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Abstract: Vector autoregressions (VARs) and their multiple variants are standard models in economic
and financial research due to their power for forecasting, data analysis and inference. These properties
are a consequence of their capabilities to include multiple variables and lags which, however, turns
into an exponential growth of the parameters to be estimated. This means that high-dimensional
models with multiple variables and lags are difficult to estimate, leading to omitted variables,
information biases and a loss of potential forecasting power. Traditionally, the existing literature
has resorted to factor analysis, and specially, to Bayesian methods to overcome this situation. This
paper explores the so-called machine learning regularization methods as an alternative to traditional
methods of forecasting and impulse response analysis. We find that regularization structures, which
allow for high dimensional models, perform better than standard Bayesian methods in nowcasting
and forecasting. Moreover, impulse response analysis is robust and consistent with economic theory
and evidence, and with the different regularization structures. Specifically, regarding the best
regularization structure, an elementwise machine learning structure performs better in nowcasting
and in computational efficiency, whilst a componentwise structure performs better in forecasting and
cross-validation methods.

Keywords: VAR; machine learning; LASSO (Least Absolute Shrinkage and Selection Operator);
regularization methods; sparsity; monetary economics; financial economics

MSC: 62P20

1. Introduction

Since its proposal by [1], vector autoregressive analysis is a cornerstone of the existing
literature on economics, econometrics and finance. Their use covers the joint analysis
of time series data (due to their multiple time series and lag structures [2]), structural
inference and policy analysis (due to the unique tools that they offer such as impulse
response functions and forecast error variance decompositions [3–8]), and forecasting,
a task in which they have become a reference due to their performance [9–13].

However, this power for data analysis and forecasting has a cost because vector
autoregressions are systems of interrelated equations with multiple lags. This leads to a lot
of parameters to be estimated when including new variables and lags, and therefore to a loss
of many degrees of freedom. Moreover, this gives rise to omitted variables and information
biases in impulse response analysis and forecast error variance decompositions [9,11] and,
logically, to a loss of their forecasting power.

To overcome these circumstances, the literature has mainly recurred to two methods.
First, the combination of factor analysis for large datasets and a vector autoregression,
the so-called Factor Augmented Vector Auto-Regressive (FAVAR) model, widely employed
in monetary and financial economics [14–16]. Second, the use of Bayesian shrinkage
methods over the coefficients in order to impose a certain coefficient structure [17–19].
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This research paper explores a new way of including a high number of variables and
lags in monetary and financial vector autoregressive models by employing the so-called
machine learning regularization methods, being regularization (or shrinkage) the process
in which a penalty enters optimization function of the estimation process, by selecting
only a certain subset of the co-variates, and therefore imposing sparsity. These methods
enter the estimation stage by selecting the most significant coefficients and excluding non-
informative coefficients, leading to sparse coefficient matrices. Some of the latest advances
in this field include:

• The antileakage least-squares spectral analysis, a methodology which regularizes data
series with space irregularities by mitigating the spectral linkages in the least-squares
spectrum due to the absence of orthogonality in the sinusoidal basis functions of this
kind of series, applicable to both stationary and non-stationary series [20].

• The Variational Bayesian Approach and Bayesian-inference-based methods which
tackle inverse problems when data are noisy and uncertain, with missing values and
outliers and a necessity of quantifying these uncertainties [21–23].

• LASSO-based methods which simultaneously perform variable selection and regu-
larization by increasing the forecasting performance and the interpretability of the
regression model through sparsity [24].

Thus, it is found that, in nowcasting a flexible and generic elementwise structure per-
forms best, while in computational efficiency, a own/other structure is optimal. However,
in forecasting and cross-validation behavior, a more restrictive componentwise structure
is optimal and sparse. Furthermore, this paper shows that shrinkage methods based on
machine learning regularization are a better alternative to Bayesian methods in nowcasting
and forecasting. Moreover, impulse response functions are robust and consistent with the
economic theory and evidence, and between them, as every impulse response function
from any employed regularization structure coincides in shape.

The rest of the paper is organized as follows. Section 2 presents the methodology,
the data and the variables of the study. Section 3 describes and analyzes the results. Finally,
Section 4 summarizes and discusses the finding, and concludes.

2. Materials and Methods
2.1. Methodology

The basic Vector Autoregression (VAR) models the Data Generation Process (DGP)
stochastic part of a set of k time series variables yt = (y1t, y2t, . . . , ykt) (t = 1, 2, . . . , T) as a
linear process of order p. This is the well-known VAR(p) model [25]. Formally,

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + εt, (1)

where Ai (i = 1, 2, . . . , p) are the k× k parameter matrices and εt = (ε1t, ε2t, . . . , εkt) is the
vector of errors, such that εt ∼ N (0, Σε), where Σε = E(εtε

′
t) is the variance-covariance ma-

trix. These errors may include a conditional heteroskedastic process to capture volatilities,
not only in high frequency financial frameworks but also in macrofinancial settings [26].
The most common estimators for this model are:

• The maximum likelihood (ML) estimator (θ̃) given by:

θ̃ = log l(θ̃|y1, y2, . . . , yt) = arg max
θ̃

T

∑
t=1

log ft(yt|yt−1, . . . , y1), (2)

where l stands for the likelihood function and θ for the vector of every parameter
of interest.

• The ordinary least squares (OLS) estimator which is, by far, the most used estimator:
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Ât = [v̂, Â1, Â2, . . . , Âp] =

(
t

∑
i=1

Zt−1Z′t−1

)−1( t

∑
i=1

ytZ′t−1

)
= (Z′Z)−1Z′Y, (3)

where v̂ is the vector of estimated constant terms, Zt−1 = (1, y′t−1, . . . , y′t−p)
′ and

Y = (y1, y2, . . . , yT).

Forecasts, structural analysis methods such as Granger causality tests, Impulse Re-
sponse Function (IRF) analysis, and Forecast Error Variance Decompositions (FEVD) can
be constructed easily from the estimated model [9,11,25,27].

Nevertheless, the estimation of VARs presents a problem in high-dimensional or data-
rich environments. The consumption of degrees of freedom increases exponentially when
adding new variables to the VAR, as the number of VAR parameters to estimate increases
at a rate of the square of the number of variables involved in the model [9]. For example,
a nine variable four-lag VAR has 333 unknown coefficients [9]. The literature proposes
Bayesian methods to overcome this problem [19].

This research paper explores overcoming this problem by employing the so-called
machine learning regularization methods. In particular, it analyzes the relative performance
of three of these methods, proposed and computed in the R programming language
by [28], against the traditional estimation procedures in a high-dimensional monetary and
financial setting.

Given the forward model H and the data g, the estimation of the unknown source
f can be done via a deterministic method known as generalized inversion f = H+(g).
However, a more general method is the regularization, defined as:

f̂ = arg min{‖g−H( f )‖2 + λR( f )}.

The main issues in such a regularization method are the choice of the regularizer and
the choice of an appropriate optimization algorithm [23].

Regularization is the technique most widely used to avoid overfitting. In effect, every
model (specifically, the VAR model) can overfit the available data. This happens when
dealing with high-dimensional data and the number of training examples is relatively
low [29]. In this case, the linear learning algorithm can give rise to a model which as-
signs non-zero values to some dimensions of the feature vector trying to find a complex
relationship. In other words, when trying to perfectly predict certain labels of training
examples, the model can include noise in the values of features, sampling imperfection
(because of the small dataset size), and other idiosyncrasies of the training set. In this way,
regularization is a technique which forces the learning algorithm to construct a less complex
model. However, this leads to slightly higher bias and a reduced variance, whereby this
problem is also known as bias–variance tradeoff.

There are two main types of regularization (the basic idea is to modify the objective
function by adding a penalizing term whose value increases with the complexity of the
model [29]). To present these two types, consider the OLS estimation of the VAR in its
minimization problem form:

[v̂, Â1, Â2, . . . , Âp] = arg min
v̂,Â

T

∑
t=1

(
yt − v−

p

∑
l=1

Alyt−l

)2

. (4)

The machine learning regularization methods enter the equation by imposing sparsity
and so reducing and partitioning the parameter space of the VAR by applying structural
convex penalties to it [28]. Mathematically,

[v̂, Â1, Â2, . . . , Âp] = arg min
v̂,Â

 T

∑
t=1

(
yt − v−

p

∑
l=1

Alyt−l

)2

+ λ(Py(A))

, (5)
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where λ ≥ 0 is a penalty parameter and Py(A) is the group penalty structure. The value of
λ is selected by sequential cross-validation as the minimum Mean Squared Forecast Error
(MSFE), defined as:

λ̂ = MSFE(λ) =
1

T2 − T1 − h + 1

T2−h

∑
t=T1−h+1

(
ŷλi

t+h|t − yt+h

)2
, (6)

where T1 is the partition of the data used to train the model and T2 is the partition of the
data used to evaluate the out of sample forecasting performance of it. The two main types
of regularization are:

• L1-regularization. In this case, the L1-regularized objective is:

arg min
v̂,Â

k

(
p

∑
l=1

Al

)
+

T

∑
t=1

(
yt −

p

∑
l=1

Alyt−l

)2
, (7)

where k denotes a parameter to control the importance of the regularization. Thus,
if k = 0, one has the standard non-regularized linear regression model. On the contrary,
if k is very high, the learning algorithm will assign to most Al a very small value or
zero when minimizing the objective, probably leading to underfitting.

• L2-regularization. In this case, the L2-regularized objective is:

arg min
v̂,Â

k

(
p

∑
l=1

A2
j

)
+

T

∑
t=1

(
yt −

p

∑
l=1

Alyt−l

)2
. (8)

On the one hand, L1-regularization gives rise to a sparse model (most of its param-
eters are zero) and so to a feature selection. Thus, it is useful if we want to increase the
explainability of the model. On the other hand, L2-regularization gives better results if
our objective is to maximize the performance of the model. Specifically, we can find ridge
or Tikhonov regularization for L2 and LASSO for L1 (for an updated review of ridge
regularization methods, see [30–32]).

In particular, this paper analyzes the performance of the four following machine
learning regularization structures (λ(Py(A)) (‖‖o denotes the Frobenius norm of order o)
proposed by [33]:

• Componentwise:
k

∑
i=1

p

∑
l=1

∥∥∥A(l:p)
i

∥∥∥
2
, (9)

where A(l:p)
i := [A(l)

i · · · A
(p)
i ] ∈ R1×k(p−l+1) and ‖ A(l:p)

i ‖2 :=
√

trace(A(l:p)
i × A(l:p)

i ).
In the componentwise structure, a time series has a unique maximum lag order but
the latter can differ across marginal models.

• Own/other:
k

∑
i=1

p

∑
l=1

{∥∥∥A(l:p)
i

∥∥∥
2
+
∥∥∥(A(l)

i,−i, A(l+1):p
i

)∥∥∥
2

}
, (10)

where A(l:p)
ij = [A(l)

ij · · · A
(p)
ij ] ∈ R1×k(p−l+1). The own/other structure extends the

componentwise model by hierarchizing the lags of the own time series over the lags
of others.

• Elementwise:
k

∑
i=1

k

∑
j=1

p

∑
l=1

∥∥∥A(l:p)
ij

∥∥∥
2
. (11)

The elementwise model is the most generic structure, allowing a maximum lag order
for each time series.
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• Lag weighted Least Absolute Shrinkage and Selection Operator (LASSO):
p

∑
l=1

lα
∥∥∥A(l)

∥∥∥
1
, (12)

where A(l:p) = [A(l) · · · A(p)] ∈ R1×k(p−l+1). A LASSO penalty that increases in
an exponential manner, with further lags α ∈ [0, 1], is an extra penalty estimated
by cross-validation.

The performance of a model is measured by the relative MSFE of the regularized
model against the alternative models:

MSFE(M) = E[( f (yt)− ˆf (yt))
2], (13)

where M stands for model and M1, M2, . . . , Mq are the q-estimated models. Therefore,

P =
Mi
Mj

(14)

is the relative performance (P) of the machine learning model (i = 1, 2, 3) against the
alternative (j = 4, . . . , q). The Bayesian VAR is estimated as in [19,28]. Akaike’s Information
Criteria (AIC) and the Bayesian Information Criteria (BIC) models are the VARs which
minimize each respective criteria.

An analysis of the cross-validation (CV) behavior and the sparsity matrices of the
regularization methods are also provided. Ideally, the value of λ would increase with the
forecasting horizon (h), by reflecting the U shape of the CV curve. Similarly, the sparsity
should increase with the horizon.

Another fundamental task of VAR models in macroeconomics, financial economics
and applied time series econometrics is structural analysis. To analyze the robustness of
the regularized VARs in this field, we report the Impulse Response Functions (IRF) of the
models. For the sake of simplicity, we report the behavior of a variable of economic activity
(employment), and a variable of inflation (consumer’s price index) after an interest rates
shock of the central bank (a positive shock of one standard deviation in the federal funds
rate). Due to economic theory and evidence, we expect that the IRFs behave as in Figure 1.

x=0

x

y

(a)

x=0

x

y

(b)

x=0

x

y

(c)

Figure 1. Theoretical expected response of the variables after a one positive standard deviation central
bank interest rates shock. Source: Own elaboration. (a) Employment. (b) Inflation. (c) Interest rates.

Therefore, if the behavior of the empirical IRFs is similar to Figure 1, there is evidence
that the structural analysis methods of machine learning regularized VARs are consistent
with economic theory and evidence. To ensure robustness, a hundred runs of the IRF
estimates are performed via bootstrap methods.
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2.2. Data and Variables

This paper uses the [34] dataset, which covers monthly macroeconomic and financial
indicators from 1959 to 2003. Following [19], we are going to employ twenty variables of
the dataset:

1. Employment levels as a measure of economic activity.
2. The consumer’s price index as a measure of inflation.
3. The federal funds rate as a measure of the central bank monetary policy interest rate.
4. The index of sensitive material prices.
5. Monetary aggregates such as:

(a) Non-borrowed reserves.
(b) Total reserves.
(c) The M2.

6. Personal income.
7. Real consumption.
8. Industrial production.
9. Capacity utilization.
10. Unemployment rate.
11. Housing starts.
12. Producer price index.
13. Personal consumption expenditures price deflator.
14. Average hourly earnings.
15. The M1.
16. Standard and Poor’s stock price index.
17. Yields on 10 years of the US treasury bonds.
18. The effective exchange rate.

The data are log-differentiated, to ensure stationarity and ergodicity, and normalized,
as usual in the regularization literature [28].

3. Results
3.1. Forecasting
3.1.1. Nowcasting

Table 1 shows the one-period ahead point forecast MSFE (p = 1) of the different
regularization variants in comparison with the conditional mean, the AIC and BIC selection,
and a random walk. Table 1 also shows the results against the immediate alternative,
the Bayesian VAR.

Table 1. Nowcasting MSFE of the different regularization methods against their alternatives. The smaller
the quantity, the better the relative performance of the method. Source: Own elaboration.

Componentwise Own/Other Elementwise LASSO

C. Mean 0.95 0.94 0.94 0.96
AIC 0.98 0.97 0.97 1
BIC 0.89 0.89 0.89 0.91

Random walk 0.55 0.55 0.55 0.56
Bayesian VAR 0.82 0.81 0.81 0.83

In any case, all regularization methods beat their alternatives except for the lag
weighted LASSO which is equaled by the AIC. Additionally, all the regularization methods
perform close to a 20% better than their large VAR closest alternative, the Bayesian VAR.

Table 2 offers a comparison between the different machine learning regularization
methods and the Bayesian VAR. Each variable in a column is compared with the corre-
sponding row.
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Table 2. A comparison of the nowcasting performance between the different regularization methods.
The smaller the quantity, the better the relative performance of the method. Source: Own elaboration.

Componentwise Own/Other Elementwise LASSO Bayesian

Componentwise − 0.998 0.992 1.0159 1.2178
Own/Other 1.0072 − 0.999 1.0233 1.2266
Elementwise 1.0073 1.000 − 1.0234 1.2266

LASSO 1.0159 0.9772 0.9771 − 1.1986
Bayesian 0.8211 0.8153 0.8152 0.8342 −

For nowcasting, the best performing regularization method is the elementwise struc-
ture, followed by the own/other structure. The componentwise is the third best structure
and, finally, the LASSO is the worst. All the regularization methods outperform the
Bayesian VAR except for the lag weighted LASSO.

Figure 2 shows the cross-validation behavior of the different regularization alternatives.
The y-axis is the MSFE and the x-axis the value of λ. Optimal lambdas are reached at
λc = 5.4249, λo = 5.9119 and λe = 9.1307.

2 5 10 20 50 100

17
18

19
20
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Value of Lambda
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F
E

(a)

10 20 50 100 200

17
18

19
20
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22

23
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M
S

F
E

(b)

10 20 50 100 200
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18

19
20

21
22

Value of Lambda

M
S

F
E

(c)

Figure 2. Nowcasting cross-validation behavior of the regularization methods. Source: Own elaboration.
(a) Componentwise. (b) Own/other. (c) Elementwise.

The componentwise and the elementwise structures show inverted U paths. The own/other
structure is closer to a linear trend. Figure 3 shows the sparsity pattern of the best regular-
ization structure (the elementwise regularization).
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Sparsity Pattern Generated by BigVAR

Φ(1)

Figure 3. Sparsity pattern of the elementwise structure. Source: Own elaboration.

As shown in Figure 3, the elementwise structure maintains an equilibrated sparsity
balance. Eventually, Table 3 shows the computational time of each method.

Table 3. A comparison of the computational time of the regularization methods in nowcasting.
Source: Own elaboration.

Time Relative Performance (against Componentwise)

Componentwise 00:05.65 100%
Own/Other 00:01.98 35%
Elementwise 00:02.70 48%

LASSO 00:58.23 1030%
Bayesian 00:32.74 579%

3.1.2. Short Term

Consider a six-period ahead (p = 6) forecasting setting as the short-term forecasting
framework. The same as with the nowcasts, Table 4 offers the relative six-period ahead
point forecast MSFEs of the regularization variants.

Every regularization method improves substantially against the AIC selected VAR,
but gets worse against the BIC selected VAR, in comparison with nowcasts. This is
mostly due to an improvement in the MSFE of the BIC and a deterioration of the model.
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The conditional mean MSFE remains constant, but the relative values of the three first
regularization methods do not. It is important to mention here the weakening of the
forecasting power of the LASSO, as the MSFE gets much higher at p = 6, and it gets
worse results that every other alternative, with the exception of the random walk. The
opposite occurs with the Bayesian VAR, which improves substantially at p = 6 in com-
parison with p = 1 against any alternative or regularization method, and surpasses the
LASSO. Still, the componentwise, own/other and elementwise regularization methods
are better.

Table 4. Short term forecasting p = 6 MSFE of the different regularization methods against their
alternatives. The smaller the quantity, the better the relative performance of the method. Source:
Own elaboration.

Componentwise Own/Other Elementwise LASSO

C. Mean 0.95 0.96 0.97 1.35
AIC 0.90 0.92 0.93 1.29
BIC 0.93 0.95 0.95 1.33

Random walk 0.55 0.56 0.56 0.79
Bayesian VAR 0.89 0.91 0.91 1.27

Table 5 shows a comparison of the regularization methods and the Bayesian VAR.

Table 5. A comparison of the short term p = 6 performance between the different regularization
methods. The smaller the quantity, the better the relative performance of the method. Source:
Own elaboration.

Componentwise Own/Other Elementwise LASSO Bayesian

Componentwise − 1.0214 1.0054 1.4309 1.1224
Own/Other 0.9789 − 0.9728 1.0054 1.0988
Elementwise 1.0062 1.0279 − 1.4399 1.1295

LASSO 0.6988 0.7138 0.7177 − 0.7844
Bayesian 0.8909 0.9100 0.9149 1.2748 −

In the short-term framework, the componentwise structure is the best regularization
method. As opposed to the nowcasting framework, now the second best method is the
elementwise structure, followed by the own/other structure. Another difference with the
nowcasting setting is that the Bayesian VAR beats the LASSO, in concordance with the
results of Table 4.

Figure 4 drops the results about the cross-validation behavior of the three first regular-
ization methods in the short-term setting. This time, the optimal lambdas are higher and
are reached at λc = 8.2799, λo = 5.829 and λe = 9.006.

The behavior of the componentwise model improves with respect to the nowcasting
setting. Now, the curve is very similar to an inverted U, and the optimal lambda increases in
about 4 points as the forecasting horizon increases. The elementwise model also improves,
although the optimal lambda remains stable. In the case of the own/other structure,
the curve still is very similar to a linear trend.

Figure 5 shows the sparsity pattern of the best alternative, the componentwise model.
The first sparsity matrix has a substantial amount of nonzero elements, whilst the fifth

matrices left are balanced.
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Figure 4. Short term p = 6 forecasting cross-validation behavior of the regularization methods.
Source: Own elaboration. (a) Componentwise. (b) Own/other. (c) Elementwise.

Sparsity Pattern Generated by BigVAR

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) Φ(6)

Figure 5. Sparsity pattern of the componentwise structure (p = 6). Source: Own elaboration.

3.1.3. Long Term

In this subsection, we are going to consider a long-term forecasting setting as a
12-period ahead forecast framework (p = 12). Table 6 offers the relative MSFE performance
of the regularization methods against the conditional mean, AIC, BIC, random walk and
Bayesian VAR.

Table 6. Long term forecasting (p = 12) MSFE of the different regularization methods against their
alternatives. The smaller the quantity, the better the relative performance of the method. Source:
Own elaboration.

Componentwise Own/Other Elementwise LASSO

C. Mean 0.95 0.97 1.02 1.57
AIC 0.75 0.77 0.76 1.07
BIC 0.89 0.91 0.91 1.27

Random walk 0.56 0.57 0.57 0.79
Bayesian VAR 0.91 0.93 0.93 1.29
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There is a recognizable pattern which drops from Table 6. As the forecasting period
increases, the AIC worsens, an so the relative performance of the regularizated VARs
increases substantially. The relative performance of the regularizated VARs against the BIC
also improves slightly with time, but this is mainly due to the increase of the forecasting
power of the regularized VARs and not because of the worsening of the BIC. Against the
random walk, the models perform much better in any case. Interestingly, Bayesian VARs
relative forecasting power tends to increase with the forecasting horizon. The relative per-
formance of them against the regularized VARs in very long horizons can be an interesting
topic for further research.

Table 7 offers a comparison of the performance of the regularization methods and the
Bayesian VAR in the long-term environment.

Table 7. A comparison of the long term p = 12 performance between the different regularization
methods. The smaller the quantity, the better the relative performance of the method. Source:
Own elaboration.

Componentwise Own/Other Elementwise LASSO Bayesian

Componentwise − 1.0234 1.0552 1.6576 1.1037
Own/Other 0.9771 − 1.0552 1.6197 1.0785
Elementwise 0.9261 0.9477 − 1.5350 1.0221

LASSO 0.6033 0.6174 0.6515 − 0.6658
Bayesian 0.9061 0.9273 0.9267 1.2912 −

Now, the componentwise structure continues dominating, followed by the element-
wise structure. The own/other structure maintains the third position. The Bayesian VAR
improves slightly, in concordance with the results of Table 6. Finally, the quality of the
forecasts of the LASSO estimator declines substantially.

Figure 6 draws some results about the cross-validation analysis of the three main
regularization methods in the long term. This time, the optimal lambdas are rization
alternatives and are reached at λc = 8.1863, λo = 5.7248 and λe = 8.8417.
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Figure 6. Long term p = 12 forecasting cross-validation behavior of the regularization methods.
Source: Own elaboration. (a) Componentwise. (b) Own/other. (c) Elementwise.
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Again, the rolling cross-validation behavior of the componentwise and elementwise
structures improves. The componentwise structure has now a full inverted U form, and an
optimal cross-validation behavior. The own/other curve remains flat.

Figure 7 offers the sparsity pattern of the componentwise model.

Sparsity Pattern Generated by BigVAR

Φ(1) Φ(2) Φ(3) Φ(4) Φ(5) Φ(6) Φ(7) Φ(8) Φ(9) Φ(10) Φ(11) Φ(12)

Figure 7. Sparsity pattern of the componentwise structure (p = 12). Source: Own elaboration.

The first matrix has many nonzero elements, whilst the subsequent matrices get more
sparse every period and the last matrices highly sparse.

3.2. Impulse Response Analysis

After the forecasting properties, we estimate the impulse response functions (IRF)
to observe the structural analysis behavior of the machine learning regularized VARs in
a monetary and financial framework. Figure 8 shows the estimated IRFs of the three
regularized VARs.
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Figure 8. Impulse response shocks of one standard deviation of the machine learning regularized
VARs. The red dotted line is an y = 0 x-axis line. Source: Own elaboration. (a) Componentwise.
(b) Own/other. (c) Elementwise.

A summary of the main findings dropped by Figure 6 is as follows:

1. The IRFs of the three machine learning regularized VARs are consistent between them.
2. The IRFs of the three machine learning regularized VARs are consistent with eco-

nomic theory.
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3. There is very small evidence about the price puzzle in the three machine learn-
ing VARs.

The first finding is straightforward: a comparison of the three IRFs (employment,
consumer’s price index and federal funds rate) between the different regularization meth-
ods (componentwise, own/other and elementwise) shows that they all follow the same
path. After a sudden increase of the employment level, a shock in the standard deviation
federal funds, that is to say, an unexpected contraction of the monetary policy, produces
a decrease of the employment level in about the subsequent 50 periods. The three regu-
larization methods share this behavior. Similarly, a contractionary monetary policy shock
produces a decrease of the consumer’s price index for more than 60 periods in the three
regularization methods. Therefore, all IRFs will behave in the same manner if we estimate
a componentwise model, an own/other lag structure model or an elementwise model.

The second finding has already been pointed out. Employment and inflation decline
after an unexpected increase of the federal funds rate. This is the expected behavior
according to the economic theory and the macroeconomic evidence.

The third finding is not so straightforward. It starts from and it is relevant for the
macroeconomics and macroeconometrics literature. The price puzzle is a situation which
happens frequently when estimating monetary VARs, and refers to a positive reaction of
inflation after an increase of the federal funds interest rate, when theoretically inflation is
expected to decrease after a monetary policy tightening [35–38].

In this way, [39] argues that restricting the VAR to just long monetary policy lags in
line with the well-known lagged effect of monetary policy eliminates the price puzzle. Our
research shows that regularization methods are a valid alternative, and may be correlated
with the results by [39], as these methods choose the coefficients most relevant for the VAR
by their own.

Finally, it is important to mention that, counterintuitively, at the beginning, employ-
ment levels increase suddenly after a monetary contraction. This is potentially related with
inventory effects [40], and might disappear when incorporating this variable to the models
or at higher dimensions, what we leave open as an interesting topic for future research.

4. Discussion and Conclusions

Nowadays, vector autoregressive models are a standard methodology in the macroe-
conomics and finance literature to nowcast, forecast, describe data and analyze policies [9].
As the data availability increases exponentially and so the requirements for high-dimensional
methods, the attention of the researchers has turned into Bayesian methods to estimate large
models [19,41,42].

This research paper shows that, in this scenario, machine learning regularization
methods are valid and a better alternative to Bayesian methods when estimating high-
dimensional VARs. By employing the LASSO-based regularization methods proposed and
computed by [28], we find that these methods perform better in nowcasting and forecasting
than Bayesian VARs and all immediate comparisons. This is specially true in nowcasting
and short-term forecasts as, in long-term forecasts, Bayesian methods tend to improve
relatively. Nevertheless, they do not surpass machine learning regularization methods at a
p = 12 forecasting horizon.

Regarding the optimal machine learning regularization method, employing the [34]
dataset, we find that in a nowcasting framework the elementwise structure is the best
one, followed by the own/other structure. In short- and long-term forecasts, the compo-
nentwise structure is the best, followed by the elementwise model. With respect to the
cross-validation behavior of the three models, the componentwise one appears to be the
best by far, with a value of lambda which tends to increase with the forecasting horizon,
as desired [19,28]. The sparsity matrices of the componentwise model show that sparsity
tends to increase the higher the forecast horizon. Computationally speaking, the own/other
structure is the fastest.
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With respect to structural analysis, the IRFs of all three regularization methods are
robust and consistent between them and with economic theory and evidence. Furthermore,
we do not find any evidence of the price puzzle, and this may indicate that machine learning
regularization methods are a natural alternative to structural identification assumptions
such as the monetary policy long lags [39], as they may choose lags by their own. Finally,
in the variable “employment level” of the economic activity, we find an effect similar to the
one documented by [40], which may also be related to inventory effects.

As future research directions, first, we propose analyzing the relative performance
of the Bayesian and machine learning regularized VARs in very long horizons (h > 12),
as we have detected that it tends to converge the larger the horizon (h). Second, we propose
analyzing the presence of inventory and counterintuitive effects of the monetary policy
in the variables related to the economic activity of the VAR in large dimensional settings
(k > 20).
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