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Abstract: Patients with multiple sclerosis (PwMS) have a high level of fatigue and a reduced quality
of life (QoL) due to the impact of multiple sclerosis (MS). Virtual reality-based therapy (VRBT) is
being used to reduce disability in PwMS. The aim of this study was to assess the effect of VRBT on
fatigue, the impact of MS, and QoL in PwMS. Methods: A systematic review with meta-analysis
was conducted through a bibliographic search on PubMed, Scopus, Web of Science, and PEDro up
to April 2021. We included randomized controlled trials (RCTs) with PwMS that received VRBT in
comparison to conventional therapy (CT) including physiotherapy, balance and strength exercises,
and stretching or physical activity, among others; or in comparison to simple observation; in order to
assess fatigue, MS-impact, and QoL. The effect size was calculated using Cohen’s standardized mean
difference with a 95% confidence interval (95% CI). Results: Twelve RCTs that provided data from
606 PwMS (42.83 ± 6.86 years old and 70% women) were included. The methodological quality mean,
according to the PEDro Scale, was 5.83 ± 0.83 points. Our global findings showed that VRBT is effec-
tive at reducing fatigue (SMD −0.33; 95% CI −0.61, −0.06), lowering the impact of MS (SMD −0.3;
95% CI −0.55, −0.04), and increasing overall QoL (0.5; 95% CI 0.23, 0.76). Subgroup analysis showed
the following: (1) VRBT is better than CT at reducing fatigue (SMD −0.4; 95% CI −0.7, −0.11), as
well as in improving the mental dimension of QoL (SMD 0.51; 95% CI 0.02, 1); (2) VRBT is better than
simple observation at reducing the impact of MS (SMD −0.61; 95% CI −0.97, −0.23) and increasing
overall QoL (SMD 0.79; 95% CI 0.3, 1.28); and (3) when combined with CT, VRBT is more effective
than CT in improving the global (SMD 0.6, 95% CI 0.13, 1.07), physical (SMD 0.87; 95% CI 0.3, 1.43),
and mental dimensions (SMD 0.6; 95% CI 0.08, 1.11) of QoL. Conclusion: VRBT is effective at reducing
fatigue and MS impact and improving QoL in PwMS.

Keywords: multiple sclerosis; virtual reality; videogames; fatigue; quality of life; meta-analysis

1. Introduction

Multiple sclerosis (MS) is a chronic, inflammatory, immune-mediated, and currently
incurable disease that affects the central nervous system (CNS) [1]. It results in demyeli-
nation, glial reaction, and axonal loss [2]. MS is the leading cause of disability by chronic
neurological disease in young adults [3], affecting more than 2.5 million people world-
wide [4], with a prevalence of 36 cases per 100,000 people [5]. In Europe, MS shows a
prevalence of 83 cases per 100,000 habitants, with an average annual incidence of 4.3 cases
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per 100,000 members of the population [6]. MS more frequently affects females, at a 3:1
ratio before puberty [7] (1:1 after menopause [8]), which has been explained as the result of
a higher female predisposition to immune diseases due to chromosomal sex and hormonal
susceptibility [9,10]. In recent years, increases in life expectancy have been linked to a
rise in the prevalence of MS, resulting in a sizeable socio-economic burden on healthcare
systems and communities, with a mean annual cost per patient between 463 USD and
58,616 USD [5].

Patients with MS (PwMS) show a large variety of disabling symptoms that consider-
ably reduce their health-related quality of life (QoL) in comparison to other neurological
diseases [11]. MS evolves with different motor, somatosensory, and psychocognitive im-
pairments that reduce a patient’s functional capacity, such as muscle tone disorders [12]
including spasticity, a decrease in range of motion and the body’s mobility [13], and an
increase in the level of physical fatigue. Fatigue is experienced by 75% of PwMS (ranging
between 52 and 88%), and is considered the most disabling MS symptom in PwMS [14].
In addition, muscle fatigue may reduce gait and balance ability in PwMS [15]. Fatigue
is also associated with impaired cognitive functioning, reducing work productivity [16],
producing psychological disorders such as anxiety or depression, and reducing personal
autonomy and social abilities [17].

In addition to pharmacological treatments and non-pharmacological interventions
such as conventional therapy (CT), exercise, or complementary therapies traditionally used
in PwMS, in the last decade, the advance in digital technologies has boosted the use of new
tools such as smartphones, websites, wearables, and virtual reality (VR) devices in neurore-
habilitation protocols. VR is a novel technology whose therapeutic and rehabilitative effect
is being tested for different CNS diseases [18,19], as well as being used in the practical
training of healthcare students [20]. Weiss has defined VR as the “use of interactive simula-
tions created with computer hardware and software to present users with opportunities to
engage in environments that appear and feel similar to real world objects and events” [21].
VR-based therapy relies on two concepts: (1) presence (the psychological feeling of being
inside a virtual scenario similar to the real world); and (2) immersion (linked to the level of
sensory realism and interaction possibilities in the virtual environment) [22]. According
to the level of immersion, different modalities of VR may be used in neurorehabilitation,
with non-immersive VR (niVR) being the most used VR system in neurorehabilitation to
date. In such a case, a virtual scenario is projected onto a screen and patients interact with
it by using a mouse or joystick [23]. Nintendo® Wii, Kinect®, and games designed for
computers or sensors such as Leap Motion® are considered niVR. In addition, VR can be
considered semi-immersive when large screens are used [24]. In comparison, immersive
VR (iVR) allows a 360◦ view of a virtual environment through a head-mounted display,
in which patients can interact with virtual objects by using hand-held controllers or their
own hands [25]. Some examples of this technology are the Oculus Quest or HTC Vive. It
has been argued that VR-based therapy promotes neuronal plasticity, modulates synaptic
transmission and neuronal excitability, reorganizes synaptic connections and neuronal
morphology, and reshapes dendritic spines [26].

VR offers an active, multi-sensory, and fun therapy with immediate feedback that
may increase the motivation and adherence of patients to the therapy [27]. PwMS have
reported high levels of usability and acceptability regarding the use of VR systems in
neurorehabilitation [28]. In relation to the use of VR on combating symptoms of MS, some
reviews have assessed its effect on gait and balance [29,30], as well as on motor impairments
of the upper extremities [31], with interesting results. Therefore, the aim of this review
was to collect all available published evidence that permits us to analyze the effect of VR
therapy on fatigue, MS impact, and QoL in PwMS.
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2. Materials and Methods
2.1. Design

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines [32] and the Cochrane Handbook for Systematic Reviews of Interventions [33]
were used to perform this systematic review with a meta-analysis.

2.2. Search Strategy and Data Sources

Two authors (I.C.-P. and E.O.-G.) performed a bibliographic search on PubMed Med-
line, Scopus, Web of Science (WOS), PEDro (Physiotherapy Evidence Database), and other
sources such as previously published reviews, books, practice guidelines, and gray litera-
ture (conference proceedings), with search parameters up until April 2021. The keywords
used in this search strategy, according to the Medical Subjects Headings (MeSH), were
“multiple sclerosis”, “virtual reality”, “virtual reality exposure therapy”, “fatigue”, and
“quality of life”. We used the population, intervention, comparison, outcomes, and study
(PICOS) tool proposed by Cochrane Collaboration [33]: population (PwMS), intervention
(VR), comparison (conventional therapy (CT) or no intervention (NI)), outcomes (fatigue,
impact, and QoL) and study design (randomized controlled trial (RCT)). Boolean op-
erators “AND”/“OR” were used. No publication date and language restrictions were
applied. A third expertise author (M.C.O.-P.) supervised this stage. Table 1 shows the
search strategy employed.

Table 1. Search strategy in each database.

Database Search Strategy

PubMed
Medline

(multiple sclerosis[mh] or multiple sclerosis[tiab] or “multiple
sclerosis”[tiab]) AND (virtual reality[mh] OR virtual reality[tiab] OR

virtual reality exposure therapy[mh] OR virtual reality exposure
therapy[tiab] OR “virtual reality”[tiab] OR videogames[tiab] OR
exergames[tiab] OR serious games[tiab]) AND (fatigue[mh] OR

“fatigue”[tiab] OR muscle fatigue[mh] OR muscle fatigue[tiab] OR
quality of life[mh] OR quality of life[tiab])

SCOPUS

(TITLE-ABS-KEY (“multiple sclerosis” OR “esclerosis múltiple”) AND
TITLE-ABS-KEY (“virtual reality” OR “videogames” OR “exergames”
OR “serious games” OR “games”) AND TITLE-ABS-KEY (“fatigue”

OR “quality of life”))

Web of Science
(*multiple sclerosis* OR *esclerosis múltiple*) (Topic) and (*virtual
reality* OR *exergames* OR * videogames* OR *serious games* OR

*games*) (Topic) and (*fatigue* OR *quality of life*) (Topic)
PEDro (multiple sclerosis) and (virtual reality)

2.3. Inclusion Criteria

The study selection stage was carried out by two authors (I.C.-P. and E.O.-G.) who
independently screened the titles and abstracts of all studies retrieved by the search strategy
from each database. Studies selected by at least one author were considered eligible for
inclusion in this systematic review and were reviewed in detail. A third author (F.A.N.-E.)
was consulted when a study raised doubts about its inclusion. The inclusion criteria
applied were: (1) RCT or RCT pilot; (2) participants were PwMS; (3) the study design
included at least two groups; (4) one group received an intervention with VR and the
second group CT or NI; (5) the study aimed to assess the effect of VR on fatigue, MS-impact,
or QoL; and (6) the study provided quantitative data about the variables of interest for the
meta-analysis. The exclusion criterion was RCTs including different neurological diseases
apart from PwMS.

2.4. Data Extraction

Two authors (I.C.-P. and M.C.O.-P.) independently compiled data from the included
studies in a standardized Excel data collection form. Disagreements were resolved by a
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third researcher (F.A.N.-E.). The following data were extracted: (1) authorship, publication
date, study design, country, and funding received; (2) data related to participants (number
of PwMS, age and sex); (3) experimental intervention characteristics (VR therapy length
in weeks, number of sessions per week, and session time in minutes); (4) type of control
intervention; (5) quantitative data obtained at the post-therapy evaluation (mean and
standard deviation); and (6) follow-up time (immediate or long-term). Regarding quantita-
tive data, when a study did not provide standard deviation, we estimated this measure
using standard error, interquartile range, or range, using standardized transformations
according to the Cochrane Handbook for Systematic Reviews of Interventions [33] and
previous studies [18].

2.5. Outcomes

The outcomes assessed in the present review were: level of fatigue, impact of MS,
and QoL. The selected studies provided data from different tests for each outcome (see
outcomes section in Results).

2.6. Risk of Bias Assessment and Quality Evidence

The PEDro scale was independently used by two authors (M.S.-A. and Y.C.-C.) to
assess the risk of bias and the methodological quality of the included studies. The PEDro
scale comprises 11 items (item 1 is not used for the total score), with a score ranging from 0
(very low methodological quality and high risk of bias) to 10 (high methodological quality
and low risk of bias) [34]. A study was considered high quality if it scored equal to or
higher than 8 points [35].

In addition, the level of evidence of each meta-analysis was analyzed using the Grad-
ing of Recommendations Assessment, Development, and Evaluation (GRADE) metric.
According to Meader (2014) [36], a level of evidence is conditioned by its risk of bias, incon-
sistency, imprecision, indirectness, and risk of publication bias. Inconsistency was assessed
by estimating the level of heterogeneity (see statistical analysis section); imprecision was
calculated from the number of participants per study and the number of studies in each
meta-analysis, and indirectness was noted in articles in which the results were measured
indirectly, registered as a “yes” or “no” [33]. Finally, the level of evidence was scored
as follows: (1) high, if findings were robust; (2) moderate, if results might change after
including new studies; (3) low, if the level of confidence in our pooled effect was very
slight; and (4) very low, when any effect estimation was robust because some of Meader’s
items were not present in the studies included in the meta-analysis. Two authors (I.C.-P.
and F.A.N.-E.) independently assessed the level of evidence of each meta-analysis and
doubts were discussed with a third author (M.C.O.-P.).

2.7. Statistical Analysis

A meta-analysis was performed by two authors using Comprehensive Meta-Analysis
version 3.0 (Biostat, Englewood, NJ, USA) [37] (E.O.-G. and I.C.-P.). The effect was es-
timated in a random effect of DerSimonian and Laird [38] using Cohen’s standardized
mean difference (SMD) [39] with a 95% confidence interval (95% CI), according the guide-
lines established by Cooper et al. [40]. Cohen’s SMD can be interpreted as a four-level
strength effect: no effect (SMD 0), small (SMD 0.2–0.4), medium (SMD 0.4–0.7) and large
(SMD > 0.8) [41]. The result of each meta-analysis was displayed in forest plots [42]. Red di-
amonds represent the overall results of the meta-analysis, either from the subgroup analysis
performed (subtotals) or from the set of all groups (total). The center of the diamond is the
overall effect value and the width represents the overall confidence interval. The difference
between the intervention and control groups can be considered statistically significant if
the diamond is clearly positioned to one side of the reference line, but if it crosses it or
just rubs it, no conclusions can be drawn from that point in one direction. The p-value
for Egger’s test (with p < 0.1 showing a risk of publication bias) [43], the visualization of
the funnel plot [44] (which in cases of asymmetry indicates a possible risk of publication
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bias), and trim-and-fill estimation [45] were used to estimate the risk of publication bias.
When the trim-and-fill estimation reported a variation higher than 10% with respect to
the original pooled effect, the level of evidence was downgraded one level [46]. The level
of heterogeneity was calculated by using the Q-test and its p-value (p < 0.1 indicates the
existence of heterogeneity) and the degree of inconsistency (I2) established by Higgins [47],
where the level of heterogeneity can be rated as low (I2 < 25%), moderate (I2 between
25–50%), or large (I2 > 50%) [47].

2.8. Sensitivity Analysis

The leave-one-out method (or one-study-removed method) was employed to assess
the contribution or weight of each study to the global effect in each meta-analysis [33].

2.9. Subgroup Analysis

A subgroup analysis [33] was conducted to assess the effect of VR according to the
comparisons conducted in the included studies. These comparisons showed the following:
(1) VR vs. NI; (2) VR vs. CT; and (3) VR + CT vs. CT.

3. Results
3.1. Study Selection

We identified 179 studies from different databases (PubMed n = 23, Scopus n = 75,
WOS n = 60, and PEDro n = 21) and another eight additional records were identified from
other sources. After duplicated studies were removed (n = 128), 59 studies were screened by
title/abstract. Fourteen studies were excluded in the first screening and thirty-three were
excluded afterwards, as they did not meet the inclusion criteria (reasons in Figure 1). Finally,
12 studies were included in the present systematic review with a meta-analysis [48–59].
Figure 1 shows the PRISMA flow chart for the study selection process.

3.2. Characteristics of the Studies Included

The twelve RCTs included provided 26 independent comparisons (ten for fatigue
analysis, eight for impact of MS analysis, and eight for QoL analysis). Supplemen-
tary Table S1 summarizes and details the independent comparisons identified in each
study. All included studies were RCTs [48–59] carried out in the last decade between
2013 and 2020 in Italy [48,55,59], Spain [54], France [50], the UK [56,57], Hungary [58],
Turkey [51–53], and Jordan [49]. These studies report data from 606 PwMS with a mean age
of 42.83 ± 6.86 years. In total, 442 PwMS were female (73%) and 164 were male (27%), and
313 PwMS (70% women with a mean age of 43.45 ± 7.64 years) received an intervention
based on VR. Of the 12 studies included, only nine in the experimental group used VR
intervention only [48–53,55,56,58], while the remaining three used VR and CT [54,57,59].
The VR interventions used in the studies included were as follows: (1) niVR, such as
the Nintendo® Wii Balance Board® [48,49,55,57], Nintendo® Wii Fit® [53,56], Leap Mo-
tion® [54], REACTIV program [50], Xbox 360® with Kinect®Sensor [58], Xbox One® and
Kinect Sensor [51]; (2) semi-immersive VR using the BTS-Nirvana®system [59]; (3) iVR
using the RAGU system with Oculus® [52]. By contrast, 293 PwMS (75% women with a
mean age of 42.22 ± 6.15 years) were included in a comparison control group receiving
CT or simple observation (NI). Regarding intervention length, VR therapies lasted from
4 weeks to 4 months, with a frequency of one to five sessions per week and a time per
session ranging from 20 to 60 min. All data from the selected studies were obtained just
after the end of the therapy (no long-term follow-up assessment was conducted). Finally,
four studies [48,52,55,58] reported that no funding was received to carry out the research,
seven studies [49–51,53,54,56,57] received funding, and one study did not report such
information [59]. Table 2 summarizes the main characteristics of the studies included in
this review.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow chart for study selection.

3.3. Methodological Quality Assessment

According to the PEDro scale, the mean methodological quality of the included studies
was low (mean PEDro score = 5.83 ± 0.83 points). Five studies [48,51–53,56] showed low
quality and a high risk of bias and seven studies [49,50,54,55,57–59] showed medium
quality and a moderate risk of bias. Table 3 shows PEDro scores for all included studies.
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Table 2. Characteristics of the Studies Included in the Review.

VR Group Control Group Outcomes

Study Design Country Funding K N Age F:M Intervention N Age F:M Intervention Outcomes Test

Brichetto, G.
et al., 2013 [48] Pilot RCT Italy No 1 18 40.7 10:8

12 sessions of Nintendo® Wii Balance Board®

during 4 weeks, 3 sessions per week. Each
sessions lasted 60 min

18 43.2 12:6 CT (Static and dynamic exercises
in single and double leg stance) Fatigue M-FIS

Cuesta-Gómez,
A. et al., 2020

[54]

RCT Spain Yes
2

16 49.8 9:7

20 sessions using serious games with LMC,
during 10 weeks, 2 sessions per week of 60
min. Conventional Therapy, for 60 min, in

upper extremity was added

14 42.6 9:5

CT (Physiotherapy motor
rehabilitation of upper extremity

joints using mobilizations,
stretching and functional tasks)

Fatigue FSS

Impact MSIS-29

Khalil, H. et al.,
2019 [49] Pilot RCT Jordan Yes

2
16 39.8 12:4

Exercises in different niVR scenarios
(Nintendo® Wii Balance Board®), during 6

weeks, 2 sessions per week
16 34.8 10:6 CT (Balance exercises) Fatigue M-FIS

QoL SF-36

Lamargue, D
et al., 2020 [50] RCT France Yes

2
18 43.8 12:6

REACTIV program based niVR, during 4
months, 3 sessions per week. Each session

lasted 45 min.

17 38.3 14:3
CT (Physical activity and global

cognitive stimulation)
Fatigue M-FIS

QoL SF-36

Maggio, M.G.
et al., 2020 [59] RCT Italy NR 1 30 51.9 12:18

Semi-immersive VR using BTS-Nirvana for a
total of 24 sessions using niVR, during 8
weeks, 3 sessions per week. Each session
lasted 60 min. In addition, CT program

was added

30 48.2 17:13
CT (General conditioning

exercises of strengthening, gait
and postural control)

QoL MS-QoL

Ozkul, C. et al.,
2020 [52] RCT Turkey No

2
13 29

9:4 Exercises using augmented and iVR (RAGU
system) during 8 weeks, 2 sessions per week.

A total of 16 sessions, 20 min each.

13 34 11:2 CT (balance training trough
exercises with ball) Fatigue FSS

13 34 10:3 NI (Simple observation)

Prosperini, L.
et al., 2013 [55] RCT Italy No

2 18 35.3 13:5 Home-based training with Nintendo® Wii
Balance Board® during 12 weeks, 5 sessions

per week. Sessions lasted 30 min.

18 37.1 12:6 NI (Simple observation)
Impact MSIS-29

18 37.1 12.6 18 35.3 13:5 NI (Simple observation)

Robinson, J.
et al., 2015 [56] RCT UK Yes

2
20 52.6

14:6 8 sessions of exercises using Nintendo® Wii Fit
videogames during 4 weeks, 2 sessions per

week. Sessions lasted 40–60 min

16 53.9 12:4 CT (Balance training)
Impact

WHODAS
2.015 51.9 12:3 NI (Simple observation)

Thomas, S.
et al., 2017 [57] RCT UK Yes

2
15 50.9 14:1

Home-based training and personalized
Nintendo® Wii Balance Board® using

Mii-vitaleSe, in addition to other therapies,
including CT, as medical treatment if patients

require it.

15 47.6 13:2
CT (usual care, physical, medicine

and education support)
Impact MSIS-29

QoL SF-36

Tollár, J. et al.,
2019 [58] RCT Hungary No

2
14 48.2 12:2

25 sessions using Xbox 360 and Kinect sensor,
during 5 weeks, 5 sessions per week. Each

session lasted 1 h.

14 46.9 12:2 CT (Dynamic and static
balance exercises Impact MSIS-29

12 47 11:1 NI (Simple observation)
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Table 2. Cont.

VR Group Control Group Outcomes

Study Design CountryFunding K N Age F:M Intervention N Age F:M Intervention Outcomes Test

Tuba-Ozdogar,
A. et al., 2020

[51]

RCT Turkey Yes
4

20 39.2 16:4
8 sessions using Microsoft Xbox One
and Kinect motion sensor, during 8
weeks, 1 session per week (45 min

per session)

17 43.6 12:5 CT (Balance, stretching and core
stability exercises) Fatigue M-FIS

20 37.9 15:5 NI (Simple observation) QoL MS-QoL

Yazgan, Y.Z.
et al., 2020 [53] RCT Turkey Yes

4
15 47.4 13:2

16 sessions of exercises using
Nintendo® WiFit videogames during

8 weeks, 2 sessions per week.
Sessions lasted 60 min

12 43.1 12 CT (Balance training exercises) Fatigue FSS

15 40.6 13:2 NI (Simple observation) QoL MS-QoL

Abbreviations: K = number of independent comparisons; RCT = randomized controlled trial; N = number of participants; F = female; M= male; niVR = non-immersive virtual reality; LMC = Leap Motion
Controller; iVR = immersive virtual reality; CT = conventional therapy; NI = no intervention (simple observation); UK = United Kingdom; QoL = quality of life; FSS = Fatigue Severity Scale; MFIS = Modified
Fatigue Impact Scale; MSIS-29 = Multiple Sclerosis Impact Scale-29; MS-QoL = Multiple Sclerosis Quality of Life; WHODAS = World Health Organization Disability Assessment Schedule 2.0.

Table 3. Score of Included Studies from PEDro Assessment.

Study i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 Total

Brichetto, G. et al., 2013 [48] Yes Yes No Yes No No Yes No No Yes Yes 5/10

Cuesta-Gómez, A. et al., 2020 [54] Yes Yes No Yes No No Yes Yes No Yes Yes 6/10

Khalil, H. et al., 2019 [49] Yes Yes Yes Yes No No Yes No No Yes Yes 6/10

Lamargue, D. et al., 2020 [50] Yes Yes No Yes No No Yes Yes No Yes Yes 6/10

Maggio, M.G. et al., 2020 [59] Yes Yes Yes Yes No No Yes Yes No Yes Yes 7/10

Ozkul, C. et al., 2020 [52] Yes Yes No Yes No No No Yes No Yes Yes 5/10

Prosperini, L. et al., 2013 [55] Yes Yes Yes Yes No No No Yes No Yes Yes 6/10

Robinson, J. et al., 2015 [56] Yes Yes No Yes No No No No Yes Yes Yes 5/10

Thomas, S. et al., 2017 [57] Yes Yes Yes Yes No No No Yes Yes Yes Yes 7/10

Tollár, J. et al., 2019 [58] Yes Yes Yes Yes No No Yes Yes No Yes Yes 7/10

Tuba-Ozdogar, A. et al., 2020 [51] No Yes No Yes No No No Yes No Yes Yes 5/10

Yazgan, Y.Z. et al., 2020 [53] Yes Yes No Yes No No No Yes No Yes Yes 5/10

Abbreviations: i1 = eligibility criteria; i2 = random allocation; i3 = concealed allocation; i4 = baseline comparability; i5 = blind subjects; i6 = blind therapists; i7 = blind assessors; i8 = adequate follow-up; i9 =
intention-to-treat analysis; i10 = between-group comparisons; i11 = point estimates and variability.
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3.4. Outcomes Synthesis

The level of fatigue was analyzed using the Fatigue Severity Scale (FSS) [52–54] and
the Modified Fatigue Impact Scale (MFIS) [48–51]; MS impact was assessed with the Multi-
ple Sclerosis Impact Scale-29 (MSIS-29) [54,55,57,58] and the World Health Organization
Disability Assessment Schedule 2.0 (WHODAS 2.0) [56]; and QoL was assessed using the
Multiple Sclerosis Quality of Life test (MSQoL) [51,53,59] and the SF-36 scale [49,50,57].

3.5. Meta-Analysis Findings
3.5.1. Effect of Virtual Reality on Fatigue

Seven RCTs [48–54] provided data from 319 PwMS to assess the effect of VR-based
intervention on fatigue. At first, an overall analysis showed moderate-quality evidence
of a low to medium effect favoring VR-based therapy (SMD −0.33; 95% CI −0.61 −0.06;
p 0.02) (Table 4, Figure 2) compared to CT or NI, without heterogeneity (I2 0%; Q-test = 8.9,
df = 9; p 0.44) and no risk of publication bias (p for Egger = 0.47) (Supplementary Figure S1).
Sensitivity analysis showed a change of 20% after removing a study by Brichetto [51].
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The included studies showed the following comparisons: VR vs. NI, VR vs. CT, and
VR + CT vs. CT (Table 4, Figure 3). Three studies [51–53] compared VR-based intervention
vs. simple observation, without finding significant differences between groups (SMD −0.2;
95% CI −0.61, 0.2; p 0.33), without heterogeneity (I2 0%; Q-test = 1.96, df = 2; p 0.37), and
with no risk of publication bias (p for Egger test 0.1). Six studies [48–53] compared VR-
based intervention vs. CT, showing moderate-quality evidence of a medium effect favoring
VR-based intervention (SMD −0.4; 95% CI −0.7 −0.11; p 0.006), without heterogeneity
(I2 1.9%; Q-test = 5.1, df = 5; p 0.41) and with a possible risk of publication bias (p for
Egger test 0.46 and 25% of variation after trim-and-fill estimation). Finally, one study [54]
compared VR-based intervention with CT vs. CT, without showing significant differences
between the two groups (SMD −0.23; 95% CI −0.95, 0.48; p 0.52).

3.5.2. Effect of Virtual Reality-Based Therapy on the Impact of Multiple Sclerosis

Five RCTs [54–58] provided data from 287 PwMS to assess the effect of VR-based
therapy on the impact of MS in comparison to CT or NI. At first, an overall analysis
showed low-quality of a low-to-medium effect favoring VR-based therapy (SMD −0.3; 95%
CI −0.55, −0.04; p 0.02) on the impact of MS compared to CT or NI (Table 4, Figure 4), with
a low level of heterogeneity (I2 21%; Q-test = 8.9, df = 7; p 0.26) and a low risk of publication
bias (p for Egger = 0.07 and 50% of variation after trim-and-fill estimation) (Supplementary
Figure S2). Sensitivity analysis reported a variation of 41% with respect to the original
effect, excluding a study by Tollár [58].
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Table 4. Main Findings in Meta-Analyses.

Effect Size Publication Bias Heterogeneity

Outcomes Groups K N Ns SMD 95% CI p Funnel Plot
Trim-and-Fill

Q-test I2 p
Adjusted

SMD % of Var.

Fatigue

Overall Analysis 10 319 31.9 −0.33 [−0.61, −0.06] 0.02 Symmetric −0.33 0% 9 0% 0.44

Specific comparison
subgroups

VR vs NI 3 96 33 −0.2 [−0.61, 0.2] 0.33 Symmetric −0.22 0% 1.9 0% 0.37

VR vs CT 6 193 32.2 −0.4 [−0.7, −0.11] 0.006 Asymmetric −0.51 27% 5.1 1.9% 0.41

VR + CT
vs CT 1 30 30 −0.23 [−0.95, 0.48] 0.52 NP NP NP NP NP NP

Impact of
Multiple
Sclerosis

Overall Analysis 8 287 31.8 −0.3 [−0.55, −0.04] 0.02 Asymmetric −0.61 50% 8.9 21% 0.26

Specific comparison
subgroups

VR vs NI 4 103 25.8 −0.61 [−0.97, −0.23] 0.001 Asymmetric −0.74 23% 5.5 27.7% 0.23

VR vs CT 2 64 32 −0.03 [−0.48, 0.53] 0.92 NP NP NP 0.98 0% 0.32

VR + CT
vs CT 2 90 45 −0.02 [−0.54, 0.49] 0.93 NP NP NP 0.3 0% 0.6

Overall
Quality of

Life

Overall Analysis 8 291 36.3 0.5 [0.23, 0.76] <0.001 Symmetric 0.5 0% 7.1 2% 0.21

Specific comparison
subgroups

VR vs NI 2 99 49.5 0.79 [0.3, 1.28] 0.002 NP NP NP 0.1 0% 0.75

VR vs CT 4 166 41.5 0.29 [−0.15, 0.72] 0.2 Asymmetric 0.44 57% 3.1 3.5% 0.21

VR + CT
vs CT 2 90 45 0.6 [0.13, 1.07] 0.012 NP NP NP 1 0% 0.32

Physical
Quality of

Life

Overall Analysis 3 127 42.3 0.58 [0.13, 1.02] 0.011 Symmetric 0.58 0% 1.9 0% 0.38

Specific comparison
subgroups

VR vs CT 2 67 33.5 0.37 [−0.14, 0.87] 0.16 NP NP NP 1 0% 0.32

VR + CT
vs CT 1 60 60 0.87 [0.3, 1.43] 0.003 NP NP NP NP NP NP

Mental
Quality of

Life

Overall Analysis 3 127 42.3 0.55 [0.09, 1.01] 0.018 Asymmetric 0.38 31% 2.1 6.2% 0.35

Specific comparison
subgroups

VR vs CT 67 33.5 33.5 0.51 [0.02, 1] 0.042 NP NP NP 1 0% 0.32

VR + CT
vs CT 60 60 60 0.6 [0.08, 1.11] 0.025 NP NP NP NP NP NP

Abbreviations: K = number of independent comparisons; N = number of participants; Ns = mean number of participants per study; SMD = Cohen’s Standardized Mean Difference; 95% CI = 95% confidence
interval; p = p-value; % of var = percentage of variation; I2 = degree of inconsistency; VR = virtual reality; NI = not intervention; CT = conventional therapy; NP = not possible.



Sensors 2021, 21, 7389 11 of 21

Sensors 2021, 21, x FOR PROOFREADING 10 of 20 
 

 

 
Figure 3. Subgroup Analysis of the Effect of Virtual Reality on Fatigue According to Specific Comparisons. 

3.5.2. Effect of Virtual Reality-Based Therapy on the Impact of Multiple Sclerosis 
Five RCTs [54–58] provided data from 287 PwMS to assess the effect of VR-based 

therapy on the impact of MS in comparison to CT or NI. At first, an overall analysis 
showed low-quality of a low-to-medium effect favoring VR-based therapy (SMD −0.3; 
95% CI −0.55, −0.04; p 0.02) on the impact of MS compared to CT or NI (Table 4, Figure 4), 
with a low level of heterogeneity (I2 21%; Q-test = 8.9, df = 7; p 0.26) and a low risk of 
publication bias (p for Egger = 0.07 and 50% of variation after trim-and-fill estimation) 
(Supplementary Figure S2). Sensitivity analysis reported a variation of 41% with respect 
to the original effect, excluding a study by Tollár [58]. 

The following specific comparison subgroups were identified: VR vs. NI, VR vs. CT, 
and VR + CT vs. CT (Table 4, Figure 5). Firstly, three studies [56,58,] compared the effect 
of VR-based intervention vs. simple observation, showing low-quality evidence of a me-
dium effect favoring VR-based intervention (SMD −0.61; 95% CI −0.97, −0.23; p 0.001), with 
a low level of heterogeneity (I2 27.7%; Q-test = 5.5, df = 4; p 0.23) and taking into account a 
possible risk of publication bias (p for Egger test 0.001 and 23% of variation after trim-and-
fill estimation). Secondly, two studies [56,58] reported data assessing the effect of VR-
based intervention vs. CT, and no statistically significant differences between groups were 
observed (SMD −0.03 95% CI −0.48, 0.53; p 0.92), without heterogeneity (I2 0%; Q-test = 
0.98, df = 1; p 0.32). Finally, two studies [54,57] compared VR + CT vs. CT without reporting 
significant differences between these groups (SMD −0.02; 95% CI −0.54, 0.49; p 0.93), with-
out heterogeneity (I2 0%; Q-test = 0.3, df = 1; p 0.6). 

 
Figure 4. Forest Plot of the Effect of Virtual Reality on the Impact of Multiple Sclerosis. 

Figure 3. Subgroup Analysis of the Effect of Virtual Reality on Fatigue According to Specific Comparisons.

Sensors 2021, 21, x FOR PROOFREADING 10 of 20 
 

 

 
Figure 3. Subgroup Analysis of the Effect of Virtual Reality on Fatigue According to Specific Comparisons. 

3.5.2. Effect of Virtual Reality-Based Therapy on the Impact of Multiple Sclerosis 
Five RCTs [54–58] provided data from 287 PwMS to assess the effect of VR-based 

therapy on the impact of MS in comparison to CT or NI. At first, an overall analysis 
showed low-quality of a low-to-medium effect favoring VR-based therapy (SMD −0.3; 
95% CI −0.55, −0.04; p 0.02) on the impact of MS compared to CT or NI (Table 4, Figure 4), 
with a low level of heterogeneity (I2 21%; Q-test = 8.9, df = 7; p 0.26) and a low risk of 
publication bias (p for Egger = 0.07 and 50% of variation after trim-and-fill estimation) 
(Supplementary Figure S2). Sensitivity analysis reported a variation of 41% with respect 
to the original effect, excluding a study by Tollár [58]. 

The following specific comparison subgroups were identified: VR vs. NI, VR vs. CT, 
and VR + CT vs. CT (Table 4, Figure 5). Firstly, three studies [56,58,] compared the effect 
of VR-based intervention vs. simple observation, showing low-quality evidence of a me-
dium effect favoring VR-based intervention (SMD −0.61; 95% CI −0.97, −0.23; p 0.001), with 
a low level of heterogeneity (I2 27.7%; Q-test = 5.5, df = 4; p 0.23) and taking into account a 
possible risk of publication bias (p for Egger test 0.001 and 23% of variation after trim-and-
fill estimation). Secondly, two studies [56,58] reported data assessing the effect of VR-
based intervention vs. CT, and no statistically significant differences between groups were 
observed (SMD −0.03 95% CI −0.48, 0.53; p 0.92), without heterogeneity (I2 0%; Q-test = 
0.98, df = 1; p 0.32). Finally, two studies [54,57] compared VR + CT vs. CT without reporting 
significant differences between these groups (SMD −0.02; 95% CI −0.54, 0.49; p 0.93), with-
out heterogeneity (I2 0%; Q-test = 0.3, df = 1; p 0.6). 

 
Figure 4. Forest Plot of the Effect of Virtual Reality on the Impact of Multiple Sclerosis. Figure 4. Forest Plot of the Effect of Virtual Reality on the Impact of Multiple Sclerosis.

The following specific comparison subgroups were identified: VR vs. NI, VR vs.
CT, and VR + CT vs. CT (Table 4, Figure 5). Firstly, three studies [56,58] compared the
effect of VR-based intervention vs. simple observation, showing low-quality evidence of a
medium effect favoring VR-based intervention (SMD −0.61; 95% CI −0.97, −0.23; p 0.001),
with a low level of heterogeneity (I2 27.7%; Q-test = 5.5, df = 4; p 0.23) and taking into
account a possible risk of publication bias (p for Egger test 0.001 and 23% of variation
after trim-and-fill estimation). Secondly, two studies [56,58] reported data assessing the
effect of VR-based intervention vs. CT, and no statistically significant differences between
groups were observed (SMD −0.03 95% CI −0.48, 0.53; p 0.92), without heterogeneity
(I2 0%; Q-test = 0.98, df = 1; p 0.32). Finally, two studies [54,57] compared VR + CT vs. CT
without reporting significant differences between these groups (SMD −0.02; 95% CI −0.54,
0.49; p 0.93), without heterogeneity (I2 0%; Q-test = 0.3, df = 1; p 0.6).
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3.5.3. Effect of Virtual Reality-Based Therapy on Overall Quality of Life

Six RCTs [49–51,53,57,59] reported data from 291 PwMS to assess the effect of VR-
based intervention on overall QoL in comparison to CT or simple observation. An initial
overall analysis provided moderate-quality evidence of a medium effect favoring VR-based
therapy (SMD 0.5; 95% CI 0.23, 0.76; p < 0.001) (Table 4, Figure 6), without heterogeneity
(I2 2%; Q-test = 7.1, df = 5; p 0.21) and no risk of publication bias (p for Egger test 0.2)
(Supplementary Figure S3). The one study removed showed a variation of 20% with respect
to the original pooled effect when a study by Yazgan [53] was excluded.
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On the overall QoL, we checked the effect of VR-based therapy according to the specific
comparison (Table 4, Figure 7). Firstly, two studies [51,53] reported data comparing the
effect of VR-based intervention vs. simple observation that showed low-quality evidence
of a large effect favoring VR-based intervention (SMD 0.79; 95% CI 0.3, 1.28; p 0.002),
without heterogeneity (I2 0%; Q-test = 0.1, df = 3; p 0.75). Secondly, two studies [57,59]
compared VR-based intervention with CT vs. CT, showing low-quality evidence of a
medium effect (SMD 0.6; 95% CI 0.13, 1.07; p 0.012) favoring VR-based intervention with
CT without heterogeneity (I2 2%; Q-test = 1, df = 1; p 0.32). However, no statistically
significant differences were found between VR-based intervention and CT (SMD 0.29; 95%
CI −0.15, 0.72; p 0.2), without heterogeneity (I2 3.5%; Q-test = 3.1, df = 3; p 0.21), in data
reported by four studies [49–51,53].
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Effect of Virtual Reality-Based Therapy on the Physical Dimension of Quality of Life

Three studies [49,50,59] provided data to assess the effect of VR-based intervention on
the physical dimension of QoL (Table 4, Figure 8). In a preliminary analysis, low-quality
evidence of a medium effect (SMD 0.58; 95% CI 0.13, 1.02; p 0.011) was found favoring
VR-based intervention, without heterogeneity (I2 0%; Q-test = 1.9, df = 2; p 0.38) and
without risk of publication bias (p for Egger test 0.55). Specifically, in subgroup analysis,
one study [59] compared VR + CT vs. CT, showing low-quality evidence of a large effect
(SMD 0.87; 95% CI 0.3, 1.43; p 0.003) favoring VR + CT. Finally, when VR-based intervention
was compared with CT in two studies [49,50], no statistically significant differences were
found between groups (SMD 0.37; 95% CI −0.14, 0.87; p 0.16) without heterogeneity (I2 0%;
Q-test = 1, df = 1; p 0.32).
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Effect of Virtual Reality-Based Therapy on the Mental Dimension of Quality of Life

Three studies [49,50,59] reported data to assess the effect of VR-based intervention
on the mental dimension of QoL (Table 4, Figure 9). Low-quality evidence of a medium
effect favoring VR-based intervention (SMD 0.55; 95% CI 0.09, 1.01; p 0.018), without low
heterogeneity (I2 6.2%; Q-test = 2.1, df = 2; 0.35) and with a possible risk of publication
bias, (p for Egger test 0.45 and 31% of variation after trim-and-fill estimation) was shown.
In subgroup analysis, one study [59] showed low-quality evidence of a medium effect
favoring VR + CT (SMD 0.6; 95% CI 0.08, 1.11; p 0.025) when compared with CT. Moreover,
when VR-based intervention was compared with CT in two studies [49,50], low-quality
evidence of a medium effect (SMD 0.51; 95% CI 0.02, 1; p 0.042) was shown favoring
VR-based intervention, without heterogeneity (I2 0%; Q-test = 1, df = 1; p 0.32).
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4. Discussion

In recent years, some studies have assessed the efficacy of different therapies to reduce
the impact of MS and its muscle fatigue symptoms, as well as to increase the QoL of MS
patients [60,61]. VR-based intervention is a novel therapy that is being used more in the
treatment of neurological diseases [18,62], including MS. To date, a number of published
reviews have assessed the effect of VR-based intervention in PwMS regarding balance,
gait [29,30], and upper extremity recovery [31]. In addition, a recent review [63], which
included a small number of studies, evaluated the effect of VR-based intervention on fa-
tigue and QoL. For this reason, the present work was conceived to compile and analyze the
more updated and recent evidence available thus far on the efficacy of VR-based therapy
regarding such variables. Our systematic review with meta-analysis includes 12 RCTs pub-
lished in the last 9 years that provide data from 606 patients with MS (42.83 ± 6.86 years),
and evaluate the effect of VR-based intervention on fatigue (7 studies), the impact of MS
(5 studies), and QoL (6 studies), differentiating between physical and mental dimensions.
In the studies included we identified three different comparisons: (1) VR vs. NI; (2) VR
vs. CT; and (3) VR + CT vs. CT. In an overall analysis, our findings showed that VR-based
intervention reduces the level of fatigue and the impact of MS, and increases the QoL
in PwMS. Specifically, the subgroup analysis revealed that: (1) compared with simple
observation, VR-based intervention may be effective to minimize the impact of MS and
to increase the overall QoL; (2) VR-based intervention reduces fatigue more than CT; and
(3) VR-based intervention with CT is more effective that isolated CT to increase the physical
and mental dimensions of the QoL.

Regarding fatigue, approximately 15% of PwMS consider fatigue as the most frequent
and disabling symptom that reduces QoL and personal autonomy [64]. Therefore, it is
important to find therapies that are able to reduce it. In this case, our overall analysis
showed that VR-based intervention produces a low-to-medium effect in reducing fatigue
in PwMS. In addition, when subgroup analysis was conducted, we found that VR was
better than CT at reducing this variable. Our findings are in line with the recent review of
Santos-Nascimento [63], although our meta-analysis on the effect of VR-based interventions
on fatigue, includes seven studies (five more than the previous review), which means that
our review is able to estimate the effect with data from different tests using Cohen’s
SMD, increasing the generalization and quality of evidence of the effect of VR vs. CT in
reducing fatigue. However, no statistically significant differences were found when VR
was compared with simple observation and when VR-based intervention was used with
CT compared to CT alone. It is important to note that these two subgroups included a small
number of studies (three and one, respectively) and it is possible that these results will
change if new studies are included. It is accepted that in order to develop new therapies
that improve muscle strength, muscle oxygenation, and heart function parameters, it is also
important to reduce fatigue. Physical exercise has been postulated as an excellent therapy
to reduce fatigue as consequence of the improvements in muscle resistance, heart rate,
and respiratory frequency, all of which increase the physical condition of patients [65,66].
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However, the level of adherence is sometimes low, and PwMS face some barriers such as
low functional capability, fear of falling, or difficulties in attending rehabilitation centers.
VR-based interventions are based on the active performance of physical and functional
exercises through video games that can be adapted in intensity, which means that the
characteristics of a VR-based exercise can be adapted to take into account the patient’s state
of fatigue. This enables continuous training, even at home, increasing patient motivation
and thus, probably, the effectiveness of VR therapy [67]. In addition, increasing patient
motivation in VR therapy may increase their adherence to the therapy, thus favoring
continuous training to improve muscular endurance and reduce movement fatigue [67].
This high level of adherence to VR therapy may be one of the causes of major improvements
in fatigue in a VR group compared to a CT group. Sometimes, classical neurorehabilitation
protocols are based on monotonous and passive CT exercises, while VR-based intervention
allows for an enjoyable and customized therapy that involves the active immersion of
patients and continuous work.

Our meta-analysis demonstrates that the use of VR-based therapies in neuroreha-
bilitation protocols reduces the disabling impact of MS symptoms, although with a low
effect. Subgroup analysis reported a medium effect of VR-based intervention compared to
simple observation. However, no statistically significant differences were observed when
VR-based intervention was compared to CT, as well as when VR-based intervention was
used in combination with CT vs. CT alone. These results should be generalized with
caution, due to the small number of studies included in each analysis. However, our results
suggest that, in the absence of physical therapy, VR-based intervention alone can be used
as an effective therapy to reduce the disabling impact of MS. In addition, it is important to
remark that this study is the first review with a meta-analysis that provides information
about the effect of VR-based interventions on the impact of MS.

Finally, we assessed the effect of VR-based interventions on global QoL. In a prelimi-
nary meta-analysis, VR-based intervention improves global QoL with a medium effect in
PwMS. Subgroup analysis showed that VR and VR + CT are better than simple observation
and CT, respectively, at improving overall QoL in PwMS. Compared to simple observa-
tion, our results are in line with the meta-analysis conducted by Santos-Nascimiento [63],
although we include four more studies in our analysis. Both reviews are in favor of using
VR-based therapy in CT protocols to improve the overall QoL. However, no statistically
significant differences were found when VR-based intervention was compared with CT.
We suggest that both therapies (VR or CT), when are used as single therapeutic options,
are effective; but when these two therapies are combined, the effect is significantly greater
than CT alone. Furthermore, we performed a subgroup analysis to assess the effect of
VR-based intervention on the physical and mental dimensions of QoL, which was the first
meta-analysis to have explored this factor. In both dimensions, the greatest effect of VR-
based therapy was found when it was used in combination with CT compared to CT alone,
with the important limitation that this analysis included one study. Although this result
is limited, it is one of the most important findings of this review, as it reinforces the idea
that VR-based intervention combined with CT can increase the effect of both therapies on
QoL. In this sense, QoL can be improved thanks to the combination of these two therapies
with two different objectives. As such, CT is a therapy more focused on analytical move-
ments, while VR-based therapy allows PwMS to carry out functional movements and train
activities for daily living with active exercise-based videogames integrated in sessions that
are more ludic and motivating. Combining the use of customized CT techniques to restore
specific joint, muscle, or balance disorders, together with VR-based intervention of different
levels of difficulty and adapted to patient’s preferences, can explain this large improvement
in QoL metrics. Several studies have reported higher levels of fun and commitment in
therapy in patients receiving a VR-based intervention compared to CT alone [68]. These
positive results, along with improvements in mental overload during VR exposure, could
be responsible for the increase in outcomes such as QoL [68]. Furthermore, in older adults,
VR-based intervention can produce changes in the hippocampus and amygdala, which
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could be related to the control of negative emotions and, therefore, help reduce anxiety and
depression; this approach could be applied to improve the QoL in PwMS [69]. The results
of our review are in line with studies carried out for different neurological diseases [70–72],
including MS [54], which show an improvement in QoL metrics after VR-based therapy.
Finally, our systematic review includes a large number of studies that assess the effect of
VR-based intervention on QoL, which increases the quality of evidence in comparison to
other reviews [63].

At a neurophysiological level, VR-based interventions look to promote neuronal plas-
ticity in the damaged brains of PwMS, with the aim of replacing or restoring missing
functions. The brain is capable of adapting to environmental and pathological stimuli
through neuronal or cerebral plasticity [73]. In MS, remyelination is essential to repair de-
myelination and recover from disabling symptoms [74], and neuronal plasticity is necessary
to reorganize new synapses, with remyelination being responsible for clinical improvement
in MS [75]. Neuronal plasticity decreases with age and with the duration of MS [76], so it is
important to apply active and multisensory therapies in the first years of MS diagnosis,
when patients are young. The multisensory experience produced by VR and the active
participation of the patients to perform the therapy through videogames [23] could acti-
vate the mirror neuron system (MNS). The MNS, located in the frontal (inferior frontal
gyrus) and parietal (inferior parietal lobe) lobes [77], is activated during the execution of a
motor action and when an individual observes an action in other subjects [78]. Functional
movements carried out with VR devices or the visualization of movements in VR devices
could facilitate the activation of MNS in PwMS, possibly producing cortical and subcortical
brain changes that stimulate synaptic remyelination and reorganization in motor brain
areas. Furthermore, some studies have suggested that VR increases the motivation of
MS patients during therapy, as well as their adherence to therapy [79]. In addition to
active participation and enjoyment, the effect produced by VR-based intervention may
be related to a distraction strategy. Previous studies have shown the distracting power
of VR for the treatment of pain and anxiety in different situations due to immersion in
virtual environments [80]. Compared other classical therapies, the distraction produced by
a VR-based intervention focuses a patient’s attention in the videogames, reduces negative
emotions such as anxiety [81], and increases participation in the therapy. The power of
distraction could be related to the effect of VR on the prefrontal cortex, which is responsible
for blocking negative experiences and feelings [82]. The prefrontal cortex, specifically the
dorsolateral prefrontal cortex and the inferior frontal gyrus, plays a crucial role in the
inhibition of emotive responses and may be related to the regulation of emotions [83]. Thus,
VR could be considered an excellent option to improve the mental dimension of QoL in
PwMS who have difficulties adhering to CT.

This review presents updated practical implications for physical clinicians, such as
physiotherapists or occupational therapists, as well as researchers. It also shows how
VR-based therapy can reduce disabling symptoms of MS such as fatigue and increase
QoL. The main advantage of VR-based intervention is the possibility of obtaining virtual
environments that PwMS feel are similar to the real world, which leads them to perform
functional tasks within these environments. VR-based intervention also has the added
value of allowing participants to interact dynamically with objects or situations that would
not be possible in the real world, promoting motor learning [84] with augmented feedback
and multisensory inputs. Furthermore, VR-based intervention is a safe technique with
few adverse effects reported in subjects with MS [85], and it offers the possibility of
home treatment, a relevant advantage during the COVID-19 pandemic [86]. Various
systematic reviews have demonstrated the efficacy of VR-based intervention as a home
training method in the COVID-19 pandemic in patients with different neurological diseases,
including MS [86,87]. Scientific evidence shows that home training based on VR is a therapy
that provides motivation, and it can be useful in the rehabilitation of physical and cognitive
function in PwMS [88]. The use of VR at home seems to have a positive impact as a method
of support for traditional rehabilitation, especially during the COVID-19 pandemic, due
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to the difficulty of these patients accessing classical therapies in clinical centers [89]. For
example, physical exercise improves resistance to fatigue and QoL, and can be practiced at
home through VR-based videogames exercises. In this sense, the most analyzed systems
used in VR neurorehabilitation are niVR devices, such as Nintendo® Wii Balance Board® or
Nintendo® Wii Fit®, which are affordable and easier to transport and install at home. Other
VR systems, such as BTS-Nirvana or Oculus Quest, allow full 360◦ immersion in the virtual
world, but also require a high level of spatial orientation and comprehension [90], and are
more appropriate for use in clinical centers supervised by a clinician. In our review, the
majority of studies (10 of 12) included niVR devices; thus, these results are more dependent
on non-immersive virtual scenarios, which may be the most useful for clinical practice and
home training in PwMS.

Finally, we must bear in mind that the present work has some limitations, and the
results should be interpreted with caution. First, the low number of studies included in
each meta-analysis and in the subgroup analyses, as well as the low number of participants
per study, reduces the generalizability of our findings. Second, the low methodological
quality of the included studies increases the risk of selection and classification bias. Third,
the presence of publication bias and the variation in trim-and-fill estimations may distort
the real effect of the therapy for different outcomes. Another limitation comes from the
large variations observed in the sensitivity analysis, which may reduce the quality of
our findings. In addition, the majority of the studies assessed the effect of VR-based
intervention using niVR devices, so our results are more relevant to the effect of niVR
devices. Finally, we must remark that all the assessments conducted in the included studies
were performed immediately after intervention, which did not permit us to predict the
effect of VR-based therapy in the medium and long term.

5. Conclusions

Our results showed that VR-based therapy is effective in reducing fatigue and the
impact of MS, as well as increasing QoL in PwMS. Specifically, to reduce fatigue, VR-based
intervention is better than CT. In terms of the impact of MS, VR-based intervention was
better than simple observation. To increase overall QoL, VR-based therapy is better than
simple observation and the combined use of VR-based intervention with CT is better than
CT alone. Finally, VR-based intervention also showed a positive effect on the physical
and mental dimensions of QoL, demonstrating a significant increase in both dimensions
when the VR-based intervention was used in combination with CT, compared to CT alone.
Nevertheless, further research is needed to assess the effect of VR-based intervention, both
alone and when combined with other therapies.
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