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Abstract: Many surveys are performed using non-probability methods such as web surveys, social
networks surveys, or opt-in panels. The estimates made from these data sources are usually biased
and must be adjusted to make them representative of the target population. Techniques to mitigate
this selection bias in non-probability samples often involve calibration, propensity score adjustment,
or statistical matching. In this article, we consider the problem of estimating the finite population
distribution function in the context of non-probability surveys and show how some methodologies
formulated for linear parameters can be adapted to this functional parameter, both theoretically and
empirically, thus enhancing the accuracy and efficiency of the estimates made.
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1. Introduction

Distribution function estimation is an important topic in survey research. This ap-
proach offers valuable benefits in the context of probability surveys and has been the focus
of much research attention in recent years. It is especially useful when the underlying goal
is to determine the proportion of values of a study variable that are less than or equal to
a certain value. For example, knowledge of the distribution function makes it possible to
obtain the reliability function, which is commonly used in life data analysis and reliability
engineering [1]. Furthermore, the distribution function allows us to examine whether two
samples originate from the same population [2].

Additionally, the finite population distribution function can be used to calculate
certain parameters, such as population quantiles. In several areas of study [3–5], quantiles
are of special interest. For example, rates of extreme pediatric obesity are defined as
the body mass index at or above the 99th percentile [6]. In another area, that of ozone
concentrations, the 5th percentile is a measure of the baseline condition, while the 95th
reflects peak concentration levels [7]. In economics, some variables, such as income,
have skewed distributions and in this case quantiles provide a more suitable measure
of location than the mean [8,9]. Also in this field, quantiles allow us to obtain measures
such as the poverty line and the poverty gap [10,11], as well as inequality parameters
indicators such as the headcount index, which measures the proportion of individuals
classified as poor within a given population [12]. Other analyses of inequality, such as
those focusing on wages or income distribution, also require measures based on percentile
ratios [9]. In these cases, estimating the distribution function is also more useful than
calculating totals and means [13]. In view of these considerations, some studies have
focused on the auxiliary population information available at the estimation stage to gain
more accurate values for the distribution function and quantiles [14–17]. One means of
incorporating auxiliary information to develop new estimators of the distribution function
is to employ the calibration method, which was originally designed to estimate the total
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population [18]. An extensive body of research has been conducted in this area, and various
implementations of the calibration approach have been applied in the probability survey
context to obtain estimators of the distribution function and the quantiles [19–27]. The use
of calibration techniques has also been considered for estimating the distribution function
when a probability survey is subject to non-response [28].

As part of the global commitment to fight poverty and social exclusion, many gov-
ernment agencies wish to know the proportion of the population living below the poverty
line, in order to monitor the effectiveness of their policies [29]. One way to obtain this
information is to conduct probabilistic surveys, based on representative samples of the
target population. The aim of survey sampling theory is to maximize the reliability of the
estimates thus obtained.

For a sample to be considered probabilistic and therefore valid for drawing inferences
regarding the population, it must be selected under the assumption that all the individuals
in the target population have a known and non-null probability of inclusion.

In recent years, alternative data sources to probabilistic samples have been consid-
ered, such as big data and web surveys. These approaches offer certain advantages over
traditional probability sampling: estimates in near real time may be obtained, data access
is easier, and data collection costs are lower. In these non-traditional methods, the data
generating process is different and the subsequent analysis is based on non-probability
samples. Despite the above advantages, this method also presents serious issues, especially
the fact that the selection procedure for the units included in the sample is unknown and so
the estimates obtained may be biased, since the sample itself does not necessarily provide a
valid picture of the entire population. In other words, the sample is potentially exposed to
self-selection bias [30,31].

Many studies of survey sampling have been undertaken to reduce selection bias in
the methods used to estimate population totals and means, and this research has been
reviewed in [32–37], among others. The methods considered include inverse probability
weighting [38,39], inverse sampling [34], mass imputation [40], doubly robust methods [31],
kernel smoothing methods [41], statistical matching combined with propensity score adjust-
ment [42], and calibration combined with propensity score adjustment [39,43]. However,
despite the extensive literature available on using calibration techniques to estimate the
distribution function and the population mean under conditions of self-selection bias,
little attention has been paid to the development of efficient methods for estimating the
population distribution function under these conditions.

To address this research gap, we propose a general framework for drawing statistical
inferences for the distribution function with non-probability survey samples when auxiliary
information is available. We discuss different methods of adjusting for self-selection bias,
depending on the type of information available, applying calibration, propensity score, and
statistical matching techniques.

The rest of the paper is organized as follows: in Section 2, we review the estimation of
the distribution function from probability and non-probability samples, in order to establish
the basic framework and the notation employed. In Section 3, we then propose several
estimators for the distribution function, based on calibration, propensity score adjustment
(PSA) and statistical matching (SM), taking into consideration that the non-smooth nature
of the finite population distribution function produces certain complexities, which are
resolved in different ways. The properties of the proposed estimators are described in
Section 4, after which we present the results obtained from the simulation studies performed
with these estimators. In the final section, we summarize the main conclusions drawn and
suggest possible lines of further research in this area.

2. Basic Setup for Estimating the Distribution Function

Let U denote a finite population of size N, U = {1, . . . , i, . . . , N}. Let sV be a self-
selected sample of size nV , self-selected from U. Let y be the variable of interest in the
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survey estimation. We assume that yk is known for all sample units. Our goal is to estimate
the distribution function Fy(t) for the study variable y, which can be defined as follows:

Fy(t) =
1
N ∑

k∈U
∆(t− yk) (1)

where ∆(·) denotes the Heaviside function, given by:

∆(t− yk) =

{
1 if t ≥ yk
0 if t < yk.

In the absence of auxiliary information, the distribution function Fy(t) can be estimated
by the naive estimator, defined by

F̂YNa(t) =
1
n ∑

k∈sV

∆(t− yk). (2)

If the convenience sample sV suffers from selection bias, the above estimator will provide
biased results.

Let R be an indicator variable of an element being in sV , such that

Rk =

{
1 k ∈ sV
0 k /∈ sV .

(3)

If we know {Rk : k ∈ U}, the error of F̂YNa(t) will be:

F̂YNa(t)− Fy(t) =
1
n ∑

k∈U
Rk∆(t− yk)−

1
N ∑

k∈U
∆(t− yk) =

1
f

Cov(R, ∆(t− y))

with f = n/N and Cov(R, ∆(t− y)) = 1
N ∑

k∈U
(Rk − RN)(∆(t− yk)− Fy(t)), being RN =

1
N ∑k∈U Rk.

By applying the expectation of the mean difference, we obtain the selection bias of the
estimator, as follows:

B = ER(F̂YNa(t)− Fy(t)) =
1
f

ER(Cov(R, ∆(t− y)))

where ER denotes the expectation with respect to the random mechanism for Rk.
The mean squared error is obtained by:

ECM =
1
f 2 ER(Cov(R, ∆(t− y))2) =

1
f 2 ER(Corr(R, ∆(t− y))2)Var(R)Var(∆(t− y)) =

= ER(Corr(R, ∆(t− y))2)×
(

1
f
− 1
)
×Var(∆(t− y))

because Var(R) = 1
N ∑k∈U(Rk − RN)

2 = f (1− f ).
Therefore, a non-probability sampling design with ER(Corr(R, ∆(t− y))2) 6= 0 means

that the analysis results are subject to selection bias. This is the main problem addressed in
our study.

3. Proposed Estimators

The key to successful weighting to eliminate bias in self-selection surveys lies in the use
of appropriate auxiliary information. To address this question, let us consider J auxiliary
variables x1, . . . , xJ and let x

′
k = (x1k, . . . , xJk) be the vector of auxiliary variables at unit k.
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We distinguish three different cases, called InfoTP, InfoES, and InfoES, depending on
the information at hand ([44])

• InfoTP: Only the population vector totals of the auxiliary variables, ∑U xk = X, are known.
• InfoES: Information is available at the level of a probability sample conducted on the

same target population as the non-probability survey, with good coverage and high
response rates. The vector of auxiliary variables xk is known for every unit in this
reference sample.

• InfoEP: Information is available at the level of the population U: the vector of auxiliary
variables xk is known for every k ∈ U.

Below, we consider various adjustment methods, depending on the type of informa-
tion available.

3.1. InfoTP

The calibration method, originally developed by Deville and Särndall [18] for the
estimation of totals, can be adapted to estimate the distribution function. This approach
enables us to incorporate the auxiliary information available through the auxiliary vector
xk in several ways [19,20,24–27].

In the case of InfoTP, the calibration can be performed on the totals: given a pseudo-
distance G(., .), and denoting wvk = N/nV , we seek new calibrated weights wkc1 that are
the solution to the following minimization problem

min
wk

∑
k∈sV

G(wk, wvk) (4)

subject to
∑

k∈sV

wkxk = X. (5)

The resulting calibrated estimator of the distribution function is given by:

F̂Yc1(t) =
1
N ∑

k∈sV

wkc1∆(t− yk). (6)

Ref. [18] proposes a family of pseudo-distance G(., .) with which to develop calibration
estimators. One of the distances proposed is the chi-square distance given by

Φs = ∑
k∈sV

(wk − wvk)
2

wvkqk
(7)

where qk is positive weights that are usually assumed as uniform 1/qk = 1 although un-
equal weights 1/qk are sometimes preferred.

The resulting calibrated weights wkc1 with the minimization of (7) subject to the
conditions (5) are given by:

wkc1 = wvk + wvkqkγ · xk (8)

where

γ =
(

X− ∑
k∈sV

wvkxk

)T
(

∑
k∈sV

wvkqkxkxT
k

)−1

In the estimation of totals and means, previous research has shown that the exclusive
use of calibration fails to eliminate self-selection bias if this approach is not combined with
other methods, such as propensity score adjustment (PSA) [39,43]. Thus, in terms of bias
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reduction, the results of the calibration and PSA combination clearly surpass those obtained
with only calibration weighting [43].

In order to incorporate methods such as PSA and to develop new estimators that over-
come the problems met with the F̂Yc1(t) estimator, we consider other scenarios as follows.

3.2. InfoES

Let sR be a probability sample of size nR selected from U under a probability sampling
design (sR, pR) in which πk = ∑sR3k pR(sR) > 0 is the first-order inclusion probabil-
ity for individual k. The covariates xk are common to both samples, but we only have
measurements of the variable of interest y for the individuals in the convenience sample.
The original design weight of the individual k in the reference (probability) sample is
denoted by wRk = 1/πk.

First, we consider a calibration method for reweighting based on the proposal given
in [25], calibrating from the pseudo-variable:

gk = β̂Txk for k = 1, 2, ...N (9)

β̂ =

(
∑

k∈sV

xkxT
k

)−1

· ∑
k∈sV

xkyk. (10)

The new weights wkc2 are obtained by minimizing the chi-square distance (7) subject
to the following conditions:

1
N ∑

k∈sV

wkc2∆(tj − gk) =
1
N ∑

k∈sR

wRk∆(tj − gk) j = 1, 2, . . . , P (11)

where tj for j = 1, ...P are points chosen arbitrarily and where we assume that t1 < t2 <
... < tP and qk are positive constants.

The resulting calibrated estimator of the distribution function is given by:

F̂Yc2(t) =
1
N ∑

k∈sV

wkc2∆(t− yk). (12)

in which the calibrated weights wkc2 are given by:

wkc2 = wvk + wvkqk
λ

N
∆(tP − gk) (13)

with

λ = N2 ·
(

F̂GR(tP)−
1
N ∑

k∈sV

∆(tP − gk)
)T
(

∑
k∈sV

wvkqk∆(tP − gk)∆(tP − gk)
T

)−1

and
∆(tP − gk)

T =
(

∆(t1 − gk), ∆(t2 − gk), . . . , ∆(tP − gk)
)

(
F̂GR(tP)

)T
=
( 1

N ∑
k∈sR

wRk∆(t1 − gk),
1
N ∑

k∈sR

wRk∆(t2 − gk), . . . ,
1
N ∑

k∈sR

wRk∆(tP − gk)
)

The calibrated weights (13) and the weights wRk for the samples sV and sR, respectively,
give the same estimates for the distribution function of the pseudo-variable g, when
evaluated over the set of points tj.

In the case of InfoES information, the most popular adjustment method in non-
probability settings is propensity score adjustment [38,39,43,45–47]. This method, de-
veloped by [48], can be used to estimate the distribution function, as described below.

Under PSA, it is assumed that each element of U has a probability (propensity) of
being selected for sV , which can be formulated as
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πv
k = Pr(Rk = 1|xk, yk) (14)

We assume that the response selection mechanism is ignorable and follows a paramet-
ric model:

πv
k = Pr(Rk = 1|xk) = m(xk, λ), (15)

for a known function m(·) with second continuous derivatives with respect to an unknown
parameter λ.

We estimate the propensity scores πv
k by using data from both the self-selection and

the probability samples. The maximum likelihood estimator (MLE) of πv
k is π̂v

k = m(λ̂, xk),
where λ̂ corresponds to the value of λ that maximizes the pseudo-log-likelihood function:

l̃(λ) = ∑
sV

log
m(λ, xk)

1−m(λ, xk)
+ ∑

sR

1
πk

log(1−m(λ, xk)). (16)

The resulting propensities can then be used to calculate new weights, wPSA
k = 1

π̂v
k
.

Thus, we define the inverse propensity weighting estimator of the distribution function as:

F̂YIPS(t) =
1
N ∑

k∈sV

wPSA
k ∆(t− yk). (17)

Another PSA-based estimator can be obtained using the weights wPSA2
k =

1−π̂v
k

π̂v
k

[49].
In this respect, Refs. [39,47] proposed other PSA weights whereby the combined sample
(sV ∪ sR) is grouped into g equally-sized strata of similar propensity scores from which an
average propensity is calculated for each group.

The estimator (17) can be obtained as a special case of the general framework on
inference for the general parameter proposed in [50]. The latter authors present an estimator
that uses the propensity score for each individual in the survey weighted by the estimating
equation under logistic regression, thus obtaining the asymptotic variance of the estimator.

A third approach to dealing with InfoES information is that of statistical matching, by
which imputed values are created for all elements in the probability sample. This method
was introduced by [40] and is based on modeling the relationship between yk and xk, using
the self-selected sample sV to predict yk for the probability sample. The question then is
how to predict the values yk.

To do so, let us assume a working population model Em(y/x) = M(x, β) where β is
the unknown parameter. We further assume that the population model holds for the sample
sV . Using the data from this sample, we can obtain an estimator β̂v which is consistent for
β under the model assumed. From β̂v, we then propose the matching estimator for the
distribution function as:

F̂YSM(t) =
1
N ∑

k∈sR

∆(t− ŷk)/πk (18)

where ŷk = M(x, β̂v) is the predicted value of yk under the above model. The estimator
(18) is consistent if the model for the study variable is correctly specified.

A more complex estimator for the distribution function can be constructed using the
idea of double robust estimation [31], which is based on the following considerations.
Firstly, the propensity score adjusted estimator (17) requires that the propensity score
model be correctly specified. Moreover, the imputation-based estimator (18) requires that
the working population model be correctly specified. An estimator is called doubly robust
if the estimator is consistent whenever one of these two models is correctly specified [51].
Hence, the double robust estimator of the distribution function is defined as:
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F̂YDR(t) =
1
N
( ∑

k∈sR

∆(t− ŷk)/πk + ∑
k∈sV

wPSA
k (∆(t− yk)− ∆(t− ŷk)). (19)

The estimator (19) is double robust because it is consistent if either the model for the
participation probabilities or the model for the study variable is correctly specified.

3.3. InfoEP

In the case of InfoEP, an initial possibility is to consider a similar calibrated estimator,
based on the proposal given in [25]. The new weights wkc3 are obtained by minimizing the
chi-square distance 7 subject to the following conditions:

1
N ∑

k∈sV

wkc3∆(tj − gk) = Fg(tj) j = 1, 2, . . . , P (20)

where Fg(tj) is the finite distribution function of g at the points tj, j = 1, 2, . . . , P.
The resulting calibrated estimator of the distribution function is:

F̂Yc3(t) =
1
N ∑

k∈sV

wkc3∆(t− yk) (21)

where the calibrated weights wkc3 are given by:

wkc3 = wvk + wvkqk
θ

N
∆(tP − gk) (22)

with

θ = N2 ·
(

Fg(tP)−
1
N ∑

k∈sV

∆(tP − gk)
)T
(

∑
k∈sV

wvkqk∆(tP − gk)∆(tP − gk)
T

)−1

(
Fg(tP)

)T
=
(

Fg(t1), Fg(t2), . . . , Fg(tP)
)

.

F̂Yc3(t) gives perfect estimates for the distribution function of the pseudo-variable g,
when evaluated over the set of points tj, j = 1, 2, . . . , P.

We define a model-based estimator based on the non-probability sample as

F̂YDR2(t) =
1
N

(
∑

k∈U−sV

∆(t− ŷk) + ∑
k∈sV

∆(t− yk)
)

(23)

and a model-assisted estimator by

F̂YDR3(t) =
1
N

(
∑

k∈U
∆(t− ŷk) + ∑

k∈sV

wPSA(∆(t− yk)− ∆(t− ŷk)
)

(24)

4. Properties of Proposed Estimators

When estimating the distribution function, the estimator considered F̂Y(t) should
satisfy the following distribution function properties:

(i) F̂Y(t) should be continuous on the right;
(ii) F̂Y(t) should be monotonically nondecreasing;
(iii) lim

t→−∞
F̂Y(t) = 0;

(iv) { lim
t→+∞

F̂Y(t) = 1.

If an estimator of the distribution function F̂Y(t) is a genuine distribution function, i.e.,
F̂Y(t) meets the above conditions, it can be used directly for estimating the quantiles [16].
Specifically, the quantile α can be estimated as:
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Q̂α = in f {t : F̂Y(t) ≥ α} = F̂−1
Y (α)

Since the Heaviside function is continuous on the right, it is clear that all the proposed
estimators satisfy conditions (i) and (iii).

In general, however, estimator F̂yc1(t) does not satisfy conditions (ii) or (iv). In order
to meet condition (ii), let us consider the specific pseudo-distances G(., .) that guarantee
positive calibrated weights wkc1 > 0. In this respect, Ref. [18] proposed some pseudo-
distances which always produce positive weights whilst avoiding extremely large ones.
Some of these pseudo-distances may be considered in estimator F̂yc1(t) in order to satisfy
condition (ii). In addition, to meet condition (iv), we can add the constraint:

N = ∑
k∈sV

wk (25)

to condition (5).
Similarly, conditions (ii) and (iv are not generally met by the estimators F̂Yc2(t) or

F̂Yc3(t)). Regarding condition (ii), and following [25], the weights wkc2 and wkc3 are always
positive if qk = c for all units in the population. Thus, under the usual uniform choice
1/qk = 1, both estimators satisfy condition (ii). To meet condition (iv), in the case of
estimator F̂Yc2(t), we can add the constraint (25) to the conditions (11), while, for estimator
F̂Yc3(t), we can take a value tP that is large enough so Fg(tP) = 1.

The estimator F̂YIPS(t) based on the weights wPSA
k verifies condition (ii) if weights

wPSA
k ≥ 0, whereas if F̂YIPS(t) is based on wPSA2

k , then it meets condition (ii) when wPSA
k ≤ 1.

Consequently, if 0 ≤ wPSA
k ≤ 1, the estimator F̂YIPS(t) based on both wPSA

k and wPSA2
k

satisfies condition (ii). Thus, through the model selected to estimate propensities m(λ, xk),
condition (ii) can be met. For example, an extended option in the estimation of propensities
is that of the logistic regression model

m(λ, xk) =
exp(λTxk)

1 + exp(λTxik)

that verifies the condition 0 ≤ wPSA
k ≤ 1. Hence, if we choose this model, condition (ii) is

met by F̂YIPS(t) regardless of whether we use the weight wPSA
k or the weight wPSA2

k .
To ensure that condition (iv) is met with the estimator F̂YIPS(t), it can be divided by the
sum of weights, that is, ∑k∈sV

wPSA
k or ∑k∈sV

wPSA2
k .

Estimator F̂YSM(t) satisfies condition (ii) but not condition (iv). To ensure the latter,
again we can divide F̂YSM(t) by the sum of its weights, that is, ∑sR

πk.
Finally, whereas the estimator F̂YDR2(t) satisfies all the conditions, F̂YDR(t) and F̂YDR3(t)

do not meet conditions (ii) or (iv). Condition (iv) can be met by both F̂YDR(t) and F̂YDR3(t)
when they are divided by the sum of their respective weights, but these estimators, in gen-
eral, are not monotonic non-decreasing functions and therefore are not genuine distribution
functions. In both cases, we might consider the general procedure described in [16] to obtain
a monotonous non-decreasing version of the estimators F̃YDR(t) and F̃YDR3(t). However,
this procedure always increases the computational cost when estimating quantiles.

5. Simulation Study

In this section, we conduct a Monte Carlo study to compare the efficiency of the
estimators presented in Section 3.2. The simulation study was programmed in R and
Python. New code was developed to calculate the estimator considered. Python was only
used for training and applying the machine learning models in order to take advantage
of the package Optuna [52] for hyperparameter optimization. However, R was chosen
as the main programming language since the functions wtd.quantile, from the package
reldist [53], and qgeneric, from the package flexsurv [54], facilitate the implementation of
custom quantiles. To show that the superiority of some estimators depends on the data,
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we define various setups based on different sampling strategies for the probability and
nonprobability samples. In this analysis, only InfoES information is used.

5.1. Data

The dataset used in the simulation was collected between 2011 and 2012, in the
Spanish Life Conditions Survey [55]. Using criteria harmonized for all European Union
countries, the Living Conditions Survey generates a reference source of statistics on income
distribution and social exclusion within Europe. The dataset was filtered to rule out
individuals and variables with large quantities of missing data. Following this procedure,
the resulting pseudopopulation had a size of N = 28210.

The following variables were used in the simulation:
- Demographics

• COM: 1 if the individual has a computer at home, and 0 otherwise;
• SEX: 1 if the individual is male, and 0 otherwise;
• AGE: the individual’s age in years;
• AREAME: 1 if the individual lives in a medium-density population area, and 0

otherwise;
• AREALOW: 1 if the individual lives in a low-density population area, and 0 otherwise.

- Analysis variable

• INC: Household expenses in EUR.

Let us consider two setups. In the first, the sampling procedure is the same as that
used to select the sample in the Spanish Life Conditions Survey: the probability sample
is obtained by stratified cluster sampling, whereby the strata are defined by the NUTS2
regions and the clusters are composed of the households within these regions, extracted
with probabilities proportional to the household size. The number of households to be
selected, m, is estimated by dividing nR (the sample size of sR1) by the mean household
size. For nR = 2000, m = 902. According to this procedure, the final sample size of sR1 is
nR1 = 2003.

In the second setup, the reference probability sample is drawn by Midzuno sampling
with probabilities proportional to the minimum household income necessary for basic
subsistence.

To generate the nonprobability sample, sV , the following scenarios were considered:

1. SC1: Simple random sampling from the population with COM = 1
2. SC2: Unequal probability sampling from the full pseudopopulation, where the proba-

bility of selection for the i-th individual, pi, is given as follows:

pi =
1

1 + exp(−2COM + 0.2SEX + 0.01AGE + 0.2AREAME + 0.4AREALOW)
(26)

3. SC3: Unequal probability sampling from the full pseudopopulation, where the proba-
bility of selection for the i-th individual, pi, is given as follows:

pi = (AGE− 1925)3/(1995− 1925)3 (27)

These participation mechanisms create weights with different models and levels of
variability. Figures 1–3 show the resulting histogram of propensities.

By this procedure, we obtained nonprobability samples with sizes nV = 2000, 4000
and 6000.
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Figure 1. Histogram of population propensities in SC1.
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Figure 2. Histogram of population propensities in SC2.
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Figure 3. Histogram of population propensities in SC3.

5.2. Simulation

In each simulation, the following parameters were estimated:

• The quantiles Q0.25, Q0.5 and Q0.75.
• The distribution function Fy(t) at points Q0.25, Q0.5 and Q0.75.

The following methods for estimating these parameters were compared:

• Naive estimator, using the sample distribution function of the sV sample to draw
inferences.

• The proposed calibrated estimator F̂Yc2(t) where tj for j = 1, 2, 3 corresponds to Q0.25,
Q0.5, and Q0.75.

• The proposed PSA estimator F̂YIPS(t).
• The proposed SM estimator F̂YSM(t).
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• The proposed DR estimator F̂YDR(t).

All five demographic variables were considered potential predictors of propensities,
and predicted values yi for both logistic and linear regression models. In addition, a state-
of-the-art machine learning method, XGBoost [56], was used as an alternative to these two
models in order to evaluate the effect of the method used to estimate propensities and
predict values. Refs. [57,58] show that this technique can improve the representativity of
self-selection surveys with respect to other prediction methods.

The quantile α is estimated as follows:

Q̂α = in f {t : F̂Y(t) ≥ α} = F̂−1
Y (α)

where F̂Y is one of the five above estimators of Fy.
One thousand simulations were run for each context. The resulting mean bias, stan-

dard deviation, and root mean square error were measured in relative numbers to make
them comparable across different scenarios. The formulas used for their calculation were:

RBias (%) =

∣∣∣∣∣∑1000
i=1 θ̂(i)

1000
− θN

∣∣∣∣∣ · 100
θN

(28)

RStandard deviation (%) =

√
∑1000

i=1 (θ̂(i) − ˆ̄θ)2

999
· 100

θN
(29)

RMSE (%) =
√

RBias2 + RSD2 (30)

where θ̂(i) is the estimation of a parameter θN in the i-th simulation and ˆ̄θ is the mean of the
1000 estimations.

5.3. Results

The relative bias of estimators is shown in Table 1, for all scenarios and sample sizes.

Table 1. Bias (%) for each reference probability sample, parameter, non-probability sampling and
size, method and machine learning model (linear/logistic regression or XGBoost).

Stratified Proportional

Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75) Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75)

SC1
2000 Naive 23.3 17.9 13.4 −32.6 −20.9 −10.0 23.3 17.9 13.4 −32.6 −20.9 −10.0

Cal Reg 6.7 12.9 17.7 −0.6 −17.2 −20.7 −10.3 2.0 12.0 40.7 1.4 −5.9
XGB 0.2 3.6 9.8 7.1 4.2 −0.3 1.1 6.3 9.8 5.5 1.0 −0.4

PSA Reg 16.8 14.6 11.1 −23.3 −16.5 −8.2 21.5 18.0 13.9 −30.0 −20.4 −10.1
XGB 19.6 13.1 10.5 −28.1 −15.6 −8.8 28.4 20.9 12.5 −38.2 −24.4 −10.5

SM Reg −4 × 108 25.8 3 × 108 −0.6 −17.3 −20.7 −2 × 109 −0.8 4 × 107 40.7 1.4 −5.9
XGB −4.1 −4.2 0.6 7.3 4.1 −0.4 −2.3 −1.2 0.6 5.7 0.9 −0.4

DR Reg −4 × 108 25.8 3 × 108 −0.6 −17.2 −20.7 −2 × 109 −0.9 4 × 107 40.7 1.4 −5.9
XGB −4.1 −4.3 0.5 7.3 4.2 −0.3 −2.4 −1.2 0.6 5.6 1.0 −0.4

SC1
4000 Naive 23.3 18.1 13.6 −32.7 −21.0 −10.1 23.3 18.1 13.6 −32.7 −21.0 −10.1

Cal Reg −6.3 2.9 13.7 30.6 −1.6 −10.2 −11.2 1.4 11.7 42.9 2.6 −5.2
XGB 0.2 3.7 9.9 6.9 4.2 −0.4 1.2 6.3 9.9 5.2 1.0 −0.5

PSA Reg 16.8 14.6 11.3 −23.4 −16.6 −8.3 21.5 18.0 13.9 −30.0 −20.4 −10.1
XGB 19.9 14.0 13.0 −28.0 −16.4 −10.4 28.1 22.1 13.7 −37.1 −25.0 −11.4

SM Reg −2 × 109 4.3 2 × 108 30.6 −1.6 −10.2 −2 × 109 −2.3 6 × 107 42.9 2.5 −5.2
XGB −4.2 −4.2 0.6 7.2 4.1 −0.4 −2.2 −1.2 0.6 5.5 0.9 −0.5

DR Reg −2 × 109 4.3 2 × 108 30.6 −1.6 −10.2 −2 × 109 −2.4 6 × 107 42.9 2.6 −5.2
XGB −4.1 −4.2 0.6 7.1 4.2 −0.3 −2.3 −1.2 0.6 5.4 1.0 −0.5
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Table 1. Cont.

Stratified Proportional

Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75) Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75)

SC1
6000 Naive 23.3 18.0 13.5 −32.7 −20.9 −10.0 23.3 18.0 13.5 −32.7 −20.9 −10.0

Cal Reg 0.7 8.1 15.8 13.9 −9.9 −15.8 −10.9 1.6 11.7 42.0 2.1 −5.5
XGB 0.2 3.6 9.7 6.8 4.1 −0.4 1.2 6.2 9.7 5.1 1.0 −0.5

PSA Reg 16.8 14.6 11.4 −23.5 −16.5 −8.3 21.4 17.9 13.9 −30.0 −20.3 −10.1
XGB 20.1 14.6 14.8 −27.6 −17.2 −11.4 27.6 22.5 14.3 −36.0 −25.1 −11.9

SM Reg −7 × 108 15.8 1 × 108 13.9 −10.0 −15.8 −3 × 109 −1.7 9 × 107 42.0 2.1 −5.5
XGB −4.3 −4.1 0.6 7.0 4.2 −0.4 −2.1 −1.2 0.6 5.4 1.0 −0.5

DR Reg −7 × 108 15.8 1 × 108 13.9 −9.9 −15.8 −3 × 109 −1.8 9 × 107 42.0 2.1 −5.5
XGB −4.2 −4.2 0.6 7.0 4.2 −0.4 −2.3 −1.3 0.6 5.3 1.0 −0.5

SC2
2000 Naive 12.1 10.2 7.8 −18.2 −11.6 −5.6 12.1 10.2 7.8 −18.2 −11.6 −5.6

Cal Reg −1.4 0.1 5.9 6.7 4.0 −0.4 −0.7 3.1 5.9 5.0 1.1 −0.6
XGB −1.5 0.0 5.8 7.1 4.2 −0.3 −0.8 3.2 5.9 5.5 1.0 −0.4

PSA Reg −5.2 −4.3 −2.9 9.5 4.9 2.0 −0.2 0.1 −0.2 0.2 0.1 0.2
XGB 5.4 2.4 2.5 −8.5 −2.4 −2.1 15.2 10.8 5.9 −22.5 −12.3 −4.7

SM Reg −4.3 −4.0 0.6 6.7 4.0 −0.4 −2.1 −1.1 0.6 5.0 1.0 −0.6
XGB −4.1 −4.2 0.5 7.2 4.2 −0.3 −2.3 −1.2 0.6 5.6 0.9 −0.4

DR Reg −4.3 −4.0 0.6 6.7 4.0 −0.4 −2.2 −1.2 0.6 5.0 1.1 −0.6
XGB −4.1 −4.3 0.5 7.1 4.2 −0.3 −2.4 −1.2 0.6 5.5 1.0 −0.4

SC2
4000 Naive 11.8 10.1 7.7 −17.8 −11.5 −5.6 11.8 10.1 7.7 −17.8 −11.5 −5.6

Cal Reg −1.4 −0.1 5.8 6.6 4.1 −0.4 −0.7 3.0 5.8 5.0 1.1 −0.5
XGB −1.6 −0.2 5.7 7.0 4.2 −0.4 −0.9 3.1 5.8 5.4 1.0 −0.4

PSA Reg −5.4 −4.3 −2.9 9.8 4.9 2.0 −0.5 −0.1 −0.4 0.8 0.2 0.3
XGB 3.5 2.0 3.2 −5.6 −1.8 −2.7 13.9 10.8 6.4 −20.3 −12.1 −5.2

SM Reg −4.3 −4.0 0.6 6.6 4.0 −0.4 −2.1 −1.1 0.6 4.9 1.1 −0.5
XGB −4.1 −4.1 0.6 7.3 4.1 −0.4 −2.2 −1.2 0.6 5.6 0.9 −0.5

DR Reg −4.3 −4.0 0.5 6.6 4.1 −0.4 −2.1 −1.2 0.6 5.0 1.1 −0.5
XGB −4.1 −4.2 0.6 7.0 4.2 −0.3 −2.4 −1.2 0.6 5.4 1.0 −0.5

SC2
6000 Naive 11.4 9.9 7.4 −17.3 −11.1 −5.4 11.4 9.9 7.4 −17.3 −11.1 −5.4

Cal Reg −1.5 −0.2 5.6 6.6 4.1 −0.4 −0.7 2.9 5.7 4.9 1.1 −0.5
XGB −1.6 −0.3 5.6 7.0 4.2 −0.4 −0.9 3.0 5.6 5.3 1.0 −0.5

PSA Reg −5.3 −4.4 −2.8 9.8 4.9 1.9 −0.6 −0.2 −0.5 0.9 0.3 0.4
XGB 1.8 1.4 3.6 −3.0 −1.2 −3.1 12.3 10.3 6.5 −18.1 −11.3 −5.1

SM Reg −4.3 −4.0 0.6 6.5 4.1 −0.4 −2.1 −1.1 0.6 4.9 1.1 −0.5
XGB −4.2 −4.2 0.6 7.3 4.1 −0.4 −2.2 −1.1 0.6 5.6 1.0 −0.5

DR Reg −4.3 −4.0 0.5 6.6 4.1 −0.4 −2.1 −1.2 0.5 4.9 1.1 −0.5
XGB −4.1 −4.2 0.6 7.0 4.2 −0.3 −2.3 −1.2 0.6 5.3 1.1 −0.5

SC3
2000 Naive 9.8 8.9 6.9 −14.2 −10.2 −4.9 9.8 8.9 6.9 −14.2 −10.2 −4.9

Cal Reg −2.1 −0.5 5.3 7.4 4.3 −0.3 −1.3 2.6 5.4 5.5 1.1 −0.6
XGB −1.9 −0.5 5.3 7.0 4.2 −0.3 −1.2 2.8 5.3 5.5 1.0 −0.4

PSA Reg 1.7 0.7 −0.6 −3.0 −0.6 0.5 3.4 2.3 0.7 −6.1 −2.5 −0.4
XGB 10.5 5.7 5.3 −14.5 −5.6 −4.0 13.1 9.4 6.6 −17.8 −10.4 −5.0

SM Reg −4.5 −4.4 0.6 7.4 4.3 −0.3 −2.5 −1.2 0.6 5.5 1.1 −0.6
XGB −4.1 −4.1 0.6 7.1 4.2 −0.3 −2.4 −1.1 0.6 5.6 1.0 −0.4

DR Reg −4.5 −4.5 0.5 7.4 4.3 −0.3 −2.6 −1.2 0.6 5.5 1.1 −0.6
XGB −4.1 −4.2 0.5 7.1 4.2 −0.3 −2.5 −1.2 0.6 5.5 1.1 −0.4

SC3
4000 Naive 10.0 9.0 6.8 −14.3 −10.2 −4.9 10.0 9.0 6.8 −14.3 −10.2 −4.9

Cal Reg −1.9 −0.6 5.2 6.8 4.2 −0.4 −1.1 2.6 5.3 5.0 1.1 −0.5
XGB −1.8 −0.6 5.2 6.7 4.2 −0.3 −1.2 2.7 5.2 5.3 1.1 −0.5

PSA Reg 1.6 1.0 −0.4 −2.7 −1.0 0.3 3.3 2.7 0.7 −5.8 −2.9 −0.5
XGB 10.2 5.9 5.8 −14.1 −5.6 −4.6 12.7 9.8 7.2 −16.7 −11.0 −5.5

SM Reg −4.3 −4.2 0.5 6.8 4.1 −0.4 −2.1 −1.1 0.6 5.0 1.1 −0.5
XGB −4.2 −4.1 0.5 6.9 4.2 −0.4 −2.4 −1.2 0.6 5.4 1.0 −0.5

DR Reg −4.4 −4.2 0.5 6.8 4.2 −0.4 −2.2 −1.2 0.6 5.0 1.1 −0.5
XGB −4.1 −4.2 0.6 6.9 4.2 −0.3 −2.5 −1.2 0.6 5.3 1.1 −0.5

SC3
6000 Naive 10.0 9.0 6.7 −14.4 −10.2 −4.9 10.0 9.0 6.7 −14.4 −10.2 −4.9

Cal Reg −1.8 −0.6 5.2 6.6 4.1 −0.4 −1.1 2.6 5.2 4.9 1.1 −0.5
XGB −1.8 −0.6 5.2 6.7 4.2 −0.4 −1.2 2.6 5.2 5.2 1.1 −0.5

PSA Reg 1.6 0.9 −0.3 −2.9 -0.8 0.2 3.2 2.5 0.8 −5.8 −2.7 −0.5
XGB 9.8 6.4 6.5 −13.5 −6.0 −5.3 12.6 10.3 7.7 −16.2 −11.4 −6.0

SM Reg −4.3 −4.0 0.5 6.6 4.1 −0.4 −2.1 −1.2 0.6 4.9 1.1 −0.5
XGB −4.2 −4.2 0.6 6.9 4.2 −0.4 −2.3 −1.1 0.6 5.4 1.0 −0.5

DR Reg −4.3 −4.0 0.5 6.6 4.1 −0.4 −2.1 −1.2 0.5 4.9 1.1 −0.5
XGB −4.2 −4.2 0.6 6.9 4.2 −0.3 −2.4 −1.1 0.6 5.2 1.1 −0.5

These results show that the performance of the methods is very similar for each of
the probability sample selections considered. The following comments refer to the first
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columns. i.e., those corresponding to the situation in which the probability sample is chosen
through a stratified cluster scheme.

The naive estimator for all parameters in Scenario 1, where there is also coverage bias,
reflects a very large degree of bias, which is not eliminated by increasing the sample size.
The calibration estimator achieves a considerable reduction in the bias when XGBoost is used to
predict the values but does not achieve a significant reduction in the bias with linear regression.
For some parameters, this bias is even greater than that of the naive estimator.

As expected, in Scenario 1, the PSA-based estimators do not eliminate the self-selection
bias, since there is no relationship between the variables of interest and the probability of
participation, and the machine learning method used to predict the propensities has little
influence. These results are comparable to those reported by [43], who observed that it is
important to add covariates related to the study goal in order to make PSA useful.

On the contrary, with the SM method, the ML technique is of determinant importance:
the estimators based on linear regression perform very badly, in general, since there is no
linear relationship between the values to be predicted and the covariates. However, the
XGBoost method works well in the case of nonlinearity and allows us to select the useful
covariates in the prediction. A noteworthy finding is the large amount of bias shown by
the regression-based estimator for quantiles Q0.25 and Q0.75, while the version based on
XGBoost achieves a very significant error reduction. A very similar pattern of behavior was
observed in all cases between the SM and the DR estimators.

With Scenario 2, the estimators present a different behavior pattern. The probability of
participation depends on all the covariates, and the PSA method reduces the self-selection
bias considerably, in all cases. The ML method has less impact, and the degree of bias
reduction achieved is similar in the two methods. Comparable results were obtained with
SM and DR, the methods based on calibration. In these cases, the bias reduction in relation
to the values obtained with the naive estimator is very large and does not depend on the
ML method used. No clear pattern emerged as to which of the methods was the best: for
some parameters (Q0.25 and Q0.5), the calibration method worked better, while for others
(Fy(Q0.5)), the PSA achieved the greatest reduction in bias, and in yet others (Q0.75) the best
estimates were produced by SM and DR.

In Scenario 3, where the probability of participating depends only on the age covariate,
the calibration estimators, DR and SM, also performed well, obtaining a good level of
bias reduction. The estimator based on PSA with logistic regression was the best of all in
this respect, for all parameters. However, when XGBoost was used, this decrease in bias
was not observed in some parameters. This may be due to the fact that this ML method
is very sensitive to the choice of hyperparameters and in these simulations the default
parameters were chosen and no hyperparameter optimization was performed. Table 2
shows the relative RMSE of these estimators, for each scenario.

Table 2. RMSE (%) for each reference probability sample, parameter, non-probability sampling and
size, method, and machine learning model (linear/logistic regression or XGBoost).

Stratified Proportional

Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75) Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75)

SC1
2000 Naive 23.4 18.0 13.5 32.8 21.0 10.0 23.4 18.0 13.5 32.8 21.0 10.0

Cal Reg 24.0 21.8 19.1 54.4 32.2 27.5 21.7 13.4 13.3 59.3 21.6 15.6
XGB 1.1 3.8 9.9 7.3 4.2 0.4 1.5 6.5 9.9 5.6 1.0 0.5

PSA Reg 16.9 14.7 11.2 23.5 16.6 8.3 21.6 18.0 13.9 30.1 20.5 10.1
XGB 20.3 13.7 11.4 29.0 16.2 9.3 28.7 21.2 12.8 38.7 24.7 10.8

SM Reg 9 × 108 45.5 7 × 108 54.4 32.2 27.5 3 × 109 28.4 2 × 108 59.3 21.6 15.6
XGB 4.2 4.3 0.7 7.5 4.2 0.5 2.4 1.3 0.8 5.8 1.0 0.6

DR Reg 9 × 108 45.4 7 × 108 54.4 32.2 27.5 3 × 109 28.5 2 × 108 59.3 21.6 15.6
XGB 4.2 4.3 0.7 7.4 4.2 0.4 2.5 1.3 0.7 5.7 1.0 0.6



Mathematics 2022, 10, 4726 14 of 19

Table 2. Cont.

Stratified Proportional

Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75) Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75)

SC1
4000 Naive 23.4 18.2 13.6 32.8 21.1 10.1 23.4 18.2 13.6 32.8 21.1 10.1

Cal Reg 22.3 16.7 15.3 59.4 25.5 19.8 21.4 12.7 13.0 59.6 20.9 14.8
XGB 0.8 3.7 9.9 7.0 4.2 0.4 1.4 6.4 10.0 5.3 1.0 0.5

PSA Reg 16.9 14.7 11.4 23.5 16.6 8.3 21.5 18.0 13.9 30.1 20.4 10.1
XGB 20.2 14.3 13.5 28.5 16.8 10.6 28.3 22.2 13.8 37.4 25.1 11.5

SM Reg 3 × 109 35.3 5 × 108 59.4 25.5 19.8 3 × 109 27.4 3 × 108 59.6 20.9 14.8
XGB 4.3 4.2 0.7 7.3 4.2 0.5 2.3 1.2 0.7 5.7 1.0 0.6

DR Reg 3 × 109 35.2 5 × 108 59.4 25.5 19.8 3 × 109 27.4 3 × 108 59.6 20.9 14.8
XGB 4.2 4.2 0.7 7.2 4.2 0.4 2.4 1.3 0.6 5.4 1.0 0.5

SC1
6000 Naive 23.3 18.1 13.5 32.8 20.9 10.0 23.3 18.1 13.5 32.8 20.9 10.0

Cal Reg 23.1 19.5 17.4 56.8 29.3 24.2 21.5 13.0 13.0 59.5 21.2 15.1
XGB 0.6 3.7 9.7 6.8 4.2 0.4 1.3 6.2 9.8 5.2 1.0 0.5

PSA Reg 16.9 14.6 11.5 23.5 16.5 8.3 21.4 18.0 13.9 30.1 20.4 10.1
XGB 20.4 14.8 15.1 27.9 17.4 11.6 27.8 22.6 14.4 36.2 25.2 11.9

SM Reg 1 × 109 41.0 3 × 108 56.8 29.3 24.2 4 × 109 27.8 3 × 108 59.5 21.2 15.1
XGB 4.4 4.2 0.7 7.2 4.2 0.5 2.2 1.2 0.7 5.5 1.0 0.6

DR Reg 1 × 109 41.0 3 × 108 56.8 29.3 24.2 4 × 109 27.9 3 × 108 59.5 21.2 15.1
XGB 4.2 4.2 0.6 7.1 4.2 0.4 2.4 1.3 0.6 5.3 1.1 0.5

SC2
2000 Naive 12.4 10.4 8.0 18.5 11.8 5.8 12.4 10.4 8.0 18.5 11.8 5.8

Cal Reg 1.5 1.0 6.0 6.7 4.0 0.4 0.9 3.2 6.1 5.0 1.1 0.6
XGB 1.7 1.1 6.0 7.2 4.2 0.4 1.1 3.4 6.0 5.6 1.0 0.5

PSA Reg 5.6 4.6 3.2 10.2 5.2 2.2 1.8 1.6 1.3 3.2 1.7 0.8
XGB 7.3 4.8 4.2 11.5 5.2 3.5 15.8 11.3 6.6 23.6 12.9 5.3

SM Reg 4.3 4.0 0.7 6.7 4.0 0.4 2.1 1.1 0.6 5.0 1.1 0.6
XGB 4.2 4.2 0.7 7.4 4.2 0.5 2.4 1.3 0.7 5.8 1.0 0.5

DR Reg 4.3 4.0 0.6 6.7 4.0 0.4 2.2 1.2 0.6 5.0 1.1 0.6
XGB 4.1 4.3 0.7 7.2 4.2 0.4 2.5 1.3 0.7 5.6 1.0 0.5

SC2
4000 Naive 11.9 10.2 7.8 18.0 11.6 5.6 11.9 10.2 7.8 18.0 11.6 5.6

Cal Reg 1.5 0.7 5.8 6.6 4.1 0.4 0.8 3.1 5.9 5.0 1.1 0.5
XGB 1.6 0.8 5.8 7.1 4.2 0.4 1.0 3.2 5.8 5.4 1.1 0.5

PSA Reg 5.5 4.5 3.0 10.1 5.0 2.0 1.2 1.1 0.9 2.3 1.2 0.6
XGB 5.0 3.9 4.1 8.0 3.9 3.4 14.3 11.0 6.8 21.0 12.4 5.4

SM Reg 4.3 4.0 0.6 6.6 4.0 0.4 2.1 1.1 0.6 4.9 1.1 0.5
XGB 4.2 4.2 0.7 7.4 4.1 0.5 2.3 1.3 0.7 5.7 1.0 0.5

DR Reg 4.3 4.0 0.5 6.6 4.1 0.4 2.1 1.2 0.6 5.0 1.1 0.5
XGB 4.1 4.2 0.6 7.1 4.2 0.4 2.4 1.3 0.6 5.5 1.1 0.5

SC2
6000 Naive 11.5 9.9 7.5 17.4 11.2 5.4 11.5 9.9 7.5 17.4 11.2 5.4

Cal Reg 1.5 0.6 5.7 6.6 4.1 0.4 0.8 2.9 5.7 4.9 1.1 0.5
XGB 1.7 0.6 5.6 7.1 4.2 0.4 1.0 3.0 5.7 5.3 1.1 0.5

PSA Reg 5.4 4.4 2.9 10.0 5.0 2.0 1.1 0.9 0.8 2.1 1.0 0.6
XGB 3.3 3.1 4.1 5.4 2.9 3.5 12.7 10.5 6.7 18.6 11.6 5.3

SM Reg 4.3 4.0 0.6 6.6 4.1 0.4 2.1 1.1 0.6 4.9 1.1 0.5
XGB 4.3 4.2 0.6 7.4 4.1 0.4 2.2 1.1 0.6 5.7 1.0 0.5

DR Reg 4.3 4.0 0.5 6.6 4.1 0.4 2.1 1.2 0.5 4.9 1.1 0.5
XGB 4.2 4.2 0.6 7.0 4.2 0.4 2.3 1.2 0.6 5.3 1.1 0.5

SC3
2000 Naive 10.1 9.1 7.1 14.5 10.4 5.1 10.1 9.1 7.1 14.5 10.4 5.1

Cal Reg 2.2 1.1 5.4 7.4 4.3 0.4 1.5 2.8 5.5 5.6 1.1 0.6
XGB 2.1 1.1 5.4 7.1 4.3 0.4 1.4 2.9 5.5 5.6 1.1 0.5

PSA Reg 6.1 4.3 3.3 10.3 5.0 2.3 6.1 4.4 3.2 10.5 5.0 2.2
XGB 11.7 7.1 6.5 16.3 7.2 4.9 14.2 10.1 7.4 19.6 11.3 5.6

SM Reg 4.5 4.5 0.6 7.4 4.3 0.4 2.5 1.2 0.7 5.6 1.1 0.6
XGB 4.2 4.2 0.8 7.3 4.2 0.5 2.4 1.2 0.8 5.7 1.0 0.6

DR Reg 4.5 4.5 0.6 7.4 4.3 0.4 2.6 1.2 0.6 5.6 1.1 0.6
XGB 4.2 4.2 0.7 7.2 4.2 0.4 2.5 1.2 0.7 5.6 1.1 0.5

SC3
4000 Naive 10.1 9.0 6.9 14.4 10.3 4.9 10.1 9.0 6.9 14.4 10.3 4.9

Cal Reg 1.9 0.8 5.3 6.8 4.2 0.4 1.2 2.7 5.3 5.0 1.1 0.5
XGB 1.9 0.9 5.3 6.8 4.2 0.4 1.3 2.7 5.3 5.3 1.1 0.5

PSA Reg 3.9 3.0 2.2 6.8 3.3 1.5 4.6 3.6 2.1 7.9 4.0 1.5
XGB 10.7 6.7 6.4 15.0 6.5 5.1 13.3 10.2 7.5 17.6 11.4 5.8

SM Reg 4.3 4.2 0.6 6.8 4.1 0.4 2.2 1.1 0.6 5.0 1.1 0.5
XGB 4.2 4.2 0.7 7.1 4.2 0.4 2.4 1.2 0.7 5.5 1.0 0.6

DR Reg 4.4 4.2 0.5 6.8 4.2 0.4 2.3 1.2 0.6 5.0 1.1 0.5
XGB 4.2 4.2 0.6 7.0 4.2 0.4 2.5 1.2 0.6 5.4 1.1 0.5
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Table 2. Cont.

Stratified Proportional

Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75) Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75)

SC3
6000 Naive 10.0 9.0 6.8 14.5 10.2 4.9 10.0 9.0 6.8 14.5 10.2 4.9

Cal Reg 1.8 0.7 5.2 6.6 4.1 0.4 1.1 2.6 5.3 4.9 1.1 0.5
XGB 1.9 0.8 5.2 6.8 4.2 0.4 1.3 2.7 5.2 5.2 1.1 0.5

PSA Reg 3.1 2.4 1.7 5.5 2.6 1.2 4.0 3.1 1.7 7.0 3.5 1.2
XGB 10.2 6.9 6.9 14.2 6.6 5.5 12.9 10.5 7.9 16.7 11.6 6.2

SM Reg 4.3 4.1 0.5 6.6 4.1 0.4 2.1 1.2 0.6 4.9 1.1 0.5
XGB 4.2 4.2 0.7 7.0 4.2 0.4 2.4 1.1 0.7 5.4 1.1 0.5

DR Reg 4.3 4.1 0.5 6.6 4.1 0.4 2.1 1.2 0.5 4.9 1.1 0.5
XGB 4.2 4.2 0.6 7.0 4.2 0.4 2.5 1.2 0.6 5.3 1.1 0.5

In Scenario 1, the estimators that use linear or logistic regression are the least efficient,
due to the bias that is present. Calibrated SM and DR estimators based on XGBoost improve
efficiency by reducing bias. Moreover, the RMSE reduction is very strong in some parame-
ters (Q0.75 and Fy(Q0.75)). However, the PSA-based estimates do not produce a significant
reduction in RMSE because the propensities cannot be modeled from the covariates.

In Scenarios 2 and 3, all the proposed methods effectively reduce the error in the
estimates, with the exception of PSA with XGBoost in some cases, as discussed above.

To determine whether this problem encountered with the XGBoost method in some
situations can be resolved with an appropriate choice of hyperparameters, we repeated
the simulation using a hyperparameter optimization process based on the Tree-structured
Parzen Estimator (TPE) algorithm [59]. In this procedure, the error is estimated by cross-
validation on the logistic loss obtained by each possible model over the training data.
Accordingly, this process could be replicated in a real-world scenario.

Tables 3 and 4 show the bias and RMSE values for the estimators with this new
simulation for Scenario 2 and Setup 2 (the worst scenario for PSA with the default XGBoost
method). Similar results were obtained for all other situations, but for reasons of space they
are not shown in this paper.

Table 3. Bias (%) including hyperparameter optimization when overfitting.

Proportional

Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75)

SC2 2000 Naive 12.1 10.2 7.8 −18.2 −11.6 −5.6
Cal Reg −0.7 3.1 5.9 5.0 1.1 −0.6

XGB −0.8 3.2 5.9 5.5 1.0 −0.4
PSA Reg −0.2 0.1 −0.2 0.2 0.1 0.2

XGB 15.2 10.8 5.9 −22.5 −12.3 −4.7
XGB (opt) 2.4 2.7 2.1 −4.1 −2.8 −1.4

SM Reg −2.1 −1.1 0.6 5.0 1.0 −0.6
XGB −2.3 −1.2 0.6 5.6 0.9 −0.4

DR Reg −2.2 −1.2 0.6 5.0 1.1 −0.6
XGB −2.4 −1.2 0.6 5.5 1.0 −0.4

Table 4. RMSE (%) including hyperparameter optimization when overfitting.

Proportional

Q0.25 Q0.5 Q0.75 Fy(Q0.25) Fy(Q0.5) Fy(Q0.75)

SC2 2000 Naive 12.4 10.4 8.0 18.5 11.8 5.8
Cal Reg 0.9 3.2 6.1 5.0 1.1 0.6

XGB 1.1 3.4 6.0 5.6 1.0 0.5
PSA Reg 1.8 1.6 1.3 3.2 1.7 0.8

XGB 15.8 11.3 6.6 23.6 12.9 5.3
XGB (opt) 3.0 3.2 2.6 5.2 3.4 1.8

SM Reg 2.1 1.1 0.6 5.0 1.1 0.6
XGB 2.4 1.3 0.7 5.8 1.0 0.5

DR Reg 2.2 1.2 0.6 5.0 1.1 0.6
XGB 2.5 1.3 0.7 5.6 1.0 0.5
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These results clearly show that, by optimizing the hyperparameters, we have consid-
erably reduced the bias and error of the estimators.

6. Discussion

In recent years, the use of survey-based online research has expanded considerably.
Web surveys are an attractive option in many fields of sociological investigation due to
their low fieldwork costs and rapid data collection. However, this survey mode is also
subject to many limitations in terms of accurately representing the target population, and
the estimates thus obtained are highly likely to present coverage and/or self-selection bias.
Various correction techniques, such as calibration, propensity score adjustment, and statistical
matching, have been proposed as a means of reducing or eliminating these forms of bias.

Our paper focuses on the question of estimating the distribution function. This issue
is important: the distribution function is a basic statistic underlying many others; for
purposes such as assessing and comparing finite populations, it can be more revealing than
the use of simple means and totals. Indeed, many previous studies have been undertaken
to consider how calibration techniques may be applied to the estimation of the distribution
function in the context of a probability survey [19–27] and even to overcome the problem
of non-response [28]. However, to our knowledge, very few, if any, studies have addressed
this issue from the standpoint of a non-probability survey. Accordingly, we analyze the
efficiency obtained by certain bias-correction techniques such as calibration, propensity
score adjustment, and statistical matching in various situations within a non-probability
survey context. In this analysis, we consider the performance of several estimators in terms
of reducing self-selection bias, using a representative survey sample as a proxy for the
target population. Among the results obtained by the estimators proposed for the distribu-
tion function, F̂yc1(t) needs specific pseudo-distances G(., .) in order to satisfy condition
(ii). The estimator F̂YDR2(t) is always a genuine distribution function and under favorable
conditions, the estimators F̂Yc2(t) and F̂Yc3(t) also obtain a genuine distribution function.
Moreover, with minor modifications, the estimators F̂YIPS(t) (under a logistic regression
model) and F̂YSM(t) also satisfy the distribution function conditions. On the other hand, the
estimators F̂YDR(t) and F̂YDR3(t) are not generally monotonically nondecreasing functions,
and therefore when estimating quantiles, an additional process, which increases the com-
putational cost, must be applied. All the estimators included in our proposal can be used
under linear and nonlinear models. Self-evidently, F̂YIPS(t), F̂YSM(t), F̂YDR(t), F̂YDR2(t),
and F̂YDR3(t) are applicable to linear or nonlinear models. While the calibrated estimators
F̂Yc2(t) and F̂Yc3(t) assume a linear model, due to the pseudo-variable gk, the combination
with XGBoost enables them to be used with other models too. Furthermore, F̂Yc2(t) and
F̂Yc3(t) can cover the nonlinear case through the procedure described in [60]. The behavior
of all these estimators is demonstrated through simulation studies.

Although further investigation is needed, our results show that self-selection bias can
be greatly reduced by any of the four methods considered, particularly when appropriate
covariates and a valid machine learning technique are used, both in estimating propensities
and in predicting values. However, our investigation did not enable us to determine which
method is best in all situations. Specifically, for each parameter and bias-reduction method,
different behavior patterns were obtained. Nevertheless, in general, the calibration method
based on XGBoost is fairly efficient in any situation.

Although the methods proposed are shown to be effective in reducing the MSE of
quantile and distribution function estimates in various situations, certain limitations exist
and must be acknowledged. For the PS-based method, for example, the amount of bias
reduction achieved depends on how well the propensity model predictors predict the
outcome. If the propensity model is poorly fitted, the PS estimates may even be more
biased than naive estimates. This is also the case with estimators based on SM, which need
a good model in order to accurately predict the y-values. In addition, for the distribution
function, the issue is even more complex; although there is a good linear relationship
between y and the covariates x, this relationship is not necessarily transferred to the
jump functions ∆(t− y). In practice, it is often difficult to decide whether the auxiliary
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variables contain all the components needed to characterize the selection mechanism and
the superpopulation model. Therefore, when selecting the covariates and the function of
the model, it is essential to use flexible ML techniques.

Finally, the present study does not address the question of the estimation of variance.
Plug-in estimators can be used to construct variance estimators from the expression of the
asymptotic variance, but the issue is not simple, as the variance depends on the probability
of the sample sR being selected and on the selection mechanism described by the propen-
sity model. In estimating the variance for nonlinear parameters, jackknife and bootstrap
techniques [61] might be useful and should be considered in future research in this area.
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