal struc-

ture. First, we give a definition of bicompletion.

Definition 3.25. Let Γ be a fractal structure on X, ∆ a fractal structure on Y , i :

X → Y a fractal embedding and suppose that d∆ is bicomplete, i(X) is dense in (Y, d∗∆)

and Y is T0. Then we say that (Y,∆, i) is a bicompletion of (X,Γ).

Corollary 3.26. If (X,Γ) is T0, then (X̃, Γ̃, ρ) is a bicompletion of (X,Γ).

Proof. It follows from Sections 3.2 and 3.3.

The next result is about the uniqueness of the bicompletion of a fractal structure.

Theorem 3.27. If (Y,∆, i) is a bicompletion of (X,Γ), then there exists I : X̃ → Y ,

a fractal isomorphism such that I ◦ ρ = i. Roughly speaking, the bicompletion is unique

up to fractal isomorphism.

Proof. 1. Definition of I.

In order to define I, let x = (ρn(xn)) ∈ X̃. On the one hand, since i is fractal

preserving and injetive, y ∈ Uxn if and only if i(y) ∈ Ui(x)n by Remark 3.12.

On the other hand, since x ∈ X̃, xn+1 ∈ U∗xnn for each n ∈ N, which implies that

i(xn+1) ∈ U∗i(xn)n by Remark 3.12. This means that (i(xn)) is a Cauchy sequence

in (Y, d∗∆). Thus, there exists y ∈ Y such that (i(xn)) converges to y in (Y, d∗∆).

Now, we can define I(x) = y.

2. I is well defined.

Let (ρn(xn)) = (ρn(yn)) ∈ X̃. Then U∗xnn = U∗ynn for each n ∈ N and, hence,

yn ∈ U∗xnn for each n ∈ N.

On the one hand, since (ρn(xn)) ∈ X̃, xn+1 ∈ U∗xnn for each n ∈ N. Consequently,

i(xn+1) ∈ U∗i(xn)n by Remark 3.12, which implies that (i(xn)) is a Cauchy sequence

in (Y, d∗∆). Thus, there exists z ∈ Y such that i(xn)→ z in (Y, d∗∆) (and this limit

is unique, since (Y, d∗∆) is T2). Then I((ρn(xn))) = z.

On the other hand, since yn ∈ U∗xnn, d∗(i(yn), i(xn)) ≤ 1
2n

for each n ∈ N and,

hence, i(yn)→ z in (Y, d∗∆). Thus, I((ρn(xn))) = z = I((ρn(yn))).
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3. I ◦ ρ = i.

Let x ∈ X. Then ρ(x) = (ρn(x)). Now, since x ∈ U∗xn, i(x) ∈ U∗i(x)n. This

means that (i(x)) is a Cauchy sequence in (Y, d∗∆). Moreover, i(x)
d∗→ i(x). Hence,

I ◦ ρ = i.

4. I(Γ̃) = ∆.

Let n ∈ N and A ∈ Γn. Then we claim that I(Ã) ∈ ∆n. In fact, i(A) = B ∩ i(X)

for some B ∈ ∆n, so let us prove that I(Ã) = B.

⊆) Let x = (ρk(xk)) ∈ Ã. Then xn ∈ A and, by Lemma 3.13, xk ∈ A for each

k ≥ n. It follows that i(xk) ∈ i(A) ⊆ B for each k ≥ n. Thus, I(x) ∈ B∗ = B.

⊇) Now, let y ∈ B. By density of i(X), for each k ∈ N there exists yk ∈ i(X)

such that yk ∈ U∗yk. It follows that yk+1 ∈ U∗y,k+1 ⊆ U∗yk = U∗ykk and it is also clear

that yk
d∗∆→ y. Then there exists xk ∈ X such that yk = i(xk) for each k ∈ N. It

follows that i(xk+1) ∈ U∗i(xk)k, so, by Remark 3.12, we have that xk+1 ∈ U∗xkk, and,

by Proposition 3.16, x = (ρk(xk)) ∈ X̃. Note that, by definition of I, we have that

I(x) = y.

Since U∗ynn = U∗yn ⊆ B, then yn ∈ B and i(xn) = yn ∈ B ∩ i(X) = i(A), which

implies that xn ∈ A (since i is injective) and, hence, x = (ρk(xk)) ∈ Ã. Therefore,

y = I(x) ∈ I(Ã).

Conversely, given B ∈ ∆n, since i is fractal preserving, there exists A ∈ Γn such

that B ∩ i(X) = i(A). It follows that B = I(Ã), so B ∈ I(Γ̃n). Note that, since B

is open in (Y, d∗) and i(X) is dense in (Y, d∗), B ∩ i(X) 6= ∅.

5. I is injective.

Let x = (ρn(xn)) and y = (ρn(yn)) with I(x) = I(y). Then i(xn)
d∗∆→ I(x) and

i(yn)
d∗∆→ I(y). Given n ∈ N, there exists k ≥ n such that i(xk) ∈ U∗I(x)n and i(yk) ∈

U∗I(y)n. It follows that U∗i(xk)n = U∗I(x)n = U∗I(y)n = U∗i(yk)n. Hence, i(yk) ∈ U∗i(xk)n,

and, by Remark 3.12, yk ∈ U∗xkn, so U∗ynn = U∗ykn = U∗xkn = U∗xnn. We conclude

that U∗ynn = U∗xnn for each n ∈ N, and, hence, ρn(xn) = ρn(yn) for each n ∈ N, so

x = y. Therefore, I is injective.

6. I is onto.
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Let y ∈ Y . By density of i(X), for each k ∈ N there exists yk ∈ i(X) such that

yk ∈ U∗yk. It follows that yk+1 ∈ U∗y,k+1 ⊆ U∗yk = U∗ykk and it is also clear that

yk
d∗∆→ y. Then there exists xk ∈ X such that yk = i(xk) for each k ∈ N. It follows

that i(xk+1) ∈ U∗i(xk)k, so, by Remark 3.12, we have that xk+1 ∈ U∗xkk, and, by

Proposition 3.16, x = (ρk(xk)) ∈ X̃. Note that, by definition of I, we have that

I(x) = y. Therefore, I is onto.



Chapter 4

Generating a probability measure on

the completion of a fractal structure

The content of this chapter corresponds to [32].

According to the main goal of this part of the work, we will consider a space with

a fractal structure and a pre-measure defined on some families of subsets determined

by the fractal structure. Moreover, we will suppose, in the rest of this part, that this

space is T0 with respect to the topology induced by the fractal structure (note that

this is equivalent to d∗ being a metric and, consequently, d∗ is an ultrametric). Recall

that the property T0 can be characterized in terms of the fractal structure according to

Proposition 3.2. Indeed, X is T0 if and only if for each x, y ∈ X with x 6= y, there exist

n ∈ N and A ∈ Γn such that A contains one of the points (x or y) but not the other one.

Under the assumptions above, we will show that this pre-measure can be extended

to a measure on the Borel σ-algebra of the completion of the space and, also, that

this measure is unique. That construction is given by two key elements: the iterative

character of the fractal structure and the use of the completion of the space. What is

more, that construction can be made from the collection of balls with respect to the

ultrametric induced by the fractal structure (see Section 4.1) or from the elements of

the fractal structure (see Section 4.2).

37
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4.1 Defining a measure on the completion

In addition to the assumption of X being T0 (which is equivalent to d∗ being an

ultrametric), we will assume in the rest of this chapter that Gn = {U∗xn : x ∈ X} is

countable for each n ∈ N. Note that this is equivalent to d∗ being separable.

Examples of fractal structures with Gn countable for each n ∈ N include finite fractal

structures and locally finite countable fractal structures (that is, fractal structures in

which each level is a countable covering and each point belongs only to a finite number

of elements of level n of the fractal structure for each n ∈ N).

In this section we show how to construct a probability measure on X̃ from a pre-

measure defined on the sets ρn(x) = U∗xn.

Before doing this construction, it is also worth noting that there exists a correspon-

dence between infinite trees and Polish ultrametric spaces (that is, ultrametric spaces

which are separable and complete). As a consequence, the completion of a space with a

fractal structure can be seen as a tree. For further reference about ultrametric trees see,

for example, [36] and [37]. Moreover, this procedure is similar to the Carathéodory’s

construction for which [25], [47] and [51] are good references.

Due to the properties of the isometry ρ that we showed in the previous chapter

(see Proposition 3.16), in order to simplify the notation, we will use the identifications

x ≡ ρ(x), X ≡ ρ(X), Uxn ≡ ρ(Uxn) and so on.

Let Γ = {Γn : n ∈ N} be a fractal structure on X and let us denote by G =⋃
n∈NGn = {U∗xn : x ∈ X,n ∈ N}. Let ω be a function ω : G → [0, 1] (a pre-measure).

We say that ω satisfies the mass distribution conditions if:

1.
∑

ρ1(x)∈G1
ω(ρ1(x)) = 1.

2. ω(ρn(x)) =
∑

ρn+1(y)∈Gn+1,ρn(y)=ρn(x) ω(ρn+1(y)) for each n ∈ N and each ρn(x) ∈
Gn.

Mass distribution conditions can be written, alternatively, as

1.
∑

x∈X ω(U∗x1) = 1.

2. ω(U∗xn) =
∑

y∈U∗xn
ω(U∗y,n+1) for each n ∈ N and each x ∈ X.
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Take into account that, in that case, we are using the agreement introduced in Remark

4.1 in order to simplify the notation.

Remark 4.1. In the sum
∑

x∈A ω(U∗xn) the index set does not refer to the points of A

but it does to {U∗xn ∈ Gn : x ∈ A}, since many points of A have the same U∗xn.

Remark 4.2. Note that the fact that
∑

ρn(x)∈Gn ω(ρn(x)) = 1 for each n ∈ N follows

from the mass distribution conditions.

Roughly speaking, the mass distribution conditions let us distribute the pre-measure

along the subsets of Gn so that everything works fine from the point of view of the σ-

additivy. Indeed, since G1 is a disjoint collection of sets, the first condition ensures that

the sum of the pre-measure of the balls of radius 1 coincides with the whole mass we

want to distribute (= 1). Now, since G1 can be decomposed into a countable collection

of balls in G2 and, in general, Gn+1 ≺≺ Gn for each n ∈ N, it does make sense to impose

that the mass in some Uxn can be expressed as the sum of mass of the balls of Gn+1

which are contained in Uxn. For example, in Figure 4.1 a distribution of the mass can

be seen for the balls of the ultrametric induced by the natural fractal structure on [0, 1].

�1 

�2 

�3 1/30

1/5

1/10

1/301/5 1/301/5

1/10

1/301/5

1/10

1/30

1/5 1/10

2/5 2/5

1/5 1/5

1/30 1/301/30

1/30 1/30 1/30 1/30

Figure 4.1: Mass distribution conditions on Gn for each n = 1, 2, 3 and ([0, 1],Γ), where

Γ is the natural fractal structure

Now, let G̃ = {ρ̃n(x) : x ∈ X̃, n ∈ N} = {Ũ∗xn : x ∈ X̃, n ∈ N}, where ρ̃n(x) = Ũ∗xn.

Note that, by Proposition 3.16.8, G̃ = {Ũ∗xn : x ∈ X,n ∈ N}, and consider the function

ω̃ : G̃ → [0, 1] defined by ω̃(Ũ∗xn) = ω(U∗xn). It is straightforward to check that ω̃ satisfies

the mass distribution conditions for X̃.

Let µ be the outer measure on X given by Method I (Theorem 2.12) from G and

ω. Then µ is defined for a subset A of X as follows: µ(A) = inf{
∑∞

i=1 ω(U∗xini) : A ⊆⋃
U∗xini}, where the infimum is taken over all countable coverings of A by elements of G.

Analogously, we define µ̃ as the outer measure on X̃ given by Method I from G̃ and ω̃.

Note that µ is the restriction of µ̃ to X, as the next result shows.
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Remark 4.3. µ̃(A) = µ(A) for each A ⊆ X.

Proof. Let A ⊆ X.

≤) Suppose that A ⊆
⋃
U∗xini with xi ∈ X. Since U∗xini ⊆ Ũ∗xini , it follows that

A ⊆
⋃
Ũ∗xini . Moreover, the definition of ω̃ gives us that

∑∞
i=1 ω(U∗xini) =

∑∞
i=1 ω̃(Ũ∗xini)

so we conclude that µ̃(A) ≤ µ(A).

≥) Suppose that A ⊆
⋃
Ũ∗xini , with xi ∈ X. Since U∗xini = Ũ∗xini ∩X, it follows that

A ⊆
⋃
U∗xini . Moreover, the definition of ω̃ gives us that

∑∞
i=1 ω(U∗xini) =

∑∞
i=1 ω̃(Ũ∗xini)

so we conclude that µ(A) ≤ µ̃(A).

In fact, by the mass distribution conditions on ω (respectively on ω̃), we will show in

the next proposition that µ (respectively µ̃) coincides with the outer measure provided

by Method II.

Proposition 4.4. µ is a metric outer measure on (X, d∗).

Proof. Given ε > 0, let µε be the outer measure provided by Method I, determined by

ω using the family Gε = {A ∈ G : diam(A) ≤ ε}, where the diameter is considered with

respect to the metric d∗. Define M(E) = limε→0 µε(E). Then M is the outer measure

provided by Method II which, by Theorem 2.14, is a metric outer measure. So we only

have to prove that M = µ.

Let 0 < ε ≤ δ. Then, Gε ⊆ Gδ and, by Proposition 2.13, we have that µε(E) ≥ µδ(E)

for each E ⊆ X̃.

On the other hand, by using equalities

ω(ρn(x)) =
∑

φn(ρn+1(y))=ρn(x)

ω(ρn+1(y))

and

ρn(x) =
⋃

φn(ρn+1(y))=ρn(x)

ρn+1(y)

recursively, it is clear that, given m ∈ N such that 1
2m

< ε, we can replace the sets U∗xn

with ε < diam(U∗xn) ≤ δ by the family {U∗ym : y ∈ U∗xn}, since diam(U∗ym) ≤ 1
2m

< ε. We

can conclude that µε = µδ and, hence, M = µ (since µ = µ1 =M).
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From the previous proposition follows that µ̃ is a metric outer measure on (X̃, d̃∗).

Note that τ̃ ⊆ τ̃ ∗, so the Borel σ-algebra of τ̃ is contained in the Borel σ-algebra of

τ̃ ∗.

In fact, σ(τ̃) = σ(τ̃ ∗), which is a consequence of the next result.

Remark 4.5. σ(τd∗) = σ(τd).

Proof. ⊇) It is clear that τd ⊆ τd∗ , which implies that σ(τd) ⊆ σ(τd∗).

⊆) Since Γn is a closure-preserving closed cover of X (recall that a family of subsets

of X is said to be closure preserving if the closure of the union of any subfamily is equal

to the union of the closure of each member of the subfamily) for each n ∈ N (see [5,

Prop. 2.4]), it is clear, by definition of Uxn, that it is open in τd and it is clear, by

Proposition 2.3, that U−1
xn is closed in τd. Hence, Uxn, U

−1
xn ∈ σ(τd) and, consequently,

Uxn ∩ U−1
xn = U∗xn ∈ σ(τd). Now, let G be an open set in τd∗ . Then G can be written

as a countable union (here we are using our global assumption that G is countable) as

follows: G =
⋃
n∈N{U∗xn : x ∈ G,U∗xn ⊆ G}. Hence, σ(τd∗) ⊆ σ(τd).

Corollary 4.6. µ is a measure on the Borel σ-algebras of (X, τ ∗) and (X, τ).

Proof. It is clear, by Proposition 4.4, since a metric outer measure is a measure on the

Borel σ-algebra (see [22, Th. 5.2.6]).

Next, we prove some properties of µ̃.

Proposition 4.7. µ̃ is an extension of ω̃. In fact, µ̃(Ũ∗xn) = ω(U∗xn) = ω̃(Ũ∗xn) for each

x ∈ X, n ∈ N and µ̃(Ũ∗xn) = ω̃(Ũ∗xn) for each x ∈ X̃, n ∈ N.

Proof. 1. Let x ∈ X and n ∈ N. First, note that ω̃(Ũ∗xn) = ω(U∗xn) by definition of ω̃.

So, let us prove the equality µ̃(Ũ∗xn) = ω̃(Ũ∗xn).

On the one hand, it is clear that µ̃(Ũ∗xn) ≤ ω̃(Ũ∗xn) by using the first point of

Theorem 2.12 (remember that µ̃ is the outer measure given by Method I).

On the other hand, suppose that µ̃(Ũ∗xn) < ω̃(Ũ∗xn). Then, by definition of µ̃,

there exists a covering A′ ⊆ G̃ of Ũ∗xn such that
∑

A∈A′ ω̃(A) < ω̃(Ũ∗xn). If there

exists Ũ∗yk ∈ A′ such that y 6∈ Ũ∗xn, then Ũ∗yk ∩ Ũ∗xn = ∅, so by defining A =

{Ũ∗yk ∈ A′ : y ∈ Ũ∗xn}, we have that A ⊆ A′ ⊆ G̃, A is a covering of Ũ∗xn and



42 4.1. Defining a measure on the completion∑
A∈A ω̃(A) ≤

∑
A∈A′ ω̃(A) < ω̃(Ũ∗xn), so we can assume that y ∈ Ũ∗xn for each

Ũyk ∈ A.

Since ω̃(ρ̃n(x)) =
∑

φ̃n(ρ̃n+1(y))=ρ̃n(x) ω̃(ρ̃n+1(y)) and ρ̃n(x) =
⋃
φ̃n(ρ̃n+1(y))=ρ̃n(x) ρ̃n+1(y),

there exists y ∈ U∗xn such that
∑
{ω̃(U) : U ∈ A, U ⊆ Ũ∗y,n+1} < ω̃(Ũ∗y,n+1). Define

xn+1 = y. By defining xk = x for each k ≤ n and xk for k > n + 1 by recur-

sion analogously to the definition of xn+1, we can define a sequence (xk) such that

xk+1 ∈ U∗xkk for each k ∈ N and
∑
{ω̃(U) : U ∈ A, U ⊆ Ũ∗xkk} < ω̃(Ũ∗xkk) for each

k ≥ n.

By Proposition 3.16.5, it follows that z = (ρn(xn))n∈N ∈ X̃. On the other hand,

since xk ∈ Ũ∗xn for each k ∈ N, Ũ∗xn is closed in (X̃, d̃∗) (Proposition 2.3) and (xk)

converges to z in (X̃, d̃∗) (Proposition 3.16.4), it follows that z ∈ Ũ∗xn. Since A
is a covering of Ũ∗xn, there exists Ũ∗yk ∈ A (with y ∈ Ũ∗xn) such that z ∈ Ũ∗yk.

Since y ∈ Ũ∗xn, it follows that k ≥ n + 1. By Proposition 2.3, Ũ∗zk = Ũ∗yk, and, by

Proposition 3.16.8, Ũ∗zk = Ũ∗xkk and, hence, Ũ∗xkk = Ũ∗yk ∈ A, but then
∑
{ω̃(U) :

U ∈ A, U ⊆ Ũ∗xkk} ≥ ω̃(Ũ∗xkk), a contradiction with the definition of the sequence

(xk).

We conclude that µ̃(Ũ∗xn) = ω̃(Ũ∗xn).

2. Now, let x = (ρk(xk))k∈N ∈ X̃ and n ∈ N. Note that, by Proposition 3.16.8,

Ũ∗xn = Ũ∗xnn. By the previous item, ω̃(Ũ∗xn) = ω̃(Ũ∗xnn) = µ̃(Ũ∗xnn) = µ̃(Ũ∗xn).

Proposition 4.8. µ̃(X̃) = 1 and, hence, µ̃ is a probability measure on X̃.

Proof. By the mass distribution conditions, it is clear that µ̃(X̃) = µ̃(
⋃
x∈X̃ Ũ

∗
x1) =∑

µ̃(Ũ∗x1) =
∑
ω̃(Ũ∗x1) =

∑
ω(U∗x1) = 1.

Proposition 4.9. Let A ∈ Γn. Then µ̃(Ã) =
∑
ω(U∗xn) =

∑
ω̃(Ũ∗xn), where the first

sum is on the family {U∗xn : x ∈ A} and the second one is on the family {Ũ∗xn : x ∈ A} =

{Ũ∗xn : x ∈ Ã}.

Proof. Indeed, by Proposition 2.3 and Proposition 3.16.2, for each m ≥ n, the family

A = {Ũ∗xm : x ∈ A} is a partition of Ã, so by Proposition 4.7 and Corollary 4.6 (note

that Ã is closed in d̃∗, since it is closed in d̃), µ̃(Ã) =
∑
A µ̃(Ũ∗xm) =

∑
A ω̃(Ũ∗xm) and, by

definition of ω̃, ω(U∗xm) = ω̃(Ũ∗xm).
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Now, we look for a simpler way to calculate the measure of an open or closed set in

(X̃, d̃∗) by using the pre-measure ω̃.

Lemma 4.10. Let F be a closed set in (X, d∗). Then F =
⋂
n∈N U

∗
n(F ), where U∗n(F ) =⋃

x∈F U
∗
xn.

Proof. ⊆) It is clear that F ⊆
⋂
n∈N U

∗
n(F ).

⊇) Now, let x ∈
⋂
n∈N U

∗
n(F ). Then, for each n ∈ N, there exists xn ∈ F such that

x ∈ U∗xnn and, hence, d∗(x, xn) ≤ 1
2n

. Then (xn)n∈N is a sequence in F which converges

to x in (X, d∗) and, since F is closed in (X, d∗), then x ∈ F .

The next result allows us to calculate the measure of a closed set in (X̃, d̃∗) by levels.

Proposition 4.11. Let F be a closed set in (X̃, d̃∗). Then µ̃(F ) = lim µ̃n(F ), where

µ̃n(F ) =
∑
ω̃(Ũ∗xn) and the sum is on the family {Ũ∗xn : x ∈ F}.

Proof. By Lemma 4.10, F =
⋂
n∈N Ũ

∗
n(F ), and it is clear that Ũ∗n+1(F ) ⊆ Ũ∗n(F ). More-

over, µ̃n(F ) =
∑
A ω̃(Ũ∗xn) = µ̃(

⋃
A Ũ

∗
xn) = µ̃(Ũ∗n(F )), where A = {Ũ∗xn : x ∈ F}. Since µ̃

is a measure (and, hence, continuous from above), then µ̃n(F ) = µ̃(Ũ∗n(F ))→ µ̃(F ).

Next, we introduce a proposition in order to calculate the measure of an open set in

(X̃, d̃∗) by levels.

Proposition 4.12. Let O be an open set in (X̃, d̃∗). Then µ̃(O) = lim µ̃n(O), where

µ̃n(O) =
∑

Ũ∗xn∈G̃n;x∈On ω̃(Ũ∗xn) and On = {x ∈ O : Ũ∗xn ⊆ O}.

Proof. Let O be an open set in (X̃, d̃∗). Then we can write O =
⋃
n∈N Ũ

∗
n(On), where

On = {x ∈ O : Ũ∗xn ⊆ O}. It is clear that Ũ∗n(On) ⊆ Ũ∗n+1(On+1). Moreover, µ̃n(O) =∑
On
ω̃(Ũ∗xn) = µ̃(

⋃
On
Ũ∗xn) = µ̃(Ũ∗n(On)). Since µ̃ is a measure (and, hence, continuous

below), it follows that µ̃n(O) = µ̃(Ũ∗n(On))→ µ̃(O).

Now, we prove the uniqueness of the measure.

Proposition 4.13. Let δ be a measure satisfying δ(Ũ∗xn) = ω̃(Ũ∗xn) for each x ∈ X̃ and

n ∈ N. Then δ = µ̃ on the Borel σ-algebra of (X̃, d̃∗).

Proof. Let S = σ(A), where A = {Ũ∗n(F ) : F ⊆ X̃, n ∈ N}. Then A is an algebra.

Indeed, for each F, F ′ ⊆ X̃ and n ≤ m:
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1. Ũ∗n(F ) ∪ Ũ∗m(F ′) ∈ A. Indeed, this is true due to the fact that Ũ∗n(F ) ∪ Ũ∗m(F ′) =

Ũ∗m(Ũ∗n(F ) ∪ F ′) ∈ A, since Ũ∗m(Ũ∗n(F )) = Ũ∗n(F ).

2. Ũ∗n(F ) ∩ Ũ∗m(F ′) ∈ A. Indeed, this is true due to the fact that Ũ∗n(F ) ∩ Ũ∗m(F ′) =

Ũ∗m(Ũ∗n(F ) ∩ Ũ∗m(F ′)) ∈ A.

3. X̃\Ũ∗n(F ) ∈ A. Indeed, this is true because X̃\Ũ∗n(F ) = Ũ∗n(X̃\Ũ∗n(F )) ∈ A.

Note that each element in A is open in (X̃, d̃∗), so S is contained in the Borel σ-

algebra of (X̃, d̃∗) and, hence, µ̃ and δ are measures on S. Furthermore, given n ∈ N and

F ⊆ X̃, µ̃(Ũ∗n(F )) = µ̃(
⋃
x∈F Ũ

∗
xn) =

∑
x∈F µ̃(Ũ∗xn) =

∑
x∈F ω̃(Ũ∗xn) =

∑
x∈F δ(Ũ

∗
xn) =

δ(
⋃
x∈F Ũ

∗
xn) = δ(Ũ∗n(F )), what shows that µ̃(A) = δ(A) for each A ∈ A. By Theorem

2.15, we conclude that µ̃ = δ on S.

Finally, if O is an open set in (X̃, d̃∗), then O =
⋃
n∈N Ũ

∗
n(On), where On = {x ∈ O :

Ũ∗xn ⊆ O} and, hence, O ∈ S. We conclude that S is the Borel σ-algebra of (X̃, d̃∗).

To end this section, we give an example where a definition of the pre-measure on Gn

gives us a probability measure on X̃.

Suppose that Gn is finite for each n ∈ N. We can define a measure on X̃ by defining

a pre-measure, ω, such that ω(U∗xn) has a uniform value for each x ∈ X and n ∈ N. For

G1, we can write ω(U∗x1) = 1
#G1

, where #G1 denotes the cardinality of G1 for each x ∈ R.

Now, for the second level ω(U∗x2) =
ω(U∗x1)

#{U∗y2∈G2:U∗y2⊆U∗x1}
. Analogously, let U∗x,n+1 ∈ Gn+1

and U∗xn ∈ Gn then ω(U∗x,n+1) = ω(U∗xn)
#{U∗y,n+1∈Gn+1:U∗y,n+1⊆U∗xn}

.

Example 4.14. Let ([0, 1],Γ), where Γ is the natural fractal structure, which means

that its levels are defined by Γn = {[ k
2n
, k+1

2n
] : k = 0, . . . , 2n − 1} for each n ∈ N. If

we want to define a measure uniformly with respect to the sets U∗xn, we can proceed as

follows:

Since G1 = {U∗1
2

1
, U∗01, U

∗
11}, ω(U∗x1) = 1

3
for each x ∈ [0, 1]. Analogously, ω(U∗x2) = 1

9

for each x ∈ [0, 1] \ {1
2
} and ω(U∗1

2
2
) = 1

3
. Moreover, ω(U∗x3) = 1

27
for each x ∈ [0, 1] \

{1
2
, 1

4
, 3

4
}, ω(U∗1

2
2
) = 1

3
and ω(U∗1

4
3
) = ω(U∗3

4
3
) = 1

9
.

The distribution of the mass can be seen in Figure 4.2.
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(c) Mass distribution for the third level, Γ3

Figure 4.2: Mass distribution by levels

Note that the pre-measure is distributed among the points of the form k
2n

for each

k = 1, . . . , 2n− 1. In fact, µ̃({ k
2n

: k ∈ {1, . . . , 2n− 1}) =
∑2n−1

i=1 ω({ i
2n
}). Hence, we can

write µ̃(X) = µ̃(
⋃
n{

k
2n

: k = 1, . . . , 2n − 1}) =
∑∞

i=1
2i−1

3i
= 1.

4.2 Defining a measure on the completion from the

fractal structure

Next step is showing an alternative way to define a probability measure on X̃. It

consist of constructing it from the elements of the fractal structure. For that purpose,

we need a condition on the fractal structure, which is related to the concept we recall

next.

Definition 4.15. A cover Γ of X is said to be a tiling if the elements of Γ are regularly

closed (A = A◦ for each A ∈ Γ) and its interiors are pairwise disjoint (A◦ ∩B◦ = ∅ for

each A,B ∈ Γ with A 6= B).

A fractal structure Γ = {Γn : n ∈ N} is said to be tiling if Γn is a tiling for each
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n ∈ N.

In the rest of this section we will assume that Γ is a tiling fractal structure on X

such that Γn is countable for each n ∈ N together with the assumptions made in the

previous section that τd is T0 and Gn is countable for each n ∈ N. Moreover, we will use

the notations and definitions of the previous section.

Lemma 4.16. Let Γ be a tiling. Then A◦ ∩B = ∅ for each A,B ∈ Γ with A 6= B.

Proof. Suppose that there exist A,B ∈ Γ with A 6= B and such that A◦ ∩ B 6= ∅, and

let x ∈ A◦ ∩ B = A◦ ∩ B◦ (since B = B◦). Thus, x ∈ A◦ and x ∈ B◦. The fact that

x ∈ B◦, means that each neighborhood of x meets B◦. Since A◦ is an open set, it is

a neighborhood of all its points, in particular of x. Hence, A◦ ∩ B◦ 6= ∅, which is a

contradiction with the fact that Γ is a tiling. It follows that A◦ ∩ B = ∅ for each A,

B ∈ Γ with A 6= B.

For each A ∈ Γn, let us define in(A) = A \
⋃
B∈Γn;B 6=AB. On the one hand, note

that, since Γ is tiling, by the previous lemma, we have that ∅ 6= A◦ ⊆ in(A) for each

A ∈ Γn and n ∈ N. On the other hand, since Γn is a closure-preserving closed cover

of X for each n ∈ N (see [5, Prop. 2.4]), then
⋃
B∈Γn;B 6=AB is a closed set and, hence,

in(A) is open. It is clear that in(A) ⊆ A and, hence, in(A)◦ ⊆ A◦. Since in(A) is an

open set, it follows that in(A) ⊆ A◦. Consequently, in(A) = A◦ for each A ∈ Γn and

n ∈ N. Furthermore, if x ∈ in(A), then U∗xn = A◦.

Let ω :
⋃

Γn → [0, 1] be a function. We say that ω satisfies the mass distribution

conditions if:

1.
∑

A∈Γ1
ω(A) = 1.

2. ω(A) =
∑

B∈Γn+1,B⊆A ω(B) for each A ∈ Γn.

From ω, we can define a function (which we will call ω too) on G as follows:

ω(ρn(x)) = ω(U∗xn) =


ω(A) if x ∈ A◦

0 if x ∈ A \ A◦
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Note that given x ∈ X and n ∈ N, if there exists only one element A of Γn which

contains x, then ω(U∗xn) = ω(A), while if there is more than one element of Γn which

contains x, then ω(U∗xn) = 0.

Proposition 4.17. ω : G → [0, 1] satisfies the mass distribution conditions.

Proof. First, note that for each n ∈ N and A ∈ Γn it follows that ω(A) =
∑

x∈A ω(U∗xn) =

ω(U∗zn) (by Proposition 2.3) for any z ∈ A◦, where ω(A) =
∑

x∈A ω(U∗xn) stands for the

sum
∑
{ω(U∗xn) : U∗xn ∈ Gn with x ∈ A}.

1.
∑
ω(U∗x1) = 1.∑
x∈X ω(U∗x1) =

∑
A∈Γ1;x∈A◦ ω(U∗x1) =

∑
A∈Γ1

ω(A) = 1.

2. ω(U∗xn) =
∑

y∈U∗xn
ω(U∗y,n+1) for each x ∈ X and n ∈ N.

Let x ∈ X and n ∈ N.

On the one hand, suppose that there exist A,B ∈ Γn with A 6= B and such that

x ∈ A ∩B. Then ω(U∗xn) = 0.

Let y ∈ U∗xn and suppose that there exists C ∈ Γn+1 such that y ∈ C◦. Since

y ∈ U∗xn, then y ∈ A∩B. Since Γn+1 ≺≺ Γn and y ∈ C◦, it follows that y ∈ C ⊆ A

and y ∈ C ⊆ B, and, hence, C◦ ⊆ A◦ and C◦ ⊆ B◦, so ∅ 6= C◦ ⊆ A◦ ∩ B◦,
a contradiction. We conclude that there exists no C ∈ Γn+1 such that y ∈ C◦.

Therefore, ω(U∗y,n+1) = 0 for each y ∈ U∗xn and the equality holds.

On the other hand, suppose that there exists A ∈ Γn such that x ∈ A◦. Then

ω(U∗xn) = ω(A) =
∑

B∈Γn+1,B⊆A ω(B). By the observation at the beginning of the

proof, given B ∈ Γn+1, ω(B) =
∑

y∈B ω(U∗y,n+1) and, hence,
∑

B∈Γn+1,B⊆A ω(B) =∑
y∈A ω(U∗y,n+1). Since ω(U∗y,n+1) = 0 if y 6∈ A◦ andA◦ = U∗xn, then

∑
y∈A ω(U∗y,n+1) =∑

y∈U∗xn
ω(U∗y,n+1). Therefore, ω(U∗xn) =

∑
y∈U∗xn

ω(U∗y,n+1).

From the previous proposition we can apply the constructions on the previous section

so we can define ω̃, µ̃, etc.

Proposition 4.18. µ̃(Ã) = ω(A) for each A ∈ Γn and n ∈ N.
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Proof. Let n ∈ N, A ∈ Γn and z ∈ A◦. Then µ̃(Ã) = µ̃(
⋃
x∈A Ũ

∗
xn) =

∑
x∈A ω̃(Ũ∗xn) =∑

x∈A ω(U∗xn) = ω(U∗zn) = ω(A).

Definition 4.19. We define ω̃(Ã) = ω(A) for each Ã ∈ Γ̃n and each n ∈ N.

Now, we show that the previous pre-measure satisfies the mass distribution condi-

tions.

Proposition 4.20. ω̃ :
⋃

Γ̃n → [0, 1] satisfies the mass distribution conditions.

Proof. 1.
∑

Ã∈Γ̃1
ω̃(Ã) =

∑
A∈Γ1

ω(A) = 1 by hyphothesis on ω.

2. Let Ã ∈ Γ̃n. Then ω̃(Ã) = ω(A). Now, since ω satisfies the mass distribution

conditions on
⋃

Γn, it follows that ω̃(Ã) =
∑

B∈Γn+1;B⊆A ω(B). The definition of

ω̃ implies that ∑
B∈Γn+1;B⊆A

ω(B) =
∑

B̃∈Γ̃n+1;B̃⊆Ã

ω(B̃)

which means that ω̃(Ã) =
∑

B̃∈Γ̃n+1
ω(B̃). Note that we have used that for B ∈

Γn+1 and A ∈ Γn it holds that B ⊆ A if and only if B̃ ⊆ Ã.

Now, we define a subset of X that will be used in the following results.

Definition 4.21. For each n ∈ N we define Cn =
⋃
{A ∩B : A,B ∈ Γn;A 6= B}.

Proposition 4.22. Let Γ be a fractal structure on X and let δ be a measure defined

on Γ such that δ(A) = ω(A) for each A ∈ Γn and n ∈ N, where ω is a pre-measure

satisfying the mass distribution conditions. Then δ(Cn) = 0 for each n ∈ N.

Proof. Let n ∈ N and A ∈ Γn. Then A =
⋃
{B ∈ Γn+1 : B ⊆ A}. Let B ∈ Γn+1 be such

that B ⊆ A. Then δ(B∪ (
⋃
C∈Γn+1;C⊆A;C 6=B C)) = δ(B) + δ(

⋃
C∈Γn+1;C⊆A;C 6=B C)− δ(B∩

(
⋃
C∈Γn+1;C⊆A;C 6=B C)) ≤ δ(B) +

∑
C∈Γn+1;C⊆A;C 6=B δ(C) − δ(B ∩ (

⋃
C∈Γn+1;C⊆A;C 6=B C)).

Note that in the last inequality we use the sub-σ-additivity of δ. Moreover, the hypoth-

esis δ(A) = ω(A) for each A ∈ Γn implies that δ(A) = ω(A) =
∑

B∈Γn+1;B⊆A ω(B) =∑
B∈Γn+1;B⊆A δ(B) and, hence,

δ

B ∪
 ⋃
C∈Γn+1;C⊆A;C 6=B

C

 = δ(A) = δ(B) +
∑

C∈Γn+1;C⊆A;C 6=B

δ(C)
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so it follows that

δ

B ∩
 ⋃
C∈Γn+1;C⊆A;C 6=B

C

 = 0

Hence, if we define Cn(A) =
⋃
B∈Γn+1,B⊆A(B∩

⋃
C∈Γn+1;C⊆A;C 6=B C), then δ(Cn(A)) =

0 for each A ∈ Γn and each n ∈ N. On the other hand, it holds the next equality.

Claim 4.23. Cn+1 = Cn ∪
(⋃

A∈Γn
Cn(A)

)
for each n ∈ N.

Proof. ⊆) Let n ∈ N and x ∈ Cn+1. Then it can happen that x ∈ Cn or x /∈ Cn. The fact

that x ∈ Cn+1 implies that there exist A,B ∈ Γn+1 with A 6= B such that x ∈ A ∩ B.

Moreover, if x /∈ Cn, there exists a unique C ∈ Γn such that x ∈ C. Consequently,

A ∩B ⊆ C and x ∈ Cn(C).

⊇) Let n ∈ N and x ∈ Cn. Then there exist A,B ∈ Γn with A 6= B such that

x ∈ A∩B. Since x ∈ A, by definition of fractal structure, there exists An+1 ∈ Γn+1 such

that x ∈ An+1 ⊆ A. Analogously, there exists Bn+1 ∈ Γn+1 such that x ∈ Bn+1 ⊆ B.

Note that, since Γ is a tiling fractal structure and A 6= B, it follows that An+1 6= Bn+1

(indeed, if An+1 = Bn+1, then An+1 ⊆ A ∩ B, and, since An+1 is regularly closed, its

interior is nonempty and it is contained in A◦ ∩ B◦, but A◦ ∩ B◦ is empty, since Γn

is a tiling, a contradiction). Since x ∈ An+1 ∩ Bn+1 and An+1 6= Bn+1, we conclude

that x ∈ Cn+1. Now, consider A ∈ Γn and x ∈ Cn(A). It immediately follows that

x ∈ Cn+1.

Now, note that δ(C1) = 0. Indeed, since ω is a pre-measure satisfying the mass

distribution conditions,
∑

A∈Γ1
ω(A) = 1. Additionally, given A ∈ Γ1, we can write X =

A ∪
(⋃

B∈Γ1;B 6=AB
)

, so δ(X) = δ
(
A ∪

(⋃
B∈Γ1;B 6=AB

))
≤ δ(A) + δ

(⋃
B∈Γ1;B 6=AB

)
≤∑

B∈Γ1
δ(B) =

∑
B∈Γ1

ω(B) = 1 = δ(X) and, hence, δ
(
A ∪

(⋃
B∈Γ1;B 6=AB

))
= δ(A) +

δ
(⋃

B∈Γ1;B 6=AB
)

, which lets us conclude that δ
(
A ∩

(⋃
B∈Γ1;B 6=AB

))
= 0 for each

A ∈ Γ1. Therefore, δ(C1) = 0.

Hence, it holds, by the sub-σ-additivity of δ, that δ(C2) = δ(C1 ∪
⋃
A∈Γ1

C1(A)) ≤
δ(C1) + δ(

⋃
A∈Γ1

C1(A)) ≤
∑

A∈Γ1
δ(C1(A)) = 0. Recursively it can be proven that

δ(Cn) = 0 for each n ∈ N.

Lemma 4.24. Let x = (ρk(xk)) ∈ X̃ and n ∈ N. Then x ∈ C̃n if and only if xn ∈ Cn.
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Proof. Let x ∈ X̃ and n ∈ N.

Suppose that x ∈ C̃n. Then there exist Ã, B̃ ∈ Γ̃n with Ã 6= B̃ such that x ∈ Ã ∩ B̃,

which is equivalent (by Proposition 3.16.2) to xn ∈ A ∩ B. Note that A 6= B (since

Ã 6= B̃), so it follows that xn ∈ Cn.

Conversely, suppose that xn ∈ Cn. Then there exist A,B ∈ Γn with A 6= B such

that xn ∈ A ∩ B, which is equivalent (by Proposition 3.16.2) to x ∈ Ã ∩ B̃. Therefore,

x ∈ C̃n.

Now, we prove the uniqueness of the measure.

Proposition 4.25. Let δ be a measure on the Borel σ-algebra of (X̃, d̃∗) satisfying

δ(Ã) = ω(A) for each Ã ∈ Γ̃n and n ∈ N. Then δ = µ̃ on the Borel σ-algebra of (X̃, d̃∗).

Proof. We show that δ(Ũ∗xn) = ω̃(Ũ∗xn) for each x ∈ X̃ and n ∈ N. By Proposition 4.18, it

holds that µ̃(Ã) = ω(A) for each A ∈ Γn and each n ∈ N, which means that µ̃(Ã) = δ(Ã)

for each A ∈ Γn and each n ∈ N. Moreover, we can write µ̃(Ã) =
∑

x∈Ã ω̃(Ũ∗xn) and

δ(Ã) =
∑

x∈Ã δ(Ũ
∗
xn). Now, let x ∈ X̃ and n ∈ N. We distinguish two cases depending

on whether x ∈ C̃n or not in order to show that δ(Ũ∗xn) = ω̃(Ũ∗xn):

1. Let x ∈ C̃n. Then Ũ∗xn ⊆ C̃n, which implies that δ(Ũ∗xn) = 0 due to the fact that

δ(C̃n) = 0 by Proposition 4.22 (note that ω̃(Ã) = ω(A), which means that δ(Ã) =

ω̃(Ã) and, morever, ω̃ satisfies the mass distribution conditions as it is shown in

Proposition 4.20). On the other hand, by the previous lemma, ω̃(Ũ∗xn) = ω̃(Ũ∗xnn),

with xn ∈ Cn. Moreover, ω̃(Ũ∗xnn) = ω(U∗xnn) and ω(U∗xnn) = 0, since xn ∈ Cn.

Hence, δ(Ũ∗xn) = ω̃(Ũ∗xn) = 0.

2. Let x = (ρn(xn)) /∈ C̃n. Then, by the previous lemma, xn /∈ Cn, which means that

ω̃(Ũ∗xn) = ω(U∗xnn) = ω(A), where A is the only element on Γn such that xn ∈ A.

By hypothesis, δ(Ã) = ω(A). Moreover, δ(Ã) =
∑

y∈Ã δ(Ũ
∗
yn) = δ(Ũ∗xn). Note that

the last equality follows from the fact that δ(C̃n) = 0 (by Proposition 4.22) and

for each y ∈ Ã it follows that y 6∈ C̃n and, hence, Ũ∗yn = Ũ∗xn or y ∈ C̃n, which gives

us that Ũ∗yn ⊆ C̃n, so δ(Ũ∗yn) = 0. If we join the previous expressions, we conclude

that δ(Ũ∗xn) = ω̃(Ũ∗xn).
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By Proposition 4.13, we conclude that µ̃ = δ on the Borel σ-algebra of (X̃, d̃∗).

Once we have developed the theory, the next step is to show some examples where

it is possible to get a probability measure on a space from a pre-measure defined on the

elements of the fractal structure of the space.

4.2.1 Getting a measure from a mass distribution in the fractal

structure

The idea of this subsection is to define a pre-measure ω from a finite fractal structure

such that µ̃ is a measure on the completion of X.

Example 4.26. Let ([0, 1],Γ), where Γ is the natural fractal structure.

Let p0 and p1 be two positive numbers such that p0 +p1 = 1. In the first level, Γ1, the

pre-measure ω spreads mass equal to p0 on the subinterval [0, 1
2
] and mass equal to p1 on

[1
2
, 1]. In Γ2, the set [0, 1

2
] is split into two intervals, [0, 1

4
] and [1

4
, 1

2
], which are given a

fraction p0 and p1 of the whole mass ω([0, 1
2
]). If we apply the same procedure to the set

[1
2
, 1], we obtain:

ω

([
0,

1

4

])
= p0p0, ω

([
1

4
,
1

2

])
= p0p1

ω

([
1

2
,
3

4

])
= p1p0, ω

([
3

4
, 1

])
= p1p1

If we iterate this procedure, we can define ω(A) for each A ∈ Γn and n ∈ N. Then

we have that µ̃ is a probability measure on the completion of [0, 1].

�0 �1 �0 �1 �0 �1 �0 �1 

�0 �1 

�1 �0 �1 �0 �1 �0 �0 �0 �1 �0 �1 �0 �1 �0 �1 �0 �1 �0 �0 �0 �1 �1 �1 �1 

Γ1 

Γ2 

Γ3 

Figure 4.3: Mass distribution by levels
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In fact, ω satisfies the mass distribution conditions:

1.
∑

A∈Γ1
ω(A) = ω([0, 1

2
]) + ω([1

2
, 1]) = p0 + p1 = 1 by hypothesis.

2. Let A ∈ Γn. Then A = [ k
2n
, k+1

2n
] for some k ∈ {0, . . . , 2n − 1}. Hence, ω(A) =

ω([ k
2n
, k

2n
+ 1

2n+1 ]) + ω([ k
2n

+ 1
2n+1 ,

k+1
2n

]) =
∑

B∈Γn+1,B⊆A ω(B).

Figure 4.3 shows the mass distribution among the elements of the fractal structure by

levels.

Note that the previous procedure is similar to the one introduced in [46, Section 3.2]

to define multiplicative cascades.

4.2.2 Defining a measure on an attractor of an iterated function

system

Now, we recall the definition of attractor of an iterated function system from [38].

Definition 4.27. Let X be a complete metric space and {fi : i ∈ I} be a finite family

of contractions from X into itself. Then there exists a unique nonempty compact subset

K of X such that K =
⋃
i∈I fi(K). {fi : i ∈ I} is said to be an iterated function system

(IFS), and K is its attractor.

The definition of a fractal structure on an attractor for an IFS is given in [3]. Let

{fi : i ∈ I} be the family of mappings from a topological space X to itself such that

X =
⋃
i∈I fi(X). We define Γ({fi : i ∈ I}) to be the structure Γ = {Γn : n ∈ N}. The

first level of this structure is Γ1 = {fi(X) : i ∈ I}. The second level is Γ2 = {fij(X) :

i, j ∈ I}. Recursively we define Γn = {fnw(X) : w ∈ In}, where fnw = fw1 ◦ . . . ◦ fwn ,

with w = w1 . . . wn. Hence, the fractal structure associated with an attractor of an IFS

(K, {fi : i ∈ I}) is Γ(K) = Γ({fi : i ∈ I}).

On the other hand, we introduce the dimension of these sets according to [24, Section

9.2]. Let f1, . . . , fk : Rn → Rn be an iterated function system of n similarities. The

contraction factor of fi is a number 0 < ci < 1 such that |fi(x) − fi(y)| = ci|x − y| for

each x, y ∈ Rn. It is shown that, under certain conditions, the attractor F has Hausdorff

and box dimensions equal to the value of s satisfying
∑m

i=1 c
s
i = 1 and, further, that F
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has positive and finite Hs-measure. If F =
⋃m
i=1 fi(F ) with the union “nearly disjoint”,

we have that Hs(F ) =
∑m

i=1Hs(fi(F )) =
∑m

i=1 c
s
iHs(F ). Moreover, we need a condition

such that ensures that the components fi(F ) do not overlap “too much”. We say that

fi satisfies the open set condition if there exists a nonempty bounded open set V such

that
⋃m
i=1 fi(V ) ⊂ V with the union disjoint.

Theorem 4.28 (Moran Theorem). ([24, Th. 9.3]) Suppose that the open set condition

holds for the similarities fi on Rn with ratios ci (1 ≤ i ≤ m). If F is the invariant set

satisfying F =
⋃m
i=1 fi(F ), then dimHF = dimBF = s, where s is given by

m∑
i=1

csi = 1

Moreover, for this value of s, 0 < Hs(F ) <∞.

Now, let X be the attractor for the iterated function system {fi : i ∈ I}, that is, the

set given by X =
⋃
i∈I fi(X), where {fi : i ∈ I} is a family of contractions of X to itself,

and let Γ be the respective fractal structure. Then the pre-measure of the elements of

Γ1 is distributed as ω(fi(X)) = csi for each i ∈ I, where s is the solution of
∑

i∈I c
s
i = 1.

For the second level, we have that ω(f 2
w(X)) = ω(f 2

w1w2
(X)) = ω(fw1 ◦ fw2(X)) = csw1

csw2

for each w = w1w2 ∈ I2. Analogously, we can define the pre-measure of elements of

level n as ω(fnw(X)) = ω(fnw1...wn
(X)) = ω(fw1 ◦ . . . ◦ fwn)(X) = csw1

. . . cswn for each

w = w1 . . . wn ∈ In.

Next example shows the distribution of the mass among the subsets of the fractal

structure related to the Sierpinski triangle.

Example 4.29. Let X be the Sierpinski triangle and f1, f2, f3 : R2 → R2 be the simi-

larities that define this fractal: f1(x, y) = 1
2
(x, y), f2(x, y) = 1

2
(x + 1, y) and f2(x, y) =

1
2
(x+ 1

2
, y + 1).

Since we have a “non-overlaping” iterated function system made up of 3 similarities

with contraction factors c1 = 1
2
, c2 = 1

2
and c3 = 1

2
, then the fractal dimension s of the

attractor of the iterated function system satisfies the equation cs1 + cs2 + cs3 = 1, that is,

s = ln 3
ln 2

.

Hence, we can define ω(fi1 ◦ . . . ◦ fin(X)) = csi1 . . . c
s
in.
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Thus, we have a uniform distribution of ω according to the previous construction:

ω(f1(X)) = ω(f2(X)) = ω(f3(X)) =

(
1

2

)s
=

1

3

ω(f11(X)) = ω(f12(X)) = . . . = ω(f32(X)) = ω(f33(X)) =

(
1

2

)s(
1

2

)s
=

1

9

And so on.

Note that, in this example, the mass is uniformly distributed on each level of the

fractal structure.

4.2.3 Getting a measure from a uniform definition of the pre-

measure

The developed idea in this subsection is defining a pre-measure ω from a finite fractal

structure, Γ, such that ω(A) has a uniform value for each A ∈ Γn and each n ∈ N.

Note that this idea is similar to the one developed at the end of Section 4.1 but with

the elements of the fractal structure. For the first level we write ω(A) = 1
#Γ1

for each

A ∈ Γ1, where #A denotes the cardinality of A. Now, let A ∈ Γ2 with A ⊆ B ∈ Γ1.

We can define ω(A) = ω(B)
#{C∈Γ2:C⊆B} in order to make sure that each of the elements of B

have the same pre-measure. Analogously, let A ∈ Γn+1 and B ∈ Γn be such that A ⊆ B.

Then ω(A) = ω(B)
#{C∈Γn+1:C⊆B} .

Roughly speaking, the mass of A is uniformly distributed among its subsets of Γn+1.

Note that the previous example of the Sierpinski triangle follows this pattern.
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Generating a probability measure

on X

The content of this chapter corresponds to [31].

In the previous chapter we proved that the recursive character of fractal structures

allowed us to construct a probability measure, µ̃, on the bicompletion of a space, X̃,

with a fractal structure as a first step. In fact, note that µ̃ is a probability measure on X̃

and µ is a measure on X, but not necessarily a probability measure as the next example

shows.

Example 5.1. Let Γ be the natural fractal structure on [0, 1] and suppose that the mass

ω is distributed as Figure 5.1 shows.

0 1

10

Γ1 

Γ2 

Γ3 
0 1

1/2

1/2

1/21/4

1/4 3/4

3/4

1/8 3/8 5/8 7/8

10 1/21/4 3/41/8 3/8 5/8 7/8
Γ4 

1

1

1

1

Figure 5.1: Mass distribution by levels

Note that, in this case, the only point of X̃ that has a positive mass is (]1
2
− 1

2n
, 1

2
[)n∈N.

In fact, the whole mass is concentrated in that point. Moreover, it is clear that this point

does not belong to X. Hence, µ̃(X̃ \ X) = 1 and µ̃(X) = µ(X) = 0 (since µ is the

restriction of µ̃ to X).

55
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Hence, we have to be careful so that the mass is not lost in the remainder of the

space in the completion, as it happens in the previous example. So in this chapter we

investigate which conditions are needed in order to keep all the mass in the original space

so we can get a probability measure on it. More specifically, we will explore conditions

on ω such that the restriction of µ̃ to X is a probability measure.

5.1 Defining a probability measure on X

Recall from [22] that, given an outer measure, M, defined on a set, X, a set A ⊆ X

is M-measurable (in the sense of Carathéodory) if and only if M(E) = M(E ∩ A) +

M(E \ A) for each set E ⊆ X.

Moreover, M-measurable sets form a σ-algebra such that the restriction of M to

that σ-algebra is a measure.

Theorem 5.2. ([35, Th. C Section 11]) If µ∗ is an outer measure and if S is the class

of all µ∗-measurable sets, then every set of outer measure zero belongs to S and the set

function µ, defined for E in S by µ(E) = µ∗(E), is a complete measure on S.

First of all, we show that if µ̃(X̃ \X) = 0, then µ is a probability measure on X and

an extension not just of ω̃, but also of ω.

Theorem 5.3. Suppose that µ̃(X̃ \ X) = 0. Then X is µ̃-measurable and µ(X) = 1.

Furthermore µ(U∗xn) = ω(U∗xn) for each x ∈ X and n ∈ N and if ω is defined from Γ,

then µ(A) = ω(A) for each A ∈ Γn and each n ∈ N. Therefore, µ is an extension of ω.

Proof. Firstly, let us justify that X is µ̃-measurable. By Theorem 5.2, the fact that

µ̃(X̃ \ X) = 0 means that X̃ \ X is µ̃-measurable and, since X is the complement of

X̃ \X in X̃, it follows that X is µ̃-measurable.

Moreover, µ is a probability measure on X. Indeed, µ̃ is a probability measure on

X̃ and, hence, 1 = µ̃(X̃) = µ̃(X) + µ̃(X̃ \ X), it follows that µ̃(X) = 1, since, by

hypothesis, µ(X̃ \ X) = 0. The fact that µ is the restriction of µ̃ to X gives us that

µ̃(X) = µ(X) = 1.

Now, we show that µ is an extension of ω. Let x ∈ X and n ∈ N. Note that

µ̃(Ũ∗xn) = µ̃((Ũ∗xn ∩X) ∪ (Ũ∗xn ∩ (X̃ \X)) = µ̃(Ũ∗xn ∩X) = µ(U∗xn) due to the facts that
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Ũ∗xn ∩X = U∗xn and that µ̃ is an extension of µ, and Ũ∗xn ∩ (X̃ \X) ⊆ X̃ \X implies that

µ̃(Ũ∗xn ∩ (X̃ \X)) = 0 because µ̃(X̃ \X) = 0 by hypothesis. Moreover, by Proposition

4.7, it follows that µ(U∗xn) = ω̃(Ũ∗xn) = ω(U∗xn).

Finally, suppose that ω is defined from Γ and let n ∈ N and A ∈ Γn. Then µ̃(Ã) =

µ̃((Ã∩X)∪(Ã∩(X̃ \X)) = µ̃(Ã∩X) = µ(A), since Γ̃ and µ̃ are, respectively, extensions

of Γ and µ, and Ã∩(X̃\X) ⊆ X̃\X implies that µ̃(Ã∩(X̃\X)) = 0 because µ̃(X̃\X) = 0

by hypothesis. Recall that Γ̃ is an extension of Γ if Ã ∩ X = A for each Ã ∈ Γ̃n and

each n ∈ N.

Moreover, by Proposition 4.18, µ̃(Ã) = ω(A), and, since µ̃(Ã) = µ(A), it follows that

µ(A) = ω(A) for each A ∈ Γn and each n ∈ N. Consequently, µ is an extension of ω.

Recall that a quasi-pseudometric d is said to be bicomplete if the pseudometric d∗

is complete. In our context X is bicomplete if and only if X = X̃. From the previous

theorem we can also get the following results.

Corollary 5.4. If X is bicomplete, then µ is a probability measure on X.

Proof. Suppose that X is bicomplete. Then X = X̃, which implies that µ̃ = µ. Hence,

µ is a probability measure on X.

Example 5.5. Let
∑

be a finite set (alphabet) and denote by X = ΣN ∪
⋃
n∈N

∑n

the collection of infinite and finite sequences (words) over
∑

. Recall from [62] that a

(non-archimedean) quasi-metric d can be defined on X by d(x, y) = 0 if x v y and

d(x, y) = 2−l(xuy) otherwise, where l(x) denotes the length of x for each x ∈ X and xu y
is the common prefix of x and y. Moreover, x v y if and only if x is a prefix of y.

Since any non-archimedean quasi-pseudometric defined on a topological space X in-

duces a fractal structure, which can be defined from the collection of balls with respect

to d−1 of radius 1
2n

(see [2]), we can consider the fractal structure Γ defined by d. A

wider description of Γ is provided in [26]. For example, if Σ = {a, b} the first level, Γ1,

consists of two elements: the first one includes all the words beginning with a and the

second one those which begin with b. The second level Γ2 consists of six elements which

are given by the words beginning with aa, ab, ba and bb and the elements {a} and {b}.
Note that the fact that we consider infinite words in our space, lets us conclude that X is
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bicomplete. Hence, if we define a pre-measure satisfying the mass distribution conditions

on G, we can claim that µ is a probability measure on X.

The next result lets us claim that each probability measure constructed from a pre-

meaure is, indeed, the extension of that pre-measure.

Theorem 5.6. If Γ is a fractal structure on X, then µ is a probability measure on X if

and only if µ is an extension of ω.

Proof. ⇐) We have to distinguish two cases depending on the structures we are consid-

ering in order to get that µ is an extension of ω:

1. Suppose that µ(U∗xn) = ω(U∗xn). Obviously, X =
⋃
x∈X U

∗
x1. Therefore, µ(X) =

µ(
⋃
x∈X U

∗
x1) =

∑
µ(U∗x1) =

∑
ω(U∗x1) = 1.

2. Suppose that µ(A) = ω(A) for each n ∈ N and each A ∈ Γn. Given A,B ∈ Γ1,

we can write A ∪ B = i1(A) ∪ i1(B) ∪ U∗x11 ∪ . . . ∪ U∗xn1 ∪ . . . (recall that we

are assuming that {U∗xn : x ∈ X,n ∈ N} is countable), where xi ∈
⋃
{C ∩ D :

C,D ∈ Γ1, C 6= D}, which implies that µ(A ∪ B) = µ(i1(A)) + µ(i1(B)). Now,

since µ(A) = ω(A) and µ(A) = µ(i1(A)), and analogously for B, it follows that

µ(A ∪ B) = µ(i1(A)) + µ(i1(B)) = ω(A) + ω(B). Consider an enumeration of

the elements of Γ1 = {A1, A2, . . .}. Then, in a similar way, it can be proven

that µ(A1 ∪ . . . ∪ An) =
∑n

i=1 µ(i1(Ai)) =
∑n

i=1 ω(Ai). If Γ1 is not finite (if it

is finite, the reasoning is similar, but easier), we can take limit when n tends to

infinity and, then,
∑n

i=1 ω(Ai)→
∑∞

i=1 ω(Ai) = 1. Moreover, µ(A1 ∪ . . . ∪ An)→
µ(
⋃∞
i=1Ai) = µ(X). If we join both expressions µ(A1 ∪ . . . ∪ An) → µ(X) and

µ(A1 ∪ . . . ∪ An) =
∑n

i=1 ω(Ai)→ 1, we conclude that µ(X) = 1.

In both cases we get µ(X) = 1.

⇒) On the one hand, by construction (see Method I on construction of outer mea-

sures) we have that µ(U∗xn) ≤ ω(U∗xn) for each x ∈ X and each n ∈ N. Suppose now

that µ(U∗xn) < ω(U∗xn) for some x ∈ X and n ∈ N. Then µ(X) =
∑

y∈X µ(U∗yn) <∑
y∈X ω(U∗yn). Since ω satisfied the mass distribution conditions,

∑
y∈X ω(U∗yn) = 1, and

it follows that µ(X) < 1, a contradiction with the fact that µ is a probability measure

on X.

Analogously, it can be proven that µ(A) = ω(A) for each n ∈ N and each A ∈ Γn.
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Lemma 5.7. Let U∗xnn be a decreasing sequence. Then x̃ = (ρn(xn)) ∈ X̃ and {x̃} =⋂
n∈N Ũ

∗
xnn. Furthermore, x̃ ∈ X if and only if

⋂
n∈N U

∗
xnn 6= ∅.

Proof. Let U∗xnn be a decreasing sequence and choose x̃ = (ρn(xn)). Then x̃ ∈ X̃ and

x̃ ∈
⋂
Ũ∗xnn (since, by Proposition 3.16.8, Ũ∗x̃n = Ũ∗xnn for each n ∈ N). Indeed,

⋂
Ũ∗xnn

is a singleton due to the fact that X̃ is T0 (see Proposition 3.16.13) and, hence, d̃∗ is a

metric. Hence, {x̃} =
⋂
n∈N Ũxnn.

Now, we prove the equivalence:

⇒) Suppose that x̃ ∈ X. Note that
⋂
n∈N U

∗
xnn =

⋂
n∈N(Ũ∗xnn ∩X) =

(⋂
n∈N Ũ

∗
xnn

)
∩

X = {x̃} ∩X = {x̃} 6= ∅.

⇐) Let z ∈
⋂
n∈N U

∗
xnn. Then z ∈

⋂
n∈N Ũ

∗
xnn. Since {x̃} =

⋂
n∈N Ũ

∗
xnn, it follows that

z = x̃, which gives us that x̃ ∈ X.

Next proposition shows a necessary condition to ensure that µ is a probability mea-

sure on X.

Proposition 5.8. Suppose that µ is a probability measure on X and X is µ̃-measurable.

Then ω(U∗xnn)→ 0 for each decreasing sequence U∗xnn with
⋂
U∗xnn = ∅.

Proof. Let U∗xnn be a decreasing sequence such that
⋂
U∗xnn = ∅. By Lemma 5.7, it holds

that x̃ = (ρn(xn)) =
⋂
n Ũxnn. Now, since µ̃ is continuous from above, we have that

lim µ̃(Ũ∗xnn) = µ̃(
⋂
Ũ∗xnn) = µ̃({x̃}) = 0 due to the fact that µ is a probability measure

on X and X is µ̃-measurable (and, hence, µ̃(X̃ \X) = 0).

Next example shows that the converse of the previous proposition is not true.

Example 5.9. Let Γ be the natural fractal structure on [0, 1] × [0, 1], that is, Γn =

{[ k1

2n
, k1+1

2n
] × [ k2

2n
, k2+1

2n
] : k1, k2 ∈ {0, . . . , 2n − 1}} for each n ∈ N, and suppose that the

mass ω is distributed as Figure 5.2 shows.

Note that it is satisfied that ω(U∗xnn) → 0 for each decreasing sequence U∗xnn with⋂
U∗xnn = ∅. Moreover, since the mass is concentrated next to the vertical line which

divides the unit square into two equal parts, we have that µ̃(X̃ \ X) = 1, which means

that µ(X) = 0 and, consequently, µ is not a probability measure on X.
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(c) Distribution of ω in Γ3

Figure 5.2: Mass distribution by levels

Corollary 5.10. Suppose that X̃ \X is countable and ω(U∗xnn) → 0 for each sequence

(xn) satisfying xn+1 ∈ U∗xnn with
⋂
U∗xnn = ∅. Then µ is a measure on the Borel σ-algebra

of (X, d) and µ(X) = 1.

Proof. First of all, by Lemma 5.7, it holds that, given x̃ = (ρn(xn)) ∈ X̃ \ X, the

corresponding sequence of sets U∗xnn satisfies that
⋂
n U
∗
xnn = ∅.

If X̃\X is countable, then we can write X̃\X =
⋃
x̃∈N{x̃}, where N is a countable set.

Since µ is a measure on X̃, by its σ-additivity, we can write µ̃(X̃ \X) = µ̃(
⋃
x̃∈N{x̃}) =∑

x̃∈N µ̃({x̃}) = 0. We have to show that µ̃({x̃}) = 0, with x̃ = (xn) ∈ X̃. Observe

that {x̃} =
⋂
n Ũ
∗
xnn and, since U∗xnn is a decreasing sequence of sets and µ̃ is continuous

from above, it follows that µ̃(Ũ∗xnn)→ µ̃(
⋂
n Ũ
∗
xnn) = µ({x̃}). Moreover, since µ̃(Ũ∗xnn) =
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ω̃(Ũ∗xnn) = ω(U∗xnn) and, by hypothesis, ω(U∗xnn) → 0, we conclude that µ̃({x̃}) = 0.

Hence, by Theorem 5.3, we have that µ is a measure on the Borel σ-algebra of (X, d)

and µ(X) = 1.

One way to define a probability measure distributed uniformly by using the sets U∗xn

is as it is shown in the next example.

Example 5.11. Let Γ be a finite fractal structure defined on X, a space such that

X̃ \X is countable. We can write ω(U∗x1) = 1
#G1

for each x ∈ X, where #A denotes the

cardinality of A. Now, for the second level, ω(U∗x2) =
ω(U∗x1)

#{U∗y2∈G2:U∗y2⊆U∗x1}
. Analogously,

let U∗x,n+1 ∈ Gn+1 for some x ∈ X. Then U∗xn ∈ Gn and we can define ω(U∗x,n+1) =
ω(U∗xn)

#{U∗y,n+1∈Gn+1:U∗y,n+1⊆U∗xn}
. Since X̃ \X is countable, Corollary 5.10 lets us claim that µ

is a probability measure on X. Indeed, let (xn) be a sequence satisfying that xn+1 ∈ U∗xnn
and

⋂
U∗xnn = ∅. Set n ∈ N. Then there exists k > n such that #{U∗xk ∈ Gk : U∗xk ⊆

U∗xnn} > 1. What is more, since the mass is distributed uniformly, ω(U∗xkk) ≤
ω(U∗xnn)

2
.

Recursively it can be proven that, given m ∈ N, there exists k > n such that ω(U∗xkk) ≤
ω(U∗xnn)

2m
. Therefore, we have proven that for each m ∈ N there exists k ∈ N such that

ω(U∗xkk) <
1

2m
, which means that ω(U∗xnn)→ 0.

Next example shows the previous construction for a certain fractal structure on [0, 1].

Example 5.12. Let ([0, 1],Γ), where Γ is the natural fractal structure. Now, define ω

uniformly in each Gn as follows:

Since G1 = {U∗1
2

1
, U∗01, U

∗
11}, ω(U∗x1) = 1

3
for each x ∈ [0, 1]. Analogously, ω(U∗x2) = 1

9

for each x ∈ [0, 1] \ {1
2
} and ω(U∗1

2
2
) = 1

3
. Moreover, ω(U∗x3) = 1

27
for each x ∈ [0, 1] \

{1
2
, 1

4
, 3

4
}, ω(U∗1

2
2
) = 1

3
and ω(U∗1

4
3
) = ω(U∗3

4
3
) = 1

9
.

The distribution of the mass can be seen in Figure 5.3.

Note that, in this case, X̃ \ X is countable and that the pre-measure is distributed

between the points of the form k
2n

for each k = 1, . . . , 2n − 1. Indeed, note that, for each

sequence (xn) in X satisfying xn+1 ∈ U∗xnn and
⋂
n U
∗
xnn = ∅, we have that ω(U∗xnn) =

1
3n
→ 0. Hence, Corollary 5.10 gives us that µ is a probability measure on X.

Definition 5.13. ([7, Def. 3.1]) Let Γ = {Γn : n ∈ N} be a fractal structure on X. Γ

is said to be half-complete if d is, which means that each Cauchy sequence in (X, d∗) is

convergent in (X, d).
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Figure 5.3: Mass distribution by levels

The following result relates the points of X̃ to half-completeness.

Remark 5.14. Let Γ be a half-complete fractal structure on X. Then, for each x̃ =

(ρn(xn))n∈N ∈ X̃, there exists x ∈ X such that xn → x.

Proof. Indeed, given x̃ = (ρn(xn))n∈N ∈ X̃, it holds that U∗xn+1,n+1 ⊆ U∗xnn for each

n ∈ N. In particular, for each k ∈ N, we have that xn+k ∈ U∗xn+k,n+k ⊆ U∗xnn, which

means that (xn) is a Cauchy sequence in X with respect to d∗. Hence, by definition of

half-complete, there exists x ∈ X such that xn → x.

In fact, the previous result is a characterization. Essentially, the converse of Remark

5.14 is [6, Prop. 3.2.(1)].

Remark 5.15. Let x̃ = (ρn(xn))n∈N ∈ X̃, and x ∈ X be such that xn → x. Then

xn ∈ Uxn for each n ∈ N.

Proof. Let n ∈ N. Since xm → x, there exists m0 ∈ N such that xm ∈ Uxn for each

m ≥ m0. Now, the fact that xm ∈ Uxn implies that Uxmn ⊆ Uxn (see Proposition 2.3.3)

for each m ≥ m0. Moreover, the fact that x̃ ∈ X̃ gives us that xk ∈ U∗xnn for each k ≥ n.
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Hence, by Proposition 2.3.6, U∗xkn = U∗xnn for each k ≥ n and, thus, Uxkn = Uxnn for each

k ≥ n. Consequently, for m ≥ max{n,m0}, it follows that xn ∈ Uxnn = Uxmn ⊆ Uxn.

Next, we recall, from Definition 4.21, that Cn =
⋃
{A ∩ B : A,B ∈ Γn;A 6= B}.

This subset of X will be crucial to give new sufficient conditions to ensure that µ is a

probability measure on X.

Note that, by the properties of a fractal structure, it follows that Cn ⊆ Cn+1 for each

n ∈ N.

Lemma 5.16. Let Γ be a half-complete fractal structure on X. Then it holds that

X̃ \X ⊆
⋃
n∈N

⋂
m∈N St(Cn, Γ̃m).

Proof. Let x = (ρn(xn))n∈N ∈ X̃ \ X and suppose that x 6∈
⋃
n∈N

⋂
m∈N St(Cn, Γ̃m).

Then, for each n ∈ N, there exists m ∈ N (we can suppose that m ≥ n) such that

x 6∈ St(Cn, Γ̃m).

It follows that xm 6∈ Cn. Indeed, in case xm ∈ Cn, if we consider A ∈ Γm such

that xm ∈ A, by Proposition 3.16.2, x ∈ Ã, and, since xm ∈ A ⊆ Ã, it follows that

x ∈ St(Cn, Γ̃m), a contradiction.

Now, we prove that for each n ∈ N, xn 6∈ Cn, that is, there exists only one element

An ∈ Γn such that xn ∈ An. Indeed, let n ∈ N and let us suppose that there exist

A,B ∈ Γn such that A 6= B and xn ∈ A ∩ B. Let m ≥ n be such that x 6∈ St(Cn, Γ̃m).

Then xm 6∈ Cn, but, since U∗xnn = U∗xmn, we have that xm ∈ A ∩B, a contradiction.

Since Γ is half-complete, by Remark 5.14, there exists z ∈ X such that xn → z. By

Remark 5.15, it follows that xn ∈ Uzn for each n ∈ N. Consequently, z ∈ U−1
xnn ⊆ An for

each n ∈ N, which implies that z ∈ An for each n ∈ N. Since x 6∈ X, there exists n ∈ N

such that U∗xnn 6= U∗zn and, hence, there exists Bn ∈ Γn such that z ∈ Bn but xn 6∈ Bn

(see items 2 and 5 in Proposition 2.3). Also, note that z ∈ U−1
xnn and, hence, z ∈ C for

each C ∈ Γn with xn ∈ C). It follows that Bn 6= An and z ∈ An ∩ Bn, so z ∈ Cn. On

the one hand, since x, z ∈
⋂
k∈N Ãk, we have that x ∈ St(z, Γ̃k) ⊆ St(Cn, Γ̃k) for each

k ∈ N. On the other hand, by hypothesis, there exists m ≥ n such that x 6∈ St(Cn, Γ̃m),

a contradiction.

We conclude that x ∈
⋃
n∈N

⋂
m∈N St(Cn, Γ̃m).
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Corollary 5.17. Let Γ be a half-complete fractal structure and suppose that the set⋂
m∈N St(Cn, Γ̃m) is countable for each n ∈ N and ω(U∗xnn) → 0 for each sequence (xn)

satisfying xn+1 ∈ U∗xnn with
⋂
U∗xnn = ∅. Then µ is a measure on the Borel σ-algebra of

(X, d) and µ(X) = 1.

Proof. Since, by hypothesis,
⋂
m∈N St(Cn, Γ̃m) is countable for each n ∈ N, we have that⋃

n∈N
⋂
m∈N St(Cn, Γ̃m) is countable. By Lemma 5.16, X̃ \ X ⊆

⋃
n∈N

⋂
m∈N St(Cn, Γ̃m),

which means that X̃ \X is countable. By Corollary 5.10, we have that µ is a measure

on the Borel σ-algebra of (X, d) and µ(X) = 1.

Example 5.18. Let Γ = {Γn : n ∈ N} be the natural fractal structure on X = R or

X = [0, 1], and let ω be a pre-measure such that ω(U∗xnn) → 0 for each sequence (xn)

satisfying xn+1 ∈ U∗xnn with
⋂
U∗xnn = ∅. Note that

⋂
m St(Cn, Γ̃m) is countable. Hence,

by the previous corollary, we have that µ is a measure on the Borel σ-algebra of (X, d)

and µ(X) = 1.

Now, we apply the previous example in a certain case where the pre-measure is known

and given by a random variable.

Example 5.19. Consider (R,Γ), where Γ is the natural fractal structure (see Figure

5.4). Note that the topology induced by Γ is the usual topology and Γ is a tiling finite

fractal structure.
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Figure 5.4: First levels of the natural fractal structure on R

We define, for this fractal structure, ω(A) = ω([a, b]) = F (b)−F (a), where F denotes

the cumulative distribution function of a continuous random variable for each A ∈ Γn

and n ∈ N. Next, we check that, in fact, the measure µ that can be got from the pre-

measure ω according to the construction made in the previous section is a probability

measure on X.
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First, we describe
⋂
m St(Cn, Γ̃m) for each n ∈ N. Note that U∗xn = {x} for each

x ∈ Cn and each n ∈ N, and U∗xn =] k′

2n−1 ,
k′+1
2n−1 [ for each x ∈ R \ Cn, each n ∈ N and

for some k′ ∈ Z. Let k, n ∈ N and let ym = k
2n−1 + 1

2m
and zm = k

2n−1 − 1
2m

for each

m ≥ n and ym = yn and zm = zn for m < n. We define uk,n = (ρm(ym)) ∈ X̃ and

lk,n = (ρm(zm)) ∈ X̃. Note that Cn = { k
2n−1 : k ∈ Z} and

⋂
m St(Cn, Γ̃m) = Cn ∪ {uk,n :

k ∈ Z} ∪ {lk,n : k ∈ Z}. It follows that
⋂
m St(Cn, Γ̃m) is countable for each n ∈ N.

On the other hand, ω(U∗xnn) → 0 for each sequence (xn) such that xn+1 ∈ U∗xnn

with
⋂
U∗xnn = ∅. Indeed, let (xn) be a sequence such that xn+1 ∈ U∗xnn. Then U∗xnn ∈

] kn
2n−1 ,

kn+1
2n−1 [ for each n ∈ N and some kn ∈ Z, and it follows that ω(U∗xnn) = ω(] kn

2n−1 ,
kn+1
2n−1 [) =

F (kn+1
2n−1 )− F ( kn

2n−1 )→ 0 due to the fact that F is the cumulative distribution function of

a continuous random variable.

Hence, by Corollary 5.17, µ(X) = 1, that is, µ is a probability measure on X.

It can also be applied to other fractal structures as the next example shows.

Example 5.20. Consider (R,Γ), where Γ is a finite fractal structure whose levels are

defined by Γn = {] −∞,−n]} ∪ {[ k
2n−1 ,

k+1
2n−1 ] : k = −n2n−1, . . . , n2n−1 − 1} ∪ {[n,+∞[}

(see Figure 5.5).
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Figure 5.5: First levels of the finite fractal structure Γ on R

We define ω(A) = ω([a, b]) = F (b)−F (a), where F denotes the cumulative distribu-

tion function of a continuous random variable for each A ∈ Γn and each n ∈ N.

Note that, once again,
⋂
m St(Cn, Γ̃m) is countable for each n ∈ N by an argument

similar to the previous example. In fact, it is finite for each n ∈ N. Moreover, ω(U∗xnn)→
0 for each sequence (xn) satisfying xn+1 ∈ U∗xnn with

⋂
U∗xnn = ∅. Indeed, let (xn) be a

sequence satisfying xn+1 ∈ U∗xnn. Then two things may happen:
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1. x1 < −1 or x1 > 1. Suppose that x1 < −1. Then two things may happen and we

proceed analogously in case x1 > 1:

(a) There exists m ∈ N such that xm /∈] − ∞,−m[. Then U∗xnn =] kn
2n−1 ,

kn+1
2n−1 [

for some kn ∈ {−n2n−1, . . . , n2n−1 − 1} and each n ≥ m, which means that

ω(U∗xnn) = F (kn+1
2n−1 )−F ( kn

2n−1 ) for each n ≥ m and, consequently, ω(U∗xnn)→ 0.

(b) xn ∈] − ∞,−n[ for each n ∈ N. Then ω(U∗xnn) = F (−n) − F (−∞) =

F (−n)→ 0.

2. Suppose that x1 /∈] − ∞,−1[∪]1,∞[. Then U∗xnn =] kn
2n−1 ,

kn+1
2n−1 [ for some kn ∈

{−n2n−1, . . . , n2n−1 − 1} and each n ∈ N, which means that ω(U∗xnn) = F (kn+1
2n−1 )−

F ( kn
2n−1 )→ 0.

Hence, by Corollary 5.17, µ(X) = 1, that is, µ is a probability measure on X.

Lemma 5.21. Let Γ be a fractal structure on X. Then Ũ∗xm ⊆ St(A, Γ̃m) if and only if

U∗xm ⊆ St(A,Γm) for each x ∈ X,m ∈ N and each A ⊆ X.

Proof. Let x ∈ X, A ⊆ X and m ∈ N.

⇒) Let y ∈ U∗xm. Then y ∈ Ũ∗xm due to the fact that U∗xm ⊆ Ũ∗xm. Now, the fact that

Ũ∗xm ⊆ St(A, Γ̃m) lets us claim that there exists B̃ ∈ Γ̃m such that y ∈ B̃ and B̃∩A 6= ∅.
Now, by taking into account that y ∈ X, it follows that y ∈ B̃ ∩X = B. It also holds

that B ∩ A = B̃ ∩ A 6= ∅ so we conclude that y ∈ St(A,Γm).

⇐) Let y ∈ Ũ∗xm, and let yk ∈ X be such that y = (ρk(yk)). By Propositions 2.3.6,

3.16.7 and 3.16.8, it follows that ym ∈ U∗xm. Now, the fact that U∗xm ⊆ St(A,Γm) gives

us that ym ∈ St(A,Γm), which means that there exists B ∈ Γm such that ym ∈ B and

A ∩ B 6= ∅. Hence, by Proposition 3.16.2, it follows that y ∈ B̃. Since B ⊆ B̃, we have

that B̃ ∩ A 6= ∅. Hence, y ∈ St(A, Γ̃m).

In what follows, ifA ⊆ X is such thatA =
⋃
x∈A U

∗
xn, then ω(A) means

∑
U∗xn⊆A

ω(U∗xn),

where the last sum stands for
∑
{ω(U∗xn) : U∗xn ∈ Gn;U∗xn ⊆ A}. Note that if we define

ω from Γ, it follows that
∑

U∗xm⊆St(Cn,Γm) ω(U∗xm) =
∑

A∈Γm;A∩Cn 6=∅ ω(A).

Theorem 5.22. Let Γ be a half-complete fractal structure on X and suppose that for

each n ∈ N the sequence ω(St(Cn,Γm))→ 0. Then µ is a measure on the Borel σ-algebras

of (X, d) and (X, d∗) and µ(X) = 1.
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Proof. Given n ∈ N, since St(Cn, Γ̃m+1) ⊆ St(Cn, Γ̃m), by the continuity from above of

µ̃, we have that µ̃(St(Cn, Γ̃m))→ µ̃(
⋂
m∈N St(Cn, Γ̃m)).

On the other hand,

µ̃(St(Cn, Γ̃m)) =
∑

Ũ∗xm⊆St(Cn,Γ̃m)

ω̃(Ũ∗xm) =
∑

U∗xm⊆St(Cn,Γm)

ω(U∗xm) = ω(St(Cn,Γm))

Note that the second equality follows from the fact that Ũ∗xm ⊆ St(Cn, Γ̃m) is equiva-

lent to U∗xm ⊆ St(Cn,Γm) for each x ∈ X (see Lemma 5.21). Also note that the fact that

U∗xn 6= U∗yn, implies that Ũ∗xn 6= Ũ∗yn for each x, y ∈ X and each n ∈ N. Indeed, given

x, y ∈ X and n ∈ N, if U∗xn 6= U∗yn, then the fact that Ũ∗xn ∩ X = U∗xn (see Proposition

3.16.7) lets us conclude that Ũ∗xn 6= Ũ∗yn.

In connection with the first and the third equalities, note that St(Cn, Γ̃m) and

St(Cn,Γm) can be decomposed, respectively, into the disjoint union of Ũ∗xm and U∗xm

if we recall that St(A,Γ) =
⋃
{B ∈ Γ : A ∩ B 6= ∅} for each A ⊆ X and each covering

Γ, and that, by Proposition 3.1.2, A =
⋃
x∈A U

∗
xn for each A ∈ Γn and each n ∈ N.

Now, by hypothesis, ω(St(Cn,Γm)) → 0, which means that µ̃(St(Cn, Γ̃m)) → 0 and,

hence, µ̃(
⋂
m∈N St(Cn, Γ̃m)) = 0 for each n ∈ N.

Finally, by Lemma 5.16, X̃ \X ⊆
⋃
n∈N

⋂
m∈N St(Cn, Γ̃m), so we have that µ̃(X̃ \X) ≤

µ̃(
⋃
n∈N

⋂
m∈N St(Cn, Γ̃m)) ≤

∑∞
n=1 µ̃(

⋂
m∈N St(Cn, Γ̃m))) = 0. Therefore, µ̃(X̃ \ X) = 0

and, by Theorem 5.3, X is µ̃-measurable and µ(X) = 1, that is, µ is a probability

measure on the Borel σ-algebras of (X, d) and (X, d∗).

Definition 5.23. ([54, Def. 2.3]) Let Γ be a fractal structure on X. We will say that

Γ is starbase if {St(x,Γn) : n ∈ N} is a neighborhood base of x for each x ∈ X.

The next example shows another situation where, starting from a fractal structure on

[0, 1], we can define a pre-measure such that its extension is a probability measure gen-

erated by a known continuous random variable and given by its cumulative distribution

function.

Example 5.24. Consider ([0, 1],Γ), where Γ is the natural fractal structure (see Figure

5.6). The topology induced by Γ is the usual one and Γ is a tiling finite fractal structure.
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Figure 5.6: First levels of the natural fractal structure on [0, 1]

We define, for this fractal structure, ω(A) = ω([a, b]) = F (b)−F (a) for each A ∈ Γn

and each n ∈ N, where F denotes a cumulative distribution function of a continuous

random variable such that F (x) = 0 for each x < 0 and F (x) = 1 for each x ≥ 1. It

gives us a measure on X according to the construction made previously.

Note that, under the above conditions, Γ is a half-complete tiling starbase fractal

structure. Moreover, Cn is finite for each n ∈ N, which means that the convergence of

ω(St(Cn,Γm)) to 0 can be proven easily for each n ∈ N. In fact, observe that the number

of points in Cn is 2n−1 for each n ∈ N. Thus, we can write Cn = {ak : k = 1, . . . , 2n−1}
for each n ∈ N. Hence, ω(St(Cn,Γm)) =

∑
A∈Γm,A∩Cn 6=∅ ω(A) =

∑2n−1
k=1 (F (ak + 1

2m
) −

F (ak − 1
2m

))→
∑2n−1

k=1 (F (ak)− F (ak)) = 0. Hence, by Theorem 5.22 we have that µ is

a probability measure on X.

Note that if A∩B = ∅ for each A,B ∈ Γn and each n, then Cn = ∅ for each n, which

implies that ω(St(Cn,Γm)) → 0, and, consequently, by Theorem 5.22, we have proven

the next result.

Corollary 5.25. If Γ is a half-complete fractal structure on X such that A∩B = ∅ for

each A,B ∈ Γn with A 6= B and for each n, then µ is a probability measure on X.

From Cn we define a set that will let us give some necessary and sufficient conditions

in order to get a probability measure on X. It can bee seen next.

Definition 5.26. For each n ∈ N we define Ĉn =
⋃
x∈Cn

⋂
m∈N St(x, Γ̃m).

Lemma 5.27. Let Γ be a half-complete starbase fractal structure on X. Then X̃ \X =⋃
n∈N Ĉn \ Cn.
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Proof. ⊆) Let x̃ ∈ X̃ \ X. Then there exists xn ∈ X such that x̃ = (ρn(xn)). Since Γ

is half-complete, by Remark 5.14, there exists y ∈ X such that xn → y. Suppose now

that y /∈
⋃
m∈N Cm. By Remark 5.15, xn ∈ Uyn for each n ∈ N and, hence, y ∈ U−1

xnn for

each n ∈ N. Thus, xn /∈ Cn for each n ∈ N (indeed, if xn ∈ An ∩ Bn, then y ∈ An ∩ Bn,

a contradiction with the initial assumption). Now, the fact that xn /∈ Cn for each n ∈ N

lets us claim that for each n ∈ N there exists a unique A ∈ Γn such that xn ∈ A.

Thus, U−1
xnn =

⋂
x∈B,B∈Γn

B = A and, since y ∈ U−1
xnn and y 6∈ Cn, A is the only element

in Γn that contains y. Hence, xn and y belong to the same elements of the fractal

structure, which implies that U∗yn = U∗xnn for each n ∈ N. It follows that x̃ = y ∈ X, a

contradiction. Consequently, there exists m ∈ N such that y ∈ Cm. Now, given n ∈ N,

y ∈ U−1
xnn, which implies that xn ∈ St(y,Γn) for each n ∈ N, that is, x̃ ∈ St(y, Γ̃n) for

each n ∈ N and, hence, x̃ ∈
⋂
n∈N St(y, Γ̃n). If we join this fact with y ∈ Cm, it follows

that x̃ ∈ Ĉm.

⊇) Let x ∈ Ĉn \ Cn for some n ∈ N. Then x ∈ St(y, Γ̃m) \ Cn for some y ∈ Cn and

each m ∈ N. Now, suppose that x ∈ X. Then x ∈ St(y, Γ̃m) ∩X = St(y,Γm) for each

m ∈ N. Since Γ is starbase, it follows that y = x, which means that x ∈ Cn, which

contradicts the initial assumption.

Theorem 5.28. Let Γ be a half-complete starbase fractal structure on X such that, for

each n ∈ N, Cn is countable and, for each x ∈ Cn, suppose that ω(St(x,Γm))→ 0. Then

µ is a measure on the Borel σ-algebras of (X, d) and (X, d∗) and µ(X) = 1.

Proof. Given n ∈ N and x ∈ Cn, since St(x, Γ̃m+1) ⊆ St(x, Γ̃m), by the continuity from

above of µ̃ and the monotonicity of the sequence St(x, Γ̃m), we have that µ̃(St(x, Γ̃m))→
µ̃(
⋂
m∈N St(x, Γ̃m)).

On the other hand,

µ̃(St(x, Γ̃m)) =
∑

Ũ∗ym⊆St(x,Γ̃m)

ω̃(Ũ∗ym) =
∑

U∗ym⊆St(x,Γm)

ω(U∗ym) = ω(St(x,Γm))

Note that the second equality follows from the fact that Ũ∗ym ⊆ St(x, Γ̃m) is equivalent

to U∗ym ⊆ St(x,Γm) for each y ∈ X (see Lemma 5.21).

By hypothesis, ω(St(x,Γm))→ 0, so µ̃(St(x, Γ̃m))→ 0 and, hence, µ̃(
⋂
m∈N St(x, Γ̃m)) =

0 for each n ∈ N.
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Finally, by the previous lemma, we have that X̃ \X =
⋃
n∈N Ĉn \ Cn, so µ̃(X̃ \X) =

µ̃(Ĉn \ Cn) ≤ µ̃(Ĉn) = µ̃(
⋃
x∈Cn

⋂
m∈N St(x, Γ̃m)) ≤

∑
x∈Cn µ̃(

⋂
m∈N St(x, Γ̃m))) = 0. Note

that we have taken into account the fact that Cn is countable for each n ∈ N when writing

the last inequality. Therefore, µ̃(X̃ \ X) = 0 and, by Theorem 5.3, X is µ̃-measurable

and µ(X) = 1, that is, µ is a probability measure on the Borel σ-algebras of (X, d) and

(X, d∗).

For the next example, we can define a fractal structure, ∆, on X from a finite fractal

structure, Γ, on [0, 1] and a known random variable such that ω(A) is uniform for each

A ∈ ∆n and each n ∈ N.

Example 5.29. Let X be the extended real line X = R ∪ {−∞,∞} and F : X → [0, 1]

be the extension of an injective probability distribution function of a continuous random

variable and let Γ be the natural fractal structure. The levels of the new fractal structure,

∆, are determined from Γ as follows: ∆n = {F−1(A) : A ∈ Γn} for each n ∈ N.

Let B ∈ ∆n. It is clear that we can write B =
[
F−1

(
k

2n

)
, F−1

(
k+1
2n

)]
= F−1

([
k

2n
, k+1

2n

])
and, thus, ω(B) = 1

2n
for each B ∈ ∆n and each level n of the fractal structure ∆.

We prove that ∆ is starbase. At first, observe that Uxn ⊆ St(x,∆n) for each x ∈ X
and n ∈ N. Moreover, given n ∈ N, Uxn =]a, b[, where a = F−1( k

2n
) and b = F−1( k

′

2n
)

for some k ∈ {0, . . . 2n − 1} and k′ = k + 1 or k′ = k + 2. It is clear that a < x < b,

while St(x,∆n) = [a, b]. Hence, it is sufficient to consider m ∈ N such that F (a) <

F (x) − 1
2m

and F (x) + 1
2m

< F (b), since, in this case, it holds that F (St(x,∆m)) ⊆
[F (x) − 1

2m
, F (x) + 1

2m
] ⊆]F (a), F (b)[= F (Uxn). Since F : X → [0, 1] is bijective, it

follows that St(x,∆m) ⊆ Uxn. We conclude that {St(x,∆n) : n ∈ N} is a neighborhood

base of x for each x ∈ X.

Note that Γ is half-complete on X. Indeed, if xn ∈ X is such that xn+1 ∈ U∗xnn, then

F (xn+1) ∈ U∗F (xn)n and, since Γ is half-complete on [0, 1], there exists y ∈ [0, 1] such that

(F (xn)) converges to y. Since X is compact and F is bijective, F−1 is continuous, and,

hence, (xn) converges to F−1(y). Therefore, Γ is half-complete on X.

On the other hand, Cn = {F−1( k
2n

) : 0 < k < 2n} and, hence, it is countable. It also

holds that if x ∈ Cn, St(x,Γm) is the union of exactly two elements of Γm and, hence,

ω(St(x,Γm)) = 1
2m−1 . Therefore, we can apply the previous theorem to get that µ is a

probability measure on X.
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A particular instance of the previous example is the following one.

Example 5.30. Consider an exponential random variable R ∼ ε(1). Then its probability

distribution function F → [0, 1] is defined by

FR(x) =


0 if x < 0

1− e−x if x ≥ 0

If we define the natural fractal structure on [0, 1], we can define on X = [0,∞] the

fractal structure ∆, where ∆n = {F−1(A) : A ∈ Γn} is described as:

∆1 = {F−1
([

0, 1
2

])
,
([

1
2
, 1
])
} = {[0, ln 2], [ln 2,+∞]}

∆2 = {[0, ln 4
3
], [ln 4

3
, ln 2], [ln 2, ln 4], [ln 4,+∞]}

...

Hence, ω(A) = 1
2n

for each A ∈ ∆n and each n ∈ N, and µ is a probability measure

on X.

Lemma 5.31. Let Γ be a starbase fractal structure on X. Then
⋂
m∈N St(A,Γm) = A

for each closed subset A of X.

Proof. ⊇) It is clear that A ⊆ St(A,Γm) for each m ∈ N.

⊆) Let x ∈
⋂
m∈N St(A,Γm). The case in which x ∈ A is clear. Suppose that x /∈ A.

The fact that A is closed implies that there exists m ∈ N such that St(x,Γm) ∩ A = ∅,
which is a contradiction with the fact that x ∈ St(A,Γm). Hence, x ∈ A.

Lemma 5.32. Let Γ be a starbase and half-complete fractal structure on X. Then⋃
A,B∈Γn;A 6=B

⋂
m∈N St(A ∩B, Γ̃m) = Ĉn for each n ∈ N.

Proof. ⊆) Let n ∈ N and A,B ∈ Γn with A 6= B and consider x̃ ∈
⋂
m∈N St(A∩B, Γ̃m).

Then there exists a sequence (xm) such that x̃ = (ρm(xm)). Since Γ is half-complete,

by Remark 5.14, there exists x ∈ X such that xm → x. By Remark 5.15, xm ∈ Uxm.

Consequently, x ∈ U−1
xmm for each m ∈ N. Since x̃ ∈ St(A∩B, Γ̃m) for each m ∈ N, given

m ∈ N, xm ∈ St(A ∩ B,Γm). Let Am be such that xm ∈ Am with Am ∩ (A ∩ B) 6= ∅.
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Then x ∈ Am and x ∈ St(A ∩B,Γm). It follows that x ∈
⋂
m∈N St(A ∩B,Γm) = A ∩B

by Lemma 5.31.

Since x ∈ U−1
xmm ⊆ St(xm,Γm) ⊆ St(x̃, Γ̃m) for each m ∈ N, it follows that x̃ ∈⋂

m∈N St(x, Γ̃m). Since x ∈ A ∩B ⊆ Cn, it follows that x̃ ∈ Ĉn.

⊇) Let x̃ ∈ Ĉn. Then, by definition of Ĉn, there exists x ∈ Cn such that x̃ ∈ St(x, Γ̃m)

for each m ∈ N. Since x ∈ Cn, x ∈ A∩B for some A,B ∈ Γn with A 6= B. The fact that

there exist A,B ∈ Γn such that x ∈ A ∩ B means that x̃ ∈ St(x, Γ̃m) ⊆ St(A ∩ B, Γ̃m)

for each m ∈ N. Hence, x̃ ∈
⋃
A,B∈Γn;A 6=B

⋂
m∈N St(A ∩B, Γ̃m).

Lemma 5.33. Let Γ be a fractal structure on X and consider A,B ∈ Γn for some

n ∈ N. Then A ∩B =
⋃
x∈A∩B U

∗
xn.

Proof. Let n ∈ N and consider A,B ∈ Γn.

⊆) Given y ∈ A ∩B, it is clear that y ∈
⋃
x∈A∩B U

∗
xn.

⊇) Let y ∈
⋃
x∈A∩B U

∗
xn. Then there exists x ∈ A ∩ B such that y ∈ U∗xn. By

Proposition 2.3.5, we can write U∗xn =
⋂
x∈D,D∈Γn

D\
⋃
x/∈D,D∈Γn

D. Since
⋂
x∈D,D∈Γn

D ⊆
A ∩B, we conclude that U∗xn ⊆ A ∩B and, hence, y ∈ A ∩B.

Recall that, for a set A such that A =
⋃
x∈A U

∗
xn, we are using the notation ω(A) =∑

U∗xn⊆A
ω(U∗xn). Note that the sets U∗xn and U∗yn are mutually disjoint or they are the

same set and that in the sum, ω(U∗xn) appears only once for each set U∗xn with x ∈ A.

It follows that if µ is an extension of ω and A is a set such that A =
⋃
x∈A U

∗
xn, then

µ(A) = ω(A). Indeed, since µ is a measure, the union is disjoint and µ is an extension

of ω, it follows that µ(A) =
∑

U∗xn⊆A
µ(U∗xn) =

∑
U∗xn⊆A

ω(U∗xn) = ω(A).

Examples of sets A such that A =
⋃
x∈A U

∗
xn are the following ones: A for A ∈ Γn

with n ∈ N; A ∩ B for A,B ∈ Γn with n ∈ N (by the previous lemma); St(A,Γn) for

n ∈ N and A ⊆ X.

Another necessary condition of µ being a probability measure is the next one:

Proposition 5.34. Let Γ be a starbase fractal structure on X, a µ̃-measurable space.

If µ(X) = 1, then ω(St(A ∩ B,Γm)) → ω(A ∩ B) for each A,B ∈ Γn with A 6= B and
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each n ∈ N.

Proof. Note that µ(X) = 1 implies that µ̃(X̃ \ X) = 0, since X is supposed to be µ̃-

measurable. Since µ̃(X̃ \ X) = 0, by Theorem 5.3, ω(U∗xn) = µ(U∗xn) for each x ∈ X

and n ∈ N, that is, µ is an extension of ω. By the previous discussion, µ(St(A ∩
B,Γm)) = ω(St(A ∩ B,Γm)). Note that A ∩ B is closed, since A and B are both

closed (see Proposition 3.1.3). Hence, by Lemma 5.31,
⋂
m∈N St(A ∩ B,Γm) = A ∩ B.

By the continuity from above of the measure µ, it follows that µ(St(A ∩ B,Γm)) →
µ(
⋂
m∈N St(A ∩ B,Γm)) = µ(A ∩ B). Finally, Lemma 5.33 and the previous discussion

let us claim that µ(A ∩B) = ω(A ∩B), what concludes the proof.

As it has already been clarified, the main goal of this chapter is looking for conditions

to ensure that µ is a probability measure on X. So far, we have given, mostly, some

necessary conditions to ensure that µ is a probability measure. Moreover, so far, all the

results involved conditions on X̃ or structures related to the completion of the space.

However, it is more convenient to have conditions on X or functions defined on X in

order to characterize the fact that µ is a probability measure on X. By taking advantage

of the previous proposition we can give some results in this line.

Corollary 5.35. Let Γ be a half-complete and starbase fractal structure on X such that

ω(Cn) = 0 and Γn is countable for each n ∈ N. Then µ(X) = 1 and X is µ̃-measurable

if and only if ω(St(A ∩B,Γm))→ 0 for each A,B ∈ Γn with A 6= B and each n ∈ N.

Proof. ⇒) Note that, given n ∈ N, ω(A ∩B) = 0 for each A,B ∈ Γn with A 6= B, since

ω(Cn) = 0, so the implication immediately follows from Proposition 5.34.

⇐) If we prove that µ̃(X̃ \ X) = 0, we will have, by Theorem 5.3, that X is µ̃-

measurable and that µ is a probability measure on X. On the one hand, note that

µ̃(X̃ \ X) ≤
∑

n∈N µ̃(Ĉn \ Cn) ≤
∑

n∈N µ̃(Ĉn) as a consequence of the fact that X̃ \
X =

⋃
n∈N Ĉn \ Cn (see Lemma 5.27). Now, by Lemma 5.32, it holds that µ̃(Ĉn) ≤∑

A,B∈Γn;A 6=B µ̃(
⋂
m∈N St(A ∩ B, Γ̃m)). Indeed, recall that {(A,B) ∈ Γn × Γn : A 6= B}

is countable due to the initial assumption that Γn is countable for each n ∈ N.

On the other hand, since St(A ∩B, Γ̃m) is a monotonically non-decreasing sequence

of sets, the continuity from above of µ̃ gives us that µ̃(St(A∩B, Γ̃m))→ µ̃(
⋂
m∈N St(A∩
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B, Γ̃m)). It also holds that

µ̃(St(A∩B, Γ̃m)) =
∑

Ũ∗ym⊆St(A∩B,Γ̃m)

ω̃(Ũ∗ym) =
∑

U∗ym⊆St(A∩B,Γm)

ω(U∗ym) = ω(St(A∩B,Γm))

for each A,B ∈ Γn and each n ∈ N.

Note that the second equality follows from the fact that Ũ∗xm ⊆ St(A ∩ B, Γ̃m) is

equivalent to U∗xm ⊆ St(A ∩ B,Γm) for each x ∈ X (see Lemma 5.21). Since, by

hypothesis, ω(St(A ∩ B,Γm)) → 0 for each A,B ∈ Γn and each n ∈ N, it follows that

µ̃(
⋂
m∈N St(A ∩B, Γ̃m)) = 0.

Finally, µ̃(Ĉn) ≤
∑

A,B∈Γn;A 6=B µ̃(
⋂
m∈N St(A ∩ B, Γ̃m)) = 0. Hence, µ̃(X̃ \ X) = 0

and we conclude the proof.

Example 5.36. Consider the space ([0, 1]2,Γ), where Γ is the fractal structure whose

levels are defined by Γn = {
[
k1

2n
, k1+1

2n

]
×
[
k2

2n
, k2+1

2n

]
: k1, k2 ∈ {0, . . . , 2n − 1}}. Now,

consider the pre-measure of each element in Γn given by ω([a, b]× [c, d]) = (b−a)(d− c).

It is easy to check that ω(Cn) = 0 for each n ∈ N and that ω(St(A ∩ B,Γm)) → 0 for

each A,B ∈ Γn with A 6= B and each n ∈ N. Hence, by the previous corollary, we can

claim that µ is a probability measure on [0, 1]2.

We can also give a characterization of the fact that µ is a probability measure on

X for the case in which µ is constructed from a pre-measure defined from a fractal

structure.

Corollary 5.37. Let Γ be a half-complete, starbase (and tiling) fractal structure on X

and suppose that ω is defined from Γ. Then µ(X) = 1 and X is µ̃-measurable if and

only if ω(St(A ∩B,Γm))→ 0 for each A,B ∈ Γn with A 6= B and each n ∈ N.

Proof. Note that the fact that ω is defined from Γ implies that ω(A ∩ B) = 0 for each

A,B ∈ Γn with A 6= B and each n ∈ N. Hence, ω(Cn) = 0 for each n ∈ N and we can

take into account the previous corollary to justify the equivalence to proof.

Example 5.38. Let X be the Sierpinski triangle and f1, f2, f3 : X → X the simili-

tudes that define this fractal. Recall, from Example 4.29, the way to distribute the mass

uniformly on this set. According to that construction, ω(A) = 1
3n

for each A ∈ Γn and

n ∈ N, where the fractal structure Γ is defined from the iterated system and, hence, given



Chapter 5. Generating a probability measure on X 75

by the levels Γn = {fnw(X) : w ∈ In} for each n ∈ N, where fnw = fw1 ◦ . . . ◦ fwn with

w = w1 . . . wn. Hence, this is an example where ω is defined from Γ.

Note that the topology induced by Γ on X is the usual topology. Since St(x,Γn)

has diameter (with respect to the Euclidean metric) at most 1
2n−1 , it follows that Γ is

starbase. On the other hand, since X is a Hausdorff compact space and Γ is finite, it

follows that d is half-complete by [7, Cor. 5.6].

On the other hand, note that St(A∩B,Γm) consists of two triangles for each A,B ∈
Γn and each n ∈ N with A ∩ B 6= ∅. Hence, ω(St(A ∩ B,Γm)) = 2

3m
. It holds that

ω(St(A ∩ B,Γm)) → 0, so Corollary 5.37 lets us claim that µ is a probability measure

on X.

5.2 Uniqueness of the measure

Proposition 5.39. Let δ be a probability measure on the Borel σ-algebra of X and let

ω(U∗xn) = δ(U∗xn) for each x ∈ X and n ∈ N. The next statements are satisfied:

1. ω satisfies the mass distribution conditions.

2. µ = δ on the Borel σ-algebra of X.

Proof. 1. (a)
∑

ρ1(x)∈G1
ω(ρ1(x)) = 1. Indeed, it holds that

∑
ρ1(x)∈G1

ω(ρ1(x)) =∑
ρ1(x)∈G1

δ(ρ1(x)) = δ(X) = 1, since δ is a probability measure on X.

(b) ω(ρn(x)) =
∑

ρn+1(y)∈Gn+1,ρn(y)=ρn(x) ω(ρn+1(y)) for each n ∈ N and each

ρn(x) ∈ Gn. Let x ∈ X and n ∈ N. Then ω(ρn(x)) = δ(ρn(x)). Now, by the

σ-additivity of δ as a measure, ω(ρn(x)) =
∑

ρn+1(y)∈Gn+1,ρn(y)=ρn(x) δ(ρn+1(y)) =∑
ρn+1(y)∈Gn+1,ρn(y)=ρn(x) ω(ρn+1(x)), what concludes the proof of this item.

2. First of all, we show that µ(U∗xn) = δ(U∗xn) for each x ∈ X and n ∈ N.

≥) Let δ∗ be the outer measure induced by δ. If we consider the pre-measure ω

and the family U∗xn, by the first point of Method I, we have that δ∗(U∗xn) ≤ µ(U∗xn).

Now, the fact that δ∗ is an extension of δ (see Theorem 2.16) gives us that δ(U∗xn) ≤
µ(U∗xn).

≤) Now, note that U∗xn ⊆ Ũ∗xn so it follows that µ(U∗xn) ≤ ω̃(Ũ∗xn). Moreover,

ω̃(Ũ∗xn) = ω(U∗xn) = δ(U∗xn).
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Now, recall that U∗n(F ) =
⋃
y∈F U

∗
yn, and this is a countable union of mutually

disjoint sets. Since µ and δ are measures, and taking into account that µ(U∗xn) =

δ(U∗xn), it follows that δ(U∗n(F )) = µ(U∗n(F )).

Finally, let A = {U∗n(F ) : F ⊆ X,n ∈ N}. It can be proven that A is an

algebra (where µ and δ coincide, as proved before) generating the Borel σ-algebra

of (X, d∗). By Theorem 2.15, it follows that µ = δ on the Borel σ-algebra of (X, d∗)

(a more detailed proof can be found in the proof of Proposition 4.13). Finally, note

that, according to Remark 4.5, the Borel σ-algebras of (X, d∗) and (X, d) are the

same, so it follows that µ = δ on X with respect to σ(τd) and σ(τ ∗d ).

Corollary 5.40. If δ is a probability measure on the Borel σ-algebra of X and ω is

defined as ω(U∗xn) = δ(U∗xn), then µ(U∗xn) = δ(U∗xn) and µ(U∗n(F )) = δ(U∗n(F )) for each

x ∈ X, n ∈ N and F ⊆ X.

Proposition 5.39 lets us claim that each probability measure defined on a space with

a fractal structure can be construted by using the procedure based on a pre-measure

that we develop in this chapter together with the results given in the previous one. It

also lets us claim that, in case that µ is a probability measure defined from ω, it is the

unique one defined from that pre-measure.



Chapter 6

Applications

To end this first part of the work, we show some applications that have arisen from the

theory that was developed in the previous chapters. All of these applications are based on

the recursive nature of the fractal structure together with the construction of probability

measures shown before. First of all, once we have defined a pre-measure on the elements

of the fractal structure, it does make sense to create an iterative method to generate

samples of a distribution on a space equipped with that topological structure. What

is more, since a fractal structure can be defined on a n-dimensional space, we can use

that procedure, which we explain in Section 6.1, to generate samples of random vectors.

Secondly, in Section 6.2 we introduce an estimation method to get the parameters of

a certain distribution once we are given a random sample of that. That method is

based on a similar idea to the maximum likelihood estimation method, although we will

explore some situations for which the new method becomes better than the classical

one. Finally, Section 6.3 shows a way to test if a random sample comes from a certain

distribution. The idea is similar to the one used by the χ2 test, also well known in the

classical case.

6.1 Generating samples of a distribution

The first application we introduce in this chapter consists of generating samples of a

certain distribution. That distribution is associated with a probability measure that can

be defined from a pre-measure defined on a space with a fractal structure by following

77
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the procedure which has been developed in the previous two chapters.

We start from a finite fractal structure, Γ, on a space, X. Now, given n ∈ N, we

can define the pre-measure of A ∈ Γn, which we will denote by ω(A), according to the

cumulative distribution function of the random variable Y for what we want a sample.

Indeed, in Example 5.20 we showed that when F is the cumulative distribution function

of a continuous random variable and the elements of the fractal structure can be written

as A = [a, b], we define ω by ω(A) = F (b)− F (a) and it gives us a probability measure

on X according to the construction made in the previous chapters. What is more, if the

elements of each level on the fractal structure can be written as A =]a, b], then ω(A)

defined as before gives us a probability measure from a random variable regardless of

whether it is continuous or not. Note that the proof of the previos fact is similar to the

one made in Example 5.20. Also, observe that we can enumerate the elements in Γn for

each n ∈ N. What is more, if ln denotes the number of elements in Γn, we can write

Γn = {A1, . . . , Aln}.

Next, we generate a sample of m random numbers in [0, 1]. For a chosen level of the

fractal structure, n, we get the pre-measure of each element on it. After that, we get

the cumulative sum of ω(Ai), where i = 1, . . . , ln. Each of the random numbers we have

generated will be assigned a random number in the element of the level n according to

the cumulative sum of the pre-measures. More precisely, given a number in the sample

we have generated, x, it can happen:

1. If x ≤ ω(A1), then F (y) ≈ x, where y is a random point in A1.

2. If
∑j

i=1 ω(Ai) < x ≤
∑j+1

i=1 ω(Ai) (where j = 1, . . . , ln − 1), then we can approxi-

mate F (y) ≈ x, where y is a random point in Aj+1.

As it is natural, when we repeat that procedure for all the numbers in the [0, 1]-sample,

we get a random sample in X.

For example, let X be the real line and consider the finite fractal structure Γ, which

is defined by the levels Γn = {] − ∞,−n]} ∪ {] k
2n−1 ,

k+1
2n−1 ] : k = −n2n−1, . . . , n2n−1 −

1} ∪ {]n,+∞[}. Now, we define the pre-measure of each element in a certain level by

taking into account the cumulative distribution function of a normal distribution variable

N (0, 1). In Figure 6.1 one can see how the method works when choosing one of the first

three levels of Γ. Take into account that rand(1, 1) means a random number in [0, 1].
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(b) Approximation for the second level, Γ2
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(c) Approximation for the third level, Γ3

Figure 6.1: F (y) ≈ x according to the method to generate samples

See Figure 6.2 to have a look at the normalized histograms that we can get when

we generate a sample of 100, 1000, 10000 and 100000 data respectively, according to the

procedure explained before when we consider the level 10 of Γ.

However, the method we have just introduced does not only let us generate samples

of a univariate probability distribution but also from a multivariate one (or random

vector). That is the reason why we introduce an example where, by using a finite fractal

structure on R2, it is possible to generate a sample from a bivariate normal distribution.

Let us consider, for example, the finite fractal structure ∆ whose levels are defined by

∆n = {A×B : A,B ∈ Γn}. Its first two levels can be seen in Figure 6.3.
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(a) m = 100 (b) m = 1000

(c) m = 10000 (d) m = 100000

Figure 6.2: Normalized histograms for level 10 of the fractal structure according to the

sample size, m, of N (0, 1)

1 

−1 

−1 
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0 

(a) Level 1

1 

−1 

2 −2 −1 

1 

2 

−2 

0 

(b) Level 2

Figure 6.3: Levels of the finite fractal structure ∆ on R2

Now, if F is the cumulative distribution function of a bivariate normal vector, (X, Y ),
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with mean vector and covariance matrix

µ = (µX , µY ) = (0, 0), Σ =

 σ2
X σX,Y

σX,Y σ2
Y

 =

 1 0

0 1


where σX,Y denotes the covariance between X and Y , then the pre-measure of each

element of the fractal structure can be defined by

ω(Ai) = ω([ai, bi]× [ci, di]) = F (bi, di) + F (ai, ci)− F (ai, di)− F (bi, ci)

for each Ai ∈ ∆n and each i = 1, . . . , (n2n + 2)2. The proof that ω gives us a probability

measure on R2 according to the construction method introduced in this work is analogous

to the one made in Example 5.20.

See Figure 6.4 to have a look at the normalized histograms that we can get when

we generate a sample of 100, 1000, 10000 and 100000 data respectively, according to the

procedure explained before when we consider the level 5 of ∆.

(a) m = 100 (b) m = 1000

(c) m = 10000 (d) m = 100000

Figure 6.4: Histograms for level 5 of the fractal structure ∆ according to the sample

size, m, of a standard bivariate normal distribution
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6.2 A estimation method based on fractal structures

Let Γ be a finite fractal structure on a space and consider a sample of length m from a

certain probability distribution. Our goal is to estimate the value of a certain parameter

of the distribution (or vector of parameters, that will be denoted by θ). For that purpose,

the estimation method will try to maximize the probability that, in each element of the

fractal structure (for a given level), there are as much data of the sample as there are

actually. Since Γ is finite, we can denote the number of elements in the level n by ln for

each n ∈ N. Note that if we call ωθ the pre-measure induced by the distribution whose

parameter(s) we want to estimate, the random variable which gives us the probability

that r of these data belong to a certain element in Γn, Ai, is a binomial, B(m,ωθ(Ai))

for each i ∈ {1, . . . , ln} and each n ∈ N. Now, for each level n ∈ {1, . . . , nM} (where nM

is the maximum level considered in the estimation), we define

hn(θ) =
ln∏
i=1

P [X = ri|X ∼ B(m,ωθ(Ai))]

where ri is the number of elements in the sample which belong to Ai. The estimated

parameter is the one that maximizes h(θ) =
∏nM

n=1 hn(θ), and will be denoted by θ̂.

6.2.1 Estimation based on a known random variable

Consider a random variable, Y , on a space with a finite fractal structure, Γ. More-

over, assume that the sample is given over the real line and that the fractal structure is

the one defined by the levels Γn = {]−∞,−n]}∪{] k
2n−1 ,

k+1
2n−1 ] : k = −n2n−1, . . . , n2n−1−

1} ∪ {]n,+∞[}. In this case, we can define the pre-measure ω(Ai) = FY (bi) − FY (ai),

where FY is the cumulative distribution function of the random variable Y . Indeed, as it

was stated in the previous subsection, ω gives us a probability measure on X according

to the construction made in the previous chapters.

In what follows, we introduce an example of estimation for a sample of a normal

distribution whose mean and standard deviation are, respectively, 1 and 2. We show the

results for several maximum levels of the fractal structure (from the first to the fifth).

If we repeat the procedure 100 times, we get the mean and the standard deviation of

the results and collect them in the following tables. In Tables 6.1 and 6.2 we consider

a sample of 100 data and give, respectively, the estimated value for the mean (denoted
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by µ̂) and the standard deviation (denoted by σ̂). Apart from that, in Tables 6.3 and

6.4 we get results of the estimations for a sample of size 1000. Moreover, we compare

those results with those given by the maximum likelihood estimator which, as it is well

known, is one of the best known estimators. In order to get an estimator for the mean

and standard deviation of a normal distribution N (µ, σ), the estimators given by this

method, for the sample x1, . . . , xn, are

µ̂ = x =
1

n

n∑
i=1

xi, σ̂ =

√√√√ n∑
i=1

(xi − x)2

n

However, while the estimator for the mean keeps on being the mean of the sample when

the standard deviation in known, the one for the standard deviation when the mean is

known is given by

σ̂ =

√√√√ n∑
i=1

(xi − µ)2

n

In the results we introduce next we will work with the case that we want to estimate one

parameter when the other one is known, although it is possible to estimate both jointly.

For further reference about the maximum likelihood estimator see, for example, [52,

Section 8.7].

µ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.03564 0.19986

1 1.04987 0.23353

2 1.04684 0.21391

New 3 1.04261 0.20798

4 1.04083 0.20556

5 1.03959 0.20367

Table 6.1: Estimations of the mean for a sample of size 100
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σ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.99196 0.14360

1 2.01570 0.28990

2 2.01384 0.21313

New 3 2.00256 0.17654

4 1.99936 0.15796

5 1.99693 0.14952

Table 6.2: Estimations of the standard deviation for a sample of size 100

µ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.00041 0.06219

1 1.00101 0.06479

2 0.99988 0.06322

New 3 1.00005 0.06115

4 1.00024 0.06088

5 1.00018 0.06078

Table 6.3: Estimations of the mean for a sample of size 1000

σ̂ Maximum level Mean Standard deviation

Maximum likelihood 2.00309 0.04645

1 1.99776 0.08607

2 2.00048 0.06678

New 3 2.00134 0.05777

4 2.00238 0.05331

5 2.00247 0.05060

Table 6.4: Estimations of the standard deviation for a sample of size 1000

Once we see the results in the previous tables, we can conclude some aspects:
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� The new estimation method gives us results that are very similar to those we can

get by using the maximum likelihood method.

� The higher the maximum level of the fractal structure is, the better the estimate.

� The larger the sample length of the fractal structure is, the better the estimate.

6.2.2 Estimation from a uniform distribution of the pre-measure

Moreover, we can define a finite fractal structure, Γ, on a space by taking into account

some random variable such that the pre-measure is the same for each A ∈ Γn and each

n ∈ N. Indeed, that construction is made in Example 5.29 in detail. In that example,

we also proved that the pre-measure defined uniformly gives us a probability measure

on the space according to the procedure of construction of measures that was developed

in the previous chapters. In this subsection we use this finite fractal structure together

with the pre-measure defined by ω(An) = 1
2n

for each An ∈ Γn and each n ∈ N, to

estimate the parameters of a normal random variable when we are given a sample of it.

However, there is a significative difference between the estimation made in this sub-

section with respect to the one introduced in the previous one: the parameter does not

only give us the definition of the pre-measure, but also we consider a finite fractal struc-

ture whose levels are given by the cumulative distribution function which depends on

the parameter(s) θ.

µ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.00374 0.19144

1 0.95989 0.22088

2 0.97545 0.22562

New 3 0.99099 0.23048

4 1.00766 0.22096

5 0.99925 0.24274

Table 6.5: Estimations of the mean for a sample of size 100
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σ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.98390 0.12941

1 x x

2 1.95974 0.22666

New 3 1.98571 0.20760

4 1.98639 0.18443

5 1.99893 0.18065

Table 6.6: Estimations of the standard deviation for a sample of size 100

µ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.00182 0.06706

1 0.99452 0.08291

2 1.00339 0.07713

New 3 1.00314 0.07741

4 0.99852 0.07600

5 1.00280 0.07926

Table 6.7: Estimations of the mean for a sample of size 1000

σ̂ Maximum level Mean Standard deviation

Maximum likelihood 2.00443 0.04395

1 x x

2 1.99487 0.06735

New 3 1.99594 0.05770

4 1.99593 0.05555

5 1.99826 0.05704

Table 6.8: Estimations of the standard deviation for a sample of size 1000

Once we have shown the results of the estimations, note that, although the fractal

structure is considered in a different way with respect to the previous subsection, the
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estimations get better as we consider a higher level of the fractal structure. Moreover,

the size of the sample implies differences in the results, since the estimation is better

when the size is greater. However, the estimation made for the standard deviation has

not been collected when considering the first level of the fractal structure (see x in

Tables 6.6 and 6.8). The reason why we do not collect that data in the table is due

to the fact that h(σ) is constant in this case. Indeed, by the construction made of the

fractal structure, it holds that Γ1 = {]−∞, 1], [1,∞[} regardless of σ.

6.2.3 The estimation method against outliers

As it was stated in the previous subsections as conclusions, the new estimation

method lets us get similar results to the given by the maximum likelihood method.

Hence, it does make sense to ask ourselves if there exist some situations in which the

method based on fractal structures improves the estimation of the parameters. For ex-

ample, we can add some completely unrelated data to the distribution whose sample has

been considered. This data is known as outliers.

Since in the previous two subsections we have shown the results for the estimation

of a mean and the standard deviation of a normal sample, we will keep the same kind

of sample, with 1000 data, and add it 10 outliers according to:

� A normal distribution with mean 1 and standard deviation 5. See Tables 6.9 and

6.10.

� A normal distribution with mean 3 and standard deviation 5. See Tables 6.11 and

6.12.

� An exponential distribution with mean 10. See Tables 6.13 and 6.14.
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µ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.00146 0.05925

1 1.00021 0.06915

2 1.00223 0.06508

New 3 1.00185 0.06289

4 1.00139 0.06131

5 1.00106 0.06054

Table 6.9: Estimations of the mean for a 1000 data sample with 10 N (1, 5) outliers

σ̂ Maximum level Mean Standard deviation

Maximum likelihood 2.04455 0.05215

1 2.01766 0.09947

2 2.01814 0.07073

New 3 2.01629 0.05984

4 2.01671 0.05468

5 2.01791 0.05151

Table 6.10: Estimations of the standard deviation for a 1000 data sample with 10N (1, 5)

outliers

µ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.02992 0.06127

1 1.01461 0.07898

2 1.01605 0.07122

New 3 1.01679 0.06812

4 1.01791 0.06608

5 1.01871 0.06501

Table 6.11: Estimations of the mean for a 1000 data sample with 10 N (3, 5) outliers
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σ̂ Maximum level Mean Standard deviation

Maximum likelihood 2.05728 0.05375

1 2.00155 0.08630

2 2.00935 0.06600

New 3 2.01267 0.05588

4 2.01625 0.05140

5 2.01901 0.04932

Table 6.12: Estimations of the standard deviation for a 1000 data sample with 10N (3, 5)

outliers

µ̂ Maximum level Mean Standard deviation

Maximum likelihood 1.08863 0.07425

1 1.01802 0.08195

2 1.02167 0.07442

New 3 1.02362 0.07146

4 1.02538 0.07024

5 1.02737 0.06949

Table 6.13: Estimations of the mean for a 1000 data sample with 10 exponential outliers

σ̂ Maximum level Mean Standard deviation

Maximum likelihood 2.35858 0.22481

1 1.99370 0.09067

2 2.00123 0.07055

New 3 2.00425 0.06112

4 2.00764 0.05565

5 2.01220 0.05239

Table 6.14: Estimations of the standard deviation for a 1000 data sample with 10 expo-

nential outliers
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Once we have had a look at the results collected in the previous tables, it is clear

that, in the presence of outliers, our method offers better estimations that the maximum

likelihood method.

6.3 A goodness-of-fit test based on fractal structures

The last application that arises from the theory that has been developed in this first

part of the work consists of designing a test to check if some given sample comes from

a certain distribution or not. The idea of this goodness-of-fit test is based on the χ2

distribution test, for which [52, Section 10.3] is a good reference. The difference between

the new goodness-of-fit test and the classical one is that our test takes advantage of the

recursive nature of the fractal structure to be more exact than the known one.

Let Y be a space with a finite fractal structure, Γ, such that each element in Γn+1 is

contained in only one element of level n. The idea of the test is comparing the number

of observations that belong to each of the elements in the fractal structure (for a certain

level) with the number of observations that are expected to be got in case the data really

come from a certain distribution.

Let us consider a random sample with m data of a known distribution that is given by

a random variable, X. Since the fractal structure is finite, we can enumerate the elements

in each level. For example, Γ1 = {A1, . . . , Ak} and each element in Γ1 is divided into a

finite number of elements in Γ2. Hence, we can write Γ2 = {A11, A12, . . . , Ak1, Ak2, . . .}
and recursively, we call the elements in Γn for each n ∈ N.

Now, for the m data we have generated, Ni will denote the random variable which

describes the number of sample values that belong to Ai and by pi = P [X ∈ Ai] for

each i = 1, . . . , k, where X is the random variable for what we want to test the sample.

Hence, Ni ∼ B(m, pi). Recursively Nij will denote the random variable which describes

the number of sample values that belong to Aij when the number of data in Ai is known,

and pij = P [X ∈ Aij] for each j = 1, . . . , l and each i = 1, . . . , k, and so on. This implies

that Nij ∼ B(ni,
pij
pi

), where ni is the number of data in Ai. Recursively it can be known

each probability on the form pw1...wn for each n ∈ N and, consequently, the distribution

of Nw1...wn .

Our first goal is defining an statistic that measures the deviation of the distribution
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of the sample from the hypothetical one. For that purpose, by following a similar idea

to the one by the χ2 test, we define one statistic for each level of the fractal structure

as follows:

E1 =
k∑
i=1

(Ni −mpi)2

mpi

E2 =
k∑
i=1

l∑
j=1

(Nij −Ni
pij
pi

)2

Ni
pij
pi

...

En =

j1∑
i1=1

. . .

jn∑
in=1

(Ni1...in −Ni1...in−1

pi1...in
pi1...in−1

)2

Ni1...in−1

pi1...in
pi1...in−1

, ∀n > 0

Note that, as it is well known in the classical case, it holds that

E1 ∼ χ2
k−1, E2 ∼ χ2

lk−1, . . . , En ∼ χ2
j1...jn−1

However, it is not clear the independence between Ni, Nij and the rest of binomial

random variables that we consider in different sums. Nevertheless, the random variables

we are considering to get the statistic are not only the binomial, but the discrepancy

between expected frequencies and the observed ones. That error seems to be independent

when considering Ei and Ej with i 6= j. The proof of this last fact opens a new research

line to continue in the future.

Anyway, under the assumption that E1, . . . , En are independent, the test consists

of considering the null hypothesis which claims that the sample values follow the same

distribution as the random variable X. That is why, for a significance level α, we will

reject the null hypothesis if
∑n

i=1Ei > χ2
s,1−α, where s is the sum of the degrees of

freedom of Ei from i = 1 to the chosen level.
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The theory of a cumulative distribution function (in short, cdf) of a random variable

is a basic and well established theory in Probability and Mathematics. This theory is

interesting by several reasons: the pseudo-inverse of the cdf can be used to generate

random samples of the random variable, which is essential in Montecarlo simulations,

for example; it provides an equivalence between probability measures on the reals and

distribution functions, which allows to forget about the measure (a set function) to focus

on the cdf (a usual function). This allows to describe random variables in a simple way

by providing its cdf.

Recall that, in the classical case, the cdf of a real-valued random variable X is the

function defined by FX(x) = P [X ≤ x] and it satisfies the following properties:

1. F is non-decreasing, which means that for each x, y ∈ R with x < y, we have

F (x) ≤ F (y).

2. F is right-continuous, which means that F (a) = limx→a+ F (x) for each a ∈ R.

Furthermore, limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

Moreover, when a cdf, F , is strictly increasing and continuous, it holds that F−1(p)

is the unique real number x such that F (x) = p for each p ∈ [0, 1]. In that case, this

defines the inverse of the distribution function.

The pseudo-inverse is not unique for some distributions (for example, in the case

that the density function is fX(x) = 0 for each a < x < b, causing FX to be constant).

This problem can be solved by defining, for each p ∈ [0, 1], the pseudo-inverse of the

distribution function by F−1(p) = inf{x ∈ R : F (x) ≥ p}.

The inverse of a cdf lets us generate samples of a distribution. Indeed, let X be a

random variable whose distribution can be described by the cdf F . Our goal is to gener-

ate values of X according to this distribution. The inverse transform sampling method

is as follows: generate a random number, u, from the standard uniform distribution in

the interval [0, 1] and, then, consider x = F−1(u).

Roughly speaking, given a continuous uniform random variable, U , in [0, 1] and a

cdf, F , the random variable X = F−1(U) has distribution F (or, X is distributed F ).

For further reference about the pseudo-inverse of F see, for example, [20, Chapter 1].

As we can see before, since the main properties of a cdf are related to order and
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continuity, a linearly ordered topological space (in short, LOTS) seems to be the natural

place where such a theory could be developed. The study of measures on LOTS is also

of interest (see [9], [12], [39], [56], [57] and [58]). In fact, another generalization of the

concept of distribution function can be found in [65].

In [43] (see also [16], [42] and [49]) it is proved the equivalence between probability

measures and fuzzy intervals in the real line. On the other hand, probabilistic metric and

normed spaces, which were introduced in [48] and [61] respectively, provide a different

(more studied) relationship between topology and probability measures. For further

reference about this topic see, for example, [1], [41] and [50].

In the second part of this work we describe a theory of a cdf on a separable LOTS

from a probability measure defined on this space. This function can be extended to

the Dedekind-MacNeille completion of the space where it does make sense to define the

pseudo-inverse. Moreover, we study the properties of both functions (the cdf and the

pseudo-inverse) and get results that are similar to those which are well known in the

classical case. For example, the pseudo-inverse of a cdf allows us to generate samples of

a distribution and give us the chance to calculate integrals with respect to the related

probability measure. Finally, we give some conditions such that there is an equivalence

between probability measures and distribution functions defined on a separable LOTS,

like it happens in the classical case. What is more, we prove that there is a one-to-one

relationship between the pseudo-inverse of a cdf and its probability measure. From this

theory, some applications have arisen, such as a goodness-of-fit test.

In the rest of this part, unless otherwise stated, X will be a separable LOTS and µ

will be a measure on X with respect to the Borel σ-algebra of X.
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The cdf of a probability measure on

a LOTS

The content of this chapter corresponds to [33].

The main goal of this chapter is to provide a first study of the definition and properties

of a cdf on a separable LOTS.

Our study begins with the proof of several properties of the order topology on a

separable LOTS by taking advantage of certain types of sequences in some cases (see

Section 7.1). In Section 7.2 we define the cumulative distribution function (cdf) of a

probability measure on a separable LOTS and prove that its properties are quite similar

to those which are well known in the classical case, described in the introduction to this

part of the work. Furthermore, from a cdf F , we will define F− which plays a similar

role to that played by limx→a− F (x) in the classical theory of distribution functions. We

also use F and F− to get the measure of an interval. On the other hand, Section 7.3

is dedicated to proving some aspects related to the discontinuities of a cdf. Section 7.4

introduces the concept of pseudo-inverse for a cdf defined on a separable LOTS, which

is a measurable function. Finally, Section 7.5 shows that, by using the pseudo-inverse of

a cdf, it is possible to calculate integrals with respect to the initial probability measure

and generate samples of a distribution in case that the separable LOTS is compact.
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7.1 The order on X

In this section we study some properties (mainly topological) of a separable LOTS.

The definition of the order topology, τ , (see Definition 2.23) suggests the next

Definition 7.1. Given x ∈ X, it is said to be a left-isolated (respectively right-isolated)

point if (< x) = ∅ (respectively (> x) = ∅) or there exists z ∈ X such that ]z, x[= ∅
(respectively there exists z ∈ X such that ]x, z[= ∅). Moreover, we will say that x ∈ X
is isolated if it is both right and left-isolated.

Lemma 7.2. Let A,B ⊆ X be such that Al = Bl (respectively Au = Bu). If there exists

inf A (respectively supA), then there exists inf B (respectively supB) and inf A = inf B

(respectively supA = supB).

Proof. Let A,B ⊆ X be such that Al = Bl and suppose that there exists inf A. It holds

that x ≤ inf A for each x ∈ Al. Now, since Al = Bl, we have that inf A ∈ Al = Bl and

x ≤ inf A for each x ∈ Bl, that is, inf A = inf B.

The case in which Au = Bu and there exists supA can be proven analogously.

Proposition 7.3. Let A ⊆ X be a nonempty subset such that it does not have a min-

imum (respectively a maximum). Then there exists a sequence (an) with an ∈ A such

that an+1 < an for each n ∈ N and Al = {an : n ∈ N}l (respectively an+1 > an for each

n ∈ N and Au = {an : n ∈ N}u).

Proof. Let D be a dense and countable subset of X and consider DA = {d ∈ D : d /∈ Al}.
Note that the fact that d /∈ Al is equivalent to the existence of a ∈ A such that a < d.

Moreover, DA ⊆ D, so DA is countable, so we can enumerate it as DA = {dn : n ∈ N}.
Given d1 ∈ DA, there exists a1 ∈ A such that a1 < d1. Suppose that an ∈ A is a sequence

defined by an < dn and an < an−1 for each n ∈ N. We define an+1 as follows. Since there

does not exist the minimum of A, we can choose a ∈ A such that a < an. Apart from

that, there exists a′ ∈ A such that a′ < dn+1. Hence, if we consider an+1 = min{a, a′},
then an+1 < an and an+1 < dn+1. Recursively we have defined a sequence an ∈ A such

that an+1 < an and an < dn for each n ∈ N.

Now, we prove that Al = {an : n ∈ N}l.

⊆) This is obvious.
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⊇) Let x ∈ X be such that x ≤ an for each n ∈ N. Now, we prove that x ≤ a for

each a ∈ A. For that purpose, let a ∈ A. Since there does not exist the minimum of

A, there exist a′ ∈ A such that a′ < a and a′′ ∈ A such that a′′ < a′. Consequently,

]a′′, a[ is a nonempty open set in X with respect to τ , so we can choose d ∈ D∩]a′′, a[.

Hence, d > a′′, which implies that d ∈ DA. It follows that there exists n0 ∈ N such that

d = dn0 . Therefore, x ≤ an0 < dn0 < a, which lets us conclude that x ≤ a.

Convex subsets can be described as countable union of intervals.

Corollary 7.4. Let A ⊆ X be a convex subset. Then it holds that:

1. If there exist both minimum and maximum of A, then A = [minA,maxA].

2. If there does not exist the minimum of A but it does its maximum, then there exists

a decreasing sequence an ∈ A such that A =
⋃
n∈N]an,maxA].

3. If there does not exist the maximum of A but it does its minimum, then there exists

an increasing sequence bn ∈ A such that A =
⋃
n∈N[minA, bn[.

4. If there does not exist the minimum of A nor its maximum, then there exist a de-

creasing sequence an ∈ A and an increasing one bn ∈ A such that A =
⋃
n∈N]an, bn[.

Proof. 1. It is clear.

2. Since A is nonempty and there does not exist the minimum of A, by Proposition

7.3, we can choose a sequence an ∈ A such that an+1 < an for each n ∈ N and

Al = {an : n ∈ N}l. Now, we prove that A =
⋃
n∈N]an,maxA].

⊆) Let x ∈ A. Since A does not have a minimum, then x /∈ Al, which implies that

x /∈ {an : n ∈ N}l. Hence, there exists n ∈ N such that an < x. Consequently,

x ∈
⋃
n∈N]an,maxA].

⊇) Let x ∈
⋃
n∈N]an,maxA]. Then there exists n ∈ N such that an < x ≤ maxA.

Hence, the fact that A is convex together with the fact that an ∈ A give us that

x ∈ A.

3. It can be proven similarly to the previous item.
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4. Since A is nonempty and there does not exist the minimum of A nor its maximum,

by Proposition 7.3, we can choose two sequences an, bn ∈ A such that an+1 < an

and bn+1 > bn for each n ∈ N and Al = {an : n ∈ N}l, Bu = {bn : n ∈ N}u. Now,

we prove that A =
⋃
n∈N]an, bn[.

⊆) Let x ∈ A. Since A does not have a minimum nor a maximum then x /∈ Al and

x /∈ Au, which implies that x /∈ {an : n ∈ N}l and x /∈ {bn : n ∈ N}u, then there

exist n1 ∈ N and n2 ∈ N such that an1 < x < bn2 . If we define n = max{n1, n2},
then it holds that an < x < bn and we conclude that x ∈

⋃
n∈N]an, bn[.

⊇) Let x ∈
⋃
n∈N]an, bn[. Then there exists n ∈ N such that an < x < bn. Hence,

the fact that A is convex together with the fact that an, bn ∈ A give us that x ∈ A.

Similarly, convex open subsets can be described as countable union of open intervals.

Corollary 7.5. Let A be an open and convex subset of X. Then A is the countable

union of open intervals.

Proof. We distinguish some cases depending on whether there exist the maximum or

the minimum of A:

1. Suppose that there does not exist the maximum of A nor its minimum. Then,

by Corollary 7.4, it holds that A can be written as the countable union of open

intervals.

2. Suppose that there does not exist the minimum of A but it does its maximum. By

the previous corollary, it holds that A =
⋃
n∈N]an,maxA]. Now, note that the fact

that A is open means that maxA is right-isolated so we can write A =
⋃
n∈N]an, b[,

where b is the following point to maxA. Hence, A is the countable union of open

intervals.

3. If there exists the minimum of A but not its maximum, we can proceed analogously

to claim that A =
⋃
n∈N]a, bn[, where a is the previous point to minA and (bn) is

an increasing sequence in A.

4. If there exist both minimum and maximum of A, then A =]a, b[, where a is the

previous point to minA and b is the following one to maxA.
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Next, we prove that a separable LOTS is first countable.

Proposition 7.6. τ is first countable.

Proof. Since X is separable with respect to the topology τ , there exists a countable

dense subset D of X. Now, we prove that given x ∈ X, each of the following countable

families is a countable neighborhood base of x with respect to the topology τ .

- Bx = {{x}} if x is isolated.

- Bx = {]a, b[: a < x < b; a, b ∈ D} if x is not left-isolated nor right-isolated.

- Bx = {[x, b[: x < b; b ∈ D} if x is left-isolated but it is not right-isolated.

- Bx = {]a, x] : a < x; a ∈ D} if x is right-isolated but it is not left-isolated.

For that purpose, we prove the next two items:

� Each element of Bx is a neighborhood of x for each x ∈ X. This is clear if we take

into account that each element in Bx is an open set with respect to the topology τ

(see Remark 2.26). Indeed, if x is left-isolated, then, given B ∈ Bx, we can write

B = [x, b[ for some b ∈ D with b > x. Equivalently, B =]a, b[, where a is the

previous point to x according to the order. The other cases are similar.

� For each neighborhood of x, U , there exists B ∈ Bx such that B ⊆ U . Indeed, let

U be a neighborhood of x. Then there exists an open set G such that x ∈ G ⊆ U .

Since G is open and B = {]a, b[: a < b} is an open base, we can consider a, b

such that ]a, b[⊆ G and a < x < b. Now, we distinguish some cases depending on

whether x is isolated or not:

1. Suppose that x is isolated. Then there exist y, z ∈ X such that y < x < z

and ]y, z[= {x}. In this case, {x} is an element of Bx which is contained in

U .

2. Suppose that x is not left-isolated nor right-isolated. Since ]a, x[ and ]x, b[

are both open in τ and D is dense in τ , we can choose c ∈]a, x[∩D and

d ∈]x, b[∩D. Furthermore, it holds that x ∈]c, d[⊆]a, b[⊆ G ⊆ U , which

finishes the proof.
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3. Suppose that x is left-isolated but it is not right-isolated. Then there exists

y ∈ X such that ]y, x[= ∅ and ]x, z[6= ∅ for each z > x. Since ]x, b[ is open in

τ and D is dense in τ , we can choose d ∈]x, b[∩D. Furthermore, it holds that

x ∈ [x, d[⊆]a, b[⊆ G ⊆ U .

4. Suppose that x is not left-isolated but it is right-isolated. Then there exists

z ∈ X such that ]y, x[ 6= ∅ and ]x, z[= ∅ for each y < x. Since ]a, x[ is a neigh-

borhood in τ and D is dense in τ , we can choose c ∈]a, x[∩D. Furthermore,

it holds that x ∈]c, x] ⊆]a, b[⊆ G ⊆ U .

We can choose a countable neighborhood base of each point such that its elements

are ordered, as the next remark shows.

Remark 7.7. Let x ∈ X. Then there exists a countable neighborhood base of x, B′x =

{]a′n, b′n[: a′n < x < b′n;n ∈ N} such that (an) is a non-decreasing sequence and (bn) a

non-increasing one.

Proof. Indeed, since τ is first countable, there exists a countable base of each point.

According to the previous proposition, in case that x is not left-isolated nor right-

isolated, we have that Bx = {]a1, b1[: a1 < x < b1; a1, b1 ∈ D} is a countable base of

x. Since D is a dense subset in τ and ]x, b1[ and ]a1, x[ are nonempty open sets in τ ,

there exist da1 ∈ D∩]a1, x[ and db1 ∈]x, b1[∩D. Now, define a2 = da1 and b2 = db1 .

Moreover, there exist da2 ∈ D∩]a2, x[ and db2 ∈ D∩]x, b2[. Now, we define a3 = da2 and

b3 = db2 . Recursively we have that B′x = {]an, bn[: an < x < bn;n ∈ N, an, bn ∈ D},
where an = dan−1 and bn = dbn−1 . It is clear that Bx is a neighborhood base of x.

Moreover, given n ∈ N it holds that ]an+1, bn+1[⊆]an, bn[ by definition of a′n and b′n.

We can proceed analogously to get a base for the right-isolated or left-isolated points.

Moreover, note that if x is isolated, the base given in the previous proposition satisfies

the condition given in this remark.

There exists an equivalence between the property of second countable for τ and the

countability of the set of isolated points.

Proposition 7.8. Let X be a LOTS. X is second countable with respect to the topology τ

if and only if X is separable and the set of points which are right-isolated or left-isolated

is countable.
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Proof. Let us define C1 and C2 to be, respectively, the set of left-isolated points and the

set of right-isolated points.

⇐) Let D be a countable dense subset of X. Moreover, suppose that C1 and C2 are

countable subsets. Consider the family B = {{x} : x ∈ C1 ∩ C2} ∪ {]a, x] : a < x, x ∈
C2, a ∈ D} ∪ {[x, b[: x < b, x ∈ C1, b ∈ D} ∪ {]a, b[: a < b, a, b ∈ D} and note that

it is an open base of X with respect to τ . Furthermore, the countability of the set of

right-isolated and left-isolated points gives us that B is countable. Hence, τ is second

countable.

⇒) Suppose that X is second countable with respect to τ . Then there exists a

countable open base, B = {Un : n ∈ N}. Since second countable spaces are separable,

we only must prove that C1 and C2 are countable subsets, which gives us that C1 ∪ C2

is also countable.

� C1 is countable: let x ∈ C1 and b1 > x with b1 ∈ D. Since B is an open base and

[x, b1[ is an open set containing x, there exists nx ∈ N such that x ∈ Unx ⊆ [x, b1[.

Now, let y ∈ C1 with y 6= x and b2 ∈ D with y < b2. Then there exists ny ∈ N such

that y ∈ Uny ⊆ [y, b2[ for b2 > y. Consequently, f : C1 → N given by f(x) = nx is

an injective function, which proves the countability of C1.

� The countability of C2 can be proven similarly to the countability of C1.

Now, we define the concept of right convergent and left convergent sequence.

Definition 7.9. Let x ∈ X and ν be a topology defined on X. We say that a sequence

xn ∈ X is right ν-convergent (respectively left ν-convergent) to x if xn
ν→ x and xn ≥ x

(respectively xn ≤ x) for each n ∈ N.

Now, we define the concept of monotonically right convergent and monotonically left

convergent sequence.

Definition 7.10. Let x ∈ X and ν be a topology defined on X. We say that a se-

quence xn ∈ X is monotonically right ν-convergent (respectively monotonically left ν-

convergent) to x if xn
ν→ x and x < xn+1 < xn (respectively xn < xn+1 < x) for each

n ∈ N.
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Proposition 7.11. Let x ∈ X. Then x is not left-isolated (respectively right-isolated)

if and only if there exists a monotone sequence which left τ -converges (respectively right

τ -converges) to x.

Proof. ⇒) Let x be a non-left-isolated point. Then x 6= minX. Since τ is first countable

(by Proposition 7.6), we can consider a countable neighborhood base of x, Bx = {]an, bn[:

n ∈ N}. Now, let a, b ∈ X be such that a < x < b. Then there exists n1 ∈ N such

that a ≤ an1 < x due to the fact that Bx is a neighborhood base of x. Since x is

not left-isolated, we can choose z1 ∈]an1 , x[. Now, we can consider n2 ∈ N such that

z1 ≤ an2 < x due to the fact that Bx is a neighborhood base of x. Recursively we can

construct a subsequence of (an), (aσ(n)), such that aσ(n) < aσ(n+1) < x and aσ(n) → x,

that is, (aσ(n)) is a monotone sequence which left τ -converges to x.

The proof is analogous in case that x is not right-isolated.

⇐) Let x ∈ X and suppose that it is a left-isolated point. If x = minX, the proof

is easy. Suppose that x 6= minX. Then there exists z ∈ X such that ]z, x[= ∅. Suppose

that there exists a monotone sequence which left τ -converges to x, (xn). Then it holds

that there exists n0 ∈ N such that xn > z for each n ≥ n0. Moreover, since xn < x, we

have that xn ∈]z, x[= ∅, which is a contradiction. Hence, x is not left-isolated.

The case in which there exists a monotone sequence which right τ -converges to x can

be proven analogously.

Lemma 7.12. 1. If (an) is a monotone sequence which left τ -converges to a, then

∪(< an) = (< a) = ∪(≤ an).

2. If (an) is a monotone sequence which right τ -converges to a, then ∩(< an) = (≤
a) = ∩(≤ an).

Proof. 1. Next, we prove both equalities:

� ∪(< an) = (< a). On the one hand, since an < a, we have that (< an) ⊆ (<

a). Therefore, ∪(< an) ⊆ (< a).

On the other hand, let x < a. Since an
τ→ a and an < a, there exists n ∈ N

such that x < an < a and, hence, x ∈ ∪(< an).
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� ∪(< an) = ∪(≤ an). On the one hand, let x ∈ ∪(< an). Then there exists

n ∈ N such that x ∈ (< an). It is clear that x ∈ (≤ an) and, hence,

x ∈ ∪(≤ an).

On the other hand, let x ∈ ∪(≤ an). Then there exists n ∈ N such that

x ∈ (≤ an). Since an < a and an
τ→ a, it holds that there exists m > n such

that an < am < a. The fact that x ∈ (≤ an) gives us that x ∈ (< am). We

conclude that x ∈ ∪(< an).

2. Next, we prove both equalities:

On the one hand, let x ≤ an for each n ∈ N and suppose that x > a. Then there

exists m ∈ N such that a < am < x, which is a contradiction with the fact that

x ≤ an for each n ∈ N. Hence, x ≤ a and ∩(≤ an) ⊆ (≤ a).

Moreover, since a < an for each n ∈ N, we have that (≤ a) ⊆ (< an). Therefore,

(≤ a) ⊆ ∩(< an).

Furthermore, it is clear that (< an) ⊆ (≤ an), so we conclude that ∩(< an) ⊆ ∩(≤
an) and we finish the proof.

Proposition 7.13. Each connected set in τ is convex.

Proof. Let A ⊆ X be a connected set. Suppose that A is not convex, which means that

there exist a, b ∈ A with a < b such that there exists x ∈ X \ A with a < x < b. Note

that (< x) and (> x) are both open sets in τ , which implies that U = (< x) ∩ A and

V = (> x) ∩ A are both open in A with the topology induced by τ in A. Note that

U, V 6= ∅, since a ∈ U, b ∈ V and U ∪ V = A, which implies that A is not connected.

Hence, A is convex.

7.2 Defining the cumulative distribution function

The definition of the cumulative distribution function of a probability measure de-

fined on the Borel σ-algebra of X is the next one.

Definition 7.14. The cumulative distribution function (in short, cdf) of a probability

measure µ on X is a function F : X → [0, 1] defined by F (x) = µ(≤ x) for each x ∈ X.
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Lemma 7.15. Let τ ′ be a first countable topology on X such that τ ⊆ τ ′. Let f :

X → [0, 1] be a monotonically non-decreasing function and x ∈ X and suppose that

f(xn) → f(x) for each monotone sequence which right τ ′-converges (respectively left

τ ′-converges) to x. Then f is right τ ′-continuous (respectively f is left τ ′-continuous).

Proof. Let x ∈ X and xn
τ ′→ x be a right τ ′-convergent sequence. If (xn) is eventually

constant (there exists k ∈ N such that xn = x for each n ≥ k), the proof is easy.

Otherwise, using that τ ⊆ τ ′, we can recursively define a decreasing subsequence (xσ(n))

of (xn) such that x < xσ(n+1) < xσ(n) for each n ∈ N.

It follows that (xσ(n)) is a monotone sequence which right τ ′-converges to x and,

hence, by hypothesis, f(xσ(n))→ f(x).

Given k ∈ N, we have that x < xσ(k). Since τ ⊆ τ ′, it follows that xn
τ→ x, which

gives us that there exists n0 ∈ N such that x ≤ xn < xσ(k) for each n ≥ n0.

Now, the monotonicity of f gives us that f(x) ≤ f(xn) ≤ f(xσ(k)) for each n ≥ n0.

We conclude that f(xn)→ f(x) and, hence, f is right τ ′-continuous.

We can proceed analogously to show that f is left τ ′-continuous when (xn) is left

τ ′-convergent to x.

Corollary 7.16. Let τ ′ be a first countable topology on X and f : X → [0, 1] a function.

If f is right and left τ ′-continuous, then f is τ ′-continuous.

Proof. Let x ∈ X and xn
τ ′→ x. Let σ1, σ2 : N → N be two increasing functions such

that xσ1(n) ≥ x and xσ2(n) ≤ x with σ1(N) ∪ σ2(N) = N. If either σ1(N) or σ2(N) is

finite, then the proof is easy. Otherwise, (xσ1(n)) is a right subsequence of (xn) and

(xσ2(n)) is a left subsequence of (xn). By hypothesis, it holds that f(xσ1(n))→ f(x) and

f(xσ2(n))→ f(x). It easily follows that f(xn)→ f(x), which means that f is continuous

with respect to the topology τ ′.

Remark 7.17. Note that Lemma 7.15 and Corollary 7.16 can be both applied to the

topology τ .

Corollary 7.18. Let τ ′ be a first countable topology on X with τ ⊆ τ ′ and let f : X →
[0, 1] be a monotonically non-decreasing function. Suppose that f(xn) → f(x) for each

monotone sequence which right τ ′-converges to x and each monotone sequence which left

τ ′-converges to x, (xn). Then f is continuous (with respect to the topology τ ′).
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Proof. It follows from Lemma 7.15 and Corollary 7.16.

Proposition 7.19. Let F be a cdf. Then:

1. F is monotonically non-decreasing.

2. F is right τ -continuous.

3. If there does not exist minX, then inf F (X) = 0.

4. supF (X) = 1.

Proof. 1. This is obvious if we take into account the monotonicity of µ that follows

from the fact that µ is a measure.

2. For the purpose of proving that F is right τ -continuous, let (xn) be a monotone

sequence which right τ -converges to x. Let us see that F (xn)→ F (x).

First, note that the fact that (xn) is a monotone sequence which right τ -converges

to x implies, by Lemma 7.12, that
⋂
n(≤ xn) = (≤ x). Moreover, (≤ xn) is a

monotonically non-increasing sequence, so (≤ xn) →
⋂
n(≤ xn) = (≤ x). Thus,

from the continuity from above of the measure µ, it follows that µ(≤ xn)→ µ(≤ x),

that is, F (xn)→ F (x). Therefore, by Lemma 7.15 and Remark 7.17, we have that

F is right τ -continuous.

3. If there exists minX, then F−(minX) = µ(< minX) = µ(∅) = 0. Suppose that

there does not exist minX. Suppose that there does not exist minX. Then, by

Proposition 7.3, we can consider a sequence (xn) in X such that xn+1 < xn for

each n ∈ N and {xn : n ∈ N}l = X l = ∅. Then we have that
⋂

(≤ xn) = ∅. Now,

note that (≤ xn) is a monotonically non-increasing sequence, which implies that

(≤ xn) →
⋂

(≤ xn) = ∅. By the continuity from above of the measure µ, it holds

that µ(≤ xn) = F (xn)→ µ(∅) = 0. Hence, inf{F (xn) : n ∈ N} = 0. Finally, if we

join the previous equality with the fact that 0 ≤ inf F (X) ≤ inf{F (xn) : n ∈ N},
we conclude that inf F (X) = 0.

4. We distinguish two cases depending on whether there exists the maximum of X

or not:
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(a) Suppose that there exists maxX. In this case, supF (X) = F (maxX) =

µ(X) = 1.

(b) Suppose that there does not exist maxX. By Proposition 7.3, we can consider

a sequence (xn) in X such that xn+1 > xn for each n ∈ N and {xn : n ∈
N}u = Xu = ∅. Then we have that

⋃
(≤ xn) = X. Now, note that (≤ xn)

is a monotonically non-decreasing sequence, which implies that (≤ xn) →⋃
(≤ xn) = X. By the continuity from below of the measure µ, it holds that

µ(≤ xn) = F (xn) → µ(X) = 1. Hence, sup{F (xn) : n ∈ N} = 1. Finally,

if we join the previous equality with the fact that sup{F (xn) : n ∈ N} ≤
supF (X) ≤ 1, we conclude that supF (X) = 1.

The previous proposition makes us wonder the next question.

Question 7.20. Let F : X → [0, 1] be a function satisfying the properties collected in

Proposition 7.19. Does there exist a probability measure µ on X such that its cdf, Fµ, is

F?

According to the previous results we can conclude the following.

Corollary 7.21. Let F be a cdf and x ∈ X. Then F is τ -continuous at x if and only if

F is left τ -continuous at x.

Proposition 7.22. Let x ∈ X and f be a monotonically non-decreasing function. If x

is left-isolated (respectively right-isolated), then f is left τ ′-continuous (respectively right

τ ′-continuous) at x, where τ ′ is a first countable topology such that τ ⊆ τ ′.

Proof. Let x ∈ X and suppose that it is left-isolated. The case in which x = minX is

obvious. Suppose that x 6= minX. Then there exists z ∈ X such that ]z, x[= ∅. Hence,

(> z) is open in τ and, consequently, a neighborhood of x. Let (xn) be a sequence which

left τ ′-converges to x. Then it is also left τ -convergent to x. Hence, there exists n0 ∈ N

such that xn ∈ (> z) for each n ≥ n0. Since xn ≤ x, we have that xn = x for each

n ≥ n0. Consequently, f(xn)→ f(x) and f is left τ ′-continuous at x.

The case in which x is right-isolated can be proven analogously.
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Corollary 7.23. Let µ be a probability measure on X and F its cdf. Let x ∈ X. If x is

left-isolated, then F is τ -continuous at x.

Proof. It immediately follows from Proposition 7.19, Corollary 7.21 and Proposition

7.22.

Definition 7.24. Let µ be a probability measure on X and F its cdf. We define F− :

X → [0, 1], by F−(x) = µ(< x) for each x ∈ X.

Note that F− is monotonically non-decreasing by the monotonicity of the measure.

Next, we introduce two results which relate F− to F .

Proposition 7.25. Let µ be a probability measure on X and F its cdf. Then supF (<

x) = F−(x) for each x ∈ X with x 6= minX.

Proof. ≥) Let x ∈ X with x 6= minX. We distinguish two cases depending on whether

x is left-isolated or not:

1. Suppose that x is not left-isolated. Then, by Proposition 7.11, there exists a

monotone sequence, (an), which left τ -converges to x. This implies that (≤ an)→
∪(≤ an). Moreover, Lemma 7.12 gives us that ∪(≤ an) = (< x) = ∪(< an).

Hence, (≤ an) → (< x) and, consequently, F (an) → µ(< x). Now, since an < x,

F (an) ≤ supF (< x). If we take limits, we have that µ(< x) = F−(x) ≤ supF (<

x).

2. Suppose that x is left-isolated. Then there exists z ∈ X such that z < x and

]z, x[= ∅, which implies that F (z) ≤ supF (< x). Moreover, note that (< x) =

(≤ z), which means that µ(< x) = F (z). We conclude that µ(< x) = F−(x) ≤
supF (< x).

≤) Let y ∈ X with y < x. Then F (y) ≤ µ(< x) and, hence, supF (< x) ≤ µ(< x) =

F−(x).

We can recover the cdf F from F−.

Proposition 7.26. Let F be a cdf. Then F (x) = inf F−(> x) for each x ∈ X with

x 6= maxX.
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Proof. ≤) Let x ∈ X with x 6= maxX and y ∈ X be such that y > x. Then µ(< y) ≥
µ(≤ x), that is, F (x) ≤ F−(y), which gives us that F (x) ≤ inf F−(> x).

≥) Let x ∈ X with x 6= maxX. We distinguish two cases depending on whether x

is right-isolated or not:

1. Suppose that x is right-isolated. Then there exists z ∈ X such that z > x and

]x, z[= ∅, which implies that inf F−(> x) ≤ F−(z). Moreover, note that (> x) =

(≥ z), which means that µ(> x) = µ(≥ z) or, equivalently, µ(≤ x) = µ(< z).

Hence, F (x) = F−(z). We conclude that inf F−(> x) ≤ F (x).

2. Suppose that x is not right-isolated. Then, by Proposition 7.11, there exists

a monotone sequence, (an), which right τ -converges to x. Since F is right τ -

continuous, we have that F (an) → F (x). Now, the fact that an > x gives us

that inf F−(> x) ≤ F−(an) ≤ F (an). Finally, if we take limits, we have that

inf F−(> x) ≤ F (x).

Lemma 7.27. Let µ be a probability measure on X and F its cdf. Given x ∈ X, it

holds that F (x) = F−(x) + µ({x}).

Proof. Indeed, given x ∈ X, by definition of cdf, we have that F (x) = µ(≤ x). Now,

since µ is σ-additive, F (x) = µ(< x) + µ({x}). We conclude that F (x) = F−(x) +

µ({x}).

A cdf lets us calculate the measure of ]a, b] for each a ≤ b according to the next

proposition and Lemma 7.27.

Proposition 7.28. Let µ be a probability measure on X and F its cdf. Then µ(]a, b]) =

F (b)− F (a) for each a, b ∈ X with a < b.

Proof. Let a, b ∈ X be such that a < b. Note that we can write (≤ b) = (≤ a)∪]a, b].

Now, since µ is a measure (and, hence, σ-additive) it holds that µ(≤ b) = µ(≤ a) +

µ(]a, b]), that is, µ(]a, b]) = F (b)− F (a).

Corollary 7.29. Let µ be a probability measure on X and F its cdf. Then:
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1. µ([a, b]) = F (b)− F−(a).

2. µ(]a, b[) = F−(b)− F (a).

3. µ([a, b[) = F−(b)− F−(a).

Proof. The proof is immediate if we take into account the previous proposition and

Lemma 7.27.

Proposition 7.30. Let µ be a probability measure on X and F its cdf. Let x ∈ X and

(xn) be a monotone sequence which left τ -converges to x. Then F (xn)→ F−(x).

Proof. Let x ∈ X and (xn) be a monotone sequence which left τ -converges to x. Lemma

7.12 gives us that
⋃
n(≤ xn) = (< x). Note that (≤ xn) is a monotonically non-

decreasing sequence, which means that (≤ xn) →
⋃
n(≤ xn) = (< x). Finally, by

the continuity from below of µ, it follows that µ(≤ xn) → µ(< x) = F−(x), that is,

F (xn)→ F−(x).

Next, we collect the properties of F−.

Proposition 7.31. Let µ be a probability measure on X and F its cdf. Then:

1. F− is monotonically non-decreasing.

2. F− is left τ -continuous.

3. inf F−(X) = 0.

4. If there does not exist the maximum of X, then supF−(X) = 1. Otherwise,

F−(maxX) = 1− µ({maxX}).

Proof. 1. This is obvious if we take into account the monotonicity of µ that follows

from the fact that it is a measure.

2. Let (xn) be a monotone sequence which left τ -converges to x. Then, by Proposition

7.30, it holds that F (xn)→ F−(x). Since (xn) is monotonically left τ -convergent,

it holds that xn < xn+1 < x, so the fact that F− is monotonically non-decreasing

implies that F (xn) ≤ F−(xn+1) ≤ F−(x). By taking limits, we conclude that

F−(xn)→ F−(x) and, by Lemma 7.15 and Remark 7.17, F− is left τ -continuous.
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3. By Proposition 7.3, we can consider a sequence (xn) in X such that xn+1 < xn for

each n ∈ N and {xn : n ∈ N}l = X l = ∅. Then we have that
⋂

(< xn) = ∅. Now,

note that (< xn) is a monotonically non-increasing sequence, which implies that

(< xn) →
⋂

(< xn) = ∅. By the continuity from above of the measure µ, it holds

that µ(< xn) = F−(xn) → µ(∅) = 0. Hence, inf{F−(xn) : n ∈ N} = 0. Finally, if

we join the previous equality with the fact that 0 ≤ inf F−(X) ≤ inf{F−(xn) : n ∈
N}, we conclude that inf F−(X) = 0.

4. We distinguish two cases depending on whether there exists the maximum of X

or not:

(a) Suppose that there does not exist maxX. By Proposition 7.3, there exists

a sequence (xn) in X such that xn+1 > xn for each n ∈ N and {xn : n ∈
N}u = Xu = ∅. Then we have

⋃
(< xn) = X. Now, note that (< xn)

is a monotonically non-decreasing sequence, which implies that (< xn) →⋃
(< xn) = X. By the continuity from below of the measure µ it holds that

µ(< xn) = F−(xn) → µ(X) = 1. Hence, sup{F−(xn) : n ∈ N} = 1. Finally,

if we join the previous equality with the fact that sup{F−(xn) : n ∈ N} ≤
supF−(X) ≤ 1, we conclude that supF−(X) = 1.

(b) Now, suppose that there exists maxX. Then Lemma 7.27 lets us claim that

F−(maxX) = F (maxX)− µ({maxX}) = 1− µ({maxX}).

Thus, the item is proved.

7.3 Discontinuities of a cdf

In this section we prove some results which are analogous to those proven in [19,

Chapter 1] and which are related to the discontinuities of a cdf.

First, we give a sufficient condition to ensure that a cdf is continuous at a point.

Proposition 7.32. Let x ∈ X, µ be a probability measure on X and F its cdf. If

µ({x}) = 0, then F is τ -continuous at x.
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Proof. Let (xn) be a monotone sequence which left τ -converges to x. Then, by Propo-

sition 7.30, it holds that F (xn)→ F−(x). By Lemma 7.27, it holds that F (x) = F−(x),

so F (xn)→ F (x) and, by Lemma 7.15 and Remark 7.17, F is left τ -continuous. Finally,

by Corollary 7.21, F is τ -continuous.

Next, we introduce a lemma that will be crucial to show that the set of discontinuity

points of a cdf is at most countable.

Lemma 7.33. Let µ be a probability measure on X and F its cdf. Then {x ∈ X :

µ({x}) > 0} is countable.

Proof. For every integer N , the number of points satisfying µ({x}) > 1
N

is at most N .

Hence, there are no more than a countable number of points with positive measure.

Next, we collect two properties of a cdf Fµ.

Proposition 7.34. Let µ be a probability measure on X. Then:

1. Fµ is determined by a dense set, D, in X (with respect to the topology τ) in its

points with null measure, that is, if for each x ∈ D it holds that Fµ(x) = Fδ(x),

then Fµ(x) = Fδ(x) for each x ∈ X with µ({x}) = 0 and δ({x}) = 0, where Fδ is

the cdf of a probability measure, δ, on X.

2. The set of discontinuity points of Fµ with respect to the topology τ is countable.

Proof. 1. Let x ∈ X with µ({x}) = 0 and δ({x}) = 0. We distinguish two cases:

(a) Suppose that x is left-isolated and right-isolated. Then there exist y, z ∈ X
such that ]y, z[= {x}, which implies that x ∈ D due to the fact that D is

dense. Consequently, Fµ(x) = Fδ(x).

(b) x is not left-isolated or it is not right-isolated. If x is not left-isolated, by

Proposition 7.11, there exists a sequence xn
τ→ x such that xn < xn+1 <

x. Now, since D is dense, it follows that there exists dn ∈ D such that

xn < dn < xn+1 and, hence, dn < dn+1 for each n ∈ N. Hence, dn → x

in τ . By hypothesis, we have that Fµ(dn) = Fδ(dn). By Proposition 7.30,

Fµ(dn) → Fµ−(x). However, Fµ−(x) = Fµ(x), since µ({x}) = 0 (see Lemma

7.27). Analogously, Fδ(dn)→ Fδ(x). Consequently, Fµ(x) = Fδ(x).

The case in which x is not right-isolated can be proven analogously.
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2. Let x ∈ X. By Proposition 7.32, we know that the fact that Fµ is not continuous

at x means that µ({x}) > 0. Since, by previous lemma, we have that {x ∈ X :

µ({x}) > 0} is countable, we conclude that the set of discontinuity points is at

most countable.

7.4 The pseudo-inverse of a cdf

In this section we see how to define the pseudo-inverse of a cdf F defined on X and

we gather some properties which relate this function to both F and F−. Its properties

are similar to those which characterize the pseudo-inverse in the classical case (see, for

example, [20, Th. 1.2.5]). Moreover, we see that it is measurable.

Now, we recall the definition of this function in the classical case (see the introduction

to this part of the work) to give a similar one in the context of a linearly ordered

topological space. However, there exists a problem when we mention the infimum of a

set, since there is no guarantee that every set has an infimum. Indeed, it is possible

to extend the cdf to the Dedekind–MacNeille completion so that the pseudo-inverse is

naturally defined from [0, 1] to the Dedekind–MacNeille completion as it can be seen in

the next chapter. Hence, in this part of the work, we restrict that definition to those

points which let us talk about the infimum of a set as the next definition shows.

Definition 7.35. Let F be a cdf. We define the pseudo-inverse of F as G : [0, 1]→ X

given by G(x) = inf{y ∈ X : F (y) ≥ x} for each x ∈ [0, 1] such that there exists the

infimum of {y ∈ X : F (y) ≥ x}.

Hereinafter, when we apply G to a point, we assume that G is defined at that point.

According to the previous definition, it is clear the next result.

Proposition 7.36. G is monotonically non-decreasing.

Proof. Let x, y ∈ [0, 1] with x < y. Note that {z ∈ X : F (z) ≥ y} ⊆ {z ∈ X : F (z) ≥ x}
and it follows that inf{z ∈ X : F (z) ≥ x} ≤ inf{z ∈ X : F (z) ≥ y}, that is, G(x) ≤
G(y), which means that G is monotonically non-decreasing.
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Lemma 7.37. Let a = inf{an : n ∈ N} (respectively a = sup{an : n ∈ N}), where (an)

is a sequence such that an+1 < an (respectively an+1 > an) for each n ∈ N. Then an
τ→ a.

Proof. Let (an) be a sequence in X such that an+1 < an for each n ∈ N and suppose

that there exists a = inf{an : n ∈ N}. Let b, c ∈ X ∪ {−∞,∞} be such that b < a < c.

Suppose that an ≥ c for each n ∈ N. Then inf{an : n ∈ N} ≥ c > a, a contradiction

with the fact that a = inf{an : n ∈ N}. Hence, there exists n0 ∈ N such that an0 < c.

Furthermore, an < c for each n ≥ n0, since an+1 < an for each n ∈ N. Consequently,

an
τ→ a.

The case in which a = sup{an : n ∈ N} and an+1 > an can be proven analogously.

Proposition 7.38. Let F be a cdf. Then:

1. G(F (x)) ≤ x for each x ∈ X.

2. F (G(r)) ≥ r for each r ∈ [0, 1].

Proof. 1. Indeed, x ∈ {z ∈ X : F (z) ≥ F (x)} and, hence, inf{z ∈ X : F (z) ≥
F (x)} ≤ x, which is equivalent to G(F (x)) ≤ x. This proves the first item.

2. Now, let y = G(r) = inf{z ∈ X : F (z) ≥ r}. If y = min{z ∈ X : F (z) ≥ r},
it is clear that F (y) ≥ r. Suppose that y 6= min{z ∈ X : F (z) ≥ r}. Then,

by Proposition 7.3, there exists a sequence yn ∈ {z ∈ X : F (z) ≥ r} such that

yn+1 < yn and {yn : n ∈ N}l = {z ∈ X : F (z) ≥ r}l. Furthermore, by Lemma 7.2,

it holds that y = inf{yn : n ∈ N}. Hence, Lemma 7.37 lets us claim that yn
τ→ y.

Consequently, the right τ -continuity of F gives us that F (yn)→ F (y). Moreover,

F (yn) ≥ r, since yn ∈ {z ∈ X : F (z) ≥ r}. If we join this fact with the fact that

F (yn)→ F (y), we conclude that F (y) ≥ r. This proves the second item.

We get, as an immediate corollary, the following.

Corollary 7.39. G(r) ≤ x if and only if r ≤ F (x) for each x ∈ X and each r ∈ [0, 1].

Next result collects some properties of G which arise from some relationships between

F and F− and some conditions on them.
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Proposition 7.40. Let F be a cdf and let x ∈ X and r ∈ [0, 1]. Then:

1. F (x) < r if and only if G(r) > x.

2. If F−(x) < r, then x ≤ G(r).

3. If F−(x) < r ≤ F (x), then G is defined at r and G(r) = x.

4. If r < F−(x), then G(r) < x.

5. If r = F−(x), then G(r) ≤ x.

Proof. 1. Note that it is an immediate consequence of Corollary 7.39.

2. Suppose that G(r) < x. Then µ(< x) ≥ µ(≤ G(r)) or, equivalently, F−(x) ≥
F (G(r)) ≥ r, that is, F−(x) ≥ r.

3. Let x ∈ X and r ∈ [0, 1] be such that F−(x) < r ≤ F (x). First, note that if y < x,

then F (y) ≤ supF (< x) = F−(x) < r and, hence, x = inf{y ∈ X : F (y) ≥ r}. It

follows that G is defined at r and x = G(r).

4. Let x ∈ X and r ∈ [0, 1]. Suppose that r < F−(x). Since F−(x) = supF (< x),

there exists y < x such that r < F (y) ≤ F−(x). Since F (y) > r, then y ≥ inf{z ∈
X : F (z) ≥ r} = G(r). We conclude that G(r) < x.

5. Suppose that r = F−(x). The fact that F−(x) ≤ F (x) for each x ∈ X gives us

that F (x) ≥ r, which is equivalent, by Corollary 7.39, to G(r) ≤ x.

We prove another property of G.

Proposition 7.41. G is left τ -continuous.

Proof. Let (rn) be a sequence in [0, 1[ which is left convergent to r ∈ [0, 1[ with rn 6= r.

Since rn ≤ r, by the monotonicity of G (see Proposition 7.36), we have that G(rn) ≤
G(r). Now, we prove that G(r) = sup{G(rn) : n ∈ N}. For this purpose, let x ∈
{G(rn) : n ∈ N}u and suppose that x < G(r). By Proposition 7.40.1, it holds that

F (x) < r, so there exists n ∈ N such that F (x) < rn. On the other hand, since

x ∈ {G(rn) : n ∈ N}u, then G(rn) ≤ x for each n ∈ N. By the monotonicity of
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F , we have that F (G(rn)) ≤ F (x) and, hence, by Proposition 7.38, rn ≤ F (x), since

F (G(rn)) ≥ rn. If we join this fact with the fact that F (x) < rn for some n ∈ N, we

conclude that rn < rn, a contradiction.

It follows, by Lemma 7.37, that (G(rn)) τ -converges to G(r).

Next proposition collects some properties of F and F− which arise from considering

some conditions on G.

Proposition 7.42. Let F be a cdf and let x ∈ X and r ∈ [0, 1]. Then:

1. G(r) > x if and only if F (x) < r.

2. If G(r) = x, then F−(x) ≤ r ≤ F (x).

3. If G(r) < x, then r ≤ F−(x).

Proof. 1. Note that this item is the same as Proposition 7.40.1.

2. Suppose that G(r) = x and that r > F (x). By item 1, it follows that G(r) > x,

which is a contradiction with the fact that G(r) = x.

Now, suppose that r < F−(x). Then Proposition 7.40.4 gives us that G(r) < x,

which is a contradiction with the fact that G(r) = x.

We conclude that F−(x) ≤ r ≤ F (x).

3. It is equivalent to Proposition 7.40.2.

Some consequences that arise from the previous propositions are collected next.

Corollary 7.43. Let F be a cdf and r ∈ [0, 1]. Then:

1. F−(G(r)) ≤ r ≤ F (G(r)).

2. If F (G(r)) > r, then µ({G(r)}) > 0.

Proof. 1. Let r ∈ [0, 1]. On the one hand, suppose that F−(G(r)) > r. Then, by

Proposition 7.40.4, it holds that G(r) < G(r), which is a contradiction. Hence,

F−(G(r)) ≤ r.
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On the other hand, the inequality r ≤ F (G(r)) is clear if we take into account

Proposition 7.38.

2. By Lemma 7.27, F (x) = F−(x)+µ({x}) for each x ∈ X, so we have that F (G(r)) =

F−(G(r)) + µ({G(r)}). If F (G(r)) > r, it holds that F−(G(r)) + µ({G(r)}) > r.

Moreover, if we join this fact with the previous item, we conclude that µ({G(r)}) >
0.

Corollary 7.44. Let r ∈ [0, 1]. If µ({G(r)}) = 0, then F (G(r)) = r.

Now, we introduce some results to characterize the injectivity of G and F .

Proposition 7.45. µ({x}) = 0 for each x ∈ X if and only if G is injective.

Proof. ⇒) It immediately follows from Proposition 7.42.2. Indeed, this proposition gives

us that, if G(r) = x, then F−(x) ≤ r ≤ F (x). Suppose that there exist r, s ∈ X such

that r 6= s with G(r) = G(s) = x. Then F−(G(r)) ≤ r ≤ F (G(r)) and F−(G(r)) ≤ s ≤
F (G(r)). Since µ({G(r)}) = 0, it holds that F−(G(r)) = F (G(r)) = r = s and, hence,

G is injective.

⇐) Suppose that there exists x ∈ X such that µ({x}) > 0. Then F−(x) < F (x).

Now, let r ∈ [0, 1] be such that F−(x) < r < F (x). By Proposition 7.40.3, we have

that G is defined at r and G(r) = G(F (x)) = x for each r ∈]F−(x), F (x)[, which is a

contradiction with the fact that G is injective.

Proposition 7.46. Let F be a cdf. Then F is injective if and only if µ(]a, b]) > 0 for

each a < b.

Proof. Let a, b ∈ X be such that a < b. Note that, by Proposition 7.28, µ(]a, b]) = 0 is

equivalent to F (b)−F (a) = 0, that is, F (b) = F (a) if and only if F is not injective.

And we get, as immediate corollary, the next one.

Corollary 7.47. Let F be a cdf of a probability measure µ, and let A ⊆ [0, 1] be the

subset of points where G is defined. The following statements are equivalent:

1. F ◦G(r) = r for each r ∈ A, F (X) ⊆ A and G ◦ F (x) = x for each x ∈ X.
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2. F is injective and F (X) = A.

3. G : A→ X is bijective.

4. µ(]a, b]) > 0 for each a < b and µ({a}) = 0 for each a ∈ X.

Proof. First, we prove the following result.

Claim 7.48. If F is injective, then F (X) ⊆ A and G(F (x)) = x for each x ∈ X.

Proof. Suppose that there exists x ∈ X such that G is not defined at F (x), that is,

there does not exist the infimum of {y ∈ X : F (y) ≥ F (x)}. It follows that x is not the

infimum of the latter set, so there exists y < x with F (y) ≥ F (x). By the monotonicity

of F , it follows that F (y) = F (x) and, since F is injective, y = x, a contradiction. We

conclude that F (X) ⊆ A.

Finally, let x ∈ X. Then F (x) ∈ A and G(F (x)) = inf{y ∈ X : F (y) ≥ F (x)}. On

the other hand, if y < x, then F (y) ≤ F (x) and, since F is injective, F (y) < F (x).

Therefore, G(F (x)) = x.

(1) =⇒ (2). Since F (X) ⊆ A and G(F (x)) = x for each x ∈ X, it follows that F

is injective. Now, we prove that A ⊆ F (X). Indeed, let r ∈ A. Then F (G(r)) = r, so

r ∈ F (X).

(1) =⇒ (3). Since G(F (x)) = x for each x ∈ X, it follows that G is surjective.

Since F (G(r)) = r for each r ∈ A, it follows that G is injective.

(1) =⇒ (4). Since (1) implies (2) and (3), we have that F and G are both injective,

so (4) follows from Propositions 7.45 and 7.46.

(2) =⇒ (1). Let r ∈ A. Since F (X) = A and F is injective, there is only one

x ∈ X such that F (x) = r. It follows, by definition of G, that G(r) = x and, hence,

F (G(r)) = F (x) = r. By the previous claim, we have the rest of item (1).

(3) =⇒ (1). Let r ∈ A. Then F (G(r)) ≥ r by Proposition 7.38. Suppose that

F (G(r)) > r. It easily follows that ]r, F (G(r))[⊆ A and G(]r, F (G(r))[) = G(r), but

this is a contradiction, since G is injective. We conclude that F (G(r)) = r.

Now, let x ∈ X. Since G is bijective, there exists r ∈ A such that x = G(r). It

follows that F (x) = F (G(r)) = r and, hence, F (x) ∈ A. Therefore, F (X) ⊆ A.
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Finally, let x ∈ X. Then F (x) ∈ A and G(F (x)) = inf{y ∈ X : F (y) ≥ F (x)}.
Suppose that there exists y < x such that F (y) ≥ F (x). By the monotonicity of F ,

it follows that F (y) = F (x). Since G is bijective, there exist r, s ∈ [0, 1] such that

G(r) = y and G(s) = x. Note that r < s by the monotonicity of G. It follows that

r = F (G(r)) = F (y) = F (x) = F (G(s)) = s, a contradiction. We conclude that

x = inf{y ∈ X : F (y) ≥ F (x)} = G(F (x)).

(4) =⇒ (1). By Corollary 7.44, it follows that F (G(r)) = r for each r ∈ A. By

Proposition 7.46, F is injective and, by the previous claim, it follows that F (X) ⊆ A

and G(F (x)) = x for each x ∈ X.

Proposition 7.49. Let a, b ∈ X be such that a < b. Then G−1(]a, b[) =]F (a), F−(b)|∩A,

where | means ] or [ and A is the subset of [0, 1] where G is defined.

Proof. First, we show that G−1(]a, b[) ⊆]F (a), F−(b)] ∩ A. For that purpose, let r ∈
G−1(]a, b[) and suppose that r /∈]F (a), F−(b)]. Then it can happen:

� r ≤ F (a), which implies, by Corollary 7.39, that G(r) ≤ a, which is a contradiction

with the fact that r ∈ G−1(]a, b[).

� r > F−(b), which gives us, by Proposition 7.40.2, that b ≤ G(r), which implies

that r /∈ G−1(]a, b[), since b /∈]a, b[, a contradiction.

Now, we prove that ]F (a), F−(b)[∩A ⊆ G−1(]a, b[). For that purpose, let r ∈
]F (a), F−(b)[ where G is defined, and suppose that r /∈ G−1(]a, b[). Then it can happen:

� G(r) ≤ a, which implies, by Corollary 7.39, that r ≤ F (a), a contradiction with

the fact that r > F (a).

� G(r) ≥ b which gives us, by Proposition 7.40.4, that r ≥ F−(b), a contradiction

with the fact that r < F−(b).

We conclude that r ∈ G−1(]a, b[).

According to Proposition 7.49, it is clear the next result.

Corollary 7.50. Suppose that G is defined on [0, 1]. Let a, b ∈ X be such that a < b.

Then G−1(]a, b[) ∈ σ([0, 1]), where σ([0, 1]) denotes de Borel σ-algebra with respect to

the Euclidean topology.
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Proof. Since G−1(]a, b[) =]F (a), F−(b)|, it is an open set or the intersection of an open

and a closed set. Consequently, G−1(]a, b[) ∈ σ([0, 1]).

Proposition 7.51. Each open set in τ is the countable union of open intervals.

Proof. Let G ⊆ X be an open set in τ . If G = ∅, the result is clear, since it can be

written as G =]a, a[. Now, suppose that G is nonempty. Then G =
⋃
i∈I Gi, where

Gi is a convex component of G for each i ∈ I (see Proposition 2.36). Now, we prove

that Gi is open for each i ∈ I. Let i ∈ I and x ∈ Gi. Since G is an open set and

{]a, b[: a, b ∈ X, a < b} is an open base of X with respect to τ , there exist a, b ∈ X such

that x ∈]a, b[⊆ G. Note that Gi∪]a, b[ is a convex set contained in G, which implies that

Gi∪]a, b[= Gi, since Gi is a convex component of G. Consequently, ]a, b[⊆ Gi, which

means that Gi is an open set. Now, let D be a countable dense subset of X. Then we

can choose di ∈ D ∩ Gi for each i ∈ I, which gives us the countability of I, since the

family {Gi : i ∈ I} is pairwise disjoint.

Since Gi is convex and open, by Corollary 7.5, Gi can be expressed as a countable

union of open intervals. Thus, G is the countable union of open intervals.

Next result will be essential to show that G is measurable with respect to the Borel

σ-algebra.

Theorem 7.52. ([10, Th. 1.7.2]) Let (Ω,A) and (Ω′,A′) be measurable spaces; further

let B′ be a generator of A′. A mapping T : Ω → Ω′ is measurable if and only if

T−1(A′) ∈ A for each A′ ∈ B′.

Since G−1(]a, b[) ∈ σ([0, 1]) for each a, b ∈ X with a < b and, by taking into account

Proposition 7.51, we conclude the next result.

Corollary 7.53. Suppose that G is defined on [0, 1]. Then G is measurable with respect

to the Borel σ-algebras.

Proof. To show that G is measurable we just have to use Corollary 7.50, Theorem 7.52

and the fact that each open set in τ can be written as the countable union of open

intervals (see Proposition 7.51).
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7.5 Generating samples

Once we have studied the properties of the pseudo-inverse, the next step is to take

advantage of this function in order to generate samples of a certain distribution.

Lemma 7.54. The family A = {
⋃n
i=1 |ai, bi| : a1 ≤ b1 < a2 ≤ b2 < . . . < an ≤ bn, a1 ∈

X ∪ {−∞}, bn ∈ X ∪ {∞}} is an algebra and the σ-algebra generated by it is the Borel

σ-algebra.

Proof. Now, we prove that A is an algebra.

1. A ∪ B ∈ A for each A,B ∈ A. Indeed, this is true because the union of two

intervals consists of two disjoint intervals in case A∩B = ∅ or it is a new interval

otherwise.

2. A ∩ B ∈ A for each A,B ∈ A. Indeed, this is true because the intersection of

two intervals is ∅ or a new interval. Hence, A ∩ B is the finite union of disjoint

intervals, which means that A ∩B ∈ A.

3. X\A ∈ A for each A ∈ A. Indeed, this is true due to the fact that X\A =

]−∞, a1| ∪ |b1, a2| ∪ . . . ∪ |bn−1, an| ∪ |bn,∞[∈ A.

Note that each element in A belongs to (X, τ). Indeed, this is true due to the fact

that, given A ∈ A, it consists of the finite union of open intervals, semi-open intervals

(which are the intersection of an open and a closed set) or closed intervals (which are

closed). Hence, S is contained in the Borel σ-algebra of (X, τ), where S = σ(A). Finally,

if G is an open set in (X, τ), by Proposition 7.51, it can be written as the countable

union of open intervals. Thus, G can be written as the countable union of elements in

A, which means that G ∈ S. In conclusion, S is the Borel σ-algebra of (X, τ).

Now, we want to prove the uniqueness of the measure with respect to its cdf.

First, recall Theorem 2.15, which is about the uniqueness of a measure. As a conse-

quence of it, we have that two measures that coincide in an algebra also coincide in its

generated σ-algebra.

Proposition 7.55. Let Fµ and Fδ be the cdfs of the measures µ and δ satisfying Fµ = Fδ.

Then µ = δ on the Borel σ-algebra of (X, τ).
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Proof. Let a, b ∈ X be such that a ≤ b. Then a cdf lets us determine the measure of

the set |a, b|. Indeed, we distinguish four cases depending on whether a and b belong to

|a, b| or not:

1. µ(]a, b]) = Fµ(b)− Fµ(a) = Fδ(b)− Fδ(a) = δ(]a, b]).

2. µ([a, b]) = Fµ(b)− Fµ−(a) = Fµ(b)− supFµ(< a) = Fδ(b)− supFδ(< a) = Fδ(b)−
Fδ−(a) = δ([a, b]), where we have taken into account that F−(x) = supF (< x) for

each x ∈ X (see Proposition 7.25).

3. µ(]a, b[) = Fµ−(b)−Fµ(a) = supFµ(< b)−Fµ(a) = supFδ(< b)−Fδ(a) = Fδ−(b)−
Fδ(a) = δ(]a, b[).

4. µ([a, b[) = Fµ−(b)−Fµ−(a) = supFµ(< b)− supFµ(< a) = supFδ(< b)− supFδ(<

a) = Fδ−(b)− Fδ−(a) = δ([a, b[).

Since µ(|a, b|) = δ(|a, b|) for each a, b ∈ X with a ≤ b, it follows that µ(A) = δ(A)

for each A ∈ A due to the σ-additivity of µ and δ as measures. Since µ = δ on A, we

conclude that µ = δ on σ(A), that is, they coincide in the Borel σ-algebra of (X, τ) by

the previous results.

Theorem 7.56. ([59, Th. A. 81]) A measurable function f from one measure space

(S1,A1, µ1) to a measurable space (S2,A2), f : S1 → S2, induces a measure on the range

S2. For each, A ∈ A2, define µ2(A) = µ1(f−1(A)). Integrals with respect to µ2 can be

written as integrals with respect to µ1 in the following way: If g : S2 → R is integrable,

then, ∫
g(y)dµ2(y) =

∫
g(f(x))dµ1(x)

Proposition 7.57. Let µ be a probability measure and suppose that G is defined on

[0, 1]. Then µ(A) = l(G−1(A)) for each A ∈ σ(X), where l is the Lebesgue measure and

σ(X) is the Borel σ-algebra of X.

Proof. By Proposition 7.49, we have that G−1(]a, b[) = ]F (a), F−(b)| for each a, b ∈ X
with a < b.

Moreover, by Corollary 4.6, it holds that µ(]a, b[) = F−(b) − F (a). It follows that

l(G−1(]a, b[)) = µ(]a, b[) for each a, b ∈ X with a < b.
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Now, let µ2 be the measure defined by µ2(A) = l(G−1(A)) for each A ∈ σ(X).

Indeed, µ2 is a measure by Theorem 7.56 and Corollary 7.53. Note that the fact that

µ(]a, b[) = µ2(]a, b[) for each a, b ∈ X with a < b, implies that µ = µ2 on the algebra A.

Therefore, µ and µ2 coincides in an algebra which generates σ(X), so they are equal in

σ(X) (see, for example, Theorem 2.15).

Consequently, we can write µ(A) = l(G−1(A)) for each A ∈ σ(X).

Finally, by taking into account the previous results, we can generate samples with

respect to the probability measure µ by following the classical procedure (see the intro-

duction to Part II). In our case we will have to use G to do it.

Remark 7.58. Suppose that G is defined on [0, 1]. We can also calculate integrals with

respect to µ by using Theorem 7.56, so for g : X → R,∫
g(x)dµ(x) =

∫
g(G(t))dt

Remark 7.59. Suppose that X is compact. Then every subset of X has both infimum

and supremum (see Proposition 2.31) and, hence, G is defined at each point of [0, 1].

Therefore, in this case, we can generate samples with respect to a distribution based on

a measure µ.

Remark 7.60. Note that the classical theory for the distribution function is a particular

case of the one we have developed for a separable LOTS.



Chapter 8

The cdf of a probability measure on

the Dedekind-MacNeille completion

of a LOTS

The content of this chapter corresponds to [34].

In the previous chapter we provided a theory of a cdf F (defined from a probability

measure µ) on a separable LOTS X. When X is compact, the pseudo-inverse of the cdf

is properly defined as G(r) = inf{x ∈ X : F (x) ≥ r} for each r ∈ [0, 1], and can be used

to generate samples in X, as in the classical case.

When X is not compact, there is no guarantee that there exists the infimum, so G

may not be defined for each point of [0, 1]. In this chapter we show (see Section 8.3) that

G is naturally defined from [0, 1] to DM(X), where DM(X) is the Dedekind-MacNeille

completion (indeed, compactification) of X. In fact, in Sections 8.2 and 8.3, we show

that the probability measure µ on X can be extended to a probability measure µ̃ on

DM(X) such that its cdf F̃ is an extension of F to DM(X) and G is the pseudo-inverse

of F̃ . These results allow us (see Section 8.4) to use G to generate samples of the

probability measure on X, even if X is not compact.

It follows thatDM(X) is the right place to work whenX is a separable LOTS. In fact,

in Section 8.5 we study the equivalence between probability measures and distribution

functions defined on DM(X) by proving that each monotonically non-decreasing and

right continuous function F : DM(X)→ [0, 1] with supF (X) = 1 is the cdf of a (unique)

125
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probability measure on DM(X). As a corollary, we obtain that each monotonically

non-decreasing and right continuous function F : X → [0, 1] with supF (X) = 1 can be

extended to a cdf on DM(X).

Of course, for compact separable LOTSs, we also get the equivalence between prob-

ability measures and distribution functions.

8.1 The completion of the order

First of all, we will study and prove some properties of the Dedekind-MacNeille

completion of a separable LOTS, which will be crucial in the rest of the chapter.

Given x ∈ X, it is clear that (≤ x) is a cut, since (≤ x)u = (≥ x) and (≥ x)l = (≤ x),

that is, ((≤ x)u)l = (≤ x).

Fist, we prove that we do not add (left or right) isolated points when making the

completion, except for minDM(X) and maxDM(X).

Lemma 8.1. Let A ∈ DM(X) be a left-isolated (respectively right-isolated) cut such

that A 6= minDM(X) (respectively A 6= maxDM(X)). Then there exists x ∈ X such

that A = (≤ x).

Proof. Let A be a left-isolated cut such that A 6= minDM(X). Then there exists

B ∈ DM(X) such that ]B,A[= ∅. Let x ∈ A \ B and suppose that A 6= (≤ x). Then

(≤ x) ∈]B,A[, which is a contradiction with the fact that A is left-isolated. Thus,

A = (≤ x).

Suppose now that A is right-isolated such that A 6= maxDM(X). Then there exists

B ∈ DM(X) such that ]A,B[= ∅. Since A ⊂ B, it holds that Bu ⊂ Au. Now, let

x ∈ Au \ Bu and suppose that Au 6= (≥ x). Then Bu ⊂ (≥ x) ⊂ Au, which implies

that A ⊂ (≤ x) ⊂ B, a contradiction with the fact that A is right-isolated. Thus,

A = (≤ x).

Now, we prove that isolated points in X are related to isolated points in DM(X).

Proposition 8.2. Let LI and RI be, respectively, the set of left-isolated and right-

isolated points of X. It holds that:
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1. LI(DM(X)) = φ(LI(X)) ∪ {minDM(X)}.

2. RI(DM(X)) = φ(RI(X)) ∪ {maxDM(X)}.

Proof. 1. ⊇) It is clear that minDM(X) is a left-isolated cut of DM(X), since (<

minDM(X)) = ∅. Now, let x ∈ X be a left-isolated point. Then there exists

a < x such that ]a, x[= ∅. Hence, ](≤ a), (≤ x)[= ∅, which means that (≤ x) is

left-isolated in DM(X).

⊆) Let A ∈ DM(X) be a left-isolated cut such that A 6= minDM(X). Then there

exists B ∈ DM(X) such that ]B,A[= ∅. Note that B is right-isolated. Therefore,

by Lemma 8.1, there exist x, y ∈ X such that (≤ x) = A and B = (≤ y). Moreover,

note that x is left-isolated due to the fact that ]y, x[= ∅.

2. It can be proven analogously to the previous item.

Proposition 8.3. Let D be a dense subset of X with respect to the order topology, τ .

Then φ(D) is dense in DM(X) with respect to τ ′ (the order topology on DM(X)).

Proof. Let C ∈ DM(X) be such that C 6= minDM(X) and C 6= maxDM(X), and

consider U , a neighborhood of C with respect to τ ′. Then there exists G ∈ τ ′ such

that C ∈ G ⊆ U . Since G is an open set containing C and the family {]A,B[: A <

B;A,B ∈ DM(X)} ∪ {(< A) : A ∈ DM(X)} ∪ {(> A) : A ∈ DM(X)} is an open base

of DM(X) (see Remark 2.26), we can consider A,B ∈ DM(X) with A < B such that

C ∈]A,B[⊆ G. We distinguish some cases depending on whether C is isolated or not:

1. Suppose that C is not left-isolated nor right-isolated. Then we can consider a ∈
C \ A and b ∈ B \ C so that ]a, b[ is an open set with respect to τ . Hence,

the fact that D is dense gives us that there exists d ∈]a, b[∩D. What is more,

(≤ a) < (≤ d) < (≤ b), so we conclude that φ(d) ∈]A,B[, which implies that

U ∩ φ(D) 6= ∅.

2. Suppose that C is left-isolated but it is not right-isolated. By Lemma 8.1, there

exists x ∈ X such that C = (≤ x). Now, let b ∈ B \ C. Then it holds that ]x, b[

is an open set in τ . Hence, the fact that D is dense gives us that there exists

d ∈]x, b[∩D. We conclude that φ(d) ∈]A,B[, which implies that U ∩ φ(D) 6= ∅.
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3. Suppose that C is right-isolated but it is not left-isolated. Then, by Lemma 8.1,

there exists x ∈ X such that C = (≤ x). Now, let a ∈ C \A. Then ]a, x[ is an open

set in τ . Hence, the fact that D is dense gives us that there exists d ∈]a, x[∩D.

What is more, (≤ a) < (≤ d) < (≤ x), so we conclude that φ(d) ∈]A,B[, which

implies that U ∩ φ(D) 6= ∅.

4. Suppose that C is isolated. Hence, we can choose A and B such that ]A,C[= ∅ and

]C,B[= ∅. Since A is right-isolated, there exists a ∈ X such that A = (≤ a) (see

Lemma 8.1). Moreover, the fact that B is left-isolated implies that there exists

b ∈ B such that B = (≤ b). Finally, there exists x ∈ X such that C = (≤ x).

Since ]a, b[ is open with respect to τ and D is dense in X, it holds that x ∈ D.

Consequently, φ(x) ∈]A,B[∩φ(D).

The cases in which C = maxDM(X) and C = minDM(X) can be justified analo-

gously. Hence, φ(D) is dense in DM(X).

Corollary 8.4. If X is a separable LOTS, then DM(X) is also a separable LOTS.

Proof. Let D be a countable dense subset of X. The separability of DM(X) follows

from the fact that φ(D) is dense in DM(X) (see the previous proposition) and the fact

that φ(D) is countable.

Corollary 8.5. If X is a separable LOTS, then DM(X) is a first countable LOTS.

Remark 8.6. Note that DM(X) is a compactification of X. In fact, it is the smallest

order-compactification of X ([11], [40]).

Corollary 8.7. If X is a second countable LOTS, then DM(X) is also second countable.

Proof. Since X is second countable, by Proposition 7.8, it holds that X is separable

and the set of points which are right-isolated or left-isolated is countable. Since X

is separable, DM(X) is also separable (see Corollary 8.4). Moreover, by Proposition

8.2, we have that the set of points which are right-isolated or left-isolated in DM(X)

is countable. If we join the previous fact with the fact that DM(X) is separable, we

conclude that DM(X) is second countable by Proposition 7.8.

Lemma 8.8. Let X be a separable LOTS and A ⊆ X. If A is decreasing (respectively

increasing) and it does not have a maximum (respectively a minimum), then there exists
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an increasing (respectively decreasing) sequence (an) in A such that
⋃
n∈N(≤ an) = A

(respectively
⋃
n∈N(≥ an) = A).

Proof. Let A be a decreasing set such that it does not have a maximum and let D be

a countable dense subset of X with respect to the topology τ . Since it is countable, we

can enumerate it, D = {dn : n ∈ N}. Now, let k be the least natural number such that

dk ∈ A. Define a1 = dk. Now, suppose that we have defined an and define an+1 = dm,

where m is the least natural such that dm ∈ A and dm > an. By construction, it is clear

that the sequence (an) is increasing. Now, we prove that
⋃
n∈N(≤ an) = A. Indeed,

⊆) Let x ∈
⋃

(≤ an). Then there exists n ∈ N such that x ∈ (≤ an). Since an ∈ A
for each n ∈ N and A is decreasing, we conclude that x ∈ A.

⊇) Let x ∈ A. It holds that (> x) ∩ A is a nonempty open set in A. Indeed, it is

nonempty due to the fact that A does not have a maximum. Let a′ ∈ (> x) ∩ A, and

consider a ∈ (> a′) ∩ A. Then ]x, a[ is a nonempty open set in τ , so there exists k ∈ N

such that dk ∈]x, a[. Hence, by definition of the sequence (an), dn ≤ an for each n ∈ N

such that dn ∈ A. This implies that x ∈ (≤ ak) and, consequently, x ∈
⋃

(≤ an).

We can proceed analogously to define a decreasing sequence in case that A is increas-

ing and it does not have a minimum.

Remark 8.9. Note that Al is decreasing and Au is increasing for each A ⊆ X.

8.2 The extension of a cdf to DM(X)

In this section we extend the definition of a cdf to the Dedekind-MacNeille completion

of a separable LOTS. For that purpose, in the rest of this chapter, X is a separable LOTS.

Lemma 8.10. Let F be a non-decreasing function and let (an) be an increasing (re-

spectively decreasing) sequence in a decreasing (respectively increasing) set A ⊆ X such

that A =
⋃

(≤ an) (respectively A =
⋃

(≥ an)). Then F (an) → supF (A) (respectively

F (an)→ inf F (A)).

Proof. Let A be a decreasing set of X and (an) an increasing sequence such that A =⋃
(≤ an). Let r < supF (A). Then there exists a ∈ A such that r < F (a). Since

A =
⋃

(≤ an), there exists n0 ∈ N such that an0 ≥ a. Consequently, an ≥ a for each
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n ≥ n0. The monotonicity of F gives us that r < F (a) ≤ F (an) < supF (A) for each

n ≥ n0, which implies that F (an)→ supF (A).

A similar proof lets us conclude that, in case A is increasing and an is a decreasing

sequence satisfying that A =
⋃

(≥ an), we have that F (an)→ inf F (A).

Proposition 8.11. Let µ be a probability measure on X and consider A ⊆ X. If A is

decreasing, then µ(A) = supF (A).

Proof. Let A ⊆ X be a decreasing set. First, note that if a is the maximum of A, then

it is clear that µ(A) = µ(≤ a) = F (a) = supF (A).

If A does not have a maximum, by Lemma 8.8, there exists an increasing sequence

(an) such that
⋃
n∈N(≤ an) = A. Since (≤ an) is a monotonically non-decreasing se-

quence of sets, it holds that (≤ an)→
⋃
n∈N(≤ an) = A. By the continuity from below of

the measure µ, we have that µ(≤ an)→ µ(A). Moreover, µ(≤ an) = F (an)→ supF (A)

by Lemma 8.10, so we conclude that µ(A) = supF (A).

Proposition 8.12. Let F : X → [0, 1] a cdf defined from a probability measure µ. Then

supF (A) = inf F (Au) for each A ∈ DM(X).

Proof. We distinguish two cases depending on whether the intersection of A and Au is

empty or not:

1. Suppose that A ∩ Au = {x} for some x ∈ X. Then A = (≤ x) and Au = (≥ x),

and the result is clear.

2. Suppose that A∩Au = ∅. Since A is decreasing and it does not have a maximum,

by Lemma 8.8, we can consider an increasing sequence, an, in A such that A =⋃
(≤ an). Moreover, since Au is increasing and it does not have a minimum,

we can consider a decreasing sequence in Au, (bn), such that Au =
⋃

(≥ bn).

Therefore, ]an, bn] is a monotonically non-increasing sequence, which implies that

]an, bn] →
⋂
n∈N]an, bn]. What is more,

⋂
n∈N]an, bn] = ∅. Indeed, suppose that

there exists y ∈]an, bn] for each n ∈ N. The fact that an < y for each n ∈ N means

that y /∈ A. Hence, y ∈ Au. If we join y ∈ Au with the fact that y ≤ bn for each

n ∈ N, it follows that y = minAu, which is a contradiction. Then the continuity
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from above of the measure µ gives us that µ(]an, bn]) → µ(∅) = 0. Moreover,

µ(]an, bn]) = F (bn)−F (an) and Lemma 8.10 gives us that F (bn)→ inf F (Au) and

F (an)→ supF (A), which let us conclude that inf F (Au) = supF (A).

Proposition 8.13. Let A ∈ DM(X). Then φ−1(≤ A) = A.

Proof. ⊆) Let x ∈ X be such that φ(x) ∈ (≤ A). Then φ(x) ≤ A, that is, (≤ x) ⊆ A

and, consequently, x ∈ A.

⊇) Let x ∈ A. Then (≤ x) ⊆ A due to the fact that A is decreasing, so φ(x) ≤ A,

which implies that φ(x) ∈ (≤ A).

Definition 8.14. Given the cdf, F , of a probability measure µ defined on X, we define

F̃ : DM(X)→ [0, 1] by F̃ (A) = inf F (Au) for each A ∈ DM(X).

We can prove that F is the restriction of F̃ to X.

Lemma 8.15. F̃ ◦ φ = F .

Proof. Given x ∈ X, it holds that F̃◦φ(x) = F̃ (≤ x) = inf F (≥ x), since (≤ x)u = (≥ x).

What is more, inf F (≥ x) = F (x), so we conclude that F̃ (≤ x) = F (x) for each x ∈ X.

We can prove that, indeed, F̃ is a cdf.

Definition 8.16. Given a probability measure µ in X, we define its extension to DM(X),

µ̃, as follows, µ̃(A) = µ(φ−1(A)) for each A ∈ σ(DM(X)).

Next, we prove that, indeed, µ̃ is a probability measure.

Proposition 8.17. µ̃ is a probability measure with respect to the Borel σ-algebra of

DM(X).

Proof. Let us define the family A = {A ∈ DM(X) : φ−1(A) ∈ σ(X)}. It can be easily

proven that A is a σ-algebra in X. Define the set-function µ : A → [0, 1] by the formula
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µ(A) := µ(φ−1(A)) for each A ∈ A. It can be easily seen that µ is a probability measure

on A (see [14, Section 3.6]), implying that its restriction µ̃ to σ(DM(X)) is a probability

measure on the Borel σ-algebra σ(DM(X)).

Proposition 8.18. F̃ is the cdf defined from µ̃.

Proof. Note that F̃ (A) = inf F (Au) = supF (A) by definition of F̃ and Proposition

8.12. Now, by Proposition 8.11, µ(A) = supF (A) for each A ∈ DM(X), so we can

write F̃ (A) = µ(A) = µ(φ−1(≤ A)) = µ̃(≤ A) for each A ∈ DM(X), where we have

used the definition of µ̃ and the fact that φ−1(≤ A) = A for each A ∈ DM(X) (see

Proposition 8.13).

Remark 8.19. F̃ is monotonically non-decreasing, right continuous, sup F̃ (DM(X)) =

1 and inf F̃ (DM(X)) = 0 if there does not exist the minimum of X.

Proof. It immediately follows from Propositions 7.19 and 8.18.

Corollary 8.20. F̃− ◦ φ = F−.

Proof. Let x ∈ X. By Proposition 8.18, F̃ is the cdf of µ̃ so, by definition of F̃−, we

have that F̃−(φ(x)) + µ̃(φ(x)) = F̃ (φ(x)). Now, if we take into account Lemma 8.15 and

the definition of µ̃, the previous equality is F̃−(φ(x)) + µ(φ−1(φ(x))) = F (x) if and only

if F̃−(φ(x)) = F (x)− µ({x}) = F−(x).

8.3 The pseudo-inverse of a cdf

In this section we see that the pseudo-inverse of a cdf can be naturally defined from

[0, 1] to the Dedekind-MacNeille completion of a separable LOTS. Indeed, the pseudo-

inverse of the extension of a cdf to the Dedekind-MacNeille completion matches with

that new definition of the pseudo-inverse.

The definition of the pseudo-inverse of a cdf defined on DM(X) is the following one.

Definition 8.21. Let F be a cdf. We define the mapping G : [0, 1] → DM(X) by

G(r) = A for each r ∈ [0, 1], where B = {x ∈ X : F (x) ≥ r} and A = Bl.
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Proposition 8.22. Given r ∈ [0, 1], it holds that G(r) ∈ φ(X) or G(r) = {x ∈ X :

F (x) < r}.

Proof. Let B = {x ∈ X : F (x) ≥ r} and A = Bl. We distinguish two cases depending

on whether there exists the minimum of B or not:

1. Suppose that there exists the minimum of B an denote it by x. Since x = minB,

we have that A = Bl = (≤ x), which implies that G(r) ∈ φ(X).

2. Suppose that there does not exist the minimum of B. We prove that G(r) = Bl =

{x ∈ X : F (x) < r}.

⊆) Let x ∈ X be such that x ∈ Bl. Then x /∈ B, since there does not exist the

minimum of B. Consequently, F (x) < r.

⊇) Let x ∈ X be such that F (x) < r and let b ∈ B. Then F (b) ≥ r, which implies

that F (x) < F (b). Hence, by the monotonicity of F , we have that x ≤ b. By the

arbitrariness of b, we conclude that x ∈ Bl.

Next, we prove that G is well defined.

Lemma 8.23. Let B ⊆ X be an increasing set. Then Bl ∈ DM(X).

Proof. We distinguish two cases depending on whether there exists the infimum of B or

not:

1. Suppose that there exists the infimum of B and denote it by a. Then Bl = (≤
a) ∈ DM(X).

2. Suppose that there does not exist the infimum of B. We prove that (Bl)u = B in

which case we have that Bl ∈ DM(X).

⊆) Let b ∈ (Bl)u and suppose that b /∈ B. By definition of the set of upper bounds,

we have that the fact that b ∈ (Bl)u implies that b ≥ x for each x ∈ Bl. Now,

since there does not exist the infimum of B, b /∈ Bl. Since b /∈ Bl, then there exists

c ∈ B such that c < b and, since B is increasing, b ∈ B, a contradiction.

⊇) Let b ∈ B and x ∈ Bl. Since x ∈ Bl, it holds that x ≤ b, which means that

b ∈ (Bl)u.
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Proposition 8.24. G(r) ∈ DM(X) for each r ∈ [0, 1].

Proof. Let r ∈ [0, 1] and B = {x ∈ X : F (x) ≥ r}. In order to prove that G(r) ∈
DM(X), we must prove that Bl ∈ DM(X). For that purpose, we show that B is

increasing due to the fact that Lemma 8.23 lets us ensure that Bl ∈ DM(X).

Let b ∈ B. Then it holds that F (b) ≥ r. Now, let x ∈ X be such that x > b. Then

the monotonicity of F as a cdf gives us that F (b) ≤ F (x), so we conclude that F (x) ≥ r,

that is, x ∈ B, and, consequently, B is increasing.

Proposition 8.25. G(r)u = {x ∈ X : F (x) ≥ r} for each r ∈ [0, 1].

Proof. Let G(r) = A = Bl, where B = {x ∈ X : F (x) ≥ r}. In the proof of the previous

proposition we have proven that B is increasing. If there does not exist the infimum

of B, we have, by the proof of Lemma 8.23, that (Bl)u = B and, hence, G(r)u = B as

wanted.

Suppose that there exists the infimum of B, and let x = inf B. If x = minB, then

Bl = (≤ x) and B = (≥ x), so G(r)u = (≤ x)u = (≥ x) = B.

Finally, if x 6= minB, by Lemma 7.2, [28, 4A2R(f)] and by Proposition 7.3, there

exists a monotone sequence which right τ -converges to x, (xn), with xn ∈ B. By the

right continuity of F , it follows that (F (xn)) converges to F (x). Since xn ∈ B for each

n ∈ N, then F (xn) ≥ r for each n ∈ N and, hence, F (x) ≥ r, so x ∈ B and x = minB,

a contradiction.

We can conclude that G(r)u = B.

Next, we prove that G is the pseudo-inverse of the extension of F .

Proposition 8.26. G : [0, 1]→ DM(X) is the pseudo-inverse of F̃ .

Proof. For that purpose, we prove that G(r) = inf{C ∈ DM(X) : F̃ (C) ≥ r} for each

r ∈ [0, 1].

If G(r) = A, by Proposition 8.25, we have that Au = {x ∈ X : F (x) ≥ r}. Moreover,

note that G(r) = inf φ(Au), which means that G(r) ≤ φ(x) for each x ∈ X such that

F (x) ≥ r.
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≤) Let C ∈ DM(X) be such that F̃ (C) ≥ r. Equivalently, inf F (Cu) ≥ r. Suppose

that C < A. Then there exists a ∈ A \ C, which implies that C < φ(a) and, hence, the

monotonicity of F̃ as cdf gives us that F̃ (C) ≤ F̃ (φ(a)) = F (a) by Lemma 8.15. We

distinguish two cases depending on whether a is the minimum of Au or not:

1. Suppose that a 6= minAu. Then a ∈ A but a /∈ Au, which means that F (a) < r.

Consequently, F̃ (C) ≤ F (a) < r, a contradiction with the fact that F̃ (C) ≥ r.

2. Suppose that a = minAu. Since a /∈ C and C ∈ DM(X), we have that a /∈
(Cu)l, so we can choose d ∈ Cu such that d < a, which implies that d /∈ Au

and d 6= maxA, so F (d) < r. By the monotonicity of F̃ (note that d ∈ Cu

implies that C < φ(d)) and by taking into account Lemma 8.15, it holds that

F̃ (C) ≤ F̃ (φ(d)) = F (d) < r, which is a contradiction with the fact that F̃ (C) ≥ r.

Consequently, A ≤ C. By the arbitrariness of C, we conclude that G(r) = A ≤
inf{C ∈ DM(X) : F̃ (C) ≥ r}.

≥) Suppose that G(r) < inf{C ∈ DM(X) : F̃ (C) ≥ r}. Then there exists c ∈
inf{C ∈ DM(X) : F̃ (C) ≥ r} \ A. We distinguish two cases depending on whether

φ(c) = inf{C ∈ DM(X) : F̃ (C) ≥ r} or not:

1. Suppose that φ(c) < inf{C ∈ DM(X) : F̃ (C) ≥ r}. Since c /∈ A, c ∈ Au, that

is, F (c) ≥ r. By Lemma 8.15, F̃ (φ(c)) = F (c), which means that F̃ (φ(c)) ≥ r.

The fact that F̃ (φ(c)) ≥ r is a contradiction with the fact that φ(c) < inf{C ∈
DM(X) : F̃ (C) ≥ r}.

2. Suppose that φ(c) = inf{C ∈ DM(X) : F̃ (C) ≥ r}. SinceA < φ(c), we distinguish

two cases depending on whether d ∈ A for each d < c or not:

(a) Suppose that there exists d ∈ Au such that d < c, which implies that

φ(d) < inf{C ∈ DM(X) : F̃ (C) ≥ r}. Moreover, F (d) ≥ r or, equivalently,

F̃ (φ(d)) ≥ r, which is a contradiction with the fact that φ(d) < inf{C ∈
DM(X) : F̃ (C) ≥ r}.

(b) Suppose that d ∈ A for each d < c. Then it holds that A = (< c). Note that

A is a right-isolated element of DM(X), so Lemma 8.1 gives us that there

exists a ∈ A such that A = (≤ a). Moreover, ]a, c[= ∅. Thus, c is left-isolated.
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What is more, Au = (≥ a), which implies that a ∈ Au and F (a) ≥ r. Since

F̃ (φ(a)) = F (a) by Lemma 8.15, we conclude, since c is the infimum, that

φ(a) ≥ φ(c), which gives us that a ≥ c, a contradiction.

8.4 Generating samples

Recall that, in Section 7.5, we proved that we can generate samples of a certain

distribution when the pseudo-inverse of the cdf is defined for each r ∈ [0, 1]. Now that

we have proven that G can be naturally defined from [0, 1] to the Dedekind-MacNeille

completion, we can generate samples of a distribution in each case, even if, for example,

X is not compact. We just need to prove the next statement.

Proposition 8.27. If X ∈ σ(DM(X)), then µ̃(DM(X) \ X) = 0, which means that

G(r) ∈ X almost surely for each r ∈ [0, 1].

Proof. By Proposition 8.13, µ̃(DM(X)\X) = µ(φ−1(DM(X)\X)). Hence, µ̃(DM(X)\
X) = µ(∅) = 0.

Remark 8.28. G lets us generate samples of a distribution with probability 1.

8.5 Defining a probability measure from a cdf on a

compact LOTS

Previously, we have studied several aspects related to a cdf which result from con-

sidering a probability measure on a separable LOTS. However, we have not answered

Question 7.20 yet. In this section we prove that when X is a compact separable LOTS

and F : X → [0, 1] is a function satisfying the properties collected in Proposition 7.19,

it is possible to define a probability measure, µ, on X such that its cdf, Fµ, is F .

Definition 8.29. Let X be a compact LOTS and F : X → [0, 1] a monotonically

non-decreasing and right τ -continuous function satisfying supF (X) = 1. Let us define

G : [0, 1]→ X as the function given by G(r) = inf{x ∈ X : F (x) ≥ r} for each r ∈ [0, 1].
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Lemma 8.30. Let X be a compact LOTS, F : X → [0, 1] a monotonically non-

decreasing and right τ -continuous function satisfying supF (X) = 1 and G as defined in

Definition 8.29. Given r ∈ [0, 1], it holds that G(r) = min{x ∈ X : F (x) ≥ r}.

Proof. Let r ∈ [0, 1] and consider y = G(r). Suppose that y is not a minimum. Then,

by Proposition 7.3, there exists a sequence yn ∈ {z ∈ X : F (z) ≥ r} such that yn+1 < yn

for each n ∈ N and {yn : n ∈ N}l = {z ∈ X : F (z) ≥ r}l. What is more, by Lemma

7.2, it holds that y = inf{yn : n ∈ N}. Hence, [28, 4A2R(f)] lets us claim that yn
τ→ y.

Consequently, the right τ -continuity of F gives us that F (yn) → F (y). Moreover,

F (yn) ≥ r, since yn ∈ {z ∈ X : F (z) ≥ r}. If we join this fact with the fact that

F (yn)→ F (y), we conclude that F (y) ≥ r, which gives us that y ∈ {x ∈ X : F (x) ≥ r},
a contradiction.

Next, we collect some properties that relate F to G and which are similar to the

properties obtained when F is the cdf of some probability measure and G is its pseudo-

inverse (see the previous chapter).

Proposition 8.31. Let X be a compact LOTS, F : X → [0, 1] a monotonically non-

decreasing and right τ -continuous function satisfying supF (X) = 1 and G as defined in

Definition 8.29. Then it holds that:

1. G is monotonically non-decreasing.

2. G(F (x)) ≤ x.

3. F (G(r)) ≥ r.

4. G(r) ≤ x if and only if r ≤ F (x).

5. F (x) < r if and only if G(r) > x.

6. If supF (< x) < r, then x ≤ G(r).

7. If r < supF (< x), then G(r) < x.

Proof. 1. Let x, y ∈ [0, 1] with x < y. Note that {z ∈ X : F (z) ≥ y} ⊆ {z ∈ X :

F (z) ≥ x} and it follows that inf{z ∈ X : F (z) ≥ x} ≤ inf{z ∈ X : F (z) ≥ y},
that is, G(x) ≤ G(y), which means that G is monotonically non-decreasing.
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2. Indeed, x ∈ {z ∈ X : F (z) ≥ F (x)} and, hence, inf{z ∈ X : F (z) ≥ F (x)} ≤ x,

which is equivalent to G(F (x)) ≤ x.

3. Let y = G(r) = inf{z ∈ X : F (z) ≥ r}. By Lemma 8.30, we have that y =

min{x ∈ X : F (x) ≥ r} so it is immediate that F (y) ≥ r.

4. It follows immediately from the previous three items and the monotonicity of F .

5. It is an immediate consequence of the previous item.

6. Suppose that G(r) < x. Then G(r) ∈ (< x), which means that supF (< x) ≥
F (G(r)). By the third item, F (G(r)) ≥ r, so we conclude that supF (< x) ≥ r.

7. Let x ∈ X and r ∈ [0, 1]. Suppose that r < supF (< x). Then there exists y < x

such that r < F (y) ≤ supF (< x). Since F (y) > r, then y ≥ inf{z ∈ X : F (z) ≥
r} = G(r). We conclude that G(r) < x.

Proposition 8.32. Let X be a compact LOTS, F : X → [0, 1] a monotonically non-

decreasing and right τ -continuous function satisfying supF (X) = 1 and G as defined

in Definition 8.29. Then, given a, b ∈ X such that a < b, it holds that G−1(]a, b[) =

]F (a), supF (< b)|, where | means ] or [.

Proof. First of all, we show that G−1(]a, b[) ⊆]F (a), supF (< b)]. For that purpose, let

r ∈ G−1(]a, b[) and suppose that r /∈]F (a), supF (< b)]. Then it can happen:

� r ≤ F (a), which implies, by Proposition 8.31.4, that G(r) ≤ a, which is a contra-

diction with the fact that r ∈ G−1(]a, b[).

� r > supF (< b), which gives us, by Proposition 8.31.6, that b ≤ G(r), which

implies that r /∈ G−1(]a, b[), a contradiction.

Now, we prove that ]F (a), supF (< b)[⊆ G−1(]a, b[). For that purpose, let r ∈
]F (a), supF (< b)[, and suppose that r /∈ G−1(]a, b[). Then it can happen:

� G(r) ≤ a, which implies, by Proposition 8.31.4, that r ≤ F (a), a contradiction

with the fact that r > F (a).
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� G(r) ≥ b, which gives us, by Proposition 8.31.7, that supF (< b) ≤ r a contradic-

tion with the fact that r < supF (< b).

Corollary 8.33. Let X be a compact LOTS, F : X → [0, 1] a monotonically non-

decreasing and right τ -continuous function satisfying supF (X) = 1 and G as defined in

Definition 8.29. Then G is measurable with respect to the Borel σ-algebras.

Proof. According to the previous proposition, we can claim that G−1(]a, b[) is an open

set or the intersection of an open and a closed one. Hence, G−1(]a, b[) ∈ σ([0, 1]).

Since every open set in τ is a countable union of open intervals by Proposition 7.51,

applying Theorem 7.52 we conclude the result.

Theorem 8.34. Let X be a compact LOTS and F : X → [0, 1] a monotonically non-

decreasing and right τ -continuous function satisfying supF (X) = 1. Then there exists

a unique probability measure µ on σ(X) such that F = Fµ.

Proof. Since F is a monotonically non-decreasing and right τ -continuous function satisfy-

ing supF (X) = 1, the function G : [0, 1]→ X defined by G(r) = inf{x ∈ X : F (x) ≥ r}
is measurable with respect to the Borel σ-algebras (see the previous corollary). Since G

is measurable, by taking into account Proposition 7.57, if we define µ(A) = l(G−1(A))

for each A ∈ σ(X), then µ is a probability measure on X, where l is the Lebesgue

measure.

Claim 8.35. G−1(≤ x) = [0, F (x)] for each x ∈ X.

Proof. ⊆) Let r ∈ G−1(≤ x). Then G(r) ≤ x. By the monotonicity of F , it holds that

F (G(r)) ≤ F (x). By Proposition 8.31.3, it follows that r ≤ F (x) due to the fact that

F (G(r)) ≥ r. Consequently, r ∈ [0, F (x)].

⊇) Let y ∈ [0, F (x)]. Then y ≤ F (x) and, by the monotonicity of G (see Proposition

8.31.1), G(y) ≤ G(F (x)). What is more, G(y) ≤ x due to the fact that G(F (x)) ≤ x

(see Proposition 8.31.2). Consequently, y ∈ G−1(≤ x).

Once we have proven the claim, it holds that µ(≤ x) = l(G−1(≤ x)) = l([0, F (x)]) =

F (x) which lets us conclude that F is the cdf of the measure µ. Moreover, the fact that

supF (X) = 1 means that µ(X) = 1, that is, µ is a probability measure on X.
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Finally, the uniqueness of the measure follows immediately from Proposition 7.55.

Theorem 8.36. Let F : X → [0, 1] a monotonically non-decreasing and right τ -

continuous function satisfying supF (X) = 1. Then the function F̃ : DM(X) → [0, 1]

given by F̃ (A) = inf F (Au) is the cdf of a unique probability measure µ̃ on DM(X).

Moreover, F̃ is an extension of F to DM(X).

Proof. First, we show that F is the restriction of F̃ to X, that is, F̃ (φ(x)) = F (x) for

each x ∈ X.

Indeed, let x ∈ X. Then F̃ (φ(x)) = inf F ((≤ x)u) = inf F (≥ x) = F (x).

Next, we prove the three properties of F̃ which let us conclude that it is a cdf:

1. F̃ is monotonically non-decreasing. Let A,B ∈ DM(X) be such that A ⊂ B. Then

Bu ⊆ Au. Hence, F (Bu) ⊆ F (Au) and, consequently, inf F (Au) ≤ inf F (Bu), that

is, F̃ (A) ≤ F̃ (B).

2. F̃ is right τ ′-continuous. Let An ∈ DM(X) be a monotone sequence which right

τ ′-converges to A ∈ DM(X). Now, we prove that F̃ (An)→ F̃ (A), which gives us

the right τ ′-continuity of F̃ . On the one hand, we can choose an ∈ An \ An+1 for

each n ∈ N. The next claim is crucial in this proof.

Claim 8.37. A = {an : n ∈ N}l.

Proof. ⊆) Let a ∈ A. Then a < an for each n ∈ N due to the fact that An > A

and an /∈ An+1 for each n ∈ N. Hence, a ∈ {an : n ∈ N}l.

⊇) Let a ∈ {an : n ∈ N}l and suppose that a /∈ A. Then A < φ(a), which

implies that there exists n ∈ N such that A < An < φ(a), which means that

A < φ(an) ≤ An < φ(a), so we conclude that an < a, a contradiction with the fact

that a ∈ {an : n ∈ N}l.

Once we have proven the claim, we distinguish two cases depending on whether

A ∩ Au = ∅ or not in order to show that F (an)→ inf F (Au):

(a) Suppose that A ∩ Au = {x} for some x ∈ X. Then A = (≤ x) and Au =

(≥ x). In this case, the sequence (an) satisfies that x < an+1 < an for each

n ∈ N. What is more, an → x and the right τ -continuity of F gives us that

F (an)→ F (x) = inf F (Au).
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(b) Suppose that A ∩ Au = ∅. On the one hand, by the previous claim, it holds

that A = {an : n ∈ N}l, which means that Au = ({an : n ∈ N}l)u.

On the other hand, suppose that an /∈ Au for some n ∈ N. It holds that

an ∈ A. By definition of an, an ∈ An. Hence, it is not possible that an ∈ A
due to the fact that A < An and an /∈ An+1 for each n ∈ N. Therefore,

an ∈ Au for each n ∈ N and, hence, limF (an) ≥ inf F (Au). Suppose now

that limF (an) > inf F (Au). Then there exists a ∈ Au such that F (a) <

limF (an) ≤ F (an) for each n ∈ N. Since a ∈ Au and Au = ({an : n ∈ N}l)u,
there exists m ∈ N such that Am < φ(a). Indeed, if φ(a) ≤ An for each n ∈ N,

then a ∈ {an : n ∈ N}l, which gives us that a ∈ ({an : n ∈ N}l)u ∩ {an : n ∈
N}l. Hence, {an : n ∈ N}l = (≤ a), which implies that an → a and, thus,

limF (an) = F (a), a contradiction.

From Am < φ(a), it follows that am < a and, by the monotonocity of F ,

F (am) ≤ F (a), which is a contradiction with the fact that F (a) < F (an) for

each n ∈ N, as we have proven before. Consequently, F (an)→ inf F (Au).

Now, since F̃ is an extension of F , F̃ (φ(an)) = F (an). What is more, F̃ (φ(an))→
inf F (Au) = F̃ (A). Moreover, the monotonicity of F̃ lets us write F̃ (A) ≤
F̃ (An+1) ≤ F̃ (φ(an)) so, by taking limits, we have that F̃ (An) → F̃ (A). By

Lemma 7.15, we conclude that F̃ is right τ ′-continuous.

3. Note that 1 = supF (X) = sup F̃ (φ(X)) ≤ sup F̃ (DM(X)) ≤ 1, which lets us

conclude that sup F̃ (DM(X)) = 1.

Consequently, Theorem 8.34 lets us claim that F̃ is the cdf of a unique probability

measure µ̃ on DM(X).
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Chapter 9

Equivalence between cdfs and

probability measures on a LOTS

The content of this chapter corresponds to [30].

In Chapter 7 we described a theory of a cumulative distribution function on a sepa-

rable linearly ordered topological space. Moreover, we showed that this function plays

a similar role to that played in the classical case and studied its pseudo-inverse, which

allowed us to generate samples of the probability measure that we used to define the

distribution function.

In Chapter 8 we extended a cdf defined on a separable linearly ordered topological

space, X, to its Dedekind-MacNeille completion, DM(X). That completion is, indeed,

a compactification. Moreover, we proved that each function satisfying the properties of

a cdf on DM(X) is the cdf of a probability measure defined on DM(X). Indeed, if X is

compact, a similar result can be obtained in this context. Finally, the compactification

DM(X) lets us generate samples of a distribution in X.

By following this research line, the next step is to explore some conditions on X such

that, given a function F with the properties of a cdf, we can ensure that there exists a

unique probability measure on X such that its cdf is F . Furthermore, we will show that

there is a one-to-one relationship between the pseudo-inverse of a cdf and its probability

measure. This is the main goal of this chapter. Specifically, in Section 9.1, we claim

and prove the main results in this context. The last section consists of some examples

where it is interesting to study the relationship between probability measures and cdfs

143
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according to the theory that has been developed.

9.1 Defining a probability measure from a cdf

In Chapter 8 it was shown that if F is the cdf of the probability measure µ on X,

then F can be extended to a cdf on DM(X), F̃ , that is defined from the probability

measure µ̃ which is defined by µ̃(A) = µ(φ−1(A)) for each A ∈ σ(DM(X)). What is

more, it holds that F̃ ◦ φ = F and F̃− ◦ φ = F− (see Lemma 8.15 and Corollary 8.20).

According to the properties that we proved in Section 7.4 about the pseudo-inverse of

a cdf and, by taking into account that G is the pseudo-inverse of F̃ , if we extend F to

DM(X), we can relate G to F and F̃ as the next proposition shows.

Proposition 9.1. Let F be a cdf, x ∈ X and r ∈ [0, 1]. Then:

1. G(F (x)) ≤ φ(x).

2. F̃ (G(r)) ≥ r.

3. G(r) ≤ φ(x) if and only if r ≤ F (x).

4. F (x) < r if and only if G(r) > φ(x).

5. G(r) = inf{A ∈ DM(X) : F̃ (A) ≥ r}.

In Chapter 7 it was shown the uniqueness of a measure with respect to its cdf (see

Proposition 7.55). What is more, a cdf F can be defined from F− as Proposition 7.26

states.

Additionally, we can prove that the value of F (x) can be obtained from the pseudo-

inverse, as shown next.

Proposition 9.2. Let X be a separable LOTS. If F is the cdf of a probability measure

on X, then F (x) = supG−1(≤ φ(x)) for each x ∈ X.

Proof. Let x ∈ X. By Proposition 9.1.4, it holds that G(r) ≤ φ(x) if and only if

F (x) ≥ r for each r ∈ [0, 1]. Hence, supG−1(≤ φ(x)) = sup{r ∈ [0, 1] : G(r) ≤ φ(x)} =

sup{r ∈ [0, 1] : F (x) ≥ r} = F (x).
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Now, we prove the uniqueness of the measure with respect to F− and the pseudo-

inverse.

Corollary 9.3. Let Fµ and Fδ be respectively the cdfs of the measures µ and δ. If

Fµ− = Fδ−, then µ = δ on the Borel σ-algebra of (X, τ).

Proof. By Proposition 7.26, F (x) = inf F−(x) for each x ∈ X and, consequently, Fµ =

Fδ. Hence, by Proposition 7.55, µ = δ on the Borel σ-algebra of (X, τ).

Corollary 9.4. Let Fµ and Fδ be respectively the cdfs of the measures µ and δ. If

Gµ = Gδ, then µ = δ on the Borel σ-algebra of (X, τ).

Proof. By Proposition 9.2, F (x) = supG−1(≤ φ(x)) for each x ∈ X and, consequently,

Fµ = Fδ. Hence, by Proposition 7.55, µ = δ on the Borel σ-algebra of (X, τ).

Moreover, we prove a lemma which will be useful when proving some results.

Lemma 9.5. Let X be a separable LOTS and let (xn) be a sequence which τ -converges

to x. Suppose that there exists z ∈ X such that xn ≤ z for each n ∈ N. Then x ≤ z.

Proof. Suppose that x > z. The convergence of (xn) gives us that there exists n0 ∈ N

such that xn > z for each n ≥ n0, a contradiction with the fact that xn ≤ z for each

n ∈ N.

In this section we explore some conditions such that, given a function, F , with the

properties of a cdf on a separable LOTS, then there exists a probability measure, µ, on

X such that Fµ = F . Indeed, the converse relationship between a probability measure

and its cdf is well known. According to Chapter 7, the cdf of a probability measure on a

separable LOTS, X, is right τ -continuous and monotonically non-decreasing. Moreover,

it satisfies that supF (X) = 1 and, if there does not exist minX, then inf F (X) = 0 (see

Proposition 7.19).

In what follows, when we write a statement like supF−(A) = inf F−(Au) for each

A ∈ DM(X), we mean for each A ∈ DM(X) such that the expression makes sense.

In this case, A must be nonempty (so that supF−(A) makes sense) and Au must be

nonempty (so that inf F−(Au) makes sense). Note that A can be empty if X does not

have a minimum and A = minDM(X) and Au can be empty if X does not have a

maximum and A = maxDM(X).
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In fact, Proposition 8.12 gives us that supF (A) = inf F (Au) for each A ∈ DM(X),

where F is the cdf of a probability measure defined on a separable LOTS X. We now

prove some results in this line, but which involve F− and the pseudo-inverse of the cdf.

Proposition 9.6. Let X be a separable LOTS and F : X → [0, 1] a cdf defined from a

probability measure µ. Then:

1. supF−(A) = inf F−(Au) for each A ∈ DM(X).

2. supF (A) = supF−(A) for each A ∈ DM(X) \ φ(X).

3. inf F (Au) = inf F−(Au) for each A ∈ DM(X) \ φ(X).

4. supG−1(< A) = supF (A) for each A ∈ DM(X) \ φ(X).

5. inf F (Au) = inf G−1(> A) for each A ∈ DM(X) \ φ(X).

6. supG−1(< A) = inf G−1(> A) for each A ∈ DM(X) \ φ(X).

Proof. 1. Let A ∈ DM(X). In case that A ∈ φ(X), the equality is clear. Now, let

A ∈ DM(X)\φ(X). Then A∩Au = ∅. Since A is decreasing and it does not have

a maximum, by Lemma 8.8, there exists an increasing sequence (an) in A such that

A =
⋃

(≤ an). Analogously, since Au is increasing and it does not have a minimum,

we can consider a decreasing sequence in Au, (bn), such that Au =
⋃

(≥ bn).

Moreover, Lemma 8.10 lets us claim that F−(an) → supF−(A) and F−(bn) →
inf F−(Au). Now, note that [an, bn[ is a monotonically non-increasing sequence,

which implies that [an, bn[→
⋂
n∈N[an, bn[. Indeed,

⋂
n∈N[an, bn[= ∅, which gives us

that µ([an, bn[) → µ(∅) = 0, that is, F−(bn) − F−(an) → 0. Both convergences

F−(an)→ supF−(A) and F−(bn)→ inf F−(Au) let us conclude that inf F−(Au) =

supF−(A).

2. Let A ∈ DM(X) \φ(X) with A 6= minDM(X). By Lemma 8.1, A is not isolated.

≥) This inequality is clear if we take into account that F−(x) ≤ F (x) for each

x ∈ X.

≤) Since A is not left-isolated and A 6= minDM(X), we can consider a mono-

tonically non-decreasing sequence (An) in DM(X) such that An
τ ′→ A. Now, let

an ∈ An+1 \ An for each n ∈ N. Note that an ∈ A, since An ⊂ A for each n ∈ N.
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Given a ∈ A, then there exists n ∈ N such that an > a and, hence, it follows that

F (a) ≤ F−(an) ≤ supF−(A), which lets us conclude that supF (A) ≤ supF−(A).

3. Let A ∈ DM(X)\φ(X) with A 6= maxDM(X). By Lemma 8.1, A is not isolated.

≥) This inequality is clear if we take into account that F−(x) ≤ F (x) for each

x ∈ X.

≤) Since A is not right-isolated and A 6= maxDM(X), we can consider a monoton-

ically non-increasing sequence (An) such that An
τ ′→ A. Now, let an ∈ Aun+1 \ Aun

for each n ∈ N. Note that an ∈ Au, since A ⊂ An for each n ∈ N. Given

a ∈ Au, then there exists n ∈ N such that an < a and, hence, it follows that

inf F (Au) ≤ F (an) ≤ F−(a), which lets us conclude that inf F (Au) ≤ inf F−(Au).

4. Let A ∈ DM(X) \ φ(X).

≥) Let a ∈ A. By Proposition 9.2, F (a) = supG−1(≤ φ(a)) ≤ supG−1(< A), so

we have that supF (A) ≤ supG−1(< A).

≤) Let r ∈ G−1(< A). Then G(r) < A, so we can consider a ∈ A \ G(r), and

hence, G(r) ≤ φ(a). By Proposition 9.2, F (a) = sup{r′ ∈ [0, 1] : G(r′) ≤ φ(a)}.
Note that r ≤ F (a) and, consequently, r ≤ supF (A), which lets us conclude that

supG−1(< A) ≤ supF (A).

5. Let A ∈ DM(X) \ φ(X).

≤) Suppose that inf F (Au) > inf G−1(> A). Then there exists r ∈ [0, 1] such that

r < inf F (Au) and G(r) > A. Since r < inf F (Au), r < F (a) for each a ∈ Au. By

Proposition 9.1.4, G(r) ≤ φ(a) for each a ∈ Au, which means that G(r) ≤ A, a

contradiction with the fact that G(r) > A.

≥) Suppose that inf F (Au) < inf G−1(> A). Now, let r = inf G−1(> A) and

consider a sequence (rn) such that inf F (Au) < rn < r and rn → r. By the

left-continuity of G, G(rn) → G(r). Moreover, the fact that rn < r implies that

G(rn) ≤ A. Consequently, G(r) ≤ A by Lemma 9.5. What is more, the fact

that inf F (Au) < r means that there exists a ∈ Au such that F (a) < r and, by

Proposition 9.1.5, G(r) > φ(a) > A. G(r) > A is a contradiction with the fact

that G(r) ≤ A. Thus, inf F (Au) ≥ inf G−1(> A).

6. It immediately follows from Proposition 8.12 and items 4 and 5.
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Moreover, a cdf always satisfies the next result.

Proposition 9.7. Let X be a separable LOTS and F : X → [0, 1] be a cdf. It

follows that G(0) = minDM(X). Moreover, if X does not have a maximum, then

G−1(maxDM(X)) ⊆ {1}, and, if X does not have a minimum, then G−1(minDM(X)) =

{0}.

Proof. First, we prove that G(0) = minDM(X).

By Proposition 9.1.5, we have that G(0) = inf{C ∈ DM(X) : F̃ (C) ≥ 0}. Since F̃

is a cdf, it holds that F̃ (C) ≥ 0 for each C ∈ DM(X). Moreover, the fact that DM(X)

is compact means that inf{C ∈ DM(X) : F̃ (C) ≥ 0} is, indeed, a minimum, which lets

us conclude that G(0) = minDM(X).

Now, suppose that X does not have a minimum. This implies, by Proposition 7.19,

that inf F (X) = 0. We prove that G−1(minDM(X)) ⊆ {0}.

Suppose that there exists r ∈]0, 1] such that G(r) = minDM(X). By Proposition

9.1.5, G(r) = inf{C ∈ DM(X) : F̃ (C) ≥ r}. Thus, given x ∈ X, it holds that

φ(x) > minDM(X) due to the fact that there does not exist the minimum of X.

Hence, F (x) = F̃ (φ(x)) ≥ F̃ (G(r)) ≥ r (see Proposition 9.1.2). Consequently, F (x) ≥ r

for each x ∈ X, a contradiction with the fact that inf F (X) = 0.

Finally, consider the case in which X does not have a maximum. We prove that

G−1(maxDM(X)) ⊆ {1}. Suppose that there exists r ∈ [0, 1[ such that G(r) =

maxDM(X). Note that, given x ∈ X, it holds that φ(x) < maxDM(X) = G(r)

due to the fact that there does not exist the maximum of X. Now, by Proposition 9.1.4,

φ(x) < G(r) implies that F (x) < r, a contradiction with the fact that supF (X) = 1.

We conclude that G−1(maxDM(X)) ⊆ {1}.

Example 9.8. Let X = Q+
0 , that is, the set of non-negative rationals, and F : X → [0, 1]

the function given by F (x) = 1 − e−x for each x ∈ X. Consider ≤ as the usual order

on X and suppose that there exists a probability measure, µ, on X such that Fµ = F .

Hence, 1 = µ(X) = µ(
⋃
x∈X{x}) ≤

∑
x∈X µ({x}) = 0, a contradiction, which means
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that there does not exist any probability measure such that its cdf is F . Note that, in

this case, DM(X) \ φ(X) is not countable.

The last example suggests considering the countability of DM(X) \ φ(X) in order

to be able to get a probability measure on X such that its cdf is a function satisfying

the properties in Proposition 7.19.

The main result of this chapter is the following one.

Theorem 9.9. Let X be a separable LOTS such that DM(X) \ φ(X) is countable and

F : X → [0, 1] a monotonically non-decreasing and right τ -continuous function satisfying

supF (X) = 1 and supF (A) = inf F (Au) for each A ∈ DM(X). Moreover, inf F (X) =

0 if there does not exist the minimum of X. Then there exists a unique probability

measure on X, µ, such that F = Fµ.

Proof. By Theorem 8.36, the function F̃ : DM(X)→ [0, 1] given by F̃ (A) = inf F (Au)

for each A ∈ DM(X) is an extension of F , which means that F̃ (≤ x) = F (x) for each

x ∈ X and F̃ is the cdf of a probability measure, µ̃, on DM(X). Now, define the measure

µ by µ(A) = µ̃(φ(A)) for each A ⊆ X. We show that φ(X) is measurable with respect

to the Borel σ-algebra of DM(X). Indeed, note that given A ∈ DM(X), {A} is closed

with respect to the order topology of DM(X), which means that {A} ∈ σ(DM(X)).

Hence, the fact that DM(X) \ φ(X) is countable lets us claim that DM(X) \ φ(X) is

the countable union of elements in σ(DM(X)), which implies that DM(X) \ φ(X) ∈
σ(DM(X)). Hence, its complement belongs to the Borel σ-algebra of DM(X), that is

φ(X) ∈ σ(DM(X)), which lets us conclude that φ(X) is measurable. Hence, Proposition

2.18 lets us claim that µ̃ is a measure on σ(φ(X)). Now, considering the map φ−1 :

φ(X)→ X, Definition 2.20 gives us that µ is a measure with respect to σ(X).

Now, we prove a claim which is crucial to show that µ is a probability measure on

X.

Claim 9.10. Let A ∈ DM(X) \ φ(X) be such that A 6= minDM(X). Then F̃−(A) =

supF (A).

Proof. Let A ∈ DM(X)\φ(X). Then Lemma 8.1 lets us claim that A is not left-isolated.

Now, by Proposition 7.11, there exists a sequence (An) in DM(X) such that An
τ ′→ A

and An < An+1 < A for each n ∈ N. Now, let an ∈ An \ An−1 for each n ≥ 2.
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≤) Let B ∈ DM(X) be such that B < A. Then, by definition of an, there exists

n ∈ N such that B < φ(an) < A. What is more, supF (A) ≥ F (an) = F̃ (φ(an)) ≥ F̃ (B),

where we have used the monotonicity of F̃ as a cdf. Hence, supF (A) ≥ supB<A F̃ (B) =

F̃−(A) for each A ∈ DM(X) \ φ(X).

≥) Let a ∈ A. Then φ(a) < A. Moreover, F (a) = F̃ (φ(a)) ≤ supB<A F̃ (B) = F̃−(A).

Therefore, F̃−(A) ≥ F (a) for each a ∈ A, which means that F̃−(A) ≥ supF (A).

Finally we prove that µ(X) = 1. Note that we can write DM(X) = φ(X) ∪
(DM(X) \ φ(X)), which implies that µ̃(DM(X)) = µ̃(φ(X) ∪ (DM(X) \ φ(X))).

Now, the σ-additivity of µ̃ gives us that µ̃(DM(X)) = µ̃(φ(X) ∪ (DM(X) \ φ(X))) =

µ̃(φ(X))+µ̃(DM(X)\φ(X)). Since µ̃ is a probability measure on DM(X), we have that

µ̃(DM(X)) = 1. The fact that DM(X) \ φ(X) is countable implies that µ̃(DM(X) \
φ(X)) = 0. Indeed, to prove that, we first show the next claim.

Claim 9.11. µ̃({A}) = 0 for each A ∈ DM(X) \ φ(X).

Proof. Let A ∈ DM(X) \ φ(X). Then µ̃({A}) = F̃ (A) − F̃−(A). Now, we distinguish

two cases depending on whether A = minDM(X) or not:

1. Suppose that A = minDM(X), in which case Au = X. Note that there does

not exist the minimum of X. Indeed, if there exists minX, then φ(minX) =

A, which contradicts the fact that A ∈ DM(X) \ φ(X). Hence, the definition

of F̃ and the initial assumption that inf F (X) = 0 let us claim that F̃ (A) =

inf F (Au) = inf F (X) = 0. On the other hand, since F̃ is a cdf onDM(X), it holds,

by Proposition 7.31, that inf F̃−(DM(X)) = 0 and, consequently, F̃−(A) = 0.

Therefore, µ̃({A}) = 0.

2. If A 6= minDM(X), by taking into account the definition of F̃ and Claim 9.10, it

follows that µ̃({A}) = inf F (Au) − supF (A). Finally, inf F (Au) − supF (A) = 0

by the initial assumption in the theorem, which lets us conclude that µ̃({A}) = 0.

Hence, by the previous claim and the σ-additivity of µ̃ as a measure, we can write

µ̃(DM(X) \ φ(X)) = µ̃(
⋃
A∈DM(X)\φ(X){A}) =

∑
A∈DM(X)\φ(X) µ̃({A}) = 0. Conse-

quently, 1 = µ̃(DM(X)) = µ̃(φ(X)) + µ̃(DM(X) \ φ(X)) = µ̃(φ(X)) = µ(X).
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The uniqueness of the measure immediately follows from Proposition 7.55.

To end this section, we introduce some results whose main goal is to define a proba-

bility measure from a function F− satisfying the properties that we collect in Proposition

7.31 and from a function G satisfying the properties of the pseudo-inverse of a cdf.

Corollary 9.12. Let X be a separable LOTS such that DM(X) \ φ(X) is countable

and let F− : X → [0, 1] be a monotonically non-decreasing, left τ -continuous function

such that inf F−(X) = 0 and supF−(A) = inf F−(Au) for each A ∈ DM(X). Moreover,

supF−(X) = 1 if there does not exist the maximum of X. Then there exists a unique

probability measure on X, µ, such that Fµ− = F−.

Proof. Let us define F : X → [0, 1] by F (x) = inf F−(> x) if (> x) 6= ∅ and F (x) = 1 if

x = maxX.

First of all, we prove the next claims which are crucial in the rest of the proof:

Claim 9.13. F−(x) ≤ F (x) for each x ∈ X.

Proof. It immediately follows from the definition of F and the monotonicity of F−.

Claim 9.14. Let a, b ∈ X be such that a < b. Then F (a) ≤ F−(b).

Proof. Let a, b ∈ X be such that a < b. Then inf F−(> a) ≤ F−(b), that is, F (a) ≤
F−(b).

Claim 9.15. Let (xn) be a monotone sequence which right τ -converges to x. Then

F−(xn)→ F (x).

Proof. Let (xn) be a monotone sequence which right τ -converges to x. By Claim 9.14,

it holds that F (x) ≤ F−(xn), since x < xn. Note that (F−(xn)) is a monotonically non-

increasing sequence with a lower bound, F (x). Hence, F−(xn)→ r′ for some r′ ≥ F (x).

Note that F−(xn) ≥ r′ for each n ∈ N. Now, suppose that F (x) < r′. Then, by definition

of F , there exists y > x such that F−(y) < r′. Since xn → x, there exists m ∈ N such

that x < xm < y and, hence, F−(xm) ≤ F−(y) < r′, which contradicts the fact that

F−(xn) ≥ r′ for each n ∈ N. Consequently, r′ = F (x).

Secondly, we show that F is a cdf. Indeed,
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1. The fact that F− is monotonically non-decreasing gives us that F satisfies that

property too.

2. F is right τ -continuous. Let (xn) be a monotone sequence which right τ -converges

to x. Then, by Claim 9.14, we have that F (x) ≤ F−(xn+1) and F (xn+1) ≤ F−(xn).

Moreover, Claim 9.13 gives us that F−(xn+1) ≤ F (xn+1). Hence, if we join all

the previous inequalities, it follows that F (x) ≤ F−(xn+1) ≤ F (xn+1) ≤ F−(xn).

Finally, by taking limits and using the fact that F−(xn)→ F (x) (see Claim 9.15),

we conclude that F (xn)→ F (x), that is, F is right τ -continuous.

3. supF (X) = 1. We distinguish two cases depending on whether there exists the

maximum of X or not:

(a) Suppose that there does not exist maxX. Then, by Claim 9.13, it holds that

F−(x) ≤ F (x) for each x ∈ X, which gives us that supF−(X) ≤ supF (X).

By taking into account that supF−(X) = 1, we conclude that supF (X) = 1.

(b) If there exists maxX, then, by definition of F , we have that F (maxX) = 1

and, consequently, supF (X) = 1.

4. inf F (X) = 0 if there does not exist the minimum of X. Since X is increasing and

it does not have a minimum, by Lemma 8.8, we can consider a decreasing sequence

(an) in X such that X =
⋃

(≥ an). Moreover, the fact that F is monotonically non-

decreasing lets us claim, by Lemma 8.10, that F (an) → inf F (X). What is more,

the monotonicity of F− implies that F−(an) → inf F−(X) = 0. By Claim 9.13,

we have that inf F−(X) ≤ inf F (X) and, by Claim 9.14, it holds that F (an+1) ≤
F−(an). Therefore, the next inequality follows: 0 ≤ inf F (X) ≤ F (an+1) ≤ F−(an).

By taking limits, we conclude that inf F (X) = 0.

Note that it is obvious that supF (A) = inf F (Au) for each A ∈ φ(X). Now, we

prove a claim that will be crucial to get the equality supF (A) = inf F (Au) for each

A ∈ DM(X) \ φ(X).

Claim 9.16. Let A ∈ DM(X) \ φ(X). Then supF (A) = supF−(A) and inf F (Au) =

inf F−(Au).

Proof. Let A ∈ DM(X) \ φ(X). Then A is not isolated by Lemma 8.1. First, we prove

that supF (A) = supF−(A) for each n ∈ N
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≥) It is clear if we take into account Claim 9.13, which gives us that F−(x) ≤ F (x)

for each x ∈ X.

≤) Since A is not left-isolated, we can consider a monotonically non-decreasing se-

quence (An) such that An
τ ′→ A. Now, let an ∈ An+1 \ An for each n ∈ N. Note that

an ∈ A, since An ⊆ A for each n ∈ N. Given a ∈ A, then there exists n ∈ N such that

an > a and, hence, by Claim 9.14, it follows that F (a) ≤ F−(an) ≤ supF−(A), which

lets us conclude that supF (A) ≤ supF−(A).

Now, we prove the equality inf F (Au) = inf F−(Au).

≥) It immediately follows from Claim 9.13 due to the fact that F−(x) ≤ F (x) for

each x ∈ X.

≤) Since A is not right-isolated, we can consider a monotonically non-increasing

sequence (An) such that An
τ ′→ A. Now, let an ∈ Aun+1 \ Aun for each n ∈ N. Note that

an ∈ Au, since A ⊂ An for each n ∈ N. Given a ∈ Au, then there exists n ∈ N such that

an < a and, hence by Claim 9.14, it follows that inf F (Au) ≤ F (an) ≤ F−(a), which lets

us conclude that inf F (Au) ≤ inf F−(Au).

The previous claim gives us that supF (A) = supF−(A) and inf F (Au) = inf F−(Au)

for each A ∈ DM(X)\φ(X), which means that the condition supF−(A) = inf F−(Au) for

each A ∈ DM(X)\φ(X) implies that inf F (Au) = supF (A) for each A ∈ DM(X)\φ(X).

Hence, Theorem 9.9 lets us conclude that F is the cdf of a probability measure, µ, defined

on X.

Finally we show that Fµ− = F−. For that purpose, given x ∈ X, we distinguish two

cases depending on whether x is left-isolated or not:

1. Suppose that x is not left-isolated. Then, by Proposition 7.11, there exists a

monotone sequence which left τ -converges to x. Let (xn) be that sequence. On the

one hand, since F = Fµ is a cdf, we have that Fµ(xn) → Fµ−(x) (see Proposition

7.30). Moreover, Claim 9.13 gives us that F−(xn) ≤ F (xn) and, by Claim 9.14,

F (xn) ≤ F−(xn+1). Hence, if we join the previous inequalities, we have that

Fµ(xn) = F (xn) ≤ F−(xn+1) ≤ F (xn+1) = Fµ(xn+1). Now, by taking limits in the

previous expression, since Fµ(xn)→ Fµ−(x), we have that F−(xn+1)→ Fµ−(x).

On the other hand, the left τ -continuity of F− means that F−(xn)→ F−(x).
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The facts that F−(xn) → Fµ−(x) and F−(xn) → F−(x) let us conclude that

F−(x) = Fµ−(x).

2. Suppose that x is left-isolated. Then it can happen:

(a) There exists z ∈ X such that ]z, x[= ∅. Note that the fact that Fµ is the

cdf defined from µ gives us that Fµ−(x) = µ(< x) = µ(≤ z) = Fµ(z). Now,

Theorem 9.9 lets us claim that Fµ(z) = F (z). By definition of F , it holds

that F (z) = inf F−(> z) = inf F−(≥ x) = F−(x), which finishes the proof.

(b) If (< x) = ∅, then x = minX and, consequently, Fµ−(x) = 0 = F−(x) by

hypothesis.

Hence, Fµ− = F−. The uniqueness of the measure immediately follows from Corollary

9.3.

Corollary 9.17. Let X be a separable LOTS such that DM(X) \ φ(X) is countable

and let G : [0, 1] → DM(X) be a monotonically non-decreasing and left τ -continuous

function such that supG−1(< A) = inf G−1(> A) for each A ∈ DM(X) \ φ(X), G(0) =

minDM(X), G−1(maxDM(X)) ⊆ {1} if there does not exist the maximum of X and

G−1(minDM(X)) = {0} if there does not exist the minimum of X. Then there exists a

unique probability measure on X, µ, such that G is the pseudo-inverse of Fµ.

Proof. First of all, we use the fact that DM(X) is separable as a consequence of the

separability of X (see Corollary 8.4).

Let us define F : X → [0, 1] by F (x) = sup{r ∈ [0, 1] : G(r) ≤ φ(x)} = supG−1(≤
φ(x)).

Note that 0 ∈ G−1(≤ φ(x)) for each x ∈ X, since G(0) = minDM(X) and, hence,

F is well defined.

Now, we prove a claim which will be crucial to show the right continuity of F .

Claim 9.18. Let x ∈ X and r ∈ [0, 1]. Then F (x) < r if and only if G(r) > φ(x).

Proof. First, note that if r = 0, the statement is trivial, so we can suppose that r > 0.
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⇒) Suppose that F (x) < r. Then sup{r′ ∈ [0, 1] : G(r′) ≤ φ(x)} < r, which means

that r /∈ {r′ ∈ [0, 1] : G(r′) ≤ φ(x)}, which implies that G(r) > φ(x).

⇐) Suppose now that G(r) > φ(x). We distinguish two cases:

1. Suppose that F (x) > r. Then sup{r′ ∈ [0, 1] : G(r′) ≤ φ(x)} > r, which means

that there exists r′ ∈ [0, 1] with r′ > r such that G(r′) ≤ φ(x). Hence, the

monotonicity of G gives us that G(r) ≤ G(r′) ≤ φ(x). Thus, G(r) ≤ φ(x), a

contradiction with the initial assumption.

2. Suppose now that F (x) = r and let (rn) be a left convergent sequence to r with

rn ∈ [0, r[ for each n ∈ N. Then sup{r′ ∈ [0, 1] : G(r′) ≤ φ(x)} > rn for each

n ∈ N. Hence, given n ∈ N, there exists r′ ∈ [0, 1] with r′ > rn and such that

G(r′) ≤ φ(x). Hence, the monotonicity of G gives us that G(rn) ≤ G(r′) ≤ φ(x).

Thus, G(rn) ≤ φ(x) for each n ∈ N. Since G is left τ -continuous by hypothesis,

by taking limits and using Lemma 9.5, we conclude that G(r) ≤ φ(x), which is a

contradiction with the initial assumption.

Secondly, we show that F is a cdf. For this purpose, we start proving its properties

as cdf:

1. F is monotonically non-decreasing. Indeed, it immediately follows from the mono-

tonicity of G and the definition of F .

2. F is right τ -continuous. Let (xn) be a monotone sequence which right τ -converges

to x. Note that F (x) ≤ F (xn) for each n ∈ N and F (xn+1) ≤ F (xn), that is,

(F (xn)) is a monotonically non-increasing sequence with a lower bound, which

means that F (xn) → r′ for some r′ ≥ F (x). Suppose that r′ > F (x). Then

there exists r ∈ [0, 1] such that F (x) < r < r′. The previous claim gives us that

φ(x) < G(r) and G(r) ≤ G(r′), since G is monotonically non-decreasing. Since

(xn) is a monotone sequence which right τ -converges to x, there exists n ∈ N such

that φ(xn) < G(r). By the previous claim, this fact implies that F (xn) < r, which

contradicts the fact that F (xn) ≥ r for each n ∈ N. Hence, F (x) = r′.
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3. supF (X) = 1. Note that if there exists the maximum of X, then F (maxX) = 1

by definition of F . Suppose that there does not exist the maximum of X and that

supF (X) 6= 1. Then we can consider r ∈ [0, 1[ such that r > supF (X). Now,

we claim that G(r) = maxDM(X). Indeed, suppose that G(r) 6= maxDM(X).

Then we can choose x ∈ X such that φ(x) > G(r) and, hence, by Claim 9.18,

we have that F (x) ≥ r, which contradicts the fact that r > supF (X). Conse-

quently, G(r) = maxDM(X), which is a contradiction with the initial assumption

G−1(maxDM(X)) ⊆ {1}.

4. inf F (X) = 0 if there does not exist the minimum of X. Suppose that inf F (X) 6=
0. Then we can consider r ∈]0, 1] such that r < inf F (X). Now, we claim

that G(r) = minDM(X). Indeed, suppose that G(r) 6= minDM(X). Then

we can choose x ∈ X such that φ(x) < G(r) and, hence, by Claim 9.18, we

have that F (x) < r, a contradiction with the fact that r < inf F (X). Conse-

quently, G(r) = minDM(X), which is a contradiction with the initial assumption

G−1(minDM(X)) = {0}.

Now, we prove a claim that will be crucial to get the equality supF (A) = inf F (Au)

for each A ∈ DM(X) \ φ(X).

Claim 9.19. Let A ∈ DM(X)\φ(X). Then supF (A) = supG−1(< A) and inf F (Au) =

inf G−1(> A).

Proof. Let A ∈ DM(X) \ φ(X). First, we prove that supF (A) = supG−1(< A).

≤) Let a ∈ A. Then F (a) = supG−1(≤ φ(a)) ≤ supG−1(< A), so we have that

supF (A) ≤ supG−1(< A).

≥) Let r ∈ G−1(< A). Then G(r) < A, so we can consider a ∈ A \ G(r), that is,

G(r) ≤ φ(a). Now, according to the definition of F from G, F (a) = sup{r′ ∈ [0, 1] :

G(r′) ≤ φ(a)}. Note that r ≤ F (a). What is more, r ≤ F (a) ≤ supF (A), which implies

that supG−1(< A) ≤ supF (A).

Now, we prove the equality inf F (Au) = inf G−1(> A). Let A ∈ DM(X) \ φ(X).

≤) Suppose that inf F (Au) > inf G−1(> A). Then there exists r ∈ [0, 1] such that

r < inf F (Au) and G(r) > A. Since r < inf F (Au), r < F (a) for each a ∈ Au. By Claim
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9.18, G(r) ≤ φ(a) for each a ∈ Au, which means that G(r) ≤ A, a contradiction with

the fact that G(r) > A.

≥) Suppose that inf F (Au) < inf G−1(> A). Then there exists b ∈ Au such that

F (b) < inf G−1(> A). Since inf G−1(> A) = supG−1(< A) by hypothesis, we have

that F (b) < supG−1(< A). Hence, there exists r ∈ G−1(< A) such that F (b) < r.

Equivalently, there exists r ∈ [0, 1] with G(r) < A such that F (b) < r. Now, Claim 9.18

gives us that G(r) > φ(b). The fact that (< A) is decreasing together with the facts

that G(r) < A and G(r) > φ(b) let us conclude that b ∈ A, a contradiction.

By the previous claim, the condition supG−1(< A) = inf G−1(> A) for each A ∈
DM(X) \ φ(X) implies that supF (A) = inf F (Au) for each A ∈ DM(X) \ φ(X), so

Theorem 9.9 lets us conclude that F is the cdf of a probability measure, µ, defined on

X.

Now, we prove another claim that will help us in showing the equality Gµ = G. For

that purpose, and by taking into account that F is a cdf, we will use its extension to

DM(X), F̃ .

Claim 9.20. F̃ (G(r)) ≥ r for each r ∈ [0, 1].

Proof. Let r ∈ [0, 1] and suppose that F̃ (G(r)) < r. Then infx∈G(r)u F (x) < r. Hence,

there exists x ∈ G(r)u such that F (x) < r. Now, by Claim 9.18, it follows that G(r) >

φ(x), which means that x /∈ G(r)u, a contradiction. Consequently, F̃ (G(r)) ≥ r.

Finally, we show that Gµ = G.

≥) Let r ∈ [0, 1] and A ∈ DM(X) be such that F̃ (A) ≥ r. Now, let x ∈ Au. Then

F̃ (φ(x)) ≥ F̃ (A) ≥ r. The fact that F̃ is an extension of F gives us that F̃ (φ(x)) = F (x).

Since F (x) ≥ r, by Claim 9.18, we have that G(r) ≤ φ(x). By the arbitrariness of x, we

conclude that G(r) ≤ A and, consequently, inf{A ∈ DM(X) : F̃ (A) ≥ r} ≥ G(r), that

is, Gµ(r) ≥ G(r).

≤) By Claim 9.20, r ≤ F̃ (G(r)) for each r ∈ [0, 1]. Now, by taking into ac-

count that Gµ is the pseudo-inverse of F̃ as a cdf, its monotonicity gives us that

Gµ(r) ≤ Gµ(F̃ (G(r))). Finally, by taking into account Proposition 9.1.1, it follows

that Gµ(F̃ (G(r))) ≤ G(r), so we can conclude that Gµ(r) ≤ G(r).
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The uniqueness of the measure immediately follows from Corollary 9.4.

Once we have proven that a measure can be determined from F− and G when given

some conditions on them and DM(X), we get two immediate results.

Corollary 9.21. Let X be a compact separable LOTS and F− : X → [0, 1] a monoton-

ically non-decreasing, left τ -continuous function such that inf F−(X) = 0. Then there

exists a unique probability measure µ on the Borel σ-algebra of X such that Fµ− = F−.

Proof. Note that the fact that X is compact means that DM(X) = φ(X), which implies

that DM(X) \ φ(X) = ∅. Since given A ∈ DM(X), there exists a ∈ X such that

A = φ(a), it is clear that supF−(A) = inf F−(Au). Hence, by taking into account the

hypothesis on F− and Corollary 9.12, we conclude that there exists a probability measure

µ on the Borel σ-algebra of X such that Fµ− = F−. Moreover, Corollary 9.3 ensures

that µ is unique.

Corollary 9.22. Let X be a compact separable LOTS and G : X → [0, 1] a mono-

tonically non-decreasing and left τ -continuous function satisfying G(0) = minX and

G(1) = maxX. Then there exists a unique probability measure µ on the Borel σ-algebra

of X such that G is the pseudo-inverse of Fµ.

Proof. Since X is compact, DM(X) = φ(X), which implies that DM(X) \ φ(X) = ∅.
Now, by taking into account the hypothesis on G and Corollary 9.17, we conclude that

there exists a probability measure µ on the Borel σ-algebra of X such that G is the

pseudo-inverse of Fµ. Moreover, Corollary 9.4 ensures that µ is unique.

9.2 Examples

Next, we show some examples in which it is possible to define a probability measure

on X from a function satisfying the properties of a cdf by taking into account the theory

that has been developed in Part II previously.

Example 9.23. Let X = ({0} ∪ N) × [0, 1] and ≤ be the lexicographic order on X.

Consider the function F : X → [0, 1] given by F (x, y) = 1 − 1
2
e−(x+y) − 1

2
e−x for each

(x, y) ∈ X.
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Note that, in this case, DM(X)\φ(X) = {X}. Roughly speaking, DM(X) coincides

with the one-point compactification of X, since the only cut that we add when we consider

DM(X) is X.

We have already seen that DM(X) \ φ(X) is countable. Moreover, by definition of

F , it holds that F is a monotonically non-decreasing and right τ -continuous function

(indeed, F is continuous) satisfying supF (X) = 1 and supF (A) = inf F (Au) for each

A ∈ DM(X). Finally, Theorem 9.9 lets us conclude that there exists a unique probability

measure µ on X such that F is its cdf.

Example 9.24. Let X = ({0} ∪ N) × [0, 1] and ≤ be the lexicographic order on X.

Consider the function F− : X → [0, 1] given by F−(x, y) = 1− 1
2
e−(x+y) − 1

2
e−x for each

(x, y) ∈ X \ {(x, 0) : x ∈ N} and F−(x, 0) = 1− e+1
2
e−x for each x ∈ N.

We have already seen that DM(X) \ φ(X) is countable. Note that F− is continuous

in X \ {(x, 0) : x ∈ N} so it is left τ -continuous. Moreover, given (x, 0) for some x ∈ N,

it holds that F− is left τ -continuous at (x, 0), since this point is left-isolated.

On the other hand, by definition of F−, it holds that F− is monotonically non-

decreasing and it satisfies supF−(X) = 1 and supF−(A) = inf F−(Au) for each A ∈
DM(X). Finally, Corollary 9.12 lets us conclude that there exists a unique probability

measure, µ, on X such that Fµ− = F−.

Example 9.25. Let X = ({0} ∪ N) × [0, 1] and ≤ be the lexicographic order on X.

Consider the function G : DM(X) → [0, 1] given by G(r) = (≤ min{(x, y) ∈ X :

x + y ≥ ln(1 − r)−1}) for each r ∈ [0, 1[ and G(1) = X. Note that G satisfies the

conditions of Corollary 9.17, which means that there exists a probability measure µ on

X such that G is the pseudo-inverse of Fµ.

Indeed, by taking into account Proposition 9.2, we can define Fµ by Fµ(x, y) = 1 −
e−(x+y) for each (x, y) ∈ X.

The next example shows a function that is not a cdf.

Example 9.26. Let X = ({0} ∪ N)×]0, 1[ and ≤ be the lexicographic order on X.

Consider the function F : X → [0, 1] given by F (x, y) = 1 − 1
2x

for each (x, y) ≥ (1, 0)

and F (x, y) = 0 otherwise.

Note that DM(X) \ φ(X) is countable, F is right τ -continuous, monotonically non-

decreasing, inf F (X) = 0 and supF (X) = 1.
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However, if we consider the cut A = (< (1, 1)), the condition supF (A) = inf F (Au)

does not hold. In this case, Au = (> (2, 0)). Note that supF (A) = 1
2

and inf F (Au) = 3
4
.

Hence, supF (A) 6= inf F (Au) and, by Proposition 8.12, F is not the cdf of a probability

measure on X.

To end this section, we introduce a simple real example where our theory is essential

to get the probability distribution.

Example 9.27. Consider three cdfs that are the lifetime of three different light bulbs.

The distributions are exponential with means 800, 1000 and 1200 hours. Consider a

system with three light bulbs one of each type. Find the probability that, at least, one of

the light bulbs of this type has a lifetime of more than 900 hours.

In the classical case we can define the random variables X1 ∼ ε( 1
800

), X2 ∼ ε( 1
1000

)

and X3 ∼ ε( 1
1200

). Note that the corresponding cdfs, F1, F2 and F3 are a particu-

lar case of a cdf according to the developed theory. Furthermore, the idea of mod-

elling the case in which three light bulbs work together is considering the set X =

[0,∞[×{0, 1, 2} and ≤ as the lexicographic order on X. It holds that X is a sepa-

rable LOTS and that DM(X) \ φ(X) = {X}. The function F : X → [0, 1] defined by

F (x, y) = 1
3

(F1(x) + F2(x) + F3(x)) is monotonically non-decreasing, right τ -continuous

and supF (A) = inf F (Au) for each A ∈ DM(X). Since DM(X) \ φ(X) is countable,

Theorem 9.9 lets us ensure that there exists a probability measure on X such that its

cdf is F . Hence, it is possible for us to know the probability we want by calculating

1− F (900, y) for any y ∈ {0, 1, 2}.
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Applications

This chapter is split into two sections, which consist of some applications that have

arisen from the theory that was developed in Chapters 7, 8 and 9. Indeed, in Section

10.1 we prove that each cdf on a separable LOTS can be decomposed as a convex sum

of cdfs and, in Section 10.2, we give a goodness-of-fit test so that we can check if a given

random sample comes from a certain distribution.

10.1 Decomposition of a cdf

Note that the convex sum of cdfs is a cdf, as a consequence of Theorem 9.9. This

allows us to give a decomposition theorem for a cdf defined on a separable LOTS, X,

where DM(X) \ φ(X) is countable. In the decomposition theorem we will use the

condition F = F− instead of the continuity of F in order to get the uniqueness of the

decomposition.

Definition 10.1. Let µ be a probability measure on a separable LOTS X and F its

cdf. We say that F is a step cdf if {x ∈ X : µ({x}) > 0} is a nonempty set and∑
x∈X:µ({x})>0 µ({x}) = 1.

Theorem 10.2. Every cdf Fµ defined on a separable LOTS X such that DM(X)\φ(X)

is countable, can be decomposed into Fµ = αFd + (1 − α)Fc with 0 ≤ α ≤ 1, where Fd

is a step cdf, and Fc is a cdf satisfying that Fc− = Fc. Moreover, the decomposition is

unique.
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Proof. Let X − C(Fµ) = {x ∈ X : µ({x}) > 0}. By Lemma 7.33, it is known that

X −C(Fµ) is countable, which means that we can write X −C(Fµ) = {xn : n ≥ 1} and,

if we define Hd(x) =
∑

xn≤x µ({xn}) for each x ∈ X, it holds that Hd is a step function

such that:

� Hd is monotonically non-decreasing. Let x, y ∈ X with x < y. Then Hd(y) =∑
xn≤y µ({xn}) =

∑
xn≤x µ({xn}) +

∑
x<xn≤y µ({xn}) = Hd(x) +

∑
x<xn≤y µ({xn})

so it clearly follows that Hd(x) ≤ Hd(y).

� Hd is right τ -continuous. Let y ∈ X and yn
τ→ y with yn > yn+1 > y. Then we can

write Hd(yn) =
∑

xk≤yn Hd(xk) =
∑

xk≤yHd(xk) +
∑

y<xk≤yn µ({xk}) = Hd(y) +∑
y<xk≤yn µ({xk}). By taking limits, we have that Hd(yn) → Hd(y). Indeed,

note that
∑

y<xk≤yn µ({xk}) = µ(
⋃
y<xk≤yn{xk}) ≤ µ(]y, yn]). Now, the fact that

(yn) is monotonically non-increasing implies that ]y, yn] →
⋂
n∈N]y, yn] = ∅, so it

follows, by the continuity from above of µ, that µ(]y, yn]) → 0 and, consequently,∑
y<xn≤yn µ({xn})→ 0. Hence, by Lemma 7.15, Hd is right τ -continuous.

� supHd(A) = inf Hd(A
u) for each A ∈ DM(X). Note that the case in which

A ∈ φ(X) is clear, since A = (≤ x) and Au = (≥ x) for some x ∈ X and,

consequently, by definition of Hd, we have that supHd(A) = inf Hd(A
u).

Now, let A ∈ DM(X) \ φ(X). Since A /∈ φ(X), there does not exist maxA.

Hence, the fact that A is decreasing lets us consider an increasing sequence (an) in

A such that
⋃
n∈N(≤ an) = A (see Lemma 8.8). What is more, we can consider a

decreasing sequence (bn) in Au such that
⋃
n∈N(≥ bn) = Au, since Au is increasing

and it does not have a minimum. Now, define A1 to be the set of points of X−C(F )

that belong to A and A2 = (X − C(F )) \ A1.

Note that inf Hd(A
u)− supHd(A) = inf Hd(bn)− supHd(an) ≤ Hd(bn)−Hd(an) =∑

x∈X−C(F ):an<x<bn
µ({x}) = µ(

⋃
x∈X−C(F ):an<x<bn

{x}) ≤ µ(]an, bn]) = F (bn) −
F (an). Now, by taking limits, it holds that F (bn)−F (an)→ inf F (Au)−supF (A).

Since F is a cdf, it satisfies that supF (A) = inf F (Au) for each A ∈ DM(X), which

lets us conclude that inf Hd(A
u) = supHd(A).

� inf Hd(X) = 0 if there does not exist minX. Since Hd(x) ≤ F (x) for each x ∈ X,

it holds that 0 ≤ inf Hd(X) ≤ inf F (X). Since F is a cdf, inf F (X) = 0, which lets

us conclude that inf Hd(X) = 0.
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On the other hand, it is clear that Hd(x) ≤ F (x) for each x ∈ X. Therefore, we can

define H(x) = F (x)−Hd(x) for each x ∈ X and it holds that:

� H is monotonically non-decreasing. Indeed, let x < y. Then H(y)−H(x) = F (y)−
F (x)− [Hd(y)−Hd(x)] = F (y)− F (x)−

∑
x<xn≤y µ({xn}) and H(y)−H(x) ≥ 0

if and only if
∑

x<xn≤y µ({xn}) ≤ F (y) − F (x). Note that
∑

x<xn≤y µ({xn}) =

µ(
⋃
x<xn≤y{xn}) ≤ µ(]x, y]) = F (y)−F (x) by Proposition 7.28 and, consequently,

H is monotonically non-decreasing.

� H is right τ -continuous. It is clear that H is right τ -continuous due to the fact

that it is the subtraction of two right τ -continuous functions.

� supH(A) = inf H(Au) for each A ∈ DM(X). The case in which A ∈ φ(X) is clear,

so we show that the equality is true in case that A ∈ DM(X) \ φ(X). Since A is

decreasing and it does not have a maximum and Au is increasing and it does not

have a minimum, we can consider (an) and (bn) with an ∈ A and bn ∈ Au to be, re-

spectively, an increasing sequence and a decreasing one such that
⋃
n∈N(≤ an) = A

and
⋃
n∈N(≥ bn) = Au. What is more, the fact that F , Hd and H are monoton-

ically non-decreasing lets us claim that F (an) → supF (A), Hd(an) → supG(A),

F (an) → inf F (Au), Hd(an) → inf Hd(A
u), H(an) → supH(A) and H(an) →

inf H(Au). Since, by definition of H, we can write H(an) = F (an) − Hd(an),

by taking limits, it holds that supH(A) = supF (A) − supHd(A). Moreover,

H(bn) = F (bn)−Hd(bn) gives us that inf H(Au) = inf F (Au)− inf Hd(A
u). Since

F is a cdf, we have that supF (A) = inf F (Au). Hd also satisfies that equality as

it has been proven before. Hence, supH(A) = inf H(Au).

� If there does not exist minX, then inf H(X) = 0. Indeed, the fact that H(x) =

F (x) − Hd(x) for each x ∈ X implies that H(x) ≤ F (x) for each x ∈ X, so

inf H(X) ≤ inf F (X) = 0, which lets us conclude that inf H(X) = 0.

Now, note that
∑

xn∈X\C(F ) µ({xn}) is an absolutely convergent series, that is, there

exists a number α such that supHd(X) = α. Moreover, the facts that H(x) = F (x) −
Hd(x) and supF (X) = 1 mean that supH(X) = 1 − α. Hence, if we define Fd(x) =

1
α
Hd(x) and Fc = 1

1−αH(x) for each x ∈ X, it follows that supFd(X) = supFc(X) = 1.

Moreover, in case that there does not exist minX, inf Fd(X) = inf Fc(X) = 0 due to the

fact that inf Hd(X) = inf H(X) = 0.
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We conclude that Fd and Fc are both cdfs by Theorem 9.9 (since they are monoton-

ically non-decreasing and right τ -continuous, supFd(A) = inf Fd(A
u) and supFc(A) =

inf Fc(A
u) for each A ∈ DM(X), because Hd and H satisfy these properties, DM(X) \

φ(X) is countable and inf Fd(X) = inf Fc(X) = 0 if there does not exist minX).

Moreover, Fc− = Fc. Indeed, given x ∈ X, we distinguish two cases depending on

whether the measure of x is null or not:

1. Let x ∈ X be such that µ({x}) = 0. We distinguish two cases depending on

whether x is left-isolated or not:

(a) Suppose that x is left-isolated. Then there exists y ∈ X with y < x and

such that ]y, x[= ∅. Hence, Fc−(x) = Fc(y). By definition of Fc, we have

that Fc(y) = 1
1−α

(
F (y)−

∑
xi≤y µ({xi})

)
. Moreover, the fact that µ({x}) =

0 gives us that F (y) = F (x) and
∑

xi≤y µ({xi}) =
∑

xi≤x µ({xi}). Thus,

Fc(y) = 1
1−α

(
F (x)−

∑
xi≤x µ({xi})

)
= Fc(x). We conclude that Fc−(x) =

Fc(x).

(b) Suppose that x is not left-isolated. Then, by Proposition 7.11, there exists

a monotone sequence which left τ -converges to x. Let (yn) be the previ-

ous sequence. By Proposition 7.30, it holds that Fc(yn) → Fc−(x) due to

the fact that Fc is a cdf. Now, we prove that Fc(yn) → Fc(x). We can write

Fc(yn) = 1
1−α

(
F (yn)−

∑
xi≤yn µ({xi})

)
. By taking limits,

∑
xi≤yn µ({xi})→∑

xi<x
µ({xi}) =

∑
xi≤x µ({xi}), since µ({x}) = 0. Moreover, F (yn) →

F−(x), since F is a cdf (see Proposition 7.30). What is more, F (yn)→ F (x)

because µ({x}) = 0. Consequently, Fc(yn)→ 1
1−α

(
F (x)−

∑
xi≤x µ({xi})

)
=

Fc(x). Since Fc(yn)→ Fc(x) and Fc(yn)→ Fc−(x), we conclude that Fc(x) =

Fc−(x).

2. Let x ∈ X be such that µ({x}) > 0. We distinguish two cases depending on

whether x is left-isolated or not:

(a) Suppose that x is left-isolated. Then there exists y ∈ X with y < x such

that ]y, x[= ∅. Thus, Fc−(x) = Fc(y). Now, by definition of Fc, we can

write Fc(y) = 1
1−α

(
F (y)−

∑
xi≤y µ({xi})

)
. Since µ({x}) > 0, it holds

that F (y) = F (x)− µ({x}), so we have that 1
1−α

(
F (y)−

∑
xi≤y µ({xi})

)
=
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1
1−α

(
F (x)− µ({x})−

∑
xi≤y µ({xi})

)
= 1

1−α

(
F (x)−

∑
xi≤x µ({xi})

)
= Fc(x).

We conclude that Fc−(x) = Fc(x).

(b) Suppose that x is not left-isolated. Then there exists a monotone sequence

which left τ -converges to x. Let (yn) be the previous sequence. By Proposition

7.30, it holds that Fc(yn) → Fc−(x) due to the fact that Fc is a cdf. Now,

we prove that Fc(yn) → Fc(x). We can write, by definition of Fc, Fc(yn) =

1
1−α

(
F (yn)−

∑
xi≤yn µ({xi})

)
. Now, by taking limits, we have that Fc(yn)→

1
1−α

(
F−(x)−

∑
xi<x

µ({xi})
)

= 1
1−α

(
F−(x)− (

∑
xi≤x µ({xi})− µ({x}))

)
=

1
1−α

(
F (x)−

∑
xi≤x µ({xi})

)
= Fc(x).

Finally, we prove the uniqueness of the previous decomposition. Suppose that we

can write F (x) = αFd1(x) + (1 − α)Fc1(x) = βFd2(x) + (1 − β)Fc2(x) for each x ∈ X,

where Fd1 and Fd2 are both step cdfs and Fc1 and Fc2 are cdfs satisfying the hypothesis

given for Fc. Moreover, α, β ∈ [0, 1]. Let x ∈ X. We distinguish two cases depending

on whether x is left-isolated or not:

1. Suppose that x is not left-isolated. Then there exists a monotone sequence which

left τ -converges to x. Let (xn) be that sequence. Then it holds that F (xn) =

αFd1(xn) + (1 − α)Fc1(xn) = βFd2(xn) + (1 − β)Fc2(xn) or, equivalently, (1 −
α)Fc1(xn) − (1 − β)Fc2(xn) + αFd1(xn) − βFd2(xn) = 0. Moreover, for x it holds

that (1−α)Fc1(x)−(1−β)Fc2(x)+αFd1(x)−βFd2(x) = 0. Now, if we substract both

previous equalities, we have that 0 = αFd1(xn)−αFd1(x)−βFd2(xn)+βFd2(x)+(1−
α)Fc1(xn)−(1−α)Fc1(x)−(1−β)Fc2(xn)+(1−β)Fc2(x). Note that (1−α)Fc1(xn)−
(1− α)Fc1(x)− (1− β)Fc2(xn) + (1− β)Fc2(x)→ 0, since Fc1(xn)→ Fc1−(x) and

Fc2(xn)→ Fc2−(x), since they are both cdfs (see Proposition 7.30). Moreover, we

take into account that Fc1 = Fc1− and Fc2 = Fc2−. Hence, by taking limits in the

expression 0 = αFd1(xn)− αFd1(x)− βFd2(xn) + βFd2(x) + (1− α)Fc1(xn)− (1−
α)Fc1(x)− (1− β)Fc2(xn) + (1− β)Fc2(x), it follows that αFd1(xn)− βFd2(xn)→
αFd1(x) − βFd2(x). Since Fd1(xn) → Fd1−(x) and Fd2(xn) → Fd2−(x) due to the

fact that Fd1 and Fd2 are both cdfs (see Proposition 7.30), we also have that

αFd1(xn) − βFd2(xn) → αFd1−(x) − βFd2−(x). Hence, αFd1−(x) − βFd2−(x) =

αFd1(x)− βFd2(x), which implies that αµFd1 ({x}) = βµFd2 ({x}).

2. Suppose that x is left-isolated. Then there exists z ∈ X with z < x and such that
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]z, x[= ∅. By using a similar reasoning to the one made in the previous item, it

holds that 0 = αFd1(z)−αFd1(x)−βFd2(z)+βFd2(x)+(1−α)Fc1(z)−(1−α)Fc1(x)−
(1 − β)Fc2(z) + (1 − β)Fc2(x). What is more, the previous expression becomes

0 = αFd1(z)−αFd1(x)−βFd2(z) +βFd2(x) if we take into account that Fc1 = Fc1−

and Fc2 = Fc2−. Hence, we have that αFd1(x) − αFd1(z) = βFd2(x) − βFd2(z) if

and only if αµFd1 ({x}) = βµFd2 ({x}).

Therefore, αµFd1 ({x}) = βµFd2 ({x}) for each x ∈ X. Now, observe that α =

α
∑

x∈X µFd1 ({x}) =
∑

x∈X αµFd1 ({x}) =
∑

x∈X βµFd2 ({x}) = β
∑

x∈X µFd2 ({x}) = β,

where we have used that
∑

x∈X µFd1 ({x}) =
∑

x∈X µFd2 ({x}) = 1, since µFd1 and µFd2

are both probability measures on X.

Hence, µFd1 ({x}) = µFd2 ({x}) for each x ∈ X, so FµFd1
(x) = FµFd2

(x) for each

x ∈ X. By Theorem 9.9, we have that FµFd1
= Fd1 and FµFd2

= Fd2 and, consequently,

Fc1 = Fc2 , which gives us the uniqueness of the decomposition.

Remark 10.3. Continuity is not enough to ensure that the decomposition is unique. We

also need the measure of each point to be null. That is the reason why the decomposition

made in the previous theorem is not unique except if we suppose that the measure of each

point is null according to the cdf Fc.

The decomposition of a cdf in the classical case is unique (see [19, Th. 1.2.3]) due

to the fact that, if a step function is continuous, then it is null in each point. However,

that statement is not true when we work with a cdf defined on a separable LOTS.

Example 10.4. Let X = [0, 1
3
]∪
[

2
3
, 1
]

with the usual order. Let µ be the measure defined

on X by µ({2
3
}) = 1, where µ(X \ {2

3
}) = 0, and let F be its cdf, that is, F : X → [0, 1]

is given by

F (x) =


0 if x < 2

3

1 if x ≥ 2
3

It is clear that F is a step cdf. Note that 2
3

is left-isolated due to the fact that ]1
3
, 2

3
[= ∅.

Hence, by Proposition 7.23, it holds that F is continuous at 2
3
. Since µ({x}) = 0 for

each x ∈ X \ {2
3
}, by Proposition 7.32, it holds that F is also continuous in X \ {2

3
}.

We conclude that F is continuous.
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10.1.1 Example

Next cdf is a mixture of cdfs. Indeed, it can be decomposed as the convex sum of

two different cdfs.

Example 10.5. Let X = ({0} ∪ N) × [0, 1] and ≤ be the lexicographic order on X.

Consider the function F : X → [0, 1] given by F (x, y) = 1 − 1
2
e−(x+y) − 1

2
e−x for each

(x, y) ∈ X.

According to Example 9.23, there exists a probability measure µ such that F = Fµ.

Note that X −C(F ) = {(x, y) ∈ X : µ({(x, y)}) > 0} = {(n, 0) : n ∈ N}. What is more,

µ({(n, 0)}) = F (n, 0)− F−(n, 0) = F (n, 0)− supF (< (n, 0)) = F (n, 0)− F (n− 1, 1) =

1− 1
2
e−n − 1

2
e−n −

(
1− 1

2
e−n − 1

2
e−(n−1)

)
= e−1

2
e−n.

To get the decomposition, firstly we define a step function that accumulates the mass

in the points in X with non-zero probability. We define Hd : X → [0, 1
2
] by

Hd(x, y) =
∑

(xn,yn)≤(x,y)

µ({(xn, yn)}) =
x∑
k=1

µ({(k, 0)}) =
x∑
k=1

e−k
e− 1

2
=

1

2
(1− e−x)

Note that supHd(X) = 1
2
.

On the other hand, we define H : X → [0, 1
2
] as the one given by H(x, y) = F (x, y)−

Hd(x, y), that is, H(x, y) = 1
2
(1− e−(x+y)) for each (x, y) ∈ X.

Note that supH(X) = 1
2
.

Hence, the decomposition theorem lets us ensure that F can be uniquely decomposed

as the convex sum F = 1
2
Fd+ 1

2
Fc, where Fd, Fc : X → [0, 1] are both cdfs that are, respec-

tively, a step one and one satisfying Fc− = Fc. Moreover, they are defined respectively

by

Fd(x, y) = 1− e−x

and

Fc(x, y) = 1− e−(x+y)

for each (x, y) ∈ X.

Finally, observe that Fd and Fc are, indeed, both cdfs of a probability measure on X,

since they satisfy the hypothesis of Theorem 9.9.
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10.2 A goodness-of-fit test

In this section we introduce a statistic in order to establish a new goodness-of-fit test

in a LOTS. For that purpose, we first need to introduce some concepts.

Definition 10.6. Let X be a separable LOTS and consider x1, . . . , xn ∈ X. The previous

collection of points is said to be a random sample of the distribution given by a probability

measure, µ, such that µ({x}) = 0 for each x ∈ X, if F (x1), . . . , F (xn) is a random

sample of a uniform distribution on [0, 1].

Moreover, given a random sample, we can define a cdf from it, as stated next.

Definition 10.7. Let X be a separable LOTS. If x1, . . . , xn is an ordered random sample

of the distribution given by a cdf F , then the function Fn : X → [0, 1] defined by

Fn(x) =



0 if x < x1

k
n

if xk ≤ x < xk+1,∀k = 1, . . . , n− 1

1 if x ≥ xn

is said to be the empirical cdf of the sample.

Remark 10.8. Note that Fn is, indeed, a cdf, since it is defined from the probability

measure given by µn({xk}) = 1
n

for each k = 1, . . . , n.

Definition 10.9. Let F be a cdf on a separable LOTS, X, and G its pseudo-inverse.

If x1, . . . , xn ∈ X is an ordered random sample whose empirical cdf is Fn, we define

Hn : [0, 1]→ [0, 1] by Hn = F̃n ◦G.

Note that we can write

Hn(r) =



0 if G(r) < φ(x1)

k
n

if φ(xk) ≤ G(r) < φ(xk+1) for each k = 1, . . . , n− 1

1 if G(r) ≥ φ(xn)
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or, equivalently,

Hn(r) =



0 if r < F (x1)

k
n

if F (xk) ≤ r < F (xk+1) for each k = 1, . . . , n− 1

1 if r ≥ F (xn)

Remark 10.10. From the previous expression, Hn is the empirical cdf of the sample

F (x1), . . . , F (xn) and, by definition, that sample comes from a uniform-[0, 1] sample.

Suppose that we are given a random sample on a separable LOTS according to a

certain cumulative distribution function. Our purpose is testing if that sample comes

from a given distribution, F .

First of all, there exists a relationship between a cdf and its extension to DM(X)

that involves the pseudo-inverse:

Lemma 10.11. Let F be a cdf on a separable LOTS and G its pseudo-inverse. Then

1. F̃ (G(F (x))) = F (x) for each x ∈ X.

2. µ̃(]G(F (x)), φ(x)]) = 0 for each x ∈ X.

Proof. Let x ∈ X.

1. On the one hand, the fact that G(F (x)) ≤ φ(x) for each x ∈ X and the mono-

tonicity of F̃ as cdf give us F̃ (G(F (x))) ≤ F̃ (φ(x)) = F (x). On the other hand,

since F̃ is a cdf, it holds that F̃ (G(r)) ≥ r for each r ∈ [0, 1]. In particular, we

have that F̃ (G(F (x))) ≥ F (x), so we conclude the equality.

2. Since F̃ (G(F (x))) = F (x) and F̃ is an extension of F (that is, F̃ (φ(x)) = F (x)),

it follows that µ̃(]G(F (x)), φ(x)]) = 0 for each x ∈ X.

We define the statistic

Dn = sup
x∈X
|Fn(x)− F (x)|
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Theorem 10.12. Let X be a separable LOTS. Also, let x1, . . . , xn be a random sample

of µ, a probability measure on X such that µ({x}) = 0 for each x ∈ X, and whose

empirical cdf is Fn. Then we can write

Dn = max
0≤r≤1

|Hn(r)− r|

Proof. Note that

Dn = sup
x∈X
|Fn(x)− F (x)| = sup

x∈X
|F̃n(φ(x))− F̃ (φ(x))|

since F̃n and F̃ are, respectively, extensions of Fn and F to DM(X).

Moreover, since µ({x}) = 0 for each x ∈ X, we have that µ̃({G(r)}) = 0 for each

r ∈ [0, 1]. That implies that F̃ (G(r)) = r.

What is more,

sup
x∈X
|F̃n(φ(x))− F̃ (φ(x))| = max

0≤r≤1
|F̃n(G(r))− F̃ (G(r))|

Indeed, we can prove the previous equality as follows:

≤) Let x ∈ X and consider r = F (x). Then F̃ (G(r)) = F̃ (G(F (x))) = F (x) by

Lemma 10.11.1. Since F̃ is an extension of F , we can write the previous equality as

F̃ (G(r)) = F̃ (φ(x)). Moreover, note that F̃n(G(r)) = F̃n(φ(x)) with probability 1 due

to the fact that µ̃(]G(r), φ(x)]) = 0 (see Lemma 10.11.2). Hence, |F̃n(G(r))−F̃ (G(r))| =
|F̃n(φ(x))− F̃ (φ(x))| with probability 1.

≥) Let r ∈ [0, 1] and ε > 0. We distinguish two cases:

1. If G(r) ∈ φ(X), then it is clear that x = φ−1 (G(r)) is a point in X satisfying that

|F̃n(G(r))− F̃ (G(r))| − ε ≤ |F̃n(φ(x))− F̃ (φ(x))|.

2. Suppose that G(r) /∈ φ(X). Then we can write G(r) = {x ∈ X : F (x) < r} (see

Proposition 8.22). Now, we can suppose the random sample to be ordered and,

in this case, consider n ∈ N such that φ(xn) < G(r) < φ(xn+1). By Proposition

8.12, inf F (Au) = supF (A) for each A ∈ DM(X). In particular, it holds that

inf F (G(r)u) = supF (G(r)), which is equivalent, by definition of F̃ , to F̃ (G(r)) =

supF (G(r)). Moreover, since F̃ (G(r)) = r, F̃ (G(r)) = supF (G(r)) implies that

r = supF (G(r)). Since supF (G(r)) = r, there exists x ∈ X such that φ(xn) <
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φ(x) < G(r) and F (x) > r − ε. That implies, firstly, that F̃n(φ(x)) = F̃n(G(r))

because φ(xn) < φ(x) < G(r) < φ(xn+1). Secondly, it holds that F̃ (φ(x)) = F (x),

F̃ (G(r)) = r and |F (x)− r| < ε. Finally, we conclude that |Fn(φ(x))− F̃ (φ(x))| ≥
|F̃n(G(r))− F̃ (G(r))| − ε.

Once we have proven the equality, we conclude that

Dn = max
0≤r≤1

|F̃n(G(r))− F̃ (G(r))| = max
0≤r≤1

|F̃n(G(r))− r| = max
0≤r≤1

|Hn(r)− r|

We get, as an immediate consequence, the next one.

Corollary 10.13. Given a separable LOTS X, the distribution of Dn is the same for

each cdf, Fµ, satisfying that µ({x}) = 0 for each x ∈ X.

Proof. It immediately follows from the fact that Hn is the empirical cdf of a uniform-[0, 1]

distribution and the previous theorem.

Recall that, in the classical case, the Kolmogorov-Smirnov test works when we are

testing if the sample comes from a continuous distribution. However, in the context of a

LOTS, continuity is not enough to ensure that everything works fine to prove that the

distribution of Dn is the same for each F (null hypothesis).
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Chapter 11

Fractal structures and separable

LOTS

To end this work, we dedicate a chapter to establish the relationship between sepa-

rable LOTS and spaces with a fractal structure. Hence, the whole theory that has been

developed along the rest of the work can be indistinctly used in both contexts and it

makes sense to talk about some applications that arise from it.

11.1 Defining a fractal structure from a LOTS

The main goal of this section is showing the construction of a fractal structure on a

second countable topological space with a linear order.

It is known that the set of isolated points in a separable linearly ordered topological

space is countable if and only if the space is second countable with respect to the order

topology (see Proposition 7.8). We will suppose that X is second countable with respect

to τ in order to be able to define a fractal structure from the set of points which are

right-isolated or left-isolated.

Definition 11.1. Let X be a LOTS. We define C1 and C2 to be, respectively, the set of

left-isolated and the set of right-isolated points.

Definition 11.2. Let x ∈ C1 (respectively x ∈ C2). Then we define xl (respectively xr)

to be the previous (respectively following) point in X such that ]xl, x[= ∅ (respectively

173
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]x, xr[= ∅).

Definition 11.3. Let X be a second countable LOTS with respect to τ . Since X is

second countable, it is separable, that is, there exists a countable dense subset of X,

D′. Now, consider D = D′ ∪ C1 ∪ C2. Since D is countable, we can enumerate it,

D = {dn : n ∈ N}.

Now, let d1 ∈ D. In order to define the first level of the fractal structure, we distin-

guish some cases depending on whether d1 is left-isolated, right-isolated, isolated or it is

not right-isolated nor left-isolated:

1. If d1 ∈ C1 \ C2, we define Γ1 = {(≤ dl1), (≥ d1)}.

2. If d1 ∈ C2 \ C1, we define Γ1 = {(≤ d1), (≥ dr1)}.

3. If d1 ∈ C1 ∩ C2, we define Γ1 = {(≤ dl1), {d1}, (≥ dr1)}.

4. If d1 /∈ C1 ∪ C2, we define Γ1 = {(≤ d1), (≥ d1)}.

Recursively, once that Γn has been defined, we proceed as follows to define Γn+1:

Given A ∈ Γn, we distinguish some cases depending on the form of A:

1. Suppose that A = [a, b] for some a, b ∈ D with a < b. Now, let i be the first natural

number such that di ∈]a, b[.

(a) If di ∈ C1 \ C2, we define SA = {[a, dli], [di, b]}.

(b) If di ∈ C2 \ C1, we define SA = {[a, di], [dri , b]}.

(c) If di ∈ C1 ∩ C2, we define SA = {[a, dli], {di}, [dri , b]}.

(d) If di /∈ C1 ∪ C2, we define SA = {[a, di], [di, b]}.

2. Suppose that A = (≤ a) for some a ∈ D. Let i be the first natural number such

that di ∈ (< a).

(a) If di ∈ C1 \ C2, we define SA = {(≤ dli), [di, a]}.

(b) If di ∈ C2 \ C1, we define SA = {(≤ di), [d
r
i , a]}.

(c) If di ∈ C1 ∩ C2, we define SA = {(≤ dli), {di}, [dri , a]}.
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(d) If di /∈ C1 ∪ C2, we define SA = {(≤ di), [di, a]}.

3. Suppose that A = (≥ b) for some b ∈ D. Let i be the first natural number such

that di ∈ (> b). We proceed analogously to the previous case to define SA.

The fractal structure from a second countable LOTS is Γ = {Γn : n ∈ N}, where

Γn+1 =
⋃
{SA : A ∈ Γn} for each n ∈ N.

Now, we prove that, indeed, Γ is a fractal structure on X.

Proposition 11.4. Γ is a fractal structure on X.

Proof. We check that Γn+1 ≺≺ Γn for each n ∈ N. For that purpose, we have to prove

that

� Γn+1 ≺ Γn for each n ∈ N. Let n ∈ N and A ∈ Γn+1. Then there exists B ∈ Γn

such that A ∈ SB. It is clear, by construction of Γ, that A ⊆ B.

� A =
⋃
{B ∈ Γn+1 : B ⊆ A} for each A ∈ Γn. Let n ∈ N. By definition of Γ, given

A ∈ Γn, it holds that B ⊆ A for each B ∈ SA. What is more, A =
⋃
B∈SA B and

B ∈ Γn+1 for each B ∈ SA.

To end this section, we show that the fractal structure we have just defined is com-

patible with the order, that is, the order topology on X, τ , coincides with the topology

of the non-archimedean quasi-pseudometric induced by the fractal structure on X, d.

First of all, by construction of Γ, the next statement holds.

Remark 11.5. Let i ∈ N. Then there exists a natural n ≤ i such that di is the greatest

or the lower point of A for some A ∈ Γn.

Proposition 11.6. τ = τd, where τd is the topology of the non-archimedean quasi-

pseudometric induced by Γ.

Proof. ⊆) We start proving that τ ⊆ τd. Indeed, let a, b, x ∈ X with a < x < b. Then

there exist i, j ∈ N such that a < di < x < dj < b. Now, if we consider n = max{i, j},
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it follows that A ⊆ [di, dj] for each A ∈ Γn with x ∈ A. Note that Uxn ⊆ [di, dj], which

means that Uxn ⊆]a, b[, which lets us conclude that ]a, b[ is an open set in τd.

⊇) Let x ∈ X and n ∈ N. Then Uxn = X \
⋃
A∈Γn:x/∈AA. Given A ∈ Γn, let us define

A− and A+ to be, respectively, the set of elements in Γn whose points are lower than

the points in A and greater that the points in A respectively. Next, we prove that Uxn

is an open set with respect to τ . For that purpose, we distinguish two cases:

1. Suppose that there exist A,B ∈ Γn such that x ∈ A∩B and x = maxA = minB.

Then the following cases may occur:

(a) If A− 6= ∅ and B+ 6= ∅, then Uxn =] maxA−,minB+[.

(b) If A− = ∅, then Uxn = (< minB+).

(c) If B+ = ∅, then Uxn = (> maxA−).

2. There exists a unique A ∈ Γn such that x ∈ A. In this case, it can happen:

(a) If A = [a, b] for some a, b ∈ D such that a < b, then Uxn =] maxA−,minA+[.

(b) If A = (≤ a) for some a ∈ D, then Uxn = (< minA+).

(c) If A = (≥ a) for some a ∈ D, then Uxn = (> maxA−).

The idea of defining a fractal structure from a LOTS makes it possible to apply the

theory of the first part of this dissertation when we are working with a LOTS. Recall,

from Chapter 4, that the space must be T0 with respect to the non-archimedean quasi-

pseudometric induced by the fractal structure so that the theory on construction of

probability measures makes sense. Indeed, it holds because a LOTS is always T2 with

respect to the order topology (which, by Proposition 11.6, coincides with the one given

by non-archimedean quasi-pseudometric induced by the fractal structure).

Remark 11.7. A LOTS is T2 with respect to the order topology.

Proof. Let X be a LOTS and consider a, b ∈ X such that a < b. We distinguish two

cases in order to find disjoint neighborhoods of a and b:
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1. Suppose that b is the following point to a. Then (< b) and (> a) are, respectively,

neighborhoods of a and b which are, in fact, disjoint.

2. Suppose that b is not the following point to a. Then there exists c ∈]a, b[ and,

hence, (< c) and (> c) are, respectively, neighborhoods of a and b which are, in

fact, disjoint.

11.2 Defining a LOTS from a fractal structure

In this part of the work we will show that, given a space, X, with a fractal structure,

we can define an order so that X becomes a separable LOTS, where it does make sense

the theory that has been described in previous chapters. For that purpose, we will

assume that Γ is a fractal structure on X, which is T0 with respect to the induced quasi-

pseudometric, d. The fact that X is T0 with respect to d implies that d∗ is a metric

(also called an ultrametric). In Subsection 11.2.1 we see how to define an order on an

ultrametric space from the collection of balls. Once we have defined the conditions on

the order and prove the properties of it, we show two examples of ultrametric spaces

that we can adapt to the context of spaces with a fractal structure in a natural way (see

Subsections 11.2.2 and 11.2.3). To end this section, we show an example where, starting

from a space with a fractal structure, we define a linear order and see how to deal with

probability measures and cdfs in this case.

11.2.1 Defining an order from an ultrametric

In this subsection we will assume that (X, d) is a separable ultrametric space. Given

x ∈ X and n ∈ N, we will denote by Uxn = {y ∈ X : d(x, y) ≤ 1
2n
} the closed ball, with

respect to the ultrametric d, centered at x with radius 1
2n

. The collection of these balls

will be denoted by G =
⋃
n∈NGn, where Gn = {Uxn : x ∈ X} for each n ∈ N. Moreover,

τ will be the topology of d.

Next, we collect some properties of an ultrametric space according to the notation

we have just introduced and [22, Ex. 2.1.15]:
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Proposition 11.8. Let (X, d) be an ultrametric space. Then:

1. A ball Uxn has diameter at most 1
2n

.

2. Every point of a ball is a center: that is, if y ∈ Uxn, then Uxn = Uyn for each

x ∈ X and each n ∈ N. Consequently, Gn is a partition of X, that is, it covers X

and, given x, y ∈ X, it follows that Uxn = Uyn or Uxn ∩ Uyn = ∅.

3. Uxn is open and closed in τ for each x ∈ X and n ∈ N.

Note that, according to the previous properties, Gn+1 is a refinement of Gn for each

n ∈ N.

We first give a condition that the order must satisfy.

Definition 11.9. Let (X, d) be a separable ultrametric space. An order is said to be

ball-compatible or B-compatible if, given x ≤ z and n ∈ N, it holds that Uxn = Uzn or

y ≤ t for each y ∈ Uxn and each t ∈ Uzn.

From now on, we will assume that (X, d) is a separable ultrametric space and that

≤ is a B-compatible order.

Definition 11.10. Let A,B ⊆ X. We say that A < B if and only if a < b for each

a ∈ A and each b ∈ B.

Next, we introduce a definition of order on Gn.

Definition 11.11. Let x, y ∈ X and n ∈ N. We say that x ≤n y if and only if

Uxn ≤ Uyn. Analogously, we say that x <n y if and only if Uxn < Uyn.

From the previous definitions it follows the next result.

Proposition 11.12. Let x, y ∈ X then x ≤ z if and only if x ≤n z for each n ∈ N.

Proof. ⇒) It follows from Definition 11.11.

⇐) Let x, z ∈ X be such that x ≤n z for each n ∈ N. Suppose that x > z. Then

z ≤n x for each n ∈ N, which means that Uxn = Uzn for each n ∈ N. The last equality

implies that x = z, which is a contradiction with the fact that x > z. Hence, x ≤ z.
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Corollary 11.13. Let x, y ∈ X. Then x < z if and only if there exists n ∈ N such that

x <n z.

Proof. ⇐) It follows from Proposition 11.12.

⇒) Suppose that x ≥n z for each n ∈ N. Then, by Proposition 11.12, we have that

x ≥ z, which is a contradiction with the fact that x < z. Hence, there exists n ∈ N such

that x <n z.

Remark 11.14. Let x, y ∈ X.

1. If x ≤n y for some n ∈ N, then x ≤k y for each k ≤ n.

2. If x <n y for some n ∈ N, then x <k y for each k ≥ n.

Indeed, the balls with respect to the ultrametric are convex according to the order,

as the next result shows.

Proposition 11.15. Uxn is convex for each x ∈ X and each n ∈ N.

Proof. Let x ∈ X, n ∈ N and a, b ∈ Uxn be such that a ≤ b and let y ∈ X be such

that a ≤ y ≤ b. Then a ≤n y ≤n b, which means that Uan ≤ Uyn ≤ Ubn. Since

Uan = Uxn = Ubn due to the fact that a, b ∈ Uxn (see Proposition 11.8.2), we conclude

that y ∈ Uxn and, consequently, Uxn is convex.

Now, we introduce some notation.

Definition 11.16. τo is the order topology on X given by ≤.

Recall, from Definition 2.23, that the order topology is given by the subbase {(< a) :

a ∈ X} ∪ {(> a) : a ∈ X}. Moreover, an open base of X with respect to τo is given by

{]a, b[: a < b, a, b ∈ (X ∪ {−∞,∞})}. We can prove that the elements in the open base

and the subbase are, indeed, open sets with respect to the topology of the ultrametric.

Remark 11.17. Let a, b ∈ X with a < b, then ]a, b[, (< b) and (> a) are open in τ .

Proof. Let a, b ∈ X with a < b and let x ∈]a, b[. Then there exists n ∈ N such that

a, b /∈ Uxn and a <n x <n b, which means that Uxn ⊆]a, b[. Since Uxn is an open set in τ

(see Proposition 11.8.3), it follows that ]a, b[ is a neighborhood of x with respect to τ .

The proofs for (< b) and (> a) are similar.
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Moreover, the topology previously defined is related to the topology τ in the next

sense.

Proposition 11.18. τo ⊆ τ .

Proof. Remark 11.17 gives us that ]a, b[, (< b) and (> a) are open sets in τ . That means

that all the elements of the subbase that defined the order topology are contained in τ .

Consequently, τo ⊆ τ .

We get, as an immediate consequence, the following one.

Corollary 11.19. σ(τo) = σ(τ).

Proof. ⊆) Indeed, this is true due to the fact that τo ⊆ τ (see the previous proposition)

means that σ(τo) ⊆ σ(τ).

⊇) Let G be an open set in τ . Since X is separable with respect to d, we can write

G =
⋃
n∈N{Uxn : x ∈ G,Uxn ⊆ G}, a countable union. Moreover, since Uxn is convex for

each x ∈ X and n ∈ N by Proposition 11.15, Uxn can be written as the countable union of

sets on the form [a, b], [a, b[, ]a, b[ or ]a, b] (recall, from Corollary 7.4 that each convex set

can be expressed as the countable union of intervals). It is clear that [a, b], ]a, b[∈ σ(τo),

since they are, respectively, closed and open with respect to the order topology. Now,

note that ]a, b] and [a, b[ can be written as the intersection of an open and a closed subset

of X, so they both belong to σ(τo). Hence, given x ∈ X and n ∈ N, Uxn ∈ σ(τo) and,

consequently, G ∈ σ(τ), which finishes the proof.

Remark 11.20. A function F : X → [0, 1] is a cdf with respect to τ if and only if it is

a cdf with respect to τo.

Proof. Indeed, if F is a cdf with respect to τ , then there exists a probability measure µ

on the Borel σ-algebra of X (with respect to τ) such that F = Fµ. What is more, since

σ(τ) = σ(τo) (by the previous corollary), F is a cdf with respect to τo.

11.2.2 Defining a LOTS from a Polish ultrametric space

In this subsection we define a linear order from a Polish ultrametric space, that is,

an ultrametric space which is complete and separable. For that purpose, we first need

to define an order on Gn. Note that Gn is countable because (X, d) is separable.
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Definition 11.21. We can enumerate G1 = {g1, g2, . . .}. Since each element of G1 can

be decomposed into a countable number of elements of G2, we can write gi = gi1∪gi2∪ . . .
for each gi ∈ G1, and define the lexicographic order on G2. Hence, we can enumerate

G2 by considering, first, the elements which are contained in g1, then those which are

contained in g2, . . .. Recursively we define an order on Gn for each n ∈ N.

Given n ∈ N, this order induces an order on X given by x ≤n y if and only if

Uxn ≤ Uyn. From that orders, we define an order on X given by x ≤ y if and only if

x ≤n y for each n ∈ N.

Remark 11.22. ≤ is B-compatible.

Proof. Let x, z ∈ X be such that x ≤ z and consider n ∈ N. By definition, it holds

that x ≤n z. Suppose that Uxn 6= Uzn and let y ∈ Uxn and t ∈ Uzn. Let us prove that

y ≤ t. It follows that Uyn = Uxn and Utn = Uzn and, hence, y ≤n t (since x ≤n z). If

there exists m > n with t <m y, then it is clear that t <k y for each k ≥ m and t ≤k y
for each k < m, because of the relationship between the order ≤k+1 and ≤k given by

the lexicographic order. It follows that t < y, but then t ≤n y and, hence, t =n y, so

Uxn = Uyn = Utn = Uzn, a contradiction. Therefore, y ≤m t for each m and, hence,

y ≤ t.

Example 11.23. Let X be the Cantor set. As a topological space, this set is homeo-

morphic to the product of countably many copies of the space {0, 1}, where we consider

the discrete topology on each copy. Hence, this is the space of all sequences in two digits

{(xn) : xn ∈ {0, 1}, for n ∈ N}.

Now, define the ultrametric

d(x, y) =


1

2n
if n is such that xk = yk and xn+1 6= yn+1 for each k ≤ n

1 if x1 6= y1

Note that (X, d) is complete and separable so it is a Polish ultrametric space. Now,

according to the previous definition, we can order the elements of Gn as follows:

G1 = {g0, g1}, where g0 = {0}×{0, 1}×{0, 1}×. . . and g1 = {1}×{0, 1}×{0, 1}×. . ..
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Now, we can write G2 = {g00, g01, g10, g11}, where g00 = {0} × {0} × {0, 1} × . . .,

g01 = {0}×{1}×{0, 1}× . . ., g10 = {1}×{0}×{0, 1}× . . ., g11 = {1}×{1}×{0, 1}× . . ..

Proposition 11.24. (Gn,≤n) is a well ordered set (that is, it is a linear ordered set

and each subset has a minimum).

Proof. Note that ≤n is a linear order on Gn for each n ∈ N, which follows from the fact

that the elements in Gn are enumerated according to the lexicographic order.

Let us prove that each nonempty subset of Gn has a minimum for each n.

It is clear, by construction, that any subset of G1 has a minimum, since we have

started by enumerating G1.

Reasoning by induction, we now suppose that there exists the minimum of each subset

of Gn. Next, we show that, given A ⊆ Gn+1 with A 6= ∅, there exists the minimum of A

in Gn+1. Indeed, let B = {Uxn : Ux,n+1 ∈ A}. By the induction hypothesis, we have the

existence of the minimum of B in Gn. Let x ∈ X be such that Uxn is the minimum of B

in Gn (note that, in particular, Ux,n+1 ∈ A). Let {xi : i ∈ I} ⊆ X, where I ⊆ N is such

that Uxn =
⋃
i∈I Uxi,n+1. By definition of the order on Gn+1, the set C = {Uxi,n+1 : i ∈ I}

is well ordered in Gn+1. Moreover, C ∩A 6= ∅ (since Ux,n+1 ∈ A ∩ C) and the minimum

of C is a lower bound of A (since, otherwise, Uxn is not the minimum of B). It follows

that the minimum of A ∩ C is the minimum of A.

Next, we recall a theorem which is useful to prove the next results.

Theorem 11.25. ([23, Th. 4.3.9]) A metric space X is complete if and only if for

every decreasing sequence of nonempty closed subsets of X, (Fn), with Fn+1 ⊆ Fn for

each n ∈ N, and diam(Fn)→ 0, there is a point x ∈ X such that x ∈
⋂
n∈N Fn.

Proposition 11.26. Let (xn) be a sequence of points of X such that xn+1 ∈ Uxnn. Then

there exists x ∈ X such that
⋂
n∈N Uxnn = {x} and Uxnn = Uxn.

Proof. Let (xn) be a sequence of points of X such that xn+1 ∈ Uxnn for each n ∈ N. Then

Uxn+1,n+1 ⊆ Uxnn for each n ∈ N. Since, by Proposition 11.8.1, diam(Uxnn) ≤ 1
2n
→ 0,

then, by Theorem 11.25, there exists x ∈
⋂
n∈N Uxnn. Hence, Uxn = Uxnn. Suppose that

there exists y ∈ X such that y ∈
⋂
n∈N Uxnn. Then d(x, y) ≤ 1

2n
→ 0, which means that

y = x. Consequently, {x} =
⋂
n∈N Uxnn.
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Corollary 11.27. Let x ∈ X. Then {x} =
⋂
n∈N Uxn.

Proof. It immediately follows from the previous proposition.

Lemma 11.28. Let A ⊆ X. Then:

1. A has an infimum.

2. A has a supremum or supA = ∞. We say that supA = ∞ if for each x ∈ X,

there exists y ∈ A such that y > x (that is, A does not have an upper bound).

Proof. 1. By Proposition 11.24, there exists the minimum of each subset of Gn with

the order ≤n, so let Mn = min{Uan : a ∈ A}, where the minimum is considered

in (Gn,≤n). Note that Mn+1 ⊆ Mn for each n ∈ N, so it follows, by Proposition

11.26, that there exists m ∈ X such that {m} =
⋂
n∈NMn and Umn = Mn for each

n ∈ N. Since Mn = min{Uan : a ∈ A} in Gn, it holds that Mn ≤n Uan for each

a ∈ A, which gives us that m ≤n a for each a ∈ A and each n ∈ N or, equivalently,

m ≤ a for each a ∈ A, that is, m is a lower bound of A. Suppose that there exists

b ∈ X such that m < b ≤ a for each a ∈ A, then there exists n ∈ N such that

m <n b ≤n a for each a ∈ A, but this is a contradiction with the definition of Mn.

Consequently, m is the infimum of A.

2. Let A ⊆ X with A 6= ∅. Consider the set Y = {y ∈ X : y ≥ x,∀x ∈ A}. By the

previous item, we have that there exists the infimum of Y or Y = ∅. Hence, we

distinguish two cases:

(a) Suppose that Y = ∅, then supA =∞.

(b) Now, suppose that Y 6= ∅, and let m = inf Y . Then a standard argument can

be used to prove that m is the supremum of A.

From the previous lemma, it immediately follows the next result.

Remark 11.29. Let X be a linearly ordered topological space with respect to the order

given in Definition 11.21. Then the Dedekind-MacNeille completion of X satisfies:
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1. DM(X) = φ(X)∪{X} if supX =∞. Note that, indeed, DM(X) is the one-point

compactification of φ(X).

2. DM(X) = φ(X) (or, equivalently, (X, τo) is compact) if supX 6=∞.

Proposition 11.30. (X,≤) is a totally ordered set with a bottom. If d is totally bounded,

then it also has a top.

Proof. Note that X is totally ordered under ≤, which follows from Remark 11.14 and

the fact that ≤n is a total order on Gn for each n ∈ N.

Given n ∈ N, let Mn be the minimum of Gn. By Proposition 11.26, there exists

a ∈ X such that a =
⋂
n∈NMn. It easily follows that a is the bottom of X.

Finally, note that d is totally bounded if and only if Gn is finite for each n ∈ N. In

this case, we can define Mn as the maximum of Gn for each n ∈ N. By Proposition

11.26, there exists b ∈ X such that b =
⋂
n∈NMn. It easily follows that b is the top of

X.

Proposition 11.31. Let x ∈ X. Then Uxn = [a, b|, where a = minUxn, b = supUxn

and | means [ or ].

Proof. Note that there always exists the minimum of Uxn for each x ∈ X and n ∈ N by

Proposition 11.24. Indeed, that proposition lets us claim that there exists the minimum

of Uxn in Gm for each m ∈ N. Let Mm be the minimum of Uxn in Gm. Then, by

Proposition 11.26, there exists m ∈ X such that m =
⋂
m≥nMm. Note that m is the

minimum of Uxn with respect to the order ≤. Moreover, Lemma 11.28 gives us the

existence of the supremum of Uxn for each x ∈ X and n ∈ N. We define a = minUxn

and b = supUxn (note that b can be infinite) and now we show that [a, b[⊆ Uxn ⊆ [a, b]:

� On the one hand, let y ∈ [a, b[ be such that y /∈ Uxn. Then y 6=n x, so it can

happen:

1. Suppose that y <n x. In this case, y is a lower bound of Uxn, which implies

that y ≤ inf Uxn = a. Since y 6= a, it holds that y < a, which is a contradiction

with the fact that y ∈ [a, b[.
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2. Suppose that y >n x. In this case, y is an upper bound of Uxn, which implies

that y ≥ supUxn = b, which is a contradiction with the fact that y ∈ [a, b[.

Therefore, we have that [a, b[⊆ Uxn.

� On the other hand, it is clear that Uxn ⊆ [a, b].

We conclude that Uxn = [a, b|.

Lemma 11.32. Let x ∈ X.

1. If x is a non-left-isolated point such that x = minUxm for some m ∈ N, then there

exists n ≥ m such that Uxn does not have an immediately before element in Gn.

2. If x = maxUxn for some n ∈ N, then x is right-isolated.

Proof. Let x ∈ X.

1. Suppose that, for each n ≥ m, there exists the element immediately before Uxn.

Let Uxnn be the set immediately before Uxn for each n ≥ m and consider xi = xm

for i ≤ m. Then, by Proposition 11.26, there exists z ∈ X such that {z} =⋂
n∈N Uxnn ∈ X and Uzn = Uxnn. Note that z < x. What is more, ]z, x[= ∅.

Indeed, if there exists y ∈ X such that z < y < x, then there exists n ≥ m such

that Uzn <n Uyn <n Uxn, which is a contradiction with the fact that Uzn = Uxnn is

the element immediately before Uxn in Gn. Consequently, x is left-isolated.

2. Let x = maxUxn for some n ∈ N, and suppose that x is not right-isolated. Then

]x, z[ 6= ∅ for each z ∈ X with z > x. Let y be the minimum of the the element

immediately after Uxn in Gn. It holds that ]x, y[ 6= ∅ but it is not possible, since

x = maxUxn and y is the minimum of the element immediately after Uxn.

Proposition 11.33. If (xn) is right τo-convergent to x, then xn
τ→ x.

Proof. Let x ∈ X and (xn) be a sequence of points of X such that xn
τo→ x with x ≤ xn.

We distinguish two cases depending on whether x is the supremum of Uxn or not:
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1. Suppose that there exists n ∈ N such that x = supUxn. It follows that x =

maxUxn. By Lemma 11.32.2, we have that x is right-isolated. Now, let b be the

minimum of the element immediately after Uxn in Gn. It holds that ]x, b[= ∅.
Therefore, there exists n0 ∈ N such that xm = x for each m ≥ n0. Consequently,

xn
τ→ x.

2. Suppose that x 6= supUxn for each n ∈ N and let bn = supUxn. Then x < bn

for each n ∈ N. Now, let n ∈ N. Since xn
τo→ x, there exists n0 ∈ N such that

x < xm < bn for each m ≥ n0, which means that xm ∈ Uxn for each m ≥ n0 and,

consequently, xn
τ→ x.

Corollary 11.34. (xn) is a sequence which right τo-converges to x if and only if (xn) is

right τ -convergent to x.

Proof. It immediately follows from the previous proposition and the fact that τo ⊆ τ

(see Proposition 11.18).

Lemma 11.35. Let A ⊆ X. The following properties are satisfied:

1. Let a = inf A. Then a = minA or there exists a sequence of points of A which is

monotonically right τo-convergent to a.

2. Let a = supA. Then a = maxA or there exists a sequence of points of A which is

monotonically left τo-convergent to a.

3. Let a = inf A. Then there exists a sequence of points of A which is right τo-

convergent to a.

4. Let a = supA. Then there exists a sequence of points of A which is left τo-

convergent to a.

Proof. 1. Let A ⊆ X and a be the infimum of A. Suppose that a is not the minimum

of A. Then a is not right-isolated, which means, by Proposition 7.11, that there

exists a sequence (xn) of points of X which is monotonically right τo-convergent

to a. Now, we recursively construct a sequence (an) of points of A which is mono-

tonically right τo-convergent to a.
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Since a < x1, there exists a1 ∈ A such that a1 < x1. Suppose that we have

defined an ∈ A with an < min{xn, an−1} and let us define an+1. Since a < an,

a < xn+1 and a = inf A, there exists an+1 ∈ A with an+1 < min{an, xn+1}. Note

that a < an+1 < an < xn for each n ∈ N. It follows that (an) is a sequence of

points of A which is monotonically right τo-convergent to a.

2. The proof is similar to the previous item.

3. Let a = inf A. Then it can happen:

� Suppose that a = minA. Then xn = a is a sequence of points of A which is

right τo-convergent to a.

� Suppose that a 6= minA. Then, by item 1, there exists a sequence of points

of A which is monotonically right τo-convergent to a. It is, in particular, a

sequence which right τo-converges to a.

4. Let a = supA. Then it can happen:

� Suppose that a = maxA. Then xn = a is a sequence of points of A which is

left τo-convergent to a.

� Suppose that a 6= maxA. Then, by item 2, there exists a sequence of points

of A which is monotonically left τo-convergent to a. It is, in particular, a

sequence which left τo-converges to a.

Proposition 11.36. Let f : X → [0, 1] be a monotonically non-decreasing function.

Then f is right τ -continuous if and only if f is right τo-continuous.

Proof. It immediately follows from Corollary 11.34.

11.2.3 Herrlich’s construction

In this subsection we see how to define another order from an ultrametric. [63] is a

good reference for this topic. Before defining the order, we give a concept that will be

essential in the construction made next.
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Definition 11.37. A total order on X is discrete if all points of X are isolated.

Let (X, d) a separable ultrametric space. Since d is separable, Gn is countable for

each n ∈ N. G1 can be discretely ordered. Indeed, if G1 is finite, then we are finished.

If G1 is not finite, let ≺ be the usual order over Z = {− 1
n

: n ∈ N} ∪ { 1
n

: n ∈ N}. The

fact that G1 is countable let us define a bijection f : G1 → Z. Moreover, Uxn11 ≤1 Uxn21

if and only if f(Uxn11) � f(Uxn21). Thus, we have shown that G1 is discretely ordered.

Since G1 can be decomposed into a countable number of elements in G2, we can write

gi = gi1 ∪ gi2 ∪ . . . for each gi ∈ G1. What is more, we can give a discrete order for the

elements of G2 which are contained in gi by taking advantage of the order on Z, Indeed,

we can define the lexicographic order on G2. Roughly speaking, according to that order,

an element gij is less than gik if, following the enumeration, gij ≤2 gik. Recursively we

define a discrete order on Gn for each n ∈ N.

Next step is defining a linear order on X such that τo = τ . For this purpose, given

x ∈ X, we first consider a point a ∈ Uxn that, once we have constructed the order, it is

the minimum of Uxn. Since Uxn can be decomposed into a countable union of elements

in Gn+1, we order those elements such that a belongs to the first element of them. For

the rest of elements in the subdivision we choose a point that, after constructing the

order, will be the minimum of the element where we have considered it. Analogously,

we proceed to define the maximum of Uxn. We proceed recursively to define the order

≤ in X.

Remark 11.38. ≤ is B-compatible.

Proof. The proof is similar to the one described in Remark 11.22.

Proposition 11.39. (X,≤) is a totally ordered set with a bottom and a top.

Proof. Indeed, it is clear that (X,≤) is totally ordered if we take into account the

previous construction. Moreover, the mimimum of the first element inG1 is the minimum

of X with the order. The maximum of the last element in G1 is the maximum of X.

Proposition 11.40. Let x ∈ X. Then Uxn = [a, b], where a = minUxn and b =

maxUxn.

Proof. It immediately follows from the way we have defined the order on X.
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Corollary 11.41. Let x ∈ X and n ∈ N. If a, b ∈ X are such that [a, b] = Uxn, then a

is left-isolated and b is right-isolated.

Proof. Let x ∈ X and n ∈ N and consider Uyn and Uzn as the previous and the following

elements to Uxn. By Proposition 11.40, we can write Uyn = [a1, b1] and Uzn = [a2, b2].

Consequently, ]b1, a[= ∅ and ]b, a2[= ∅, which imply that a is left-isolated and b is right-

isolated.

Proposition 11.42. τo = τ .

Proof. According to Proposition 11.18, we have that τo ⊆ τ . Now, given x ∈ X and

n ∈ N, suppose that Uyn and Uzn are, respectively, the previous and the following

elements to Uxn. By Proposition 11.40, we can write Uyn = [a1, b1] and Uxn = [a, b] and

Uzn = [a2, b2]. Consequently, Uxn =]b1, a2[, which gives us that τ ⊆ τo.

11.2.4 Example

In the previous two subsections we saw how to define two possible B-compatible

orders from (X, d), where d is an ultrametric. Moreover, recall that, from Chapter 4

onwards, we supposed the topology induced by the non-archimedean quasi-pseudometric

given by a fractal structure to be T0 (see Proposition 3.2 to recall how to characterize this

property in terms of the fractal structure). This implies that the supremum pseudomet-

ric, d∗, defined from the induced non-archimedean quasi-pseudometric and its conjugate

is, indeed, a non-archimedean metric (also called an ultrametric). Hence, from d∗, we

can define a linear order on X. Consequently, there is an equivalence between fractal

structures and LOTSs according to the theory that has been developed in this chapter

previously.

Next, we show an example of order defined by taking into account the Herrlich’s

construction and the natural fractal structure on R. Thus, we define Γ = {Γn : n ∈ N},
where Γn =

{[
k

2n−1 ,
k+1
2n−1

]
: k ∈ Z

}
for each n ∈ N.

Note that U∗x1 = {x} for each x ∈ Z and U∗x1 = ]bxc, bxc+ 1[ for each x ∈ R \ Z,

where bxc is the floor function, that is, the largest integer not greater than x.
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Now, we define the bijection f : G1 → Z = {− 1
n

: n ∈ N} ∪ { 1
n

: n ∈ N} such that

f(U∗x1) =


− 1

2x+1
if x ∈ N ∪ {0}

− 1
2(bxc+1)

if x ∈ [0,∞[\N
− 1

2x
if x ∈ Z−

− 1
2bxc+1

if x ∈]−∞, 0[\Z

The previous bijection assigns the elements in Z to each U∗x1, as Figure 11.1 shows.

1
3

 
1
2

 1 1 
1
3

 
1
4

 
1
2

 
1
4

 ......
{0} ]0,1[ {1}]-1,0[{-1}{-2} ]1,2[]-2,-1[

Figure 11.1: Bijection between G1 and Z

Now, if we consider the usual order on Z, it induces an order on G1. Moreover,

observe that each gi ∈ G1 is decomposed into a finite number of elements in G2.

For example, note that U∗x1 = U∗x2 for each x ∈ Z, while U∗x1 gives us the collection{]
bxc
2
, bxc+ 1

2

[
,
{
bxc+ 1

2

}
,
]
bxc+ 1

2
, bxc+1

2

[}
in G2 otherwise. Since that collection is

finite, it is discretely ordered with the usual order and, hence, G2 is ordered with the

lexicographic order as explained previously. Therefore, if we list the elements of each

Gn according to the order, we have that:

G1 = {{0} , ]0, 1[, {1} , . . . , {−1} , ]− 1, 0[}

G2 =

{
{0} ,

]
0,

1

2

[
,

{
1

2

}
,

]
1

2
, 1

[
, {1}, . . . , {−1},

]
−1,−1

2

[
,

{
−1

2

}
,

]
−1

2
, 0

[}
...

From that order, we can define a linear order on the completion of the space, R̃, whose

topology we denote by τo. Note that 0 ∈ U∗0n and
(]
− 1

2n−1 , 0
[)
n∈N are, respectively, the

minimum and the maximum of it.

According to Proposition 11.42, it follows that τo = τd̃∗ in R̃. What is more, we can

restrict the topology given by the ultrametric in the completion to the original space

and it holds that that restriction gives us the topology of the ultrametric in R. Indeed,

it is true due to Proposition 3.16.10. Figure 11.2 shows the linear order induced on R

by the order we have defined on Gn for each n ∈ N.
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0

Figure 11.2: Linear order induced by the fractal structure Γ in R

Note that 0 is the minimum of X with respect to the order and that points which

are located on the left of this point in R are greater than those which are on the right

(if we consider the usual order).

Once we have defined the order according to Herrlich’s construction and the natural

fractal structure on R, we consider the cdf of a probability measure defined on R with

respect to the usual order. Let us denote that cdf by F . Then the cdf given by the new

order that we have defined on R (from the fractal structure), that we can denote by Fo,

is defined by

Fo(x) =

 F (x)− F−(0) if 0 ≤ x <∞
F (x) + 1− F−(0) if −∞ < x ≤ 0

On the other hand, in order to define the pseudo-inverse according to the order, note

that DM(R) = φ(R) ∪ {[0,∞[}. Now, if G denotes the pseudo-inverse of F , then the

pseudo-inverse of the cdf Fo, given by the new order, is defined by

Go(r) =


G(F (0) + r) if r < 1− F (0)

{[0,∞[} if r = 1− F (0)

G(r − (1− F (0))) if r > 1− F (0)
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Conclusions

This chapter is dedicated to compiling the main results of this work, together with

some comments on possible future research lines that arise from the theory and appli-

cations that have been developed throughout it.

First of all, we will collect the conclusions which are related to the first part of the

thesis, whose main goal is the definition of a probability measure with the help of a

fractal structure:

� In Chapter 3 we study the completion of a space with a fractal structure, as it

is the starting point to be able to construct probability measures on the original

space.

� Before studying the completion of a space with a fractal structure and its induced

structures, we characterize the properties T0, T1 y T2 of the space in terms of a

fractal structure defined on it.

� Moreover, we describe the completion of a space with a fractal structure by using

an inverse limit. In fact, that completion, which always exists, is the bicompletion

of the non-archimedean quasi-pseudometric induced by the fractal structure. What

is more, the completion of a space with a fractal structure is unique up to fractal

isomorphism.

� There are two different ways to define a probability measure on the completion

of the space, both exposed in Chapter 4: the first one is based on a pre-measure

defined on the collection of balls with respect to the ultrametric induced by the

fractal structure and, a second one, which starts from a pre-measure defined on

the elements of the fractal structure according to its levels. In the last case, we
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assume that the fractal structure is tiling. In both cases, it can be proven that the

generated probability measure is unique.

� Once we have defined a probability measure on the completion of the space, it

can be proven that its restriction to the original space is a measure but there is

no guarantee that the measure of the space is 1. Hence, in Chapter 5 we explore

conditions to ensure that that restriction is, indeed, a probability measure on the

original space. By following this research line, we give some results that let us

ensure that we get a probability measure on the original space, some of them are

quite handy, since they deal with conditions on the original space and the fractal

structure on it, and not with the completion or the structures induced by it.

� The theory that has been developed along the first part of the thesis results in some

applications: a new way to generate samples of a distribution, a new estimation

method and a goodness-of-fit test, both based in the recursive nature of the fractal

structure. All of them are developed in Chapter 6 together with some examples.

� We can generate samples of a given distribution by chosing a certain level of the

fractal structure. We can generate, not only samples of a distribution in the real

line, but also from some multivariate distributions.

� The new estimation method is based on the idea of maximizing the probability

that in each element of a certain level of the fractal structure there are as many

elements as there are actually. The estimations made for samples of the standard

normal distribution shows that this method offers better results when we consider

a higher maximum level of the fractal structure and, also, when the size of the

data sample is bigger. Moreover, in the presence of outliers in the sample, the new

estimation method is more robust than the maximum likelihood one.

� The last application is a goodness-of-fit test, based on the well-known χ2 Pear-

son’s test, to check if a random sample comes from a certain distribution or not.

However, when trying to define the statistic of the test, although it seems to works

fine, we need to guarantee the independence of the random variables we define in

the sums that we use to create the statistic. That is, precisely, one of the open

problems that arise from this part of the work and that will be the main goal in

future research works.



Conclusions 195

The conclusions of the second part of the work, whose main aim is the elaboration

of a theory of a cumulative distribution function (cdf) in a linearly ordered topological

space (LOTS), are the following:

� Given a probability measure on a separable linearly ordered topological space, X,

it is possible to define a function, the cumulative distribution function (cdf) of the

measure, which is monotonically non-decreasing, right continuous with respect to

the order topology and which satisfies that supF (X) = 1 and, if there does not

exist the minimum of X, then inf F (X) = 0. These properties are quite similar

to those known for a cdf in the classical case. Moreover, the uniqueness of a

probability measure with respect to its cdf holds.

� From a cdf F , we define a new function, that we denote by F−, involving the

probability measure defined on the space, which plays a similar role to that played

by limx→a− F (x) in the classical case. Indeed, F and F− let us calculate the

measure of each interval in a separable LOTS.

� F and F− let us calculate the measure of each interval in a LOTS. What is more,

if F (x) = F−(x) for each x ∈ X, then F is continuous with respect to the order

topology, but the converse is not true, contrary to what happens in the classical

case where the continuity of a cdf is characterized in terms of the null measure of

all points of the space.

� It does make sense to define the pseudo-inverse of a cdf, but it has an important

limitation: that function is not defined for each number in [0, 1], since the existence

of the infimum and supremum is not guaranteed for each subset of a LOTS. For

example, in case that X is compact, the pseudo-inverse is defined on the unit

interval. The pseudo-inverse let us generate samples of a given distribution.

� Indeed, after presenting the results of Chapter 7, we can conclude that the theory

of distribution functions in the real line is a particular case of the one that has

been developed in this work.

� Since the pseudo-inverse is not always defined for each r ∈ [0, 1], we look for a

context which let us define it on [0, 1] and such that the theory that has been

previously developed makes sense with the new definition. The ideal environment
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to make this is the Dedekind-MacNeille completion, also known as the completion

by cuts, of the original space. For a separable LOTS that completion is, indeed,

a compactification. The first step to treat with this new context in our theory is

to extend the cdf to the completion, study the properties of that extension and

relate them to those which are known for the case in which the cdf is defined on

the original space. That is the main aim of Chapter 8, where we show that the

pseudo-inverse is naturally defined from [0, 1] to the Dedekind-Macneille comple-

tion. Hence, we can generate samples of a distribution defined on each separable

LOTS.

� Once we have studied F , F− and the pseudo-inverse of a given probability measure,

we can ask ourselves if, given a function satisfying the properties of a cdf, there

exists a probability measure whose cdf is that function. That is why in Chapter 9

we look for conditions to ensure that there exists a one-to-one relationship between

probability measures and cdfs on a LOTS. What is more, we prove that there is

an equivalence between F− and a probability measure and it also happens with

respect to the pseudo-inverse.

� The theory that has been developed in Chapters 7, 8 and 9 has some applications,

which are described in detail in Chapter 10: first, under some assumptions, each

cdf can de decomposed as the convex sum of a step cdf and one for what its measure

is zero in each point and, secondly, we can give a goodness-of-fit test to check if a

random sample comes from a certain distribution.

� Finally, in Chapter 11 we relate a space with a fractal structure to a linearly

ordered topological space. More precisely, given a second countable LOTS, we

can define a fractal structure from the set of left and right-isolated points such

that the topology of the non-archimedean quasi-pseudometric coincides with the

order topology. Analogously, from a space with a fractal structure, it is possible

to define an order which is compatible with the balls of the ultrametric induced

by the fractal structure. We show two examples of linear orders which are defined

from an ultrametric space (and, hence, can be adapted to the case of a space with

a fractal structure). The equivalence between fractal structures and LOTS lets

us use the theory and applications that have been developed in each part of this

thesis regardless of the context where we are working.
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[60] B. Schröder, Ordered Sets: An Introduction, Birkhäuser, Boston, 2003.
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