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Abstract: Plastic-covered greenhouse (PCG) segmentation represents a significant challenge for
object-based PCG mapping studies due to the spectral characteristics of these singular structures.
Therefore, the assessment of PCG segmentation quality by employing a multiresolution segmentation
algorithm (MRS) was addressed in this study. The structure of this work is composed of two
differentiated phases. The first phase aimed at testing the performance of eight widely applied
supervised segmentation metrics in order to find out which was the best metric for evaluating image
segmentation quality over PCG land cover. The second phase focused on examining the effect of
several factors (reflectance storage scale, image spatial resolution, shape parameter of MRS, study
area, and image acquisition season) and their interactions on PCG segmentation quality through
a full factorial analysis of variance (ANOVA) design. The analysis considered two different study
areas (Almeria (Spain) and Antalya (Turkey)), seasons (winter and summer), image spatial resolution
(high resolution and medium resolution), and reflectance storage scale (Percent and 16Bit formats).
Regarding the results of the first phase, the Modified Euclidean Distance 2 (MED2) was found to be
the best metric to evaluate PCG segmentation quality. The results coming from the second phase
revealed that the most critical factor that affects MRS accuracy was the interaction between reflectance
storage scale and shape parameter. Our results suggest that the Percent reflectance storage scale,
with digital values ranging from 0 to 100, performed significantly better than the 16Bit reflectance
storage scale (0 to 10,000), both in the visual interpretation of PCG segmentation quality and in the
quantitative assessment of segmentation accuracy.

Keywords: greenhouse segmentation; multiresolution segmentation (MRS); object-based image
analysis (OBIA); segmentation quality; supervised evaluation

1. Introduction

Recently, the agricultural areas using plastic-covered greenhouses (PCG) have ex-
panded rapidly as the food demand increases with the population growth, since the
intensification of agriculture production is a promising alternative. Nevertheless, PCG
activities are subject to various environmental concerns in addition to their contribution to
agricultural development [1,2]—for example: contamination of aquifers [3], deterioration
of soils due to plastic film residues [4], invasion of protected areas [5], or transformation
of primary land use and land cover [6]. In this way, it is necessary to understand and
monitor the distribution of these structures worldwide to develop efficient management
strategies. Nowadays, remote sensing technology has proven to be a suitable approach
to obtain information on the distribution of PCG, as it provides monitoring in a wide
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geographical area and has an extensive temporal archive [6,7]. However, PCG mapping
from remote sensing images remains challenging due to the unique spectral characteristics
of greenhouses [6,8].

Once remotely sensed images have been acquired, they have to be processed to extract
meaningful information. Among available image processing methods, object-based image
analysis (OBIA) has been widely utilized in PCG mapping, since its ability to model
contextual information, including shape, texture, and topological relationships between
groups of pixels (segments), reduces confusion in the classification process [9]. In this sense,
the first and one of the most crucial steps in OBIA workflow is image segmentation, which
largely determines the accuracy of subsequent classification [10], thus constituting a basic
intermediate step for many applications [11]. Image segmentation divides the input image
into relatively homogeneous and semantically significant groups of pixels representing real
land cover depending on color, spectral characteristics, texture, or shape of objects [12]. The
reader can find a detailed meta-analysis on remote sensing image segmentation advances
during the last two decades in Kotaridis and Lazaridou [13].

Although there are different image segmentation algorithms developed in the fields of
image processing and computer vision, the multiresolution segmentation (MRS) algorithm,
available through eCognition software (Trimble, Munich, Germany), has been widely
used and successfully employed in various remote sensing applications. For instance, Ma
et al. [14] reported that up to 80.9% of the 254 case studies analyzed in their work had
adopted eCognition software to carry out the segmentation stage. It is important to note
that this image segmentation algorithm has also been used effectively in object-based PCG
mapping studies from different input data [9,15–18].

The MRS outputs depend on three tuning parameters (scale, shape, and compactness)
specified by the user. The optimal value of these parameters depends largely on the
intended application, which is mainly related to the target land cover and the characteristics
of the input image. The main reason for this is that land objects or segments have different
spectral and structural variability, which means that the parameters that reach optimal
segmentation may vary for different land objects [10,19–21]. Nonetheless, deciding the
most suitable segmentation is not an easy task, since it may be impossible to achieve an
optimal segmentation for even a single land object due to image noise, fuzzy borders, or
hierarchical details of the objects [22]. In this case, it is necessary to create a framework
in which segmentation quality can be evaluated to ensure the generalization of image
segmentation. Consequentially, segmentation quality can be assessed iteratively on the
image until the most suitable segmentation is produced [20].

However, how does one assess segmentation quality? Numerous empirical methods
have been proposed to evaluate the accuracy of image segmentation, and these are catego-
rized as supervised and unsupervised [23,24]. Supervised evaluation methods rely on the
discrepancy between a set of reference polygons and their corresponding image segments
generated by the tested algorithm [25]. On the other hand, unsupervised approaches
measure segmentation goodness by analyzing the inter-class heterogeneity and intra-class
homogeneity [20,24]. Chen et al. [26] stated that the supervised evaluation methods are
more appropriate for the artificial target recognition task since these methods take more
into account the accuracy of geometric boundaries. Accordingly, supervised evaluation
methods can be used efficiently to choose the optimal segmentation algorithm or to decide
the most appropriate segmentation parameters for a specific segmentation algorithm [26].
Regarding unsupervised evaluation methods, it is worth noting that intra-class homogene-
ity within a single PCG segment can be affected by factors such as the presence of plants
inside the PCG or roof whitewashing activities. Furthermore, inter-class heterogeneity may
be influenced in study areas where PCG are densely concentrated. Such reasons may result
in unsupervised evaluation methods being ineffective in evaluating the accuracy of PCG
segmentation.

Several empirical studies have focused on assessing segmentation quality through
supervised evaluation metrics [20,25,27,28]. For instance, a well-documented review re-
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ported by Clinton et al. [25] assessed several segmentation evaluation metrics for measuring
under-segmentation and over-segmentation, or both. In addition, a recent study by Joz-
dani and Chen [20] compared the under-segmentation, over-segmentation, and combined
supervised segmentation evaluation metrics, finally providing a general overview on the
selection of supervised evaluation metrics for buildings extraction.

Although the segmentation outputs on satellite imagery obtained through the MRS
algorithm are highly dependent on the selected scale parameter, they may also be affected
by the acquisition date (note that the spectral signature of greenhouses changes over time),
shape parameter, and image spatial resolution [11,29].

Aguilar et al. [29] reported the first finding to determine the optimal WorldView-3-
derived image data source to perform the MRS algorithm on PCG. They found that the
multispectral WorldView-3 atmospherically corrected orthoimage was the most suitable
image data source to achieve the best PCG segmentation. This image product presented a
geometric resolution of 1.2 m and digital values expressed as ground reflectance ranging
from 0 to 100 (percentage values).

Finally, and to the best of authors’ knowledge, no study has experimentally analyzed
the direct effect and interactions of all the variables that can potentially affect PCG segmen-
tation quality so far. Thus, in the light of the examined literature, a two-stage experimental
research was designed in this study to tackle PCG segmentation through applying the
MRS algorithm. In this way, the first objective of this paper is to evaluate the performance
of eight supervised segmentation metrics for estimating PCG segmentation quality. The
second objective aims at statistically unraveling the influence of several factors (reflectance
storage scale, image spatial resolution, shape parameter, study area, and image capture
date or season) and their interactions on PCG segmentation quality through a full factorial
analysis of variance (ANOVA) design.

2. Study Areas

Two square areas of 3 km per side located in Almería (Spain) and Antalya (Turkey)
were selected as the study areas in this work (Figure 1).

The study area of Almería, southeast of Spain, was centered on the geographic co-
ordinates (WGS84) 2.668◦W and 36.777◦N. There is a dense concentration of PCG in this
region dedicated to the intensive production of horticultural crops such as tomato, pepper,
cucumber, aubergine, melon, and watermelon [30,31]. It is worth noting that the spectral
signatures of PCG change over time due to both the phenological development of the
growing crops [18] and frequent roof whitewashing performed to mitigate excess radiation
and lower the temperature inside the greenhouse [7].

The second study area was located in the Aksu district of Antalya, Turkey, centered
on the geographic coordinates (WGS84) 30.805◦E and 36.968◦N. This region is one of the
provinces where greenhouse production is most intense in Turkey, mainly dedicated to the
cultivation of vegetables, cut flowers, ornamental plants, and saplings. The most common
covering material for the greenhouse structures located at this study area is plastic, although
there are also some glass greenhouses. The distribution of PCG in Antalya looks more
isolated and dispersed than in Almería (Figure 1).
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Figure 1. (a) Global location of the Almería and Antalya study sites; (b) general overview of the PCG 
in Almería, and (c) Antalya; (d) study area in Almería and (e) Antalya. Note: those polygons de-
picted in (d,e) are the manually digitized reference polygons used for segmentation quality assess-
ment. 
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summer seasons due mainly to the whitewashing of greenhouse roofs, which is more fre-
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3.1. WorldView-3 

Figure 1. (a) Global location of the Almería and Antalya study sites; (b) general overview of the PCG
in Almería, and (c) Antalya; (d) study area in Almería and (e) Antalya. Note: those polygons depicted
in (d,e) are the manually digitized reference polygons used for segmentation quality assessment.

3. Datasets and Pre-Processing

Eight cloud-free satellite images corresponding to Almería (two images from WorldView-
3 and two from Sentinel-2) and Antalya (two images from SPOT-7 and two from Sentinel-2)
study sites were used in this work. The image acquisition dates were chosen based on data
availability and with the intention of trying to cover two different seasons, since the spectral
signature of PCG changes substantially between the winter and summer seasons due mainly
to the whitewashing of greenhouse roofs, which is more frequent in summer.

3.1. WorldView-3

WorldView-3 (WV3) is a high-spatial-resolution optical satellite launched in 2014
and operated by DigitalGlobe Inc. (currently Maxar). The two WV3 images covering the
Almería study area were taken on 11 June 2020 (summer image) and 25 December 2020
(winter image). Both images, taken in Ortho Ready Standard Level-2A (ORS2A) format,
included the multispectral (MS) image composed of eight visible and near-infrared bands
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with a spatial resolution of 1.24 m [32]. The WV3 images were acquired with off-nadir
angles of 27.6◦ and 1.5◦ for the summer and winter images, respectively. The final MS
product presented a ground sample distance (GSD) of 1.2 m. The delivered products were
ordered with a dynamic range of 11 bits (without dynamic range adjustment).

According to Aguilar et al. [31], the MS WV3 orthoimages were obtained using the
coordinates of seven ground control points (GCPs) and a sensor model based on rational
functions refined by a zero-order transformation (RPC0). A medium resolution 10 m grid
spacing DEM was used to carry out the orthorectification process by using Catalyst v.
2222.0.5 software (PCI Geomatics, Richmond Hill, ON, Canada).

The MS WV3 orthoimages were atmospherically corrected with the ATCOR module
based on the MODTRAN (MODerate resolution atmospheric TRANsmission) radiative
transfer code [33] implemented in Catalyst. The WV3 ATCOR MS orthoimages were
computed in two ways to investigate the effect of reflectance digital storage scale on
segmentation accuracy: (i) 16Bit Reflectance: computing the output in reflectance units
ranging from 0 to 10,000 integer values stored in a 16-bit signed integer format (hereinafter
referred to as 16Bit reflectance). (ii) Percent Reflectance: computing the output in reflectance
units from zero to 100 real values stored in a float32 single-precision floating-point format
(hereinafter referred to as Percent reflectance).

3.2. SPOT-7

SPOT-7 was launched by AIRBUS Defense & Space in 2014, acquiring MS images
including four bands (red, green, blue, and NIR) with 6 m GSD. It also counts on a
panchromatic (PAN) image with a spatial resolution of 1.5 m. The radiometric resolution of
SPOT-7 imagery is 12 bits. The two SPOT-7 images used to cover the Antalya study area
were Orthorectified products, being taken on 5 February 2019 (winter season) and 4 July
2019 (summer season) with off-nadir angles of 9.3◦ and 20.6◦, respectively.

SPOT-7 pan-sharpened images (1.5 m GSD with four spectral bands) were obtained
from the SPOT-7 PAN and MS images using the PANSHARP module of Catalyst. Next,
atmospherically corrected SPOT-7 pan-sharpened orthoimages (both in 16Bit reflectance
and Percent reflectance formats) were produced with the ATCOR module following the
methodology previously described for WV3 imagery.

3.3. Sentinel-2

Sentinel-2 (S2) is a satellite system designed for simultaneous global and continuous
monitoring of land and coastal areas made up of two identical satellites, namely Sentinel-2A
(S2A) and Sentinel-2B (S2B). The MultiSpectral Instrument (MSI) sensors on-board S2A and
S2B satellites provide up to 13 spectral bands with different GSD, ranging from 10 m to 60 m.
In this research, four S2 Level-2A (Orthorectified product providing Bottom-Of-Atmosphere
reflectance, L2A) images for Almería and Antalya study sites were downloaded from the
Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home; accessed
on 1 November 2022). The radiometric resolution of S2 is 12 bits [34], although S2 L2A
reflectance products are provided as 16 bits integers. In the case of the Almería study
area, a winter season S2A image taken on 26 December 2020 (just one day later than the
corresponding image from WV3) and a summer season S2B image taken on 14 June 2020
(three days later) were acquired from the orbit number R051. This orbit, which leaves the
sun behind the sensor, was recommended by Aguilar et al. [30] to avoid sun glint effects on
the plastic sheets of greenhouse roofs. Regarding the Antalya study area, two S2 images
taken as close as possible to their corresponding SPOT-7 orthoimages (i.e., on 1 February
2019 (S2B) and 6 July 2019 (S2A)) were acquired from the orbit number R064 to avoid sun
glint effects.

The original L2A S2 images were co-registered with their corresponding High Resolu-
tion (HR) images (WV3 and SPOT-7) using the AROSICS library available through python
programming language [35].

https://scihub.copernicus.eu/dhus/#/home
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Finally, the co-registered S2 images downloaded as L2A format (0–10,000 integer
values of reflectance units) were equivalent to the aforementioned 16Bit reflectance format
of WV3 and SPOT-7. In order to obtain a format equivalent to Percent reflectance (i.e., 0–100
real values of reflectance units), it used a python script that simply divided pixel values by
100 to transform the digital values from 0–10,000 (16-bit signed integer format) to 0–100
(float32 single-precision floating-point format).

4. Methods

A two-step methodology was devised to quantitatively assess image segmentation
quality over PCG land cover and investigate some factors (and interactions between them)
that could explain its variability.

4.1. First Phase: Supervised Metrics Assessment

Regarding the first phase, eight supervised evaluation metrics (see Section 4.1.1) were
tested to determine which performs better on estimating PCG segmentation quality on a
wide range of segmentations (see Section 4.1.2).

4.1.1. Segmentation Quality Assessment Metrics

Supervised metrics for segmentation quality assessment rely on reference polygons
(usually manually digitized) to estimate the goodness of image segmentation [22,29]. Met-
rics usually measure under-segmentation error, over-segmentation error, or the type of
error where both are combined [22]. In fact, Jozdani and Chen [20] tested up to 21 over-
segmentation, under-segmentation, and combined types of metrics. They reported that
both over-segmentation and under-segmentation metrics showed distinct disadvantages.
Therefore, only the combined metrics have been considered in this research.

According to the notation given by Clinton et al. [25] and Costa et al. [22], let
X = {xi : i = 1, 2, . . . , n} be the reference data set composed of n reference polygons and
Y =

{
yj : j = 1, 2, . . . , m

}
be the segmentation dataset consisting of m segments. Moreover,

the area
(

xi ∩ yj
)

describes the geometric intersection of the reference object xi and the
segment yj. In this way, the following notations are used to describe the different supervised
metrics:

- Ỹi =
{

yj : area
(

xi ∩ yj
)
6= 0

}
is the set of all yj objects that intersect reference object xi

- Yai =
{

yj : the centroid o f xi is in yj
}

- Ybi
=
{

yj : the centroid o f yj is in xi
}

- Yci =
{

yj : area
(

xi ∩ yj
)
/area

(
yj
)
> 0.5

}
- Ydi

=
{

yj : area
(

xi ∩ yj
)
/area(xi) > 0.5

}
- Y

′
i =

{
yj : max

(
area

(
xi ∩ yj

))}
- Y∗i =

{
Yai ∪Ybi

∪ Yci ∪Ydi

}
The first supervised segmentation metric evaluated in this research is Area Fit Index

(AFI), proposed by Lucieer and Stein [36]. AFI (Table 1, metric 1) is calculated as the mean of
all AFIij values. If the overlap ratio between the reference dataset and the segments is 100%,
then AFI equals zero, which means perfect fit. AFI > 0.0 would indicate over-segmentation,
whereas AFI < 0.0 would mean under-segmentation.

Regarding the Quality Rate (QR) (Table 1, metric 2) [37], it ranges from 0 to 1. The
ideal segmentation value would mean that QR = 0. Global metric QR would be the mean
of all QRij.

Clinton et al. [25] described Index D (D-index) (Table 1, metric 3) as the “closeness”
to an ideal segmentation result for a predefined reference polygons dataset. This index
was originally proposed by Levine and Nazif [38] by combining over-segmentation (OS)
and under-segmentation (US) measures. The D-index ranges from 0 to 1, with the ideal
segmentation corresponding to a D-index = 0.

The fourth metric is Match (M) (Table 1, metric 4), introduced by Janssen and Mole-
naar [39]. M is the mean of all Mij values. It presents values ranging from 0 to 1. M = 1
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means a perfect match between the reference dataset and segmentation objects, whereas
M = 0 corresponds to the no matching scenario.

Fitness Function (FF) (Table 1, metric 5), devised by Costa et al. [22], quantifies both
over-segmentation and under-segmentation. Global metric F is the mean of all summed
Fij over all yj. This index results in zero for a perfect fit, whereas larger values mean an
over-segmentation or under-segmentation scenario.

The F measure (Table 1, metric 6) was proposed by Zhang et al. [40]. It is based on the
widely known precision and recall metrics. The precision metric is computed by comparing
reference polygons to corresponding segments, whereas the recall measure is calculated by
comparing segments to each reference object. This metric uses the weight argument (α)
that takes values between 0.0 and 1.0, taking the value of 0.5 in this research. The F measure
ranges from 0 to 1, considering the value of 1 as optimal. In order to describe the Modified
Euclidean Distance 2 (MED2) (Table 1, metric 7), let us suppose that the intersection area
between a reference polygon (xi) and a candidate segment (yj) is more than half the area of
either the reference polygon or the candidate segment. In that case, a candidate segment can
be defined as a corresponding segment [25,41]. Based on the corresponding segments, Liu
et al. [41] proposed the Euclidean Distance 2 (ED2) to evaluate both geometric discrepancy
(difference between the reference polygon and the corresponding segment polygon) and
arithmetic discrepancy (the difference between the total number of reference polygons and
the total number of corresponding segments). In this way, the ED2 metric evaluates the
segmentation quality in a two-dimensional Euclidean space composed of two components:
the Potential Segmentation Error (PSE) and the Number-of-Segments Ratio (NSR) [41].
However, it is important to note that when the number of reference polygons rises, there are
often reference polygons without any corresponding segment. In those cases, the number
of employed reference polygons will be less than the original. The original ED2 index does
not consider this, so it calculates biased values of both PSE and NSR. To solve this problem,
Novelli et al. [18] proposed the modified ED2 (MED2) based on a new formulation of PSE
and NSR (now PSEnew and NRSnew). In fact, the new formulations of PSEnew and NRSnew
consider the number of reference polygons to be m; v is the number of corresponding
segments; n is the number of excluded reference polygons; max(|si − rk|) is the maximum
over-segmented area found for a single reference polygon; vmax is the maximum number
of corresponding segments that can be found for one single reference polygon; and ∑|rk|
computes the total area of the m-n reference polygons. A MED2 value equal to zero means
a perfect match between the reference dataset and the segmentation objects, whereas a
higher MED2 value would point to important arithmetic and/or geometric discrepancies.

Finally, the Euclidean Distance 3 (ED3) (Table 1, metric 8) was proposed by Yang
et al. [42] and is based on OS2 and US2 (Table 1). ED3 integrates both geometric and
arithmetic discrepancies with values ranging from 0 to 1. The ideal value for the perfect
match would be 0.

In this research, AFI, QR, D-index, M, FF, ED3, and F measure were calculated using
the segmetric library (https://CRAN.R-project.org/package=segmetric; accessed on 1
November 2022), which is available through the R programming language. In addition,
the MED2 metric was computed automatically through the free access command-line tool
named AssesSeg tool (https://w3.ual.es/Proyectos/SentinelGH/index_archivos/links.
htm; accessed on 1 November 2022), developed by Novelli et al. [18,43].

https://CRAN.R-project.org/package=segmetric
https://w3.ual.es/Proyectos/SentinelGH/index_archivos/links.htm
https://w3.ual.es/Proyectos/SentinelGH/index_archivos/links.htm
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Table 1. Combined metrics evaluated in the research.

Metric Formula Range Optimal Value Reference

(1) Area Fit Index (AFI) AFIij =
area(xi)−area(yj)

area(xi)
, yj ∈ Y′i [−∞, ∞] 0 [25,36]

(2) Quality Rate (QR) QRij = 1− area(xi∩yj)
area(xi∪yj)

, yj ∈ Y∗i [0, 1] 0 [25,37]

(3) Index D (D-index)
Dij =

√
OS2

ij+US2
ij

2 , where

OSij = 1− area(xi∩yj)
area(xi)

,

USij = 1− area(xi∩yj)
area(yj)

, yj ∈ Y∗i

[0, 1] 0 [25,38]

(4) Match (M)
Mij =

√
area(xi∩yj)

2

area(xi)×area(yj)
, yj ∈ Y′i

[0, 1] 1 [39]

(5) Fitness Function (FF) Fij =
area(yj)+area(xi)−2×area(yj∩xi)

area(yj)
, xi ∈ X′j [0, ∞] 0 [22]

(6) F measure

F−measure = 1
α

Precision +(1−α) 1
Recall

, where

Precisionij =
area(xi∩yj)

area(yj)
, xi ∈ X′j ,

Recallij =
area(xi∩yj)

area(xi)
, yj ∈ Y′i

[0, 1] 1 [40]

(7) Modified Euclidean
Distance 2 (MED2)

ED2 =
√

PSEnew2 + NSRnew2

PSEnew = ∑|si−rk |+n×max(|si−rk |)
∑|rk |

NSRnew = |m−v−n×vmax |
m−n

[0, ∞] 0 [18]

(8) Euclidean Distance 3
(ED3)

ED3ij =

√
(OS2ij)

2+(US2ij)
2

2 , where

OS2ij = 1− area(xi∩yj)
area(xi)

,

US2ij = 1− area(xi∩yj)
area(yj)

, yj ∈ Yci ∪Ydi

[0, 1] 0 [42]

4.1.2. Image Segmentation—MRS

The multiresolution segmentation algorithm (MRS), available through eCognition
v.10.1 software, was used in this research. MRS is based on the Fractal Net Evolution
Approach [44]. This segmentation approach consists of a bottom-up region-merging tech-
nique starting with one-pixel objects. In numerous iterative steps, smaller image objects
are merged into larger ones. MRS is an optimization procedure that, for a given number
of image objects, minimizes the average heterogeneity and maximizes their respective
homogeneity [44]. Three parameters determine the MRS outcome: scale, compactness,
and shape. Scale parameter defines the maximum heterogeneity for the created segment,
whereas compactness represents the weight of the smoothness criteria. Finally, shape
parameter determines the weight of the color and shape criteria [21]. In addition to these
parameters, the bands involved in the calculation of the segmentation and their weights
must be set up.

Novelli et al. [18] reported that the blue-green-NIR combination for S2 and the blue-
green-NIR2 combination for WorldView-2 images yielded the best segmentation results for
PCG detection. Therefore, the segmentation stage was conducted in this study using the
equally weighted blue-green-NIR2 bands of WV3 imagery and blue-green-NIR bands of S2
and SPOT-7 data.

Next, a significant number of segmentations over agricultural greenhouses areas
were generated from different image sources, including a wide variety of cases (over-
segmentation, under-segmentation, and cases which fit quite well with reality). Four
factors (i.e., experimental levels of explanatory variables) were considered: two study
sites (Almería and Antalya), two seasons (summer and winter), two reflectance digital
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storage scales (16Bit and Percent), and two different image spatial resolutions such as High
Resolution (HR) (WV3 and SPOT-7) and Medium Resolution (MR) (S2) (Figure 2). Ten
segmentations were extracted for each image source with a different MRS scale parameter
(shape and compactness parameters were kept constant at 0.5 during this initial stage). In
this way, 160 segmentation datasets were generated at this first phase (2 study sites × sea-
sons × 2 image spatial resolutions × 2 reflectance storage scales × 10 segmentations with
different MRS scale parameter = 160. See Figure 2).
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4.1.3. Reference Polygons

To calculate all the eight supervised metrics tested on the aforementioned 160 seg-
mentations, a reference dataset (vector layer) composed of 200 polygons representing
individual PCG was manually digitized for each study site. Aguilar et al. [29] already
recommended this number of reference polygons for assessing segmentation accuracy on
PCG. The WV3 MS orthoimage dated 25 December 2020 and the SPOT-7 pan-sharpened
orthoimage taken on 5 February 2019 were used as reference images for on-screen digitizing
in the Almería and Antalya study sites, respectively. Note that these images were used
as reference because their low off-nadir angle. Figure 1d shows in green the 200 reference
polygons digitized on Almería study site, whereas Figure 1e depicts in red the 200 reference
polygons digitized on Antalya.

4.1.4. Visual Inspection and Metrics Assessment

Six experienced interpreters visually inspected the ten segmentation datasets gener-
ated for each of the sixteen image sources, scoring and ranking those datasets from best to
worst. Note that the scale parameter corresponding to each segmentation file was hidden
from the interpreters to assure a fair visual interpretation of the segmentation quality.
The 10 segmentation files for each image source were named randomly, requesting the
6 interpreters to rank them from 1 (the best PCG segmentation) to 10 (the worst PCG seg-
mentation) according to their visual quality. It is important to highlight that segmentation
visual quality is understood in this experiment as the match between image segments and
geo-objects (i.e., PCG in our case) visually appreciated by the interpreter. Summing up,
each experienced interpreter evaluated the segmentation quality of each dataset by con-
sidering the segmentation file (vector layer), the reference polygons, and the background
satellite image from which segmentation files were derived by applying the MRS algorithm.
Jozdani and Chen [20] already used a similar methodology, also choosing the most optimal
segmentation scale by visually inspecting their segmentation results, although they did not
give details about the number of interpreters used.

To better understand the visual interpretation process, Table 2 shows, as an example
(see Tables S1–S8 in Supplementary Materials for all other datasets), the results for the ten
segmentations computed from the S2 Percent orthoimage taken on 25 December 2020 at
the Almería study site.
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Table 2. Example of optimal segmentations determined through visual inspections for Almería
study site, winter season, and S2 Percent orthoimage. Note that the corresponding scale parameter
remained hidden from the interpreters during visual evaluation.

Scale
Parameter

Total Object
Number

Scores Granted by Interpreters

Interpreter 1 Interpreter 2 Interpreter 3 Interpreter 4 Interpreter 5 Interpreter 6

2 12,345 8 9 10 (worst) 10 (worst) 10 (worst) 10 (worst)
3 5441 5 8 9 9 7 9
4 3226 3 4 8 5 4 8
5 2188 1 (best) 2 4 2 3 7
6 1603 2 1 (best) 1 (best) 1 (best) 2 2
7 1283 4 3 2 4 1 (best) 1 (best)
8 1010 6 5 7 3 8 3
9 828 7 7 5 6 5 5
10 692 9 6 6 7 9 4
11 579 10 (worst) 10 (worst) 3 8 6 6

Next, the segmentation rankings provided by the panel of the six interpreters and the
values computed on the reference polygons from applying the eight supervised evaluation
metrics tested were compared to find out the best metrics for each of the sixteen image
sources. Each one of the ten segmentation files was labeled with an individual score value
computed as the median (robust estimator) of the scores granted by the six interpreters.
In the same way, every segmentation file presented a value computed for each one of the
eight tested segmentation quality metrics, thus determining the optimal values for each
metric and image source.

For each image source, the three better (i.e., lower) median values granted by the
visual interpreters were selected and grouped into three categories (gold, silver, and bronze
medals). The results were evaluated based on the match between the three best median
values determined for each image source and the optimal values provided by the calculated
metrics. Consequently, the metric that matched the best median value (that is, the metric
located in the same row as the smallest median value) was assigned three points, followed
by two points assigned to the metric that coincided with the second-best value of the
median. Finally, one point was awarded to the metric that coincided with the third-best
value of the median. Note that it is possible to have more than one metric associated
with each of the three categories. In fact, this would be the case of a tie between metrics
associated with the minimum values of medians (see the example shown in Table 3). In
this case, all matching metrics would be assigned the same score. Additionally, no points
would be assigned if any of the three best median values did not match the optimal values
for the calculated metrics.

An example of the computed segmentation metrics and the median values for each
segmentation file calculated from the visual evaluation rankings can be seen in Table 3 for
Almería winter S2 Percent orthoimage (see Tables S9–S16 in Supplementary Materials for all
other datasets). The metrics with the best visual score (smallest median) were associated to
the gold category, thus receiving three points (MED2 in Table 3). The metrics corresponding
to the silver category received two points (AFI, D-index, ED3, and QR in Table 3). Finally,
the metrics associated to the bronze category got only one point (F measure in Table 3).
The scores for each metric were summed for all image sources in order to determine which
metrics performed better overall.
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Table 3. Computed segmentation accuracy metrics and median values of visual rankings for the
S2 Percent image taken at the Almería study site on 25 December 2020. Optimal values for each
metric are indicated within parenthesis, whereas optimal values among the ten segmentations for
each metric are shown in bold. The best three categories for the median scores are highlighted.

Scale
Parameter MED2 (0) AFI (0) D-Index

(0) ED3 (0) F Measure
(1)

Fitness
(0) M (1) QR (0) Median

Score Category

2 7.601 0.701 0.661 0.463 0.335 19.375 0.496 0.908 10.0
3 2.695 0.448 0.592 0.407 0.400 8.367 0.604 0.807 8.5
4 1.225 0.224 0.515 0.341 0.407 4.931 0.663 0.699 4.5 Bronze
5 0.741 −0.031 0.453 0.297 0.393 3.453 0.677 0.622 2.5 Silver
6 0.638 −0.309 0.416 0.272 0.376 2.690 0.674 0.577 1.5 Gold
7 0.749 −0.550 0.392 0.258 0.361 2.249 0.661 0.549 2.5 Silver
8 0.998 −0.916 0.408 0.268 0.344 1.831 0.633 0.568 5.5
9 1.318 −1.411 0.423 0.283 0.326 1.596 0.606 0.591 5.5
10 1.834 −2.028 0.444 0.302 0.317 1.441 0.577 0.621 6.5
11 2.279 −2.740 0.469 0.325 0.307 1.332 0.543 0.657 7.0

4.1.5. Statistical Analysis

In the first phase of the study, a factorial ANOVA was performed to quantify the
contribution of the studied factors (i.e., study site, season, image spatial resolution, and
reflectance storage scale) and their two-way interactions in explaining the variation of the
median values for the visual ranking as the dependent variable. Only the best 16 segmen-
tations having the best median value (i.e., one for each image source investigated) were
selected and analyzed through ANOVA. For statistical significance, values of p < 0.05 were
considered. The Kolmogorov-Smirnov test was used as an indicator of goodness of fit to a
standard normal distribution.

4.2. Second Phase: Experimental Design

The second phase was headed up to analyze the influence of several factors on PCG
segmentation quality using the MRS algorithm. For this, a full factorial ANOVA design
was implemented. Segmentation quality was quantitatively estimated using the best metric
determined during the first phase. In this sense, this metric played the role of the dependent
variable in the statistical analysis.

In this second phase, thousands of segmentations were computed using the MRS
algorithm implemented in eCognition software, varying scale parameter (step of one) and
shape parameter (ranging from 0.1 to 0.9 with a step of 0.1). The compactness parameter
was set again to 0.5, taking into account that this parameter usually has little influence on
the segmentation results [45,46].

The independent factors considered in the ANOVA were study site (Almería and
Antalya), season (winter and summer), spatial resolution (MR and HR), reflectance storage
scale (Percent and 16Bit reflectance), and shape parameter (0.1 to 0.9). The shape parameter
was grouped into three categories: low (0.1, 0.2, 0.3), medium (0.4, 0.5, 0.6), and high (0.7,
0.8, 0.9) shape values. Additionally, the partial eta squared (partial η2) was calculated to
measure the effect sizes in factorial designs [47].

Lastly, 144 combinations corresponding to the factors (2 × 2 × 2 × 2 × 9 = 144) were
analyzed through ANOVA to determine the possible factors and interactions between them
that could significantly influence segmentation accuracy.

5. Results
5.1. First phase: Supervised Metrics Assessment

Figure 3 depicts some sample segmentations located in the study sites of Almería
and Antalya corresponding to the MRS scale parameters that produced over-segmentation
(first column), near-optimal segmentation (second column), and under-segmentation (third
column). Note that the actual boundaries of the greenhouses can also be seen in Figure 3
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through the background orthoimages. The MRS segmentation outputs of the images that
store reflectance values as integers ranging from 1 to 10,000 (16Bit digital scale) produced
noisier and shakier greenhouse segments edges than those storing reflectance values in a
float32 single-precision floating-point format ranging from 0 to 100 (Percent digital scale),
mainly when using high spatial resolution images (Figure 3).
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Table 4 shows the overall scores granted by the interpreters for all segmentations
carried out in Almería and Antalya. In Almería, MED2 was the highest scored metric
(19 points), followed by ED3 (15 points) and M (12 points). Again, in Antalya, MED2
achieved the best score (23 points), followed by D-index and QR (13 points), and finally
ED3 (10 points). According to the overall scoring results, it was clear that the metric with
the highest score was MED2, with 42 points. In the second place, ED3 reached 25 points.
Finally, the third position was shared by QR and D-index metrics, both with 22 points.
Based on these results, it can be clearly stated that the MED2 metric turned out to be the
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most successful among the tested metrics to quantitatively assess the quality of PCG land
cover segmentation. Without any doubt, this was the most important finding attained in
this first phase.

Table 4. Overall scores (points granted by experienced interpreters) of each one of the tested metrics
given by the sum of the scores of all segmentation data sets in Almería and Antalya.

Almería December Almería June

TotalPercent 16Bit Percent 16Bit

WV3 S2 WV3 S2 WV3 S2 WV3 S2

MED2 3 3 3 3 3 1 3 19
AFI 2 2 1 2 7

D-index 2 2 1 2 2 9
ED3 1 2 2 3 2 3 2 15

F measure 1 1
Fitness 2 2 4

M 2 2 3 3 2 12
QR 2 2 1 2 2 9

Antalya February Antalya July

TotalPercent 16Bit Percent 16Bit

SPOT-7 S2 SPOT-7 S2 SPOT-7 S2 SPOT-7 S2

MED2 3 3 2 3 3 3 3 3 23
AFI 2 2

D-index 2 2 3 1 2 3 13
ED3 2 2 1 1 2 2 10

F measure 0
Fitness 0

M 2 3 5
QR 2 2 3 1 2 3 13

A similar test was carried out to evaluate the capacity of the tested metrics for detecting
the worst segmentations. In this case, the gold, silver, and bronze medals were given to the
worst datasets following the interpreters’ scores (see Tables S17 and S18 in Supplementary
Materials). Overall, the metrics that stood out as the ones that best pointed out the worst
segmentation datasets were: MED2 was first (45 points); ED3, D-index, and QR reached the
second position (42 points); finally, FF (39) occupied the third position.

Regarding the ANOVA of the visual ranking scores, computed as the lowest median
values, it is important to underline that the population of this dependent variable fit a
normal distribution according to Kolmogorov-Smirnov test. The ANOVA results (Table 5)
revealed that the factor reflectance storage scale (RSS) (16Bit and Percent) was highly
significant (p-value = 0.00). In this sense, the mean value of the dependent variable
(median of scores) for 16Bit format took a value of 2.250, significantly higher (i.e., worse)
than the value of 1.563 provided by Percent format. This significant difference between
interpreters’ ability to appreciate the quality of segmentation indicates that they felt more
comfortable when evaluating images in Percent than in 16Bit format, probably because MRS
segmentation in Percent format seemed less artificial and smoother than 16Bit. As can be
seen in Figure 3, noisy and jittery segment edges are more common in 16Bit segmentation
outputs than in Percent outputs. Thus, it can be concluded that this effect, associated with
the RSS format, significantly affected the interpreter’s visual perception.

It was also noticed that the spatial resolution (SR) (p-value = 0.06) and season
(p-value = 0.06) were not statistically significant (p < 0.05), although they were close to it. It
meant that spatial resolution did not significantly affect the interpreter’s visual perception
concerning segmentation quality. However, the interaction between SR and RSS result
was statistically significant (p-value = 0.01), meaning that this interaction turned out to
be an essential factor in determining the best scale parameter for the visual evaluation



Remote Sens. 2023, 15, 494 14 of 23

of segmentation quality. In this sense, the mean value of the dependent variable for the
Percent format and HR images was 1.125, whereas the value was significantly worse (2.375)
in the case of 16Bit format and HR images. Based on this result, it can be concluded that
there was more agreement in the interpreters regarding the best segmentation when they
evaluated segmentations on HR images and Percent format rather than HR images and
16Bit. The study site factor and other two-way interactions between factors did not show
significant results at a significance level of p < 0.05.

Table 5. Summary of the ANOVA results (N = 16) for the visual ranking scores (median value). The
factors and interactions written in bold were statistically significant (p < 0.05).

Factors and Interactions p-Value

SS (Study Site) 0.65
SR (Spatial resolution) 0.06
RSS (Reflectance Storage Scale) 0.00
Season 0.06
RSS × Season 0.65
SR × RSS 0.01
SS × RSS 0.20
SR × Season 0.65
SS × Season 0.20
SS × SR 0.65

5.2. Second Phase: Evaluating Factors Affecting Segmentation Accuracy

Up to 4000 segmentation datasets were generated through the MRS algorithm in this
second phase, using the 16 image sources, varying both scale and shape parameters, and
always keeping compactness fixed at 0.5. The accuracy of the segmentation outputs focused
on PCG was tested by calculating their MED2 metric since, according to the first phase, this
metric was clearly the best at pointing out both the best and the worst segmentations. A
total of 144 samples corresponding to the optimal MED2 values determined for each shape
parameter were considered to examine the variation in segmentation accuracy as a function
of the different factors investigated. In order to facilitate the reader’s understanding of
the obtained results, Figures S1–S4 in Supplementary Materials depict the best achieved
segmentation based on MED2 for each of the 16 cases studied. In these additional figures,
the reader can see the image sources used in Almería and Antalya (summer and winter),
showing the 200 reference polygons (green in Almería and red in Antalya). The scale and
shape parameters, as well as the corresponding MED2 value, are shown for each case.

Figure 4 presents the aforementioned 144 MED2 values against the corresponding
scale parameters, also grouping the different studied factors. According to Figure 4,
and focusing on the results obtained from 16Bit orthoimages, it was observed that, for
each spatial resolution, the lower the scale parameter, the lower the value of MED2 (i.e.,
segmentation accuracy increased). It was also found that as the shape parameter increased,
and, regardless of image spatial resolution, the optimal scale parameter and the MED2
value decreased, thus attaining better segmentations.

With respect to Percent orthoimages, it was observed that segmentation accuracy
decreased as the shape parameter increased. Furthermore, the optimal scale parameter was
close to each other for each shape parameter category, thus forming dense and clustered
groups (Figure 4). In fact, the distribution of optimal scale parameters for 16Bit format
images presented a greater dispersion of values (from 14 to 670) than those calculated on
Percent format images (from 4 to 70).
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To analyze the effect of the factors studied on segmentation accuracy, quantitatively
expressed in terms of the values of MED2 metric, a statistical analysis was carried out over
a set of 144 samples. Previously, we tested that the MED2 values fit a normal distribution.
The ANOVA model presented an adjusted coefficient of determination (R2 adjusted) of
0.768, meaning that the explanatory variables or factors were able to explain up to 76.8% of
the variance of the optimal MED2 metric (i.e., segmentation accuracy).

Table 6 summarizes the significant outcomes of ANOVA for MED2 metric. In fact, it
quantifies the relationships between MRS segmentation accuracy (optimal MED2 values)
and the studied factors, also including their interactions. Table 6 also shows the partial eta
squared statistic and its associated effect size for each factor. Note that both the factors and
their interactions are ordered from highest to lowest based on their partial η2 value.

Table 6. Summary of the ANOVA results (N = 144) indicating those significant factors and interactions
(p < 0.05) together with their associated partial η2. Notes: reflectance storage scale (RSS); shape
parameter category (Shp); spatial resolution (SR); study site (SS).

Factors and Interactions p-Value Partial η2 Effect Size

RSS × Shp 0.000 0.714 Large
SR 0.000 0.584 Large

Shp 0.000 0.362 Large
SR × RSS × Shp 0.001 0.144 Medium to large

SR × Season 0.00 0.129 Medium
Season × RSS × Shp 0.00 0.127 Medium

SS 0.01 0.075 Medium
SS × Season 0.01 0.068 Medium

SS × SR × Season 0.03 0.049 Small to medium
SR × Season × Format 0.04 0.044 Small to medium

The overall statistical results reported that the ANOVA model was statistically very
significant (F = 11.096, p = 0.000), which means that the variation of the optimal values of
MED2 (segmentation quality) can be reasonably explained by the factors and interactions
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tested in this study. In fact, most of the factors and interactions (double and triple interac-
tions) were found to significantly explain the variance of optimal MED2 values (p < 0.05)
(Table 6). On the contrary, the ANOVA results yielded no statistically significant four-way
and five-way interactions among factors.

The factors and interactions that had the largest effect size on segmentation quality
based on partial η2 values were the interaction between the factors RSS and shape parameter
category (Shp) (partial η2 = 0.714), the SR factor (partial η2 = 0.584), and the Shp factor
(partial η2 = 0.362). Note that the partial η2 values represent the explained variance of the
dependent variable after partially removing the effects of other factors or interactions. In
this sense, it can be stated that the effect of the interaction RSS × Shp on segmentation
quality was approximately twice as strong as the Shp factor, whereas the effect of the factor
SR on segmentation quality was 1.61 times stronger than that of Shp (Table 6).

To illustrate the reasons behind the strong effect on segmentation accuracy attributed
to the interaction RSS × Shp, the estimated marginal means of optimal MED2 as a function
of RSS and the shape parameter values were calculated (Figure 5). What is striking in
Figure 5 is the general pattern of both RSS types (Percent and 16Bit formats) against the
shape parameter. Indeed, the plot of the aforementioned marginal means brought out a
completely opposite effect on MRS segmentation quality depending on RSS type. Whereas
segmentation accuracy was improved with the increasing shape parameter for 16Bit RSS,
segmentation accuracy consistently decreased with the decreasing shape parameter for the
Percent RSS.

Figure 5 shows a completely different pattern for 16Bit and Percent orthoimages with
respect to the shape parameter. The highest values for MED2 come from segmentations
calculated on Percent orthoimages using the highest shape parameters. This finding demon-
strates the crucial role of choosing an appropriate MRS shape parameter for achieving the
best segmentation accuracy depending on the RSS format of the input images.

Overall, Antalya, with a mean MED2 value of 0.478, achieved slightly better segmen-
tations than Almería, with a mean MED2 value of 0.525. In addition, HR images presented
a mean MED2 value of 0.404, whereas MR images took a value of 0.599, evidencing that
HR images achieved higher segmentation accuracy.

In order to evaluate the influence of RSS on MED2 more in depth, the worst Shp
categories for each RSS type (i.e., High Shape for Percent and Low Shape for 16Bit) were
removed from the ANOVA. In this case, the mean MED2 value for Percent orthoimages
(0.373) was much better than for 16Bit orthoimages (0.458) and was statistically significant,
demonstrating the superiority of the Percent RSS format for conducting PCG segmentation
using MRS.

In detail, the Percent orthoimages belonging to the Almería study site had a mean
MED2 value of 0.390, whereas a value of 0.478 was attained from the 16Bit orthoimages.
Likewise, the mean MED2 value for Percent orthoimages (0.355) was lower than for 16Bit
orthoimages (0.437) in the Antalya study site. When the results were based on only high
spatial resolution images, it was observed that the Percent orthoimages had a mean MED2
value of 0.243, whereas the 16Bit orthoimages took a value of 0.346. Similarly, the Percent
orthoimages with the medium spatial resolution achieved lower mean MED2 values. In
summary, it can be concluded that Percent orthoimages achieved better PCG segmentation
accuracy than 16Bit orthoimages, which suggests that this would be the recommended RSS
to obtain the best MRS segmentation results in PCG areas.
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Figure 5. Estimated marginal means of optimal MED2 as a function of reflectance storage scale
(Percent or 16Bit formats) and shape parameter.

6. Discussion
6.1. Evaluation of Supervised Segmentation Metrics

The selection of the best combination of MRS parameters to produce optimal seg-
mentations over PCG areas is very challenging due to many factors mainly related to the
spectral reflectance of PCG. This is the reason why it is essential to count on metrics capable
of quantitatively evaluating image segmentation quality. This point is addressed in the
first phase of this research. According to the results provided by the first phase, the MED2
metric could be stated as the best to assess PCG segmentation quality, whereas the other
metrics tested in this study showed some deficiencies. Witharana and Civco [48] reported
that the original ED2 metric proposed by Liu et al. [41] is not always able to produce
optimal segmentation results properly. They tested images from QuickBird MS (2.44 m
GSD), WorldView-2 MS (2 m GSD), GeoEye-1 pan-sharpened (0.5 m GSD), and EO-1 ALI
MS (30 m GSD) on different land covers (shelters, water, pasture, houses, and sport fields),
pointing out that the main weakness of ED2 occurred when using high values of scale
parameter. In fact, the lack of applying normalization in the formulation of PSE and NSR
can erroneously increase the sensitivity of ED2 to over-segmentation at smaller scales [42].

On the other hand, Jozdani and Chen [20] tested several supervised metrics for assess-
ing segmentation quality over buildings land cover using 100 manually digitized buildings
as reference polygons, finding that the hypothetically optimal scale parameter proposed by
the MED2 metric led to an over-segmentation scenario. Considering the results provided
by these authors, it is mandatory to highlight that the results obtained in this work about
MED2 are applicable only to PCG land cover.

The worst segmentation accuracy given by F measure metric coincided for almost all
the datasets with the highest scale parameter tested (i.e., maximum under-segmentation). In
the case of FF metric, the lowest scale parameter tested (i.e., maximum over-segmentation)
consistently performed the worst segmentation results. On the contrary, FF always reached
the best segmentation results for those datasets in which the highest scale parameter was
used (i.e., maximum under-segmentation). Although the worst scale parameter could
be determined in some cases by matching the median values obtained from the visual
evaluations with this metric, it was unsuccessful in determining the best scale parameter.
Jozdani and Chen [20] also found that FF proposed optimal scale parameters, leading to
under-segmentation results. In addition, they claimed that both the MED2 and F metrics
produced over-segmented results in the case of buildings segmentation. However, our
results show that the MED2 metric proposed optimal scale parameters that generated
the best segmentations (visual evaluation) over PCG land cover for all case studies (see
Tables S9–S16 in Supplementary Materials). It is important to underline here that our
experimental design covered different patterns and types of PCG with different crops,
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along with consideration of different image spatial resolutions. Furthermore, the F measure
did not always achieve the optimal segmentation with the over-segmented scale parameter,
although the optimal scale parameter obtained with this metric always resulted in over-
segmentation compared to MED2.

With respect to the metrics D-index and ED3, which were ranked as the best metrics
after MED2, their biggest drawback is that their range of variation for the scale parameters
investigated is too small. Therefore, deciding on the optimal scaling parameter could be
challenging when applying these metrics.

It is worth noting that new research lines are being proposed in the field of segmenta-
tion in different fields. In recent works, image super-resolution technology has been applied
to image segmentation, for example in medical researches [49]. Deep learning was used
to create a dense nested attention network (DNANet) by Li et al. [50] that was specially
designed to detect small infrared targets and retained the characteristics of small targets in
the deep network. Finally, Liu et al. [51] proposed an interesting algorithm for detecting
small targets from the subtle level, focusing on strengthening the edge of small targets,
improving the separation between small targets and the background, and expanding the
number of target pixels.

6.2. Factors Affecting the PCG Segmentation
6.2.1. Reflectance Storage Scale

The RSS factor stood out as an important factor affecting segmentation quality in
both stages of this study. Regarding the first phase, the ANOVA results regarding visual
evaluation revealed that the six experienced interpreters agreed more when assessing the
Percent orthoimages than the 16Bit ones, which is probably related to the visual differences
between the segmented objects for both reflectance storage formats. According to Aguilar
et al. [29], the ventilation roof windows of PCG were ignored with WV3 MS ATCOR Percent
orthoimages, whereas segmentation outputs from original 11 bits orthoimages (from 0
to 2048 digital values) commonly presented strip-shaped segments. This statement was
also confirmed in our study. Even in the under-segmented scenario, in which the scale
parameter took a value of 540 for WV3 16Bit orthoimage, these strips can be made out
in the segmentation output (Figure 3). Although these strips are unlikely to appear in S2
orthoimages due to their lower spatial resolution, over-segmentation can be appreciated
for the ideal S2 16Bit orthoimage using a scale parameter of 30 in Figure 3.

In fact, it was observed that image segmentation quality was also improved with
Percent orthoimages compared to 16Bit ones for the MED2 metric. The computed estimated
marginal means of MED2 values according to spatial resolution and study area showed
that the Percent orthoimages achieved better segmentation accuracy than the 16Bit ones.
Aguilar et al. [29] already achieved better MED2 values (i.e., lower values) working on PCG
using WV3 MS ATCOR Percent orthoimages than with the original 11 bits orthoimages.

However, what is behind the better MRS segmentation results provided by images
that store reflectance values in percentage format, compared to 16Bit ones? First, it should
be remembered that the main goal of any image segmentation algorithm is to minimize
the heterogeneity embodied in each individual fusion of two smaller objects. That is, an
image object will merge with another adjacent image object as long as a minimal increase
in heterogeneity occurs [44]. In order to quantify this heterogeneity, the MRS algorithm
uses the heterogeneity function, f, given by the formulation shown in Equation (1).

f = wcolor.∆hcolor + wshape.∆hshape (1)

where wcolor and wshape represent the weights of the spectral heterogeneity increment (∆hcolor)
and spatial heterogeneity increment (∆hshape). Note that both weights have to add up to
one (i.e., wcolor + wshape = 1). Furthermore, wcolor ε [0,1] and wshape ε [0,1]. These weight
parameters allow the definition of heterogeneity to be adapted to each specific application.

In this sense, the decision rule followed by the MRS algorithm works like this. Let
object 1 and object 2 be two neighboring objects in an image. These objects will be merged
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in a larger object if the heterogeneity (f ), given by Equation (1), turns out to be less than
a certain threshold related to the so-called scale parameter. This scale parameter is the
stopping criterion for the optimization process. Before merging two adjacent objects,
the resulting increase in heterogeneity f is calculated. If this resulting increase exceeds
a threshold determined by the scale parameter, then no further merging occurs, and
segmentation stops [52].

The increment in spectral heterogeneity when merging two neighboring objects
(∆hcolor) is given by Equation (2).

∆hcolor = ∑∀c wc.
(

nmerge.σcmerge −
(

nobj1.σcobj1 + nobj2.σcobj2

))
(2)

where nmerge, nobj1, and nobj2 are the number of pixels in the merged object, object 1 and
object 2, respectively. The terms σcmerge, σcobj1, and σcobj2 represent the standard deviations
corresponding to the merged object, object 1 and object 2, respectively, whereas c refers to
the spectral band of weight wc. Note that each band or spectral channel may have different
weights.

On the other hand, spatial heterogeneity (∆hshape) is given by the following Equations (3)–(6).

∆hshape = wcomp × ∆hcomp + wsmooth × ∆hsmooth (3)

wcomp + wsmooth = 1 (4)

∆hcomp = nmerge
lmerge√
bmerge

−

nobj1
lobj1√
bobj1

+ nobj2
lobj2√
bobj2

 (5)

∆hsmooth = nmerge
lmerge

bmerge
−
(

nobj1
lobj1

bobj1
+ nobj2

lobj2

bobj2

)
(6)

where l is the perimeter of the object, b is the perimeter of the object’s bounding box, and
∆hcomp and ∆hsmooth are the compactness and smoothness metrics, which depend on the
shape of the object. It is important to underline that an increase in the edge tortuosity of the
merged object above the selected threshold (scale parameter) will cause the MRS algorithm
to stop the merge procedure if the weight of spatial heterogeneity (wshape) is significant
(see Equation (1)).

Based on the above formulations, it seems clear that downscaling the reflectance
storage from the 16Bit format (1–10,000) to Percent format (1–100) translates into a noticeable
decrease in the standard deviation of the objects to merge (σcobj1, σcobj2). Therefore, the
spectral heterogeneity (∆hcolor) also decreases, leading to the decrease in the value of the
heterogeneity function (Equation (1)) when the shape weight is kept small. In this way,
the higher values in which the reflectance is stored in the case of the 16Bit format would
work as a true “resonance box” due to the multiplicative numerical effect of calculating
the standard deviations of the neighboring objects and the merged object on the basis of
a greater range of variation. Considering that the MRS algorithm stops merging objects
when the function f for the two neighboring objects exceeds a threshold determined by the
scale parameter, this would explain the lower scale parameters found for Percent format
images compared to 16Bit ones.

The aforementioned “resonance box” effect, associated with increasing values of
standard deviations (spectral heterogeneity) within objects in 16Bit format images, would
also increase segmentation instability. It leads to elongated and strip shapes provoked
by the remarkable spectral heterogeneity of some greenhouses roof features, such as the
roof windows, seams between plastic sheets or different crops growing under the roof,
and shifting reflections along greenhouse support structures. This effect associated to RSS
scale was also observed by Aguilar et al. [29]; when working on WV3 MS ATCOR Percent
format product, they reporting that increasing heterogeneity, measured through standard
deviation of neighboring objects, can be expected when dealing with images presenting
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higher relative differences in pixel content values (i.e., greater range of reflectance storage
values). These authors stated that WV3 MS ATCOR Percent format achieved a more realistic
segmentation of the individual greenhouses, avoiding the over-segmentation due to the
existence of roof windows on the plastic sheets.

6.2.2. Shape Parameter

The results provided by Figure 5 have shown that selecting a right value for the shape
parameter of the MRS algorithm plays a crucial role in the quality of the segmentations
produced, allowing to obtain a good segmentation accuracy for images with different
reflectance storage scales. Aguilar et al. [29], also using MED2 and 200 reference polygons,
reported 0.3 as the optimal shape parameter when working on a WV3 MS ATCOR Percent
orthoimage, whereas the shape parameter took a value of 0.5 (the maximum value that
they tested) when working on the original 11 bits WV3 MS orthoimage. In that same work,
the optimal scale values were 68 and 220 for the WV3 MS ATCOR Percent and the original
WV3 MS 11 bits orthoimages, respectively. Some authors such as Yao and Wang [11,53]
investigated the effects of image heterogeneity on PCG segmentation using fixed shape and
compactness parameters. In this sense, and at least when working on PCG segmentation
using MRS, the shape parameter should not be kept fixed but allowed to vary in order to
achieve the best possible segmentation together with the scale parameter.

6.2.3. Image Spatial Resolution

The results of ANOVA for the second phase pointed out that image spatial resolution
significantly affects PCG segmentation. In detail, a higher segmentation accuracy was
obtained from the HR images than from the MR ones. Mesner and Oštir [54] also reported
that down-sampling the original image spatial resolution from 0.5 to 2.5, 5, 10, 20, and 50 m
GSD greatly reduced segmentation quality. This effect can also be appreciated if we look
at the lowest observed MED2 value of 0.150 depicted in Figure 4, which is associated to
WV3 MS orthoimages with 1.2 m GSD (HR images) and Percent RSS. This MED2 value
turns out to be slightly higher than the value of 0.112 reached by Aguilar et al. [29] when
also working on PCG and using 1.2 m GSD WV3 MS orthoimages but only employing 100
reference polygons as reference. The slightly worse MED2 metric of 0.198 was reported by
Novelli et al. [18] when working on 2 m GSD WorldView-2 MS orthoimage, likely because
they used lower spatial resolution images. In the last work, MED2 values of 0.319 and
0.424 were achieved working on S2 (10 m GSD) and Landsat 8 (30 m GSD) orthoimages,
respectively.

6.2.4. Study Area

The estimated marginal means of the optimal MED2 revealed that the segmentation
accuracy achieved in the Antalya study site was better than that obtained in Almería. This
fact is explained because the dissemination of greenhouses is greater in Antalya, whereas
they appear more concentrated and closer to each other in the case of Almería. This high
concentration of PCG in Almería causes the segmentation to mistakenly merge two or more
greenhouses into the same object because there are almost no boundaries (background)
between them. In that sense, Aguilar et al. [16] reported MED2 values of 0.213 and 0.299
for Antalya and Almería study sites, respectively, when working with 1 m GSD Deimos-2
pan-sharpened orthoimages.

7. Conclusions

This study analyzed several supervised metrics to assess PCG image segmentation
quality and some potentially influential factors such as study site, image capture date
(season), image spatial resolution, and reflectance storage scale. The following conclusions
can be drawn from this work:

Among the eight supervised metrics examined, the MED2 was found to be the most
successful metric for evaluating PCG segmentation quality. AssesSeg, a free command-line
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tool for computing MED2, provides the evaluation of multiple segmentation files easily and
independently from any software. In addition, it can be concluded that FF and F metrics
performed poorly in determining the optimal scale parameter and thus in assessing the
quality of PCG segmentation.

The ANOVA devised to quantify the influence of some factors on the visual interpre-
tation of MRS segmentation quality revealed that reflectance storage scale significantly
impacted interpreter’s visual perception for estimating the best optimal scale parameter,
i.e., segmentation quality. Moreover, the statistical analysis reported that the segmentations
generated from satellite orthoimages with Percent reflectance scale values (single-precision
floating-point values ranging from 0 to 100) turned out to be more comfortable for the
interpreter in order to assess segmentation quality.

Optimal MRS scale parameters were clustered (small ranges of variation) in orthoim-
ages with Percent reflectance storage scale, whereas scale parameters were more unstable
(large ranges of variation) for 16Bit orthoimages. This indicates that Percent format can
make it easier to determine the optimal scale parameter for PCG segmentation.

Reflectance storage scale and shape parameter had a crucial impact on the quality of
PCG segmentation. Moreover, the general pattern of segmentation accuracy for Percent
and 16Bit reflectance storage scales were quite different regarding the shape parameter
selected. In fact, segmentation accuracy increased as shape parameter decreased for the
Percent format. On the other hand, segmentation accuracy decreased as shape parameter
decreased for the 16Bit format. Thus, reflectance storage scale of the input images should
be taken into account whentra selecting the optimal MRS parameters.
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through visual inspections; Tables S9–S16: Computed segmentation accuracy metrics and median
values of visual rankings; Tables S17 and S18: Total points (best and worst cases) for each supervised
metrics in Antalya and Antalya study sites.
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