
mathematics

Article

Relative Gorenstein Dimensions over Triangular Matrix Rings

Driss Bennis 1,† , Rachid El Maaouy 1,† , Juan Ramón García Rozas 2,*,† and Luis Oyonarte 2,†

����������
�������

Citation: Bennis, D.; El Maaouy, R.;

García Rozas, J.R.; Oyonarte, L.

Relative Gorenstein Dimensions over

Triangular Matrix Rings. Mathematics

2021, 9, 2676. https://doi.org/

10.3390/math9212676

Academic Editor: Xiao-Wu Chen

Received: 18 September 2021

Accepted: 18 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CeReMaR Research Center, Department of Mathematics, Faculty of Sciences, Mohammed V University in
Rabat, Rabat 10000, Morocco; driss.bennis@um5.ac.ma or driss_bennis@hotmail.com (D.B.);
rachid_elmaaouy@um5.ac.ma or elmaaouy.rachid@gmail.com (R.E.M.)

2 Department of Mathematics, University of Almería, 04071 Almería, Spain; oyonarte@ual.es
* Correspondence: jrgrozas@ual.es
† These authors contributed equally to this work.

Abstract: Let A and B be rings, U a (B, A)-bimodule, and

Relative Gorenstein dimensions over triangular
matrix rings

Driss Bennis1,a Rachid El Maaouy1,b

J. R. García Rozas2,c Luis Oyonarte2,d

1: CeReMaR Research Center, Faculty of Sciences, B.P. 1014, Mohammed V
University in Rabat, Rabat, Morocco.

a: driss.bennis@fsr.um5.ac.ma; driss_bennis@hotmail.com
b: rachid_elmaaouy@um5.ac.ma; elmaaouy.rachid@gmail.com

2: Departamento de Matemáticas, Universidad de Almería, 04071 Almería, Spain.
c: jrgrozas@ual.es
d: oyonarte@ual.es

Abstract

Let A and B be rings, U a (B,A)-bimodule and T =

(
A 0
U B

)
the

triangular matrix ring. In this paper, several notions in relative Goren-
stein algebra over a triangular matrix ring are investigated. We first study
how to construct w-tilting (tilting, semidualizing) over T using the corre-
sponding ones over A and B. We show that when U is relative (weakly)
compatible we are able to describe the structure of GC-projective modules
over T . As an application, we study when a morphism in T -Mod is a spe-
cial GCP (T )-precover and when the class GCP (T ) is a special precovering
class. In addition, we study the relative global dimension of T . In some
cases, we show that it can be computed from the relative global dimen-
sions of A and B. We end the paper with a counterexample to a result
that characterizes when a T -module has a finite projective dimension.
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1 Introduction

Semidualizing modules were independently studied (under different names) by
Foxby [13], Golod [14], and Vasconcelos [26] over a commutative Noetherian
ring. Golod used these modules to study GC-dimension for finitely generated
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ring. In this paper, several notions in relative Gorenstein algebra over a triangular matrix ring
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the corresponding ones over A and B. We show that when U is relative (weakly) compatible, we
are able to describe the structure of GC-projective modules over T. As an application, we study
when a morphism in T-Mod is a special GCP(T)-precover and when the class GCP(T) is a special
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1. Introduction

Let A and B be rings and U be a (B, A)-bimodule. The ring T =

(
A 0
U B

)
is known as

the formal triangular matrix ring with usual matrix addition and multiplication. Such rings
play an important role in the representation theory of algebras. The modules over such
rings can be described in a very concrete fashion. Therefore, formal triangular matrix rings
and modules over them have proven to be a rich source of examples and counterexamples.
Some important Gorenstein notions over formal triangular matrix rings have been studied
by many authors (see [1–3]). For example, Zhang [1] introduced compatible bimodules
and explicitly described the Gorenstein projective modules over triangular matrix Artin
algebra. Enochs, Izurdiaga, and Torrecillas [2] characterized when a left module over a
triangular matrix ring is Gorenstein projective or Gorenstein injective under the “Gorenstein
regular” condition. Under the same condition, Zhu, Liu, and Wang [3] investigated
Gorenstein homological dimensions of modules over triangular matrix rings. Mao [4]
studied Gorenstein flat modules over T (without the “Gorenstein regular” condition) and
gave an estimate of the weak global Gorenstein dimension of T.

Semidualizing modules were independently studied (under different names) by
Foxby [5], Golod [6], and Vasconcelos [7] over a commutative Noetherian ring. Golod used
these modules to study the GC-dimension for finitely generated modules. Motivated (in
part) by Enochs and Jenda’s extensions of the classical G-dimension given in [8], Holm and
Jørgensen extended in [9] this notion to arbitrary modules. After that, several generaliza-
tions of semidualizing and the GC-dimension have been made by several authors [10–12].

As the authors mentioned in [13], to study the Gorenstein projective modules and
dimension relative to a semidualizing (R, S)-bimodule C, the condition EndS(C) ∼= R
seems to be too restrictive and in some cases unnecessary. Therefore, the authors introduced
weakly Wakamatsu tilting as a weak notion of semidualizing, which made the theory
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of relative Gorenstein homological algebra wider and less restrictive, but still consistent.
Weakly Wakamatsu tilting modules were the subject of many publications that showed how
important these modules could become in developing the theory of relative (Gorenstein)
homological algebra [13–15].

The main objective of the present paper is to study relative Gorenstein homological
notions (w-tilting, relative Gorenstein projective modules, relative Gorenstein projective
dimensions, and the relative global projective dimension) over triangular matrix rings.

This article is organized as follows:
In Section 2, we give some preliminary results.
In Section 3, we study how to construct w-tilting (tilting, semidualizing) over T

using w-tilting (tilting, semidualizing) over A and B under the condition that U is rel-
ative (weakly) compatible. We introduce (weakly) C-compatible (B, A)-bimodules for
a T-module C (Definition 4). Given two w-tilting modules AC1 and BC2, we prove in

Proposition 2 that C =

(
C1

(U ⊗A C1)⊕ C2

)
is a w-tilting T-module when U is weakly

C-compatible.
In Section 4, we first describe relative Gorenstein projective modules over T. Let

C =

(
C1

(U ⊗A C1)⊕ C2

)
be a T-module. We prove in Theorem 1 that if U is C-compatible,

then a T-module M =

(
M1
M2

)
ϕM

is GC-projective if and only if M1 is a GC1-projective

A-module, CokerϕM is a GC2-projective B-module, and ϕM : U ⊗A M1 → M2 is injec-
tive. As an application, we prove the converse of Proposition 2 and refine in the relative
setting (Proposition 4), a result of when T is left (strongly) CM-free due to Enochs, Izur-
diaga, and Torrecillas in [2]. Furthermore, when C is w-tilting, we characterize when a
T-morphism is a special precover (see Proposition 5). Then, in Theorem 2, we prove that
the class of GC-projective T-modules is a special precovering if and only if so are the classes
of GC1 -projective A-modules and GC2 -projective B-modules, respectively.

Finally, in Section 5, we give an estimate of the GC-projective dimension of a left
T-module and the left GC-projective global dimension of T. First, it is proven that, given

a T-module M =

(
M1
M2

)
ϕM

, if C = p(C1, C2) :=
(

C1
(U ⊗A C1)⊕ C2

)
is w-tilting, U is

C-compatible, and:

SGC2 − PD(B) := sup{GC2−pd(U ⊗A G) | G ∈ GC1 P(A)} < ∞,

then:
max{GC1−pd(M1), (GC2−pd(M2))− (SGC2 − PD(B))}

≤ GC−pd(M) ≤

max{(GC1−pd(M1)) + (SGC2 − PD(B)) + 1, GC2−pd(M2)}.

As an application, we prove that, if C = p(C1, C2) is w-tilting and U is C-compatible,
then:

max{GC1 − PD(A), GC2 − PD(B)}

≤ GC − PD(T) ≤

max{GC1 − PD(A) + SGC2 − PD(B) + 1, GC2 − PD(B)}.

Some cases in which this estimation becomes an exact formula are also given.
The authors in [16] established a relationship between the projective dimension of

modules over T and modules over A and B. Given an integer n ≥ 0 and M =

(
M1
M2

)
ϕM

a T-module, they proved that pdT(M) ≤ n if and only if pdA(M1) ≤ n, pdB(M2) ≤ n
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and the map related to the n-th syzygy of M is injective. We end the paper by giving a
counterexample to this result (Example 4).

2. Preliminaries

Throughout this paper, all rings are associative (not necessarily commutative) with
identity, and all modules are, unless otherwise specified, unitary left modules. For a ring
R, we use Proj(R) (resp., Inj(R)) to denote the class of all projective (resp., injective) R-
modules. The category of all left R-modules is denoted by R-Mod. For an R-module C, we
use AddR(C) to denote the class of all R-modules that are isomorphic to direct summands
of direct sums of copies of C, and ProdR(C) denotes the class of all R-modules that are
isomorphic to direct summands of direct products of copies of C.

Given a class of modulesF (which are always considered closed under isomorphisms),
an F -precover of M ∈ R-Mod is a morphism ϕ : F → M (F ∈ F ) such that HomR(F′, ϕ) is
surjective for every F′ ∈ F . If, in addition, any solution of the equation HomR(F, ϕ)(g) = ϕ
is an automorphism of F, then ϕ is said to be an F -cover. The F -precover ϕ is said to be
special if it is surjective and Ext1(F, ker ϕ) = 0 for every F ∈ F . The class F is said to be a
special (pre)covering if every module has a special F -(pre)cover.

Given the class F , the class of all modules N such that Exti
R(F, N) = 0 for every F ∈ F

is denoted by F⊥i (similarly, ⊥iF = {N; Exti
R(N, F) = 0 ∀F ∈ F}). The right and left

orthogonal classes F⊥ and ⊥F are defined as follows:

F⊥ = ∩i≥1F⊥i and ⊥F = ∩i≥1
⊥iF

It is immediate to see that if C is any module, then AddR(C)⊥ = {C}⊥ and ⊥ProdR(C) =
⊥{C}.

Given a class of R-modules F , an exact sequence of R-modules:

· · · → X1 → X0 → X0 → X1 → · · ·

is called HomR(−,F )-exact (resp., HomR(F ,−)-exact) if the functor HomR(−, F) (resp.,
HomR(F,−)) leaves the sequence exact whenever F ∈ F . If F = {F}, we simply say
HomR(−, F)-exact. Similarly, we can define F⊗R-exact sequences when F is a class of
right R-modules.

We now recall some concepts needed throughout the paper.

Definition 1.

1. ([17], Definition 2.1) A semidualizing bimodule is an (R, S)-bimodule C satisfying the
following properties:

(a) RC and CS both admit a degreewise finite projective resolution in the corresponding
module categories (R-Mod and Mod-S);

(b) Ext≥1
R (C, C) = Ext≥1

S (C, C) = 0;

(c) The natural homothety maps R Rγ→ HomS(C, C) and S
γS→ HomR(C, C) both are

ring isomorphisms.

2. ([18], Section 3) A Wakamatsu tilting module, simply tilting, is an R-module C satisfying
the following properties:

(a) RC admits a degreewise finite projective resolution;
(b) Ext≥1

R (C, C) = 0;
(c) There exists a HomR(−, C)-exact exact sequence of R-modules:

X = 0→ R→ C0 → C1 → · · ·

where Ci ∈ addR(C) for every i ∈ N.
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It was proven in ([18], Corollary 3.2), that an (R, S)-bimodule C is semidualizing if and
only if RC is tilting with S = EndR(C). Therefore, the following notion, which is crucial in
this paper, generalizes both concepts.

Definition 2 ([13], Definition 2.1). An R-module C is weakly Wakamatsu tilting (w-tilting for
short) if it has the following two properties:

1. Exti≥1
R (C, C(I)) = 0 for every set I;

2. There exists a HomR(−, AddR(C))-exact exact sequence of R-modules:

X = 0→ R→ A0 → A1 → · · ·

where Ai ∈ AddR(C) for every i ∈ N;

If C satisfies 1 but perhaps not 2, then C will be said to be Σ-self-orthogonal.

Definition 3 ([13], Definition 2.2). Given any C ∈ R-Mod, an R-module M is said to be
GC-projective if there exists a HomR(−, AddR(C))-exact exact sequence of R-modules:

X = · · · → P1 → P0 → A0 → A1 → · · ·

where the P′i s are all projective, Ai ∈ AddR(C) for every i ∈ N, M ∼= Im(P0 → A0).

We use GCP(R) to denote the class of all GC-projective R-modules.

It is immediate from the definitions that w-tilting modules can be characterized
as follows.

Lemma 1. An R-module C is w-tilting if and only if both C and R are GC-projective modules.

Now, we recall some facts about triangular matrix rings. Let A and B be rings and U a

(B, A)-bimodule. We shall denote by T =

(
A 0
U B

)
the generalized triangular matrix ring.

By [19], Theorem 1.5, the category T-Mod of left T-modules is equivalent to the category

TΩ whose objects are triples M =

(
M1
M2

)
ϕM

, where M1 ∈ A-Mod, M2 ∈ B-Mod, and

ϕM : U ⊗A M1 → M2 is a B-morphism and whose morphisms from
(

M1
M2

)
ϕM

to
(

N1
N2

)
ϕN

are pairs
(

f1
f2

)
such that f1 ∈ HomA(M1, N1), f2 ∈ HomB(M2, N2) satisfying that the

following diagram is commutative.

U ⊗A M1
ϕM
//

1U⊗ f1
��

M2

f2
��

U ⊗A N1
ϕN
// N2

Since we have the natural isomorphism:

HomB(U ⊗A M1, M2) ∼= HomA(M1, HomB(U, M2)),

there is an alternative way of defining T-modules and T-homomorphisms in terms of maps
ϕ̃M : M1 → HomB(U, M2) given by ϕ̃M(x)(u) = ϕM(u⊗ x) for each u ∈ U and x ∈ M1.

Analogously, the category Mod-T of right T-modules is equivalent to the category
ΩT whose objects are triples M =

(
M1, M2

)
ψM , where M1 ∈ Mod-A, M2 ∈ Mod-B,

and ϕM : M2 ⊗B U → M1 is an A-morphism and whose morphisms from
(

M1, M2
)

φM to
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(
N1, N2

)
φN are pairs

(
f1, f2

)
such that f1 ∈ HomA(M1, N1), f2 ∈ HomB(M2, N2) satisfying

that the following diagram:

M2 ⊗B U
φM
//

f2⊗1U
��

M1

f1
��

M2 ⊗B U
φN
// N1

is commutative.
In the rest of the paper, we shall identify T-Mod (resp. Mod-T) with TΩ (resp. ΩT).

Consequently, through the paper, a left (resp. right) T-module will be a triple M =(
M1
M2

)
ϕM

(resp. M =
(

M1, M2
)

φM ), and whenever there is no possible confusion, we shall

omit the morphisms ϕM and φM. For example, TT is identified with
(

A
U ⊕ B

)
and TT is

identified with
(

A⊕U, B
)
.

A sequence of left T-modules 0 →
(

M1
M2

)
→
(

M′1
M′2

)
→
(

M′′1
M′′2

)
→ 0 is exact if and

only if both sequences 0 → M1 → M′1 → M′′1 → 0 and 0 → M2 → M′2 → M′′2 → 0
are exact.

Throughout this paper, T =

(
A 0
U B

)
is a generalized triangular matrix ring. Given

a T-module M =

(
M1
M2

)
ϕM

, the B-module CokerϕM is denoted as M2 and the A-module

Kerϕ̃M as M1. A T-module N =

(
N1
N2

)
ϕN

is a submodule of M if N1 is a submodule of M1,

N2 is a submodule of M2, and ϕM|U⊗A N1 = ϕN .
As an interesting and special case of triangular matrix rings, we recall that the T2-

extension of a ring R is given by:

T(R) =
(

R 0
R R

)

and the modules over T(R) are triples M =

(
M1
M2

)
ϕM

where M1 and M2 are R-modules

and ϕM : M1 → M2 is an R-homomorphism.
There are some pairs of adjoint functors (p, q), (q, h) and (s, r) between the category

T-Mod and the product category A-Mod × B-Mod, which are defined as follows:

1. p : A-Mod × B-Mod→ T-Mod is defined as follows: for each object (M1, M2) of

A-Mod×B-Mod, let p(M1, M2) =

(
M1

(U ⊗A M1)⊕M2

)
with the obvious map, and

for any morphism ( f1, f2) in A-Mod×B-Mod, let p( f1, f2) =

(
f1

(1U ⊗A f1)⊕ f2

)
;

2. q : T-Mod→ A-Mod×B-Mod is defined, for each left T-module
(

M1
M2

)
as q(

(
M1
M2

)
) =

(M1, M2) and for each morphism
(

f1
f2

)
in T-Mod as q(

(
f1
f2

)
) = ( f1, f2);

3. h : A-Mod × B-Mod→ T-Mod is defined as follows: for each object (M1, M2) of A-

Mod×B-Mod, let h(M1, M2) =

(
M1 ⊕HomB(U, M2)

M2

)
with the obvious map, and

for any morphism ( f1, f2) in A-Mod×B-Mod, let h( f1, f2) =

(
f1 ⊕HomB(U, f2)

f2

)
;
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4. r : A-Mod × B-Mod→ T-Mod is defined as follows: for each object (M1, M2) of

A-Mod×B-Mod, let r(M1, M2) =

(
M1
M2

)
with the zero map, and for any morphism

( f1, f2) in A-Mod×B-Mod, let r( f1, f2) =

(
f1
f2

)
;

5. s : T-Mod→ A-Mod×B-Mod is defined, for each left T-module
(

M1
M2

)
as s(

(
M1
M2

)
) =

(M1, M2) and for each morphism
(

f1
f2

)
in T-Mod as s(

(
f1
f2

)
) = ( f1, f 2), where f 2 is

the induced map.

It is easy to see that q is exact. In particular, p preserves projective objects and h
preserves injective objects. Note that the pairs of adjoint functors (p, q) and (q, h) were
defined in [2]. In general, the three pairs of adjoint functors defined above can be found
in [20].

For a future reference, we list these adjointness isomorphisms:

HomT(

(
M1

(U ⊗A M1)⊕M2

)
, N) ∼= HomA(M1, N1)⊕HomB(M2, N2).

HomT(N,
(

M1
M2

)
0
) ∼= HomA(N1, M1)⊕HomB(N2, M2).

HomT(M,
(

N1 ⊕HomB(U, N2)
N2

)
) ∼= HomA(M1, N1)⊕HomB(M2, N2).

Now, we recall the characterizations of projective, injective, and finitely generated
T-modules.

Lemma 2. Let M =

(
M1
M2

)
ϕM

be a T-module.

(1) ([21], Theorem 3.1) M is projective if and only if M1 is projective in A-Mod, M2 =

CokerϕM is projective in B-Mod, and ϕM is injective.
(2) ([22], Proposition 5.1) M is injective if and only if M1 = Kerϕ̃M is injective in A-Mod, M2

is injective in B-Mod, and ϕ̃M is surjective.
(3) ([23]) M is finitely generated if and only if M1 and M2 are finitely generated.

The following Lemma improves [24], Lemma 3.2.

Lemma 3. Let M =

(
M1
M2

)
ϕM

and N =

(
N1
N2

)
ϕN

be two T-modules and n ≥ 1 be an integer

number. Then, we have the following natural isomorphisms:

1. If TorA
1≤i≤n(U, M1) = 0, then Extn

T(

(
M1

U ⊗A M1

)
, N) ∼= Extn

A(M1, N1);

2. Extn
T(

(
0

M2

)
, N) ∼= Extn

B(M2, N2);

3. Extn
T(M,

(
N1
0

)
) ∼= Extn

A(M1, N1);

4. If Ext1≤i≤n
B (U, N2) = 0, then Extn

T(M,
(

HomB(U, N2)
N2

)
) ∼= Extn

B(M2, N2).
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Proof. We prove only 1, since 2 is similar and 3 and 4 are dual. Assume that TorA
1≤i≤n

(U, M1) = 0, and consider an exact sequence of A-modules:

0→ K1 → P1 → M1 → 0

where P1 is projective. Therefore, there exists an exact sequence of T-modules:

0→
(

K1
U ⊗A K1

)
→
(

P1
U ⊗A P1

)
→
(

M1
U ⊗A M1

)
→ 0

where
(

P1
U ⊗A P1

)
is projective by Lemma 2.

Let n = 1. By applying the functor HomT(−, N) to the above short exact sequence

and since
(

P1
U ⊗A P1

)
and P1 are projectives, we obtain a commutative diagram with

exact rows:

HomT(

(
P1

U ⊗A P1

)
, N)

∼=
��

// HomT(

(
K1

U ⊗A K1

)
, N)

∼=
��

// // Ext1
T(

(
M1

U ⊗A M1

)
, N)

��
HomA(P1, N1) // HomA(K1, N1) // // Ext1

A(M1, N1)

where the first two columns are just the natural isomorphisms given by adjointness
and the last two horizontal rows are epimorphisms. Thus, the induced map:

Ext1
T(

(
M1

U ⊗A M1

)
, N)→ Ext1

A(M1, N1)

is an isomorphism such that the above diagram is commutative.
Assume that n > 1. Using the long exact sequence, we obtain a commutative diagram

with exact rows:

0 // Extn−1
T (

(
K1

U ⊗A K1

)
, N)

∼=σ

��

∼=
f // Extn

T(

(
M1

U ⊗A M1

)
, N)

��

// 0

0 // Extn−1
A (K1, N1)

g
∼=

// Extn
A(M1, N1) // 0

where σ is a natural isomorphism by induction, since TorA
k (U, K1) = 0 for every k ∈

{1, · · · , n− 1} because of the exactness of the following sequence:

0 = TorA
k+1(U, M1)→ TorA

k (U, K1)→ TorA
k (U, P1) = 0.

Thus, the composite map:

gσ f−1 : Extn
T(

(
M1

U ⊗A M1

)
, N)→ Extn

A(M1, N1)

is a natural isomorphism, as desired.

Since T can be viewed as a trivial extension (see [20,25] for more details), the following
lemma can be easily deduced from [25], Theorems 3.1 and 3.4. For the convenience of the
reader, we give a proof.
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Lemma 4. Let X =

(
X1
X2

)
ϕX

be a T-module and (C1, C2) ∈ A-Mod × B-Mod:

1. X ∈ AddT(p(C1, C2)) if and only if:

(i) X ∼= p(X1, X2);
(ii) X1 ∈ AddA(C1) and X2 ∈ AddB(C2).

In this case, ϕX is injective;
2. X ∈ ProdT(h(C1, C2)) if and only if:

(i) X ∼= h(X1, X2);
(ii) X1 ∈ ProdA(C1) and X2 ∈ ProdB(C2).

In this case, ϕ̃X is surjective.

Proof. We only need to prove (1), since (2) is dual.
For the “if” part: if X1 ∈ AddA(C1) and X2 ∈ AddB(C2), then X1 ⊕ Y1 = C(I1) and

X2 ⊕Y2 = C(I2)
2 for some (Y1, Y2) ∈ A-Mod×B-Mod and some sets I1 and I2. Without loss

of generality, we may assume that I = I1 = I2. Then:

X⊕ p(Y1, Y2) ∼= p(X1, X2)⊕ p(Y1, Y2)

=

(
X1

(U ⊗A X1)⊕ X2

)
⊕
(

Y1
(U ⊗A Y1)⊕Y2

)
∼=

(
C(I)

1

(U ⊗A C(I)
1 )⊕ C(I)

2

)

∼=
(

C1
(U ⊗A C1)⊕ C2

)(I)

= p(C1, C2)
(I).

Hence, X ∈ AddT(p(C1, C2)).

Conversely, let X ∈ AddT(p(C1, C2)) and Y =

(
Y1
Y2

)
ϕY

be a T-module such that

X ⊕ Y = p(C1, C2)
(I) for some set I. Then, ϕX is injective, as X is a submodule of C :=

p(C1, C2)
(I) and ϕC is injective. Consider now the split exact sequence:

0→ Y

(
λ1
λ2

)
−→ C

(
p1
p2

)
−→ X → 0

which induces the following commutative diagram with exact rows and columns:

0 // U ⊗A Y1� _

ϕY

��

1U⊗λ1 // U ⊗A C(I)
1� _

ϕC

��

1U⊗p1 // U ⊗A X1� _

ϕX

��

// 0

0 // Y2

ϕY

��

λ2 // U ⊗A C(I)
1 ⊕ C(I)

2

ϕC

��

p2 // X2

ϕX

��

// 0

0 // Y2
λ2 //

��

C(I)
2

��

p2 // X2 //

��

0

0 0 0
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where ϕX , ϕC and ϕX are the canonical projections. Clearly, p1 : C(I)
1 → X1 and p2 : C(I)

2 →
X2 are split epimorphisms. Then, X1 ∈ AddA(C1) and X2 ∈ AddB(C2). It remains to prove
that X ∼= p(X1, X2). For this, it suffices to prove that the short exact sequence:

0→ U ⊗A X1
ϕX

→ X2
ϕX
→ X2 → 0

splits. Let r2 be the retraction of p2. If i : C(I)
2 → (U ⊗A C(I)

1 )⊕ C(I)
2 denotes the canonical

injection, then ϕX p2ir2 = p2 ϕCir2 = p2r2 = 1X2
, and the proof is finished.

Remark 1.

1. Since the class of projective modules over T is nothing but the class AddT(T), when we
take C1 = A and C2 = B in Lemma 4, we recover the characterization of projective T-
modules. On the other hand, note that the class of injective T-modules coincides with the
class ProdT(T+). If we take TT =

(
A⊕U, B

)
, then the injective cogenerator T-module

T+ = Hom(T,Q/Z) can be identified with
(

A+ ⊕U+

B+

)
∼= q(A+, B+). Therefore, by

taking C1 = A+ and C2 = B+ in Lemma 4(A), we recover the characterization of injective
T-modules;

2. Let (C1, C2) be a module over A-Mod × B-Mod. By Lemma 4(2), every module in AddT(p
(C1, C2)) has the form p(X1, X2) for some X1 ∈ AddA(C1) and X2 ∈ AddB(C2).

3. w-Tilting Modules

In this section, we study when the functor p preserves w-tilting modules.
It is well known that the functor p preserves projective modules. However, the functor

p does not preserve w-tilting modules in general, as the following example shows.

Example 1. Let Q be the quiver:
e1

α−→ e2,

and let R = kQ be the path algebra over an algebraic closed field k. Put P1 = Re1, P2 = Re2,
I1 = Homk(e1R, k), and I2 = Homk(e2R, k). Note that C1 and C2 are projective and injective
R-modules, respectively. By [12], Example 2.3,

C1 = P1 ⊕ P2(= R) and C2 = I1 ⊕ I2

are semidualizing (R, R)-bimodules and, then, w-tilting R-modules. Now, consider the triangular
matrix ring:

T(R) =
(

R 0
R R

)
.

We claim that p(C1, C2) is not a w-tilting T(R)-module. Note that I1 is not projective. Since R is
left hereditary by [26], Proposition 1.4, pdR(I1) = 1. Hence, Ext1

R(I1, R) 6= 0. Using Lemma 3, we
obtain that Ext1

T(R)(p(C1, C2), p(C1, C2)) ∼= Ext1
R(C1, C1) ⊕ Ext1

R(C2, C1) ⊕ Ext1
R(C2, C2) ∼=

Ext1
R(I1, R) 6= 0. Therefore, p(C1, C2) is not a w-tilting T(R)-module.

Motivated by the definition of compatible bimodules in [1], Definition 1.1, we intro-
duce the following definition, which will be crucial throughout the rest of this paper.

Definition 4. Let (C1, C2) ∈ A-Mod × B-Mod and C = p(C1, C2). The bimodule BUA is said
to be C-compatible if the following two conditions hold:

(a) The complex U ⊗A X1 is exact for every exact sequence in A-Mod:

X1 : · · · → P1
1 → P0

1 → C0
1 → C1

1 → · · ·

where the Pi
1’s are all projective and Ci

1 ∈ AddA(C1) ∀i;
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(b) The complex HomB(X2, U ⊗A AddA(C1)) is exact for every
HomB(−, AddB(C2))-exact exact sequence in B-Mod:

X2 : · · · → P1
2 → P0

2 → C0
2 → C1

2 → · · ·

where the Pi
2’s are all projective and Ci

2 ∈ AddB(C2) ∀i.

Moreover, U is called weakly C-compatible if it satisfies (b) and the following condition:

(a’) The complex U ⊗A X1 is exact for every HomA(−, AddA(C1))-exact exact sequence in
A-Mod

X1 : · · · → P1
1 → P0

1 → C0
1 → C1

1 → · · ·

where the Pi
1’s are all projective and Ci

1 ∈ AddA(C1) ∀i.

When C = TT = p(A, B), the bimodule U will be called simply (weakly) compatible.

Remark 2.

1. It is clear by the definition that every C-compatible is weakly C-compatible;
2. The (B, A)-bimodule U is weakly compatible if and only if the functor U ⊗A − : A-Mod

→ B-Mod is weakly compatible (see [27]);

3. If A and B are Artin algebras, and since TT =

(
A

U⊕

)
= p(A, B), it is easy to see that

TT-compatible bimodules are nothing but compatible (B, A)-bimodules as defined in [1].

The following can be applied to produce examples of (weakly) C-compatible bimod-
ules later on.

Lemma 5. Let C = p(C1, C2) be a T-module:

1. Assume that TorA
1 (U, C1) = 0. If fdA(U) < ∞, then U satisfies (a);

2. Assume that Ext1
B(C2, U ⊗A C(I)

1 ) = 0 for every set I. If idB(U ⊗A C1) < ∞, then U
satisfies (b);

3. If U ⊗A C1 ∈ AddB(C2), then U satisfies (b).

Proof. (3) is clear. We only prove (1), as (2) is similar. Consider an exact sequence of
A-modules:

X1 : · · · → P1
1 → P0

1 → C0
1 → C1

1 → · · ·

where the Pi
1’s are all projective and Ci

1 ∈ AddA(C1) ∀i. We use induction on fdAU.
If fdAU = 0, then the result is trivial. Now, suppose that fdAU = n ≥ 1. Then, there exists
an exact sequence of right A-modules:

0→ L→ F → U → 0

where fdAL = n− 1 and F is flat. Applying the functor −⊗ X1 to the above short exact
sequence, we obtain the commutative diagram with exact rows:
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:

��

:

��

:

��

:

��
0

��

// L⊗ P0
1

��

// F⊗A P0
1

��

// U ⊗A P0
1

��

// 0

TorA
1 (U, C0

1)

��

// L⊗A C0
1

��

// F⊗A C0
1

��

// U ⊗A C0
1

��

// 0

TorA
1 (U, C1

1)

��

// L⊗A C1
1

//

��

F⊗A C1
1

��

// U ⊗A C1
1

//

��

0

: : : :

Since TorA
1 (U, C1) = 0, the above diagram induces an exact sequence of complexes:

0→ L⊗A X1 → F⊗A X1 → U ⊗A X1 → 0.

By the induction hypothesis, the complexes L⊗A X1 and F⊗A X1 are exact. Thus, U ⊗A X1
is exact, as well.

Given a T-module C = p(C1, C2), we have simple characterizations of Conditions (a′)
and (b) if C1 and C2 are w-tilting.

Proposition 1. Let C = p(C1, C2) be a T-module:

1. If C1 is w-tilting, then the following assertions are equivalent:

(i) U satisfies (a′);
(ii) TorA

1 (U, G1) = 0, ∀G1 ∈ GC1 P(A);
(iii) TorA

i≥1(U, G1) = 0, ∀G1 ∈ GC1 P(A).

In this case, TorA
i≥1(U, C1) = 0;

2. If C2 is w-tilting, then the following assertions are equivalent:

(i) U satisfies (b);
(ii) Ext1

B(G2, U ⊗A X1) = 0, ∀G2 ∈ GC2 P(B), ∀X1 ∈ AddA(C1);
(iii) Exti≥1

B (G2, U ⊗A X1) = 0, ∀G2 ∈ GC2 P(B), ∀X1 ∈ AddA(C1);

In this case, Exti≥1
B (C2, U ⊗A X1) = 0, ∀X1 ∈ AddA(C1).

Proof. We only prove (1), since (2) is similar.
(i) ⇒ (iii) Let G1 ∈ GC1 P(R). There exists a HomA(−, AddA(C1))-exact exact se-

quence in A-Mod:
X1 : · · · → P1

1 → P0
1 → C0

1 → C1
1 → · · ·

where the Pi
1’s are all projective, G1

∼= Im(P0
1 → C0

1) and Ci
1 ∈ AddA(C1) ∀i. By Condition

(a′), U ⊗A X1 is exact, which means in particular that TorA
i≥1(U, G1) = 0.

(iii)⇒ (ii) Clear.
(ii)⇒ (i) Follows by [13], Corollary 2.13.
Finally, to prove that TorA

i≥1(U, C1) = 0, note that C1 ∈ GC1 P(A) by [13], Theorem 2.12.

In the following proposition, we study when p preserves w-tilting (tilting) modules.

Proposition 2. Let C = p(C1, C2) be a T-module and assume that U is weakly C-compatible.
If C1 and C2 are w-tilting (tilting), then p(C1, C2) is w-tilting (tilting).
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Proof. By Lemma 2, the functor p preserves finitely generated modules, so we only need
to prove the statement for w-tilting. Assume that C1 and C2 are w-tilting, and let I be a
set. Then, Exti≥1

A (C1, C(I)
1 ) = 0 and Exti≥1

B (C2, C(I)
2 ) = 0. By Proposition above, we have

Exti≥1
B (C2, U ⊗A C(I)

1 ) = 0 and TorA
i≥1(U, C1) = 0. Using Lemma 3, for every n ≥ 1, we

obtain that:

Extn
T(C, C(I)) = Extn

T(p(C1, C2), p(C1, C2)
(I))

∼= Extn
A(C1, C(I)

1 )⊕ Extn
B(C2, U ⊗A C(I)

1 )⊕ Extn
B(C2, C(I)

2 )

= 0.

Moreover, there exist exact sequences:

X1 : 0→ A→ C0
1 → C1

1 → · · ·

and:
X2 : 0→ B→ C0

2 → C1
2 → · · ·

which are HomA(−, AddA(C1))-exact and HomB(−, AddB(C2))-exact, respectively, and such
that Ci

1 ∈ AddA(C1) and Ci
2 ∈ AddB(C2) for every i ∈ N. Since U is weakly C-compatible,

the complex U ⊗A X1 is exact. Therefore, we construct in T-Mod the exact sequence:

p(X1, X2) : 0→ T → p(C0
1 , C0

2)→ p(C1
1 , C1

2)→ · · ·

where p(Ci
1, Ci

2) =

(
Ci

1
(U ⊗A Ci

1)⊕ Ci
2

)
∈ AddT(p(C1, C2)), ∀i ∈ N, by Lemma 4(1).

Let X ∈ AddT(p(C1, C2)). As a consequence of Lemma 4(1), X = p(X1, X2) where
X1 ∈ AddA(C1) and X2 ∈ AddB(C2). Using the adjointness (p, q), we obtain an isomor-
phism of complexes:

HomT(p(X1, X2), X) ∼= HomA(X1, X1)⊕HomB(X2, U ⊗ X1)⊕HomB(X2, X2).

However, the complexes HomA(X1, X1) and HomB(X2, X2) are exact, and the complex
HomB(X2, U⊗X1) is also exact since U is weakly C-compatible. Then, HomT(p(X1, X2), X)
is exact, as well, and the proof is finished.

Now, we illustrate Proposition 2 with two applications.

Corollary 1. Let C = p(C1, C2) be a T-module and A′ and B′ be two rings such that ACA′ and
ACB′ are bimodules, and assume that U is weakly C-compatible. If ACA′ and ACB′ are semidualizing
bimodules, then p(C1, C2) is a semidualizing (T, EndT(C))-bimodule.

Proof. This follows by Proposition 2 and [18], Corollary 3.2.

Corollary 2. Let R and S be rings, θ : R → S be a homomorphism with SR flat, and T =

T(θ) =:
(

R 0
S S

)
. Let C1 be an R-module such that S⊗R C1 ∈ AddR(C1) (for instance, if R is

commutative or R = S). If RC1 is w-tilting, then:

1. S⊗R C1 is a w-tilting S-module;

2. C =

(
C1

(S⊗R C1)⊕ (S⊗R C1)

)
is a w-tilting T(θ)-module.

Proof. 1. Let C2 = S⊗R C1, and note that C = p(C1, C2) and that SSR is C-compatible.
Therefore, by Proposition 2, we only need to prove that C2 is a w-tilting S-module. Since
RC1 is w-tilting, there exist HomR(−, AddR(C1))-exact exact sequences:



Mathematics 2021, 9, 2676 13 of 28

P : · · · → P1 → P0 → C → 0

and:
X : 0→ R→ C0 → C1 → · · ·

with each RPi projective and RCi ∈ AddR(C1). Since SR is flat, we obtain an exact sequence:

S⊗R P : · · · → S⊗R P1 → S⊗R P0 → S⊗R C → 0

and:
S⊗R X : 0→ S→ S⊗R C0 → S⊗R C1 → · · ·

with each S⊗R Pi a projective S-module and S⊗R Ci ∈ AddR(C2).
We prove now that S⊗R P and S⊗R X are HomS − (, AddS(C2))-exact. Let I be a set.

Then, HomS(S⊗R P, S⊗R C(I)
1 ) ∼= HomR(P, HomS(S, S⊗R C(I)

1 )) ∼= HomR(P, S⊗R C(I)
1 )

is exact since S⊗R C(I)
1 ∈ AddR(C1). Similarly, S⊗R X is HomS(−, AddS(C2))-exact;

2. This assertion follows from Proposition 2. We only need to note that S is weakly
C-compatible since SR is flat and S⊗R C1 ∈ AddR(C2).

We end this section with an example of a w-tilting module that is neither projective
nor injective.

Example 2. Take R and C2 as in Example 1. Therefore, by Corollary 2, C =

(
C2

C2 ⊕ C2

)
is a

w-tilting T(R)-module. By Lemma 2, C is not projective since C2 is not, and it is not injective since
the map ϕ̃C : C2 → C2 ⊕ C2 is not surjective.

Moreover, by [26], Proposition 2.6, gl.dim(T(R)) = gl.dim(R) + 1 ≤ 2. Therefore, if 0→
T(R) → E0 → E1 → E2 → 0 is an injective resolution of T(R), then C1 = E0 ⊕ E1 ⊕ E2 is a
w-tilting T(R)-module. Note that T(R) has at least three w-tilting modules, C1, C2 = T(R) and
C3 = C.

4. Relative Gorenstein Projective Modules

In this section, we describe GC-projective modules over T. Then, we use this descrip-
tion to study when the class of GC-projective T-modules is a special precovering class.

Clearly, the functor p preserves the projective module. Therefore, we start by studying
when the functor p also preserves relative Gorenstein projective modules. However, first,
we need the following:

Lemma 6. Let C = p(C1, C2) be a T-module and U be weakly C-compatible:

1. If M1 ∈ GC1 P(A), then
(

M1
U ⊗A M1;

)
∈ GCP(T).

2. If M2 ∈ GC2 P(B), then
(

0
M2

)
∈ GCP(T).

Proof. 1. Suppose that M1 ∈ GC1 P(A). There exists a HomA(−, AddA(C1))-exact exact
sequence:

X1 : · · · → P1
1 → P0

1 → C0
1 → C1

1 → · · ·

where the Pi
1’s are all projective, Ci

1 ∈ AddA(C1) ∀i and M1
∼= Im(P0

1 → C0
1). Using the

fact that U is weakly C-compatible, we obtain that the complex U ⊗A X1 is exact in B-Mod,
which implies that the complex p(X1, 0) :

· · · →
(

P1
1

U ⊗A P1
1

)
→
(

P0
1

U ⊗A P0
1

)
→
(

C0
1

U ⊗A C0
1

)
→
(

C1
1

U ⊗A C1
1

)
→ · · ·



Mathematics 2021, 9, 2676 14 of 28

is exact with (
M1

U ⊗A M1

)
∼= Im(

(
P0

1
U ⊗A P0

1

)
→
(

C0
1

U ⊗A C0
1

)
).

Clearly, p(Pi
1, 0) =

(
Pi

1
U ⊗A Pi

1

)
∈ Proj(T) and p(Ci

1, 0) =
(

Ci
1

U ⊗A Ci
1

)
∈ AddT(C) ∀i ∈ N

by Lemmas 2(1) and 4(1). If X ∈ AddT(C), then X1 ∈ AddA(C1) by Lemma 4(1), and using
the adjointness, we obtain that the complex

HomT(p(X1, 0), X) ∼= HomA(X1, X1) is exact. Hence,
(

M1
U ⊗A M1

)
is GC-projective;

2. Suppose that M2 is GC2 -projective. There exists a HomB(−, AddB(C2))-exact exact
sequence:

X2 : · · · → P1
2 → P0

2 → C0
2 → C1

2 → · · ·

where the Pi
2’s are all projective, Ci

2 ∈ AddB(C2) ∀i and M2 ∼= Im(P0
2 → C0

2). Clearly, the
complex:

p(0, X2) : · · · →
(

0
P1

2

)
→
(

0
P0

2

)
→
(

0
C0

2

)
→
(

0
C1

2

)
→ · · ·

is exact with
(

0
M2

)
∼= Im(

(
0

P1
2

)
→
(

0
C0

2

)
), p(0, Pi

2) =

(
0
Pi

2

)
∈ Proj(T) and p(0, Ci

2) =(
0

Ci
2

)
∈ AddT(C) ∀i, by Lemmas 2(1) and 4(1). Let X ∈ AddT(C). Then, by Lemma 4(1),

X = p(X1, X2) where X1 ∈ AddA(C1) and X2 ∈ AddB(C2). Using adjointness, we obtain
that:

HomT(p(0, X2), X) ∼= HomB(X2, U ⊗A X1)⊕HomB(X2, X2)

The complex HomB(X2, X2) is exact, and since U is weakly C-compatible, the complex
HomB(X2, U ⊗A X1) is also exact. This means that HomT(p(0, X2), X) is exact as well and(

0
M2

)
is GC-projective.

Proposition 3. Let C = p(C1, C2) be a T-module. If BUA is weakly C-compatible, then the
functor p sends G(C1,C2)

-projectives to GC-projectives. The converse holds provided that C1 and C2
are w-tilting.

In particular, p preserves Gorenstein projective modules if and only if U is weakly compatible.

Proof. Note that:

p(M1, M2) =

(
M1

U ⊗A M1

)
⊕
(

0
M2

)
.

Therefore, this direction follows from Lemma 6 and [13], Proposition 2.5.
Conversely, assume that C1 and C2 are w-tilting. By Proposition 1, it suffices to prove

that TorA
1 (U, GC1 P(A)) = 0 = Ext1

B(GC2 P(B), U ⊗A AddA(C1)).
Let G1 ∈ GC1 P(A). By [13], Corollary 2.13, there exits an exact and a HomA(−, AddA

(C1))-exact sequence 0 → L1
ı→ P1 → G1 → 0, where AP1 is projective and L1 is GC1-

projective. Note that A, C1 ∈ GC1 P(A) and B, C2 ∈ GC2 P(B) by Lemma 1. Then, TT =
p(A, B) and C = p(C1, C2) are GC-projective, which imply by Lemma 1 that C is w-tilting.

Moreover
(

L1
U ⊗A L1

)
= p(L1, 0) is also GC-projective, and by [13], Corollary 2.13, there

exists a short exact sequence:

0→
(

L1
U ⊗A L1

)
→
(

X1
X2

)
ϕX
→
(

H1
H2

)
ϕH
→ 0

where X =

(
X1
X2

)
ϕX
∈ AddT(C) and H =

(
H1
H2

)
ϕH

is GC-projective.
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Since X1 ∈ AddA(C1), we have the following commutative diagram with exact rows:

0 // L1
ı // P1 //

��

G1

��

// 0

0 // L1 // X1 // H1 // 0

Therefore, if we apply the functor U ⊗A − to the above diagram, we obtain the following
commutative diagram with exact rows:

U ⊗A L1
1U⊗ı // U ⊗A P1 //

��

U ⊗A G1

��

// 0

U ⊗A L1 // U ⊗A X1 //

��

U ⊗A H1 //

��

0

0 // U ⊗A L1 // X2 // H2 // 0

The commutativity of this diagram implies that the map 1U ⊗ ı is injective, and since P1 is
projective, TorA

1 (U, G1) = 0.

Now, let G2 ∈ GC2 P(B) and Y2 ∈ AddA(C1). By hypothesis,
(

0
G2

)
= p(0, G2) is

GC-projective, and by Lemma 4,
(

Y1
U ⊗Y1

)
= p(Y1, 0) ∈ AddT(C). Hence, Ext1

B(G2, U ⊗A

Y1) = Ext1
T(

(
0

G2

)
,
(

Y1
U ⊗Y1

)
) = 0 by Lemma 3 and [13], Proposition 2.4.

Theorem 1. Let M =

(
M1
M2

)
ϕM

and C = p(C1, C2) be two T-modules. If U is C-compatible,

then the following assertions are equivalent:

1. M is GC-projective;
2. (i) ϕM is injective;

(ii) M1 is GC1 -projective and M2 := Coker ϕM is GC2 -projective.

In this case, if C2 is Σ-self-orthogonal, then U ⊗A M1 is GC2-projective if and only if M2 is
GC2 -projective.

Proof. 2.⇒ 1. Since ϕM is injective, there exists an exact sequence in T-Mod:

0→
(

M1
U ⊗A M1

)
→ M→

(
0

M2

)
→ 0

Note that
(

M1
U ⊗A M1

)
and
(

0
M2

)
are GC-projective T-modules by Lemma 6. Therefore, M

is GC-projective by [13], Proposition 2.5.
1.⇒ 2. There exists a HomT(−, AddT(C))-exact sequence in T-Mod:

X = · · · →
(

P1
1

P1
2

)
ϕP1
→
(

P0
1

P0
2

)
ϕP0
→
(

C0
1

C0
2

)
ϕC0
→
(

C1
1

C1
2

)
ϕC1
→ · · ·

where Ci =

(
Ci

1
Ci

2

)
ϕCi
∈ AddT(C), Pi =

(
Pi

1
Pi

2

)
ϕPi
∈ Proj(T) ∀i ∈ N, and such that M ∼=

Im(P0 → C0). Then, we obtain the exact sequence:

X1 = · · · → P1
1 → P0

1 → C0
1 → C1

1 → · · ·
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where Ci
1 ∈ AddA(C1), Pi

1 ∈ Proj(A) ∀i ∈ N by Lemmas 2(1) and 4(1) and such that
M1
∼= Im(P0

1 → C0
1). Since U is C-compatible, the complex U ⊗A X1 is exact with U ⊗A

M1
∼= Im(U⊗A P0

1 → U⊗A C0
1). If ι1 : M1 → C0

1 and ι2 : M2 → C0
2 are the inclusions, then

1U ⊗ ι1 is injective, and the following diagram commutes:

U ⊗A M1
1U⊗ι1 //

ϕM

��

U ⊗A C0
1

ϕC0

��
M2

ι2 // C0
2

By Lemma 4(1), ϕC0
is injective, then ϕM is also injective. Moreover, for every i ∈

N, ϕPi
and ϕCi

are injective by Lemmas 2 and 4(1). Then, the following diagram with
exact columns:

0

��

0

��

0

��

0

��
· · · // U ⊗A P1

1
//

ϕP1

��

U ⊗A P0
1

ϕP0

��

// U ⊗A C0
1

ϕC0

��

// U ⊗A C1
1

ϕC1

��

// · · ·

· · · // P1
2

//

��

P0
2

��

// C0
2

��

// C1
2

��

// · · ·

· · · // P1
2

//

��

P0
2

//

��

C0
2

��

// C1
2

//

��

· · ·

0 0 0 0

is commutative. Since the first row and the second row are exact, we obtain the exact
sequence of B-modules:

X2 : · · · → P1
2 → P0

2 → C0
2 → C1

2 → · · ·

where Pi
2 ∈ Proj(B), Ci

2 ∈ AddB(C2) by Lemmas 2 and 4(1) and such that M2 =

Im(P0
2 → C0

2). It remains to see that X1 and X2 are HomA(−, Add(C1))-exact and
HomB(−, AddB(C2))-exact, respectively. Let X1 ∈ AddA(C1) and X2 ∈ AddB(C2). Then,

p(X1, 0) =

(
X1

U ⊗A X1

)
∈ AddT(C) and p(0, X2) =

(
0

X2

)
∈ AddT(C) by Lemma 4(1).

Therefore, by using adjointness, we obtain that HomB(X2, X2) ∼= HomT(X,
(

0
X2

)
) is exact.

Using adjointness again, we obtain that:

HomT(X,
(

0
U ⊗A X1

)
) ∼= HomB(X2, U ⊗A X1)

and:

HomT(X,
(

X1
0

)
) ∼= HomA(X1, X1).
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Note that Ci ∼= p(Ci
1, Ci

2) by Lemma 4(1). Hence, Ext1
T(C

i,
(

0
U ⊗A X1

)
) ∼= Ext1

B(C
i
2, U ⊗A

X1) = 0 by Lemma 3. Therefore, if we apply the functor HomT(X,−) to the sequence:

0→
(

0
U ⊗A X1

)
→
(

X1
U ⊗A X1

)
→
(

X1
0

)
→ 0,

we obtain the following exact sequence of complexes:

0→ HomB(X2, U ⊗A X1)→ HomT(X,
(

X1
U ⊗A X1

)
)→ HomA(X1, X1)→ 0.

Since U is C-compatible, it follows that HomB(X2, U ⊗A X1) is exact, and since C is w-

tilting, HomT(X,
(

X1
U ⊗A X1

)
) is also exact. Thus, HomA(X1, X1) is exact, and the proof is

finished.

The following consequence of the above theorem gives the converse of Proposition 2.

Corollary 3. Let C = p(C1, C2) and assume that U is C-compatible. Then, C is w-tilting if and
only if C1 and C2 are w-tilting.

Proof. An easy application of Proposition 1 and Theorem 1 on the T-modules C =(
C1

(U ⊗A C1)⊕ C2

)
and TT =

(
A

U ⊕ B

)
.

One would like to know if every w-tilting T-module has the form p(C1, C2) where C1
and C2 are w-tilting. The following example gives a negative answer to this question.

Example 3. Let R be a quasi-Frobenius ring and T(R) =
(

R 0
R R

)
. Consider the exact sequence

of T-modules:

0→ T →
(

R⊕ R
R⊕ R

)
→
(

R
0

)
→ 0.

By Lemma 2, I0 =

(
R⊕ R
R⊕ R

)
and I1 =

(
R
0

)
are both injective T(R)-modules. Note that

T(R) is Noetherian ([23], Proposition 1.7), and then, we can see that C := I0 ⊕ I1 is a w-tilting
T(R)-module, but does not have the form p(C1, C2) where C1 and C2 are w-tilting by Lemma 4
since I1 ∈ AddT(R)(C) and ϕI1

is not injective.

As an immediate consequence of Theorem 1, we have the following.

Corollary 4. Let R be a ring and T(R) =
(

R 0
R R

)
. If M =

(
M1
M2

)
ϕM

and C = p(C1, C1) are

two T(R)-modules with C1 Σ-self-orthogonal, then the following assertions are equivalent:

1. M is GC-projective T(R)-module;
2. M1 and M2 are GC1 -projective R-modules, and ϕM is injective;
3. M1 and M2 are GC1 -projective R-modules, and ϕM is injective.

An Artin algebra Λ is called Cohen–Macaulay-free (CM-free) if any finitely generated
Gorenstein projective module is projective. The authors in [2] extended this definition
to arbitrary rings and defined strongly CM-free as rings over which every Gorenstein
projective module is projective. Now, we introduce a relative notion of these rings and give
a characterization of when T is such rings.
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Definition 5. Let R be a ring. Given an R-module C, R is called CM-free (relative to C) if
GCP(R) ∩ R-mod = addR(C), and it is called strongly CM-free (relative to C) if GCP(R) =
AddR(C).

Remark 3. Let R be a ring and C a Σ-self-orthogonal R-module. Then, AddR(C) ⊆ GCP(R)
and addR(C) ⊆ GCP(R) ∩ R-mod by [13], Propositions 2.5 and 2.6 and Corollary 2.10, then R is
CM-free (relative to C) if and only if every finitely generated GC-projective is in addR(C), and it is
strongly CM-free (relative to C) if every GC-projective is in AddR(C).

Using the above results, we refine and extend [2], Theorem 4.1, to our setting. Note
that the condition B is left Gorenstein regular is not needed.

Proposition 4. Let AC1 and BC2 be Σ-self-orthogonal, and C = p(C1, C2). Assume that U is
weakly C-compatible, and consider the following assertions:

1. T is (strongly) CM-free relative to C;
2. A and B are (strongly) CM-free relative to C1 and C2, respectively.

Then, 1.⇒ 2. If U is C-compatible, then 1.⇔ 2.

Proof. We only prove the result for relative strongly CM-free, since the case of relative
CM-free is similar.

1.⇒ 2. By the remark above, we only need to prove that GC1 P(A) ⊆ AddA(C1) and
GC2 P(B) ⊆ AddB(C2). Let M1 be a GC1-projective A-module and B M2 a GC2-projective B-
module. By the assumption and Proposition 3, p(M1, M2) ∈ GCP(T) = AddT(C). Hence,
M1 ∈ AddA(C1) and M2 ∈ AddB(C2) by Lemma 4.

2.⇒ 1. Assume U is C-compatible. Clearly, C is Σ-self-orthogonal, then by Remark

above, we only need to prove that GCP(T) ⊆ AddT(C). Let M =

(
M1
M2

)
ϕM

be a GC-

projective T-module. By the assumption and Theorem 1, M1 ∈ GC1 P(A) = AddA(C1) and
M2 ∈ GC2 P(B) = AddB(C2), and the map ϕM is injective. By the assumption, we can easily

see that Exti≥1
B (U ⊗A M1, M2) = 0. Therefore, the map 0→ U ⊗A M1

ϕM

→ M2 → M2 → 0
splits. Hence, M ∼= p(M1, M2) ∈ AddT(C) by Lemma 4.

Our aim now is to study special GCP(T)-precovers in T-Mod. We start with the
following result.

Proposition 5. Let C = p(C1, C2) be w-tilting, U be C-compatible, and M =

(
M1
M2

)
ϕM

and

G =

(
G1
G2

)
ϕG

two T-modules with G GC-projective. Then:

f =

(
f1
f2

)
: G −→ M

is a special GCP(T)-precover if and only if:

(i) G1
f1→ M1 is a special GC1 P(A)-precover;

(ii) G2
f2→ M2 is surjective with its kernel lying in GC2 P(B)⊥1 .

In this case, if G2 ∈ GC2 P(B), then G2
f2→ M2 is a special GC2 P(B)-precover.

Proof. First of all, let K = Ker f =

(
K1
K2

)
ϕK

, and note that, since C1 is w-tilting, TorA
1 (U, H1) =

0 for every H1 ∈ GC1 P(A) by Proposition 1(1).
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⇒ Since the map f is surjective, so are f1 and f2. Let H1 ∈ GC1 P(A) and H2 ∈ GC2 P(B).

Then,
(

H1
U ⊗A H1

)
,
(

0
H2

)
∈ GCP(T) by Theorem 1. Using Lemma 3 and the fact that K

lies in GCP(R)⊥1 , we obtain that:

Ext1
A(H1, K1) ∼= Ext1

T(

(
H1

U ⊗A H1

)
, K) = 0

and:

Ext1
B(H2, K2) ∼= Ext1

T(

(
0

H2

)
, K) = 0.

It remains to see that G1 ∈ GC1 P(A), which is true by Theorem 1, since G is GC-
projective.

⇐ The morphism f is surjective since f1 and f2 are. Therefore, we only need to prove
that K lies in GCP(R)⊥1 . Let H ∈ GCP(R). By Theorem 1, we have the short exact sequence
of T-modules:

0→
(

H1
U ⊗A H1

)
→ H →

(
0

H2

)
→ 0

where H1 is GC1-projective and H2 is GC2-projective. Therefore, by hypothesis and Lemma 3, we

obtain that Ext1
T(

(
H1

U ⊗A H1

)
, K) ∼= Ext1

A(H1, K1) = 0 and Ext1
T(

(
0

H2

)
, K) ∼= Ext1

B(H2, K2)

= 0. Then, the exactness of this sequence:

Ext1
T(

(
H1

U ⊗A H1

)
, K)→ Ext1

T(H, K)→ Ext1
T(

(
0

H2

)
, K)

implies that Ext1
T(H, K) = 0.

Theorem 2. Let C = p(C1, C2) be w-tilting and U C-compatible. Then, the class GCP(T)
is special precovering in T-Mod if and only if the classes GC1 P(A) and GC2 P(B) are special
precovering in A-Mod and B-Mod, respectively.

Proof. ⇒ Let M1 be an A-module and
(

G1
G2

)
ϕG
→
(

M1
0

)
be a special GCP(T)-precover

in T-Mod. Then, by Proposition 5, G1 → M1 is a special GC1 P(A)-precover in A-Mod.

Let M2 be a B-module and
(

0
f2

)
:
(

G1
G2

)
ϕG
→
(

0
M2

)
be a special GCP(T)-precover in

T-Mod. By Proposition 5, G1 → 0 is a special GC1 P(A)-precover. Then, Ext1
A(GC1 P(A), G1) =

0. On the other hand, by [13], Proposition 2.8, there exists an exact sequence of A-modules:

0→ G1 → X1 → H1 → 0

where X1 ∈ AddA(C1) and H1 is GC1-projective. However, this sequence splits, since

Ext1
A(H1, G1) = 0, which implies that G1 ∈ AddA(C1). Let K =

(
K1
K2

)
ϕK

be the kernel of(
0
f2

)
. Note that K1 = G1. Therefore, there exists a commutative diagram:
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0 // U ⊗A G1

ϕK

��

U ⊗A G1

ϕG

��

// 0

��

// 0

0 // K2

��

// G2

��

// M2 // 0

K2 //

��

G2

��

// M2 //

��

0

0 0 0

Using the snake lemma, there exists an exact sequence of B-modules:

0→ K2 → G2 → M2 → 0

where G2 is GC2-projective by Theorem 1. It remains to see that K2 lies in GC2 P(B)⊥1 . Let
H2 ∈ GC2 P(B). Then, Ext1

B(H2, K2) = 0 by Proposition 5 and Exti≥1
B (H2, U ⊗A G1) = 0

by Proposition 1(2). From the above diagram, ϕK is injective. Therefore, if we apply the
functor HomB(H2,−) to the short exact sequence:

0→ U ⊗A G1 → K2 → K2 → 0,

we obtain an exact sequence:

Ext1
B(H2, K2)→ Ext1

B(H2, K2)→ Ext2
B(H2, U ⊗A G1)

which implies that Ext1
B(H2, K2) = 0.

⇐ Note that the functor U ⊗A − : A-Mod→ B-Mod is GC1 P(A)-exact since TorA
1 (U,

GC1 P(A)) = 0 by Proposition 1. Therefore, this direction follows by [27], Theorem 1.1, since

GCP(T) = {M =

(
M1
M2

)
ϕM
∈ T-Mod|M1 ∈ GC1 P(A), M2 ∈ GC2 P(B) and ϕM is injective}

by Theorem 1.

Corollary 5. Let R be a ring, T(R) =
(

R 0
R R

)
, and C = p(C1, C1) a w-tilting T(R)-module.

Then, GCP(T(R)) is a special precovering class if and only if GC1 P(R) is a special precovering
class.

5. Relative Global Gorenstein Dimension

In this section, we investigate the GC-projective dimension of T-modules and the left
GC-projective global dimension of T.

Let R be a ring. Recall [13] that a module M is said to have a GC-projective dimension
less than or equal to n, GC−pd(M) ≤ n, if there is an exact sequence:

0→ Gn → · · · → G0 → M→ 0

with Gi ∈ GCP(R) for every i ∈ {0, · · · , n}. If n is the least nonnegative integer for which
such a sequence exists, then GC−pd(M) = n, and if there is no such n, then GC−pd(M) = ∞.

The left GC-projective global dimension of R is defined as:

GC − PD(R) = sup{GC−pd(M) | M is an R-module}

Lemma 7. Let C = p(C1, C2) be w-tilting and U C-compatible.



Mathematics 2021, 9, 2676 21 of 28

1. GC2−pd(M2) = GC−pd(
(

0
M2

)
).

2. GC1−pd(M1) ≤ GC−pd(
(

M1
U ⊗A M1

)
), and the equality holds if

TorA
i≥1(U, M1) = 0.

Proof. 1. Let n ∈ N, and consider an exact sequence of B-modules:

0→ Kn
2 → Gn−1

2 → · · · → G0
2 → M2 → 0

where each Gi
2 is GC2 -projective. Thus, there exists an exact sequence of T-modules:

0→
(

0
Kn

2

)
→
(

0
Gn−1

2

)
→ · · · →

(
0

G0
2

)
→
(

0
M2

)
→ 0

where each
(

0
Gi

2

)
is GC-projective by Theorem 1. Again, by Theorem 1,

(
0

Kn
2

)
is GC-

projective if and only if Kn
2 is GC1 -projective, which means that GC−pd(

(
0

M2

)
) ≤ n if and

only if GC2−pd(M2) ≤ n by [13], Theorem 3.8. Hence GC−pd(
(

0
M2

)
) = GC2−pd(M2);

2. We may assume that n = GC−pd(
(

M1
U ⊗A M1

)
) < ∞. By Definition, there exists

an exact sequence of T-modules:

0→ Gn → Gn−1 → · · · → G0 →
(

M1
U ⊗A M1

)
→ 0

where each Gi =

(
Gi

1
Gi

2

)
ϕGi

is GC-projective. Thus, there exists an exact sequence of A-

modules:
0→ Gn

1 → Gn−1
1 → · · · → G0

1 → M1 → 0

where each Gi
1 is GC1-projective by Theorem 1. Therefore, GC1−pd(M1) ≤ n. Conversely,

we prove that GC−pd(
(

M1
U ⊗A M1

)
) ≤ GC1−pd(M1). We may assume that m := GC1−

pd(M1) < ∞. The hypothesis means that if:

X1 : 0→ Km
1 → Pm−1

1 → · · · → P0
1 → M1 → 0

is an exact sequence of A-modules where each Pi
1 is projective, then the complex U⊗A X1 is

exact. Since C1 is w-tilting, each Pi is GC1 -projective by [13], Proposition 2.11, and then, Km

is GC1 -projective by [13], Theorem 3.8. Thus, there exists an exact sequence of T-modules

0 →
(

Km
1

U ⊗A Km
1

)
→

(
Pm−1

1
U ⊗A Pm−1

1

)
→ · · · →

(
P0

1
U ⊗A P0

1

)
→

(
M1

U ⊗A M1

)
→ 0,

where
(

Km
1

U ⊗A Km
1

)
and all

(
Pi

1
U ⊗A Pi

1

)
are GC-projectives by Theorem 1. Therefore,

GC−pd(
(

M1
U ⊗A M1

)
) ≤ m = GC1−pd(M1).

Given a T-module C = p(C1, C2), we introduce a strong notion of the GC2-projective
global dimension of B, which will be crucial when we estimate the GC-projective dimension
of a T-module and the left global GC-projective dimension of T. Set:

SGC2 − PD(B) = sup{GC2−pdB(U ⊗A G) | G ∈ GC1 P(A)}.
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Remark 4.

1. Clearly, SGC2 − PD(B) ≤ GC2 − PD(B);
2. Note that pdB(U) = sup{pdB(U⊗A P) | AP is projective }. Therefore, in the classical case,

the strong left global dimension of B is nothing but the projective dimension of BU.

Theorem 3. Let C = p(C1, C2) be w-tilting, U C-compatible, M =

(
M1
M2

)
ϕM

a T-module, and

SGC2 − PD(B) < ∞. Then:

max{GC1−pdA(M1), (GC2−pdB(M2))− (SGC2 − PD(B))}

≤ GC−pd(M) ≤

max{(GC1−pdA(M1)) + (SGC2 − PD(B)) + 1, GC2−pdB(M2)}

Proof. First of all, note that C1 and C2 are w-tilting by Proposition 3, and let k := SGC2 −
PD(B).

Let us first prove that:

max{GC1−pd(M1), GC2−pd(M2)− k} ≤ GC−pd(M).

We may assume that n := GC−pd(M) < ∞. Then, there exists an exact sequence of
T-modules:

0→ Gn → Gn−1 → · · · → G0 → M→ 0

where each Gi =

(
Gi

1
Gi

2

)
ϕGi

is GC-projective. Thus, there exists an exact sequence of A-

modules:
0→ Gn

1 → Gn−1
1 → · · · → G0

1 → M1 → 0

where each Gi
1 is GC1 -projective by Theorem 1. Therefore, GC1−pd(M1) ≤ n. By Theorem 1,

for each i, there exists an exact sequence of B-modules:

0→ U ⊗A Gi
1 → Gi

2 → Gi
2 → 0

where Gi
2 is GC2-projective. Then, GC2− pd(Gi

2) = GC2− pd(U ⊗A Gi
1) ≤ k by [13],

Proposition 3.11. Therefore, using the exact sequence of B-modules:

0→ Gn
2 → Gn−1

2 → · · · → G0
2 → M2 → 0

and [13], Proposition 3.11(4), we obtain that GC2−pd(M2) ≤ n + k.
Next we prove that:

GC−pd(M) ≤ max{GC1−pd(M1) + k + 1, GC2−pd(M2)}.

We may assume that:

m := max{GC1−pd(M1) + k + 1, GC2−pd(M2)} < ∞.

Then, n1 := GC1−pd(M1) < ∞ and n2 := GC2−pd(M2) < ∞. Since GC1−pd(M1)
= n1 ≤ m− k− 1, there exists an exact sequence of A-modules:

0→ Gm−k−1
1 → · · · → Gn2−k

1 → · · ·
f 1
1→ G0

1
f 0
1→ M1 → 0

where each Gi
1 is GC1-projective. Since C2 is w-tilting, there exists an exact sequence of B-

modules G0
2

g0
2→ M2 → 0 where G0

2 is GC2 -projective by [13], Corollary 2.14. Let Ki
1 = Ker f i

1,
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and define the map f 0
2 : U ⊗A G0

1 ⊕ G0
2 → M2 to be (ϕM(1U ⊗ f 0

1 ))⊕ g0
2. Then, we obtain

an exact sequence of T-modules:

0→
(

K1
1

K1
2

)
ϕK1
→
(

G0
1

(U ⊗A G0
1)⊕ G0

2

) (
f 0
1

f 0
2

)
→ M→ 0.

Similarly, there exists an exact sequence of B-modules G1
2

g1
2→ K1

2 → 0 where G1
2 is

GC2 -projective, and then, we obtain an exact sequence of T-modules:

0→
(

K2
1

K2
2

)
ϕK2
→
(

G1
1

(U ⊗A G1
1)⊕ G1

2

)
→
(

K1
1

K1
2

)
ϕK1
→ 0.

Repeating this process, we obtain the exact sequence of T-modules:

0→
(

0
Km−k

2

)
→
(

Gm−k−1
1

(U ⊗A Gm−k−1
1 )⊕ Gm−k−1

2

)  f m−k−1
1

f m−k−1
2


−→

· · · →
(

G1
1

(U ⊗A G1
1)⊕ G1

2

)  f 1
1

f 1
2


−→

(
G0

1
(U ⊗A G0

1)⊕ G0
2

) (
f 0
1

f 0
2

)
−→ M→ 0

Note that GC2− pd((U ⊗A Gi
1) ⊕ Gi

2) = GC2− pd(U ⊗A Gi
1) ≤ k, for every i ∈

{0, · · · , m− k− 1}. Therefore, by [13], Proposition 3.11(2), and the exact sequence 0 →

Km−k
2 → (U ⊗A Gm−k−1

1 )⊕ Gm−k−1
2

f m−k−1
2−→ · · · → (U ⊗A G0

1)⊕ G0
2

f 0
2→ M2 → 0, we obtain

that GC2−pd(Km−k
2 ) ≤ k. This means that there exists an exact sequence of B-modules:

0→ Gm
2 → · · · → Gm−k+1

2 → Gm−k
2 → Km−k

2 → 0.

Thus, there exists an exact sequence of T-modules:

0→
(

0
Gm

2

)
→ · · · →

(
0

Gm−k+1
2

)
→

(
0

Gm−k
2

)
→
(

Gm−k−1
1

(U ⊗A Gm−k−1
1 )⊕ Gm−k−1

2

)  f m−k−1
1

f m−k−1
2


−→

· · · →
(

G1
1

(U ⊗A G1
1)⊕ G1

2

)  f 1
1

f 1
2


−→

(
G0

1
(U ⊗A G0

1)⊕ G0
2

) (
f 0
1

f 0
2

)
−→ M→ 0.

By Theorem 1, all
(

Gi
1

(U ⊗A Gi
1)⊕ Gi

2

)
and all

(
0

Gj
2

)
are GC-projectives. Thus,

GC−pd(M) ≤ m.

The following consequence of Theorem 3 extends [2], Proposition 2.8(1), and [3],
Theorem 2.7(1), to the relative setting.

Corollary 6. Let C = p(C1, C2) be w-tilting, U C-compatible and M =

(
M1
M2

)
ϕM

a T-module.

If SGC2 − PD(B) < ∞, then GC−pd(M) < ∞ if and only if GC1−pd(M1) < ∞ and GC2−
pd(M2) < ∞.
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The following theorem gives an estimate of the left GC-projective global dimension of T.

Theorem 4. Let C = p(C1, C2) be w-tilting and U C-compatible. Then:

max{GC1 − PD(A), GC2 − PD(B)}

≤ GC − PD(T) ≤

max{GC1 − PD(A) + SGC2 − PD(B) + 1, GC2 − PD(B)}.

Proof. We prove first that max{GC1 − PD(A), GC2 − PD(B)} ≤ GC − PD(T). We may
assume that n := GC − PD(T) < ∞. Let M1 be an A-module and M2 be a B-module. Since

GC−pd(
(

M1
U ⊗A M2

)
≤ n and GC−pd(

(
0

M2

)
≤ n, GC1−pd(M1) ≤ n and GC2−pd(M2) ≤

n by Lemma 7. Thus, GC1 − PD(A) ≤ n and GC2 − PD(B) ≤ n.
Next, we prove that:

GC − PD(T) ≤ max{GC1 − PD(A) + 1 + SGC2 − PD(B), GC2 − PD(B)}.

We may assume that:

m := max{GC1 − PD(A) + 1 + SGC2 − PD(B), GC2 − PD(B)} < ∞.

Then, n1 := GC1 − PD(A) < ∞ and k := SGC2 − PD(B) ≤ n2 := GC2 − PD(B) < ∞

Let M =

(
M1
M2

)
ϕM

be a T-module. By Theorem 3,

GC−pd(M) ≤ max{n1 + k + 1, n2} ≤ m.

Corollary 7. Let C = p(C1, C2) be w-tilting and U C-compatible. Then,
GC − PD(T) < ∞ if and only if GC1 − PD(A) < ∞ and GC2 − PD(B) < ∞

Recall that a ring R is called left Gorenstein regular if the category R-Mod is Goren-
stein ([2], Definition 2.1, and [28], Definition 2.18).

We know by [29], Theorem 1.1, that the following equality holds:

sup{GpdR(M) | M ∈ R-Mod} = sup{GidR(M) | M ∈ R-Mod}.

and this common value is call the left global Gorenstein dimension of R, denoted by
l.Ggldim(R). As a consequence of [28], Theorem 2.28, a ring R is left Gorenstein regular if
and only if the global Gorenstein dimension of R is finite.

We shall say that a ring R is left n-Gorenstein regular if n = l.Ggldim(R) < ∞.
Enochs, Izurdiaga, and Torrecillas characterized in [2], Theorem 3.1, when T is left

Gorenstein regular under the conditions that BU has finite projective dimension and UA
has finite flat dimension. As a direct consequence of Corollary 7, we refine this result.

Corollary 8. Assume that U is compatible. Then, T is left Gorenstein regular if and only if so are
A and B.

There are some cases when the estimate in Theorem 4 becomes an exact formula,
which computes left the GC-projective global dimension of T.

Recall that an injective cogenerator E in R-Mod is said to be strong if any R-module
embeds in a direct sum of copies of E.

Corollary 9. Let C = p(C1, C2) be w-tilting and U C-compatible.



Mathematics 2021, 9, 2676 25 of 28

1. If U = 0 then:

GC − PD(T) = max{GC1 − PD(A), GC2 − PD(B)};

2. If A is left Noetherian and AC1 is a strong injective cogenerator, then:

GC − PD(T) =

{
GC2 − PD(B) if U = 0
max{SGC2 − PD(B) + 1, GC2 − PD(B)} if U 6= 0.

Proof. 1. Using a similar way as we do in the proof of Theorems 3 and 4, we can prove

this statement. We only need to notice that if U = 0, then a T-module M =

(
M1
M2

)
ϕM

is

GC-projective if and only if M1 is GC1-projective and M2 is GC2-projective (since ϕM is
always injective and M2 = M2) by Theorem 1;

2. Note first that GC1 − PD(A) = 0 by [14], Corollary 2.3. Then, the case U = 0 follows

by 1. Assume that U 6= 0. Note that by Theorem 1,
(

A
0

)
is not GC-projective since U 6= 0.

Hence, GC2 − PD(B) ≥ GC−pdT(

(
A
0

)
) ≥ 1.

By Theorem 4, we have the inequality:

GC2 − PD(B) ≤ GC − PD(T) ≤ max{SGC2 − PD(B) + 1, GC2 − PD(B)}.

Therefore, the case SGC2 − PD(B) + 1 ≤ GC2 − PD(B) is clear, and we only need to prove
the result when SGC2 − PD(B) + 1 > n := GC2 − PD(B). Since GC2−pd(U ⊗A G) ≤
GC2 − PD(B) = n for every G ∈ GC1 P(A), SGC2 − PD(B) = n. Let G1 be a GC1-projective
A-module with GC2−pd(U ⊗A G1) = n, and consider the following short exact sequence:

0→
(

0
U ⊗A G1

)
→
(

G1
U ⊗A G1

)
→
(

G1
0

)
→ 0.

By Theorem 1,
(

G1
U ⊗A G1

)
is GC-projective and by Lemma 7:

GC−pd(
(

0
U ⊗A G1

)
) = GC2−pd(U ⊗A G) = n.

Thus, by [13], Proposition 3.11(4):

GC−pd(
(

G1
0

)
) = GC−pd(

(
0

U ⊗A G1

)
) + 1 = n + 1 = SGC2 − PD(B) + 1.

This shows that GC − PD(T) = SGC2 − PD(B) + 1, and the proof is finished.

Corollary 10. Let R be a ring, T(R) =
(

R 0
R R

)
and C = p(C1, C1) where C1 is w-tilting. Then:

GC − PD(T(R)) = GC1 − PD(R) + 1.

Proof. Note first that C is a w-tilting T(R)-module, R is C-compatible, and SGC1 −
PD(R) = 0. Therefore, by Theorem 4,

GC1 − PD(R) ≤ GC − PD(T(R)) ≤ GC1 − PD(R) + 1.

The case GC1 − PD(R) = ∞ is clear. Assume that n := GC1 − PD(R) < ∞.
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There exists an R-module M with GC1−pd(M) = n and Extn
R(M, X) 6= 0 for some

X ∈ AddR(C1) by [13], Theorem 3.8. If we apply the functor HomT(R)(−,
(

0
X

)
) to the

exact sequence of T(R)-modules:

0→
(

0
M

)
→
(

M
M

)
1M

→
(

M
0

)
→ 0

we obtain an exact sequence

· · · → Extn
T(R)(

(
M
M

)
,
(

0
X

)
)→ Extn

T(R)(

(
0
M

)
,
(

0
X

)
)→

Extn+1
T(R)(

(
M
0

)
,
(

0
X

)
)→ Extn+1

T(R)(

(
M
M

)
,
(

0
X

)
)→ · · ·

By Lemma 3, Exti≥1
T(R)(

(
M
M

)
,
(

0
X

)
) ∼= Exti≥1

R (M, 0) = 0. Again, by Lemma 3 and the

above exact sequence,

Extn+1
T(R)(

(
M
0

)
,
(

0
X

)
) ∼= Extn

T(R)(

(
0
M

)
,
(

0
X

)
) ∼= Extn

R(M, X) 6= 0.

since
(

0
X

)
∈ AddT(R)(C) by Lemma 4(1), it follows that n < GC−pd(

(
M
0

)
) by [13], The-

orem 3.8. However, GC−pd(
(

M
0

)
) ≤ GC − PD(T(R)) ≤ n + 1. Thus, GC−pd(

(
M
0

)
) =

n + 1, which means that GC − PD(T(R)) = n + 1.

Corollary 11. Let R be a ring, T(R) =

(
R 0
R R

)
, and n ≥ 0 an integer. Then, T(R) is left

(n + 1)-Gorenstein regular if and only if R is left n-Gorenstein regular .

The authors in [16] established a relationship between the projective dimension of

modules over T and modules over A and B. Given an integer n ≥ 0 and M =

(
M1
M2

)
ϕM

a

T-module, they proved that pdT(M) ≤ n if and only if pdA(M1) ≤ n, pdB(M2) ≤ n, and
the map related to the n-th syzygy of M is injective. The following example shows that this
is not true in general.

Example 4. Let R be a left hereditary ring that is not semisimple, and let T(R) =

(
R 0
R R

)
.

Then, lD(T(R)) = lD(R) + 1 = 2 by [24], Corollary 3.4(3). This means that there exists a

T(R)-module M =

(
M1
M2

)
ϕM

with pdT(R)(M) = 2. If K1 =

(
K1

1
K1

2

)
ϕK1

is the first syzygy of M,

then there exists an exact sequence of T(R)-modules:

0→ K1 → P→ M→ 0

where P =

(
P1
P2

)
ϕP

is projective. Then, we obtain the following commutative diagram:
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0

��
0 // K1

1

ϕK11

��

// P1

ϕP

��

// M1

ϕM

��

// 0

0 // K1
2

��

// P2

��

// M2

��

// 0

K1
2

//

��

P2

��

// M2 //

��

0

0 0 0

By the snake lemma, ϕK1
is injective. On the other hand, since lD(R) = 1, pdR(M1) ≤ 1

and pdR(M2) ≤ 1. However, pdT(R)(M) = 2 > 1.
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