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Abstract

Software companies are striving more and more to create software that adapts to their users’ requirements. To this end, the devel-
opment of component-based interfaces that users’ can compound and customize according to their needs is increasing. However,
the market success of these applications is highly dependent on the users’ ability to locate the components useful for them. In our
work, we propose an approach to address the problem of suggesting the most suitable component for each user at each moment,
by creating a recommender system using intelligent data analysis methods. Once we have gathered the interaction data and built
a dataset, we address the problem of transforming an original dataset from a real component-based application to an optimized
dataset to apply machine learning algorithms through the application of Feature Engineering techniques and Feature Selection
methods. Moreover, many aspects, such as contextual information, the use of the application across several devices with many
forms of interaction or the passage of time (components are added or removed over time) are taken into consideration. Once the
dataset is optimized, several machine learning algorithms are applied to create recommendation systems. A series of experiments
that create recommendation models are conducted applying several machine learning algorithms to the optimized dataset (before
and after applying Feature Selection methods) to determine which recommender model obtains a higher accuracy. Thus, trough the
deployment of the recommendation system that has better results, the likelihood of success of a component-based application in
the market is increased, by allowing users’ to find the most suitable component for them, enhancing their user experience and the
application engagement.

Keywords: Machine learning, Recommender Systems, Feature engineering, Feature Selection, Component-based interfaces,
interaction information acquisition

1. Introduction

Launching a new software application requires an in-depth
study of many variables in order to successfully achieve a good
position in the market. Some of these variables are related to
accomplishing a level of design and usability good enough to
become established in an increasingly competitive market.

Hundreds of projects fail when going to market to the failure
of users to embrace them, even when the software application
could help them to improve their daily task performance, offer-
ing them a service that covers theirs needs. Whether or not com-
panies spend a lot of time on design, consume a lot of resources
enhancing usability or spend large amounts of money on mar-
keting campaigns, if users do not quickly find the features they
need, the software launch is likely to fail. This is more evident
today since software applications greatly improved the inter-
faces that adapt themselves to the user’s requirements.

The popularity of modern component-based web applica-
tions motivates the creation of interfaces that, frequently have
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a vast amount of components to be discovered. Examples of
these interfaces are: Google Now [19], a kind of personal as-
sistant where each component (called “card”) offer information,
answers questions or helps perform actions that users may need;
Netflix [29], a streaming video-on-demand platform where each
component offers information on a video’s content [11, 25];
Flipboard [14], a news and social media aggregation system
presented in a magazine format; or Fitbit Dashboard [13], an
activity tracker brand that provides a dashboard where users can
monitor their activity, exercise, food, weight and sleep patterns.

Due to the vast number of components that applications
may have, the market success of a component-based web ap-
plication depends, not only, on the ease with which the user
may find components useful to them but also, on the ability of
the system to identify the right components at the right time and
properly organize them so they can be at the users’ disposal. If
users do not find useful components, they will probably discard
the use of the web application, partly because of their lack of
interest in the components they know.

The success of a web application can be partially achieved
by predicting the components that are most suitable for each
user at each moment. This can be solved by using simple meth-
ods such as identify the most frequently used components. Also,
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Figure 1: Component-based applications morphology

more elaborate techniques may be applied, for instance, through
computational intelligence methods. This is an area yet to be
explored since as far as we know, there are no related works that
explore the component-based application usage by end-users
that analyzes behavior to enhance user experience and maxi-
mize the software’s probabilities of success in the market.

However, this is not an easy task for several reasons. With
the passage of time, new components are added to web applica-
tions and users should be able to discover these in event that a
newly added component may be useful for their interests. The
problem is more compounded when applications have to make
suggestions to new users without prior knowledge of their ac-
tivity. In these scenarios, suggestions should be made based on
others, similar user activities, that could be difficult to identify
without bias.

The problem is even more challenging today because users
interact with web applications across several devices (smart-
phones, tablets, etc.) using several forms of interactions (touch,
gesture, voice, etc.). The devices that users handle and the way
they interact with them clearly affect users’ behavior. Often it
is not enough to identify which component may be suitable for
each situation but also whether the usage of that component is
appropriate to the form of interaction and the device that a user
is handling at that specific time.

In addition, more aspects may be considered to be in pre-
dicting the suitability of components to users: a) The nature
of the user interacting may be taken into consideration (users
categorization); b) Information may be extracted from the sur-
rounding environment (context awareness); and c) other rele-
vant external information related to the web application may be
identified that may enrich the prediction data.

This paper addresses the problem of creating a useful rec-
ommendation system [31] that would be able to forecast the
use of components in cross-device component-based applica-
tions with multiple forms of interactions. We intend to create a
recommender system that can help users to discover the com-
ponents most suitable for them, thereby improving their user
experience of the applications. The success of the recommen-
dation system will likely increase the possibilities of a web ap-
plication project being successfully introduced into the market.

To validate the effectiveness of the recommendation system
and the data analysis methods applied to suggest an example set
of components to users, we have performed an empirical study
on a real component-based web application with tracked data of
its previous users. The name of the application is ENIA (Envi-
ronmental Information Agent) [1], a component-based user in-
terface for environmental management used by the Andalusian
Environmental Information Network (REDIAM, Spain) [3].

In this case study, a practical methodology is applied that
in early stages, obtains a raw dataset from the ENIA appli-
cation. To this dataset, Feature Engineering techniques such
as deleting features, filtering instances, transforming features
datatypes, and merging or splitting features, among others are
applied. This is fundamental for the proper application of ma-
chine learning, because the features representation has a great
impact on improving prediction models. After that, the Mutual
Information Score and Chi-Squared Statistics methods are ap-
plied to obtain a subset of the dataset previously transformed by
the Feature Engineering techniques. These Feature Selection
methods automatically select the most relevant features in the
dataset and simultaneously, together with the Feature Engineer-
ing techniques, reduce a dimensionality problem that appears in
our case study dataset.

The rest of the article is organized as follows. Section 2
reviews some related projects that involve creating forecast-
ing systems or model-based recommendations models. Sec-
tion 3 describes the problem of suggesting components to users
of components-based user interfaces in depth and details the
methodology followed summarizing how the solution to the
problem is addressed. Section 4 details everything from gath-
ering raw data to the creation of optimal datasets. The main
topics discussed in this section are: a) gathering and describing
the raw dataset obtained from ENIA web application; b) apply-
ing feature engineering techniques to have transform features
with better representation; and c) applying feature selections
approaches to identify the most significant features. Section 5
describes the algorithm used to build the recommendation mod-
els and analyzes the experimental results through relevant met-
rics. Finally, some conclusions and further considerations are
summarized in Section 6.

2. Related Work

The evolution of data mining and big data involves an in-
creasing interest in forecasting the demand for a product, the
needs of a user or the possibility of a series of events happening
in general. Accurately forecasting, precisely identifying trends
and the discovery of behavior patterns clearly optimizes re-
source usage or consumption as well as generating new knowl-
edge in science and research facilities; enabling faster and bet-
ter decisions in politics, retail, weather, sport, science, research,
real estate, sports or health-care among many others fields.

For these reasons, the use of recommendation models [31]
to forecast the use of resources, anticipate user needs, or to
make recommendations based on their behavior (and that of
other users, including a situation context) are becoming more
frequent. A compilation of some forecasting and recommender
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models using supervised machine learning algorithms found in
the literature are featured below.

In some works, such as [41], the authors presented a frame-
work to improve user recommendation in social networks. They
capture user preferences involving both interest and social fac-
tors to create a model using Matrix Factorization[5] techniques,
based on the principle that users who have shown similar inter-
ests in the past will likely have similar interests in the future.

Given the difficulty of modeling a real-world recommenda-
tion system, sometimes it is useful to create hybrid models that
combine a model and knowledge of the problem addressed. In
[42] the authors created a hybrid model-based job recommen-
dation system using Statistical Relational Learning [17]. They
also took into account tuning the algorithm to satisfy the re-
quirement to give more weight to the more desirable classes (or
difficult ones).

There are also approaches that work with similar algorit-
hms used in this article such as Decision Trees [32], Logistic
Regression [27] or Artificial Neural Networks [34]. In [7] they
use data analysis approaches for predicting the sales of newly
published books and in [24] they use contextual information as
a way of recognizing human activities and, subsequently make
music streaming recommendation accordingly. There are more
works that focus on multiple purposes such as [44] in which the
authors address the problem of detecting cell mitosis using deep
neural networks, or [8] that deal with the detection of malicious
webmail attachments or [15] that focus on predicting intervals
for solar energy forecasting with neural networks.

In our study, we also make use of context-aware informa-
tion as we consider it to be valuable data. Works that deal with
context-aware information to create recommendation models
can also be found in the literature. In [39] the authors pro-
pose that contextual features may be considered to be organized
in an understandable and intuitive hierarchy and they exploit
this hierarchical structure to improve the quality of their rec-
ommendation models. The exploitation of context information
to improve models is frequently used [38]. For instance, in [35]
the authors incorporate contextual situations (e.g., geographi-
cal location, special date or activities of interest) to improve
the precision of a retailing recommendation system using a col-
laborative filtering approach. In [20] the authors make use of
smartphone’s context-aware capabilities to create an adaptive
and personalized mobile learning system, which aims to sup-
port the semi-automatic adaptation of learning activities and
helps students to successfully complete the learning activities
of an educational scenario.

Often, before the creation of a recommendation model, Fea-
ture Selection techniques are used to improve the dataset qual-
ity (among other purposes). We also apply feature selection
techniques to improve our model’s accuracy, deal with high-
dimensional spaces and to solve problems such as the sparsity
of data. The literature shows how many works use feature se-
lection techniques before building models. There are exam-
ples worthy of comment in different areas such as spam detec-
tion [43], fraud detection [21] or diagnosis of mechanical faults
[40], among others.

Thus, given the related works mentioned, it makes sense

to use machine learning algorithms to create a recommenda-
tion model to suggest the most suitable component for users on
component-based interfaces, that enhances user experience.

3. Methodology and Problem Description

The steps followed to create the recommendation models on
component-based web applications are graphically described in
Figure 2. These steps do not represent a formal methodology,
they are a guideline we have followed in carrying out the work
described in this paper. The application of these steps is com-
pletely optional, subject to the nature of the problem presented,
and the data scientists knowledge.

The first step, understanding the problem, is already briefly
discussed in the introduction. It can be summarized as follows:
we need to create a recommendation model that assists users
in component-based web applications to discover useful com-
ponents, optimizing the user engagement with the application.
The aim of the recommendation model is to maximize the po-
tential market success of a component-based web application.

In order to really understand the problem of the ENIA com-
ponent-based application case study, there are important facts to
be considered (which can be extrapolated to other component-
based applications):

(a) The set of components offered by the web application are
in continuous growth, new components can be added (or
removed) over time.

(b) New users are registered in the web application with a
degree of frequency.

(c) Users are categorized according to how they are expected
to use the application, e.g. Tourist or Farmer.

(d) Users interact with the interface from different devices
(Smartphones, Tablets, Wearables, Laptops, Desktops PC,
etc.) with different forms of interaction (mouse and key-
board, touch screen, voice, etc.).

(e) The context that surrounds the users’ interactions with
the web application is relevant to the way they behave,
e.g. Weather.

The second step is gathering the data from the component-
based web application [12]. Fortunately, an increasing number
of applications have data repositories and a growing number of
organizations and companies now store data, sometimes leaving
it freely available to everyone (OpenData). If this were not the
case, this step would be tedious since it is necessary to access
the information system and manually collect the data. In this
case, the ENIA application has a service that stores all of the
information related to each interaction performed over its user
interface in a MySQL database [30]. A CSV file containing all
the interaction can be requested and will be generated using the
stored data in the ENIA database.

The third step consists of processing the raw data obtained
in the previous step. Finding out the relevant attributes that
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Figure 2: Methodology applied to create the recommendation model

describe an interaction is vital to ensure the success of the the
recommendation system. These attributes are called features
and the set of features is called a dataset. This step includes
cleaning features and transformation, as well as an important
and laborious process known as Feature Engineering that we
will address further in this paper.

The fourth step consists of applying Feature Selection meth-
ods that, as we shall see later in this paper, handle many issues
related to data such as the sparsity of dat, in addition to reduc-
ing the computing resources needed by the machine learning
algorithms in order to create the models.

The fifth step consists of applying machine learning algori-
thms to model the recommendation system we are looking for.
There are a wide range of algorithms that can be applied. In
this work, we make use of decision trees, logistic regression
and artificial neural networks.

Finally, the sixth step consists of validating the recommen-
dation model built by analyzing the accuracy of the algorithms
used. For this, a comparison of the experimental results of the
applied algorithms is made to determine whether the recom-
mendation models created are suitable to be deployed in the
component-based web application and which recommendation
model should be deployed.

The following sections describe the steps commented above.
Section 4 covers the step required to create the datasets that
include gathering and processing, apply Feature Engineering
techniques and Feature Selection methods. Section 5 describes
the algorithms applied to create the recommendation model and
thoroughly explains the results and validity of the experiments.

4. Creating Optimal Datasets

In this section, we focus on creating the optimal datasets
for applying machine learning algorithms. In this way, we shall
maximize the possibilities of suggesting the proper component
to users in every moment. Thus, the recommendation system
that will be built in further steps will be truly useful to end users.

First of all, we obtain raw data from the ENIA component-
based user interface. Following this, we use of Feature En-
gineering techniques to help machine learning algorithms to

create accurate and simple prediction models, providing bet-
ter results [23]. Finally, we apply Feature Selection methods to
create a subset with the more meaningful features of the pro-
cessed dataset which will imply shorter training times to build
the models by removing redundant or irrelevant features.

4.1. Gathering Raw Data
In order to create a recommendation system on component-

based applications and suggest useful components to users, it
is necessary to create datasets with rich enough attributes to
model the problem in the first place. As a starting point, we
have a raw dataset provided by our case study component-based
application, ENIA. The data contained in the dataset has been
directly extracted from the component-based web application
through a data acquisition system that is incorporated in the
proprietary software application [9, 10] powered by COSCore,
a modular and scalable service infrastructure approach for the
management of component-based architectures [36, 37].

When the dataset was obtained, it consisted of 27702 inter-
actions performed (instances) with a set of 18 features. The set
of features describing each interaction can be seen in Table 1.

4.2. Feature Engineering
Table 1 describes the data obtained from the component-

based web application. It contains data too raw for direct ap-
plication of data analysis techniques. In agreement with the
REDIAM agency and their experts in the field, some transfor-
mations on the dataset and its features have been made using
Feature Engineering techniques.

Feature Engineering is a process that transforms raw data to
create features that have better representation and therefore bet-
ter to create predictive models [33]. The quality of the predic-
tion models created with machine learning algorithms depends
on the Feature Engineering approach that has been followed,
where usually better features mean better prediction models.

Although Feature Engineering is usually treated lightly, it
plays an important role in the success of a machine learning
experiment. These techniques optimize the performance of the
dataset, improve the data analysis algorithms’s results, and cre-
ate simple and reliable prediction models that perform well and
accurately [23].
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Feature Description
idInteraction Unique Interaction Identification
dateTime Exact moment in which the interaction took place
operationPerformed Kind of interaction performed in the application
latitude Latitude in which the interaction took place
longitude Longitude in which the interaction took place
idUserClient Unique User Identification
Name Name of the user that performs the interaction
Surname Surname of the user that performs the interaction
userType Type of user that performs the interaction (tourist, farmer, etc.)
userSubType Subtype of user that performs the interaction (tourist, farmer, etc.)
birthDate Birth date of the user that performs the interaction
countryOrigin Country of origin of the user that performs the interaction
areaOrigin Area/State of the Country of the user that performs the interaction
email Email of the user that performs the interaction
deviceType Type of device on which the interaction was performed (laptop, desktop, smartphone, etc.)
interactionType Form of interaction on which the interaction was performed (mouse&keyboard, touch, voice, etc.)
idSession Unique Session Identifier
actionComponent Component over which the interaction has been performed

Table 1: Set of features describing an interaction directly obtained from the ENIA web application

The following Feature Engineering transformations have
been applied to the original dataset:

(a) No transformation. There are features that have good
significance in the form they appear in the original dataset.
For this kind of features, no type of transformation is nec-
essary. For this reason, the actionComponent, device-
Type, interactionForm, countryOrigin, areaOri-
gin and userType features have been left unaltered, the
value they add to the dataset is significant enough as is.

(b) Deleting Features. There are features that do not corre-
late well with the objective field (label). Some are easy to
find because they have no knowledge associated with the
field. Others are more difficult to find because they are
dependent on other features and to identify them domain-
specific knowledge is required. It is important to iden-
tify these features and delete them. The idSession,
idUserClient and idInteraction features have been
discarded because they are not relevant to the accuracy
of the model, they are simply auto-generated identifiers
created by the ENIA database. The idUserSubType fea-
ture has also been discarded because it is an optional field
that several users miss. According to the REDIAN ex-
perts, ENIA do not provide a good categorization of users
subtypes. The areaOrigin and areaInteraction fea-
tures have also been deleted. On this occasion, because
they have many possible cases, i.e., a large amount of
values can be assigned to these features (17 and 12 re-
spectively) and we already have the countryOrigin and
countryInteraction features that are similar and have
more homogeneous values. In the future, with a higher
number of instances, they could be kept.

(c) Filtering Instances. Often, the whole set of dataset in-
stances are not required because the problem is circum-
scribed to a fraction of it. On these occasions, it is neces-
sary to obtain a subset of the original dataset according to
a rule that can isolate the required instances that are use-
ful to create the model. In our case study dataset, the

operationPerformed feature has 13 possible values:
{Add, Group, AddGroup, Ungroup, Delete, Ungroup-
Group, UngroupDelete, Resize-Bigger, ResizeSma-
ller, ResizeShape, Move, Maximize, Minimize}. The-
se are the possible operations that users can perform in
the ENIA component-based application user interface.
Since our purpose is to recommend components to users,
we are interested in filtering the operationPerformed

feature to keep the instances where the operationPer-
formed values are {Add, AddGroup}. These values of the
operationPerformed feature bring together the opera-
tions where users begin using a component.

(d) Processing Features. There are features that, according
to domain-specific experts, can be useful but algorithms
may find them difficult to manage. These features should
be processed to adapt them to more suitable datatypes, or
representations that increase their significance and may
be easily processed using data analysis algorithms. In
our case study, the birthDate feature is too complex to
obtain significance from it, thus it has been transformed
to a new feature: the age the user was when he/she per-
formed the interaction (age), which performs better.

(e) Creating new features by splitting existing ones. Some-
times there are features rich enough to be broken down
into more than one feature because they contain a great
deal of information in a specific domain. The ENIA orig-
inal dataset comes with the dateTime feature, which con-
tains the exact time when an interaction was performed.
It has been divided into two features: season and part-

OfTheDay, which allows us to explore two different as-
pects that surround the interaction and may influence the
user’s behavior.

(f) Creating new features by merging existing ones. In
contrast to the previous case, sometimes there are fea-
tures that by themselves do not contribute to creating bet-
ter prediction models. However, by merging them with
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others features, it is possible to create meaningful fea-
tures that improve the overall performance. The latitude
and longitude features do not add relevant informa-
tion to the recommendation systems by themselves, but
they can be transformed into two interesting new fea-
tures: countryInteraction and areaInteraction.

(g) Adding relevant features. Often, there is meaningful
data that is not contained in the dataset but can be ob-
tained from existing features. Because we are talking
about a component-based web application developed for
an Environmental Agency, it is considered relevant, ac-
cording to the experts, to know the weather conditions at
the time that the interactions have been carried out. A
piece of code has been implemented that connects to the
OpenWeatherMap [2] service and using the latitude,
longitude and dateTime data features as inputs can re-
trieve the weather conditions. So, two new features have
been inserted in the dataset: weatherDescription and
Temperature.

(h) Discretizing Features. Many machine learning algorit-
hms produce better prediction models using discretized
values. By discretizing, the impact that small variations
have on the data is reduced, which justifies the loss of in-
formation [16]. We performed the following discretiza-
tions, assisted by the experts:

— The numeric values of the age feature are calcu-
lated (as described before) and categorized into the
following values:

{<18, 18-25, 25-35, 35-50, 50-65, >65}.

— The values of the season feature have been catego-
rized according to the values:

{Fall, Summer, Spring, Winter}

— The values of the partOfTheDay feature have been
categorized according to the values:

{Morning, Afternoon, Evening, Night}

Table 2 synthesizes the transformation that has been taken
place in each feature.

4.3. Reducing the Number of Classes
Classification algorithms in machine learning can be cat-

egorized as binary or multiclass, according to the number of
classes they can predict. In this study, we are trying to fore-
cast the most feasible components to suggest to users in spe-
cific situations. Thus, the algorithm must decide between the
available components which one is the most suitable. This is a
multiclass problem. It would be different if the model were to
foresee whether a component is suitable or not, then it would
be a much easier binary problem.

After the Feature Engineering process, our dataset consists
of 27702 instances with a set of 11 features (including the ob-
jective field). The possible values that can be assigned to each
feature and its data type is described in Table 3 and summarized
as follow:

Dataset = {

weatherDescription (4),

temperature (7),

countryInteraction (4),

countryOrigin (4),

userType (4),

age (6),

season (4),

partOfTheDay (4),

deviceType (3),

interactionType (3),

actionComponent (33)

}

The number of cases in the actionComponent feature, that
is the objective field, is too high. With 33 different components
that can be suggested and 27702 instances to train the model,
it is highly probable that the forecasting would not be accurate.
According to the number of cases of each feature, the total num-
ber of possible cases is more than 50 million (4∗7∗4∗4∗4∗6∗
4∗4∗3∗3∗33 = 51.093.504 ≈ 5∗109). If we had not deleted the
areaOrigin and areaInteraction features the total number
of possible cases would have been more than 10 american bil-
lion (4∗7∗4∗12∗4∗17∗4∗6∗4∗4∗3∗3∗33 = 10.423.074.816 ≈
109). With this action the problem was drastically reduced, but
not enough.

For this reason, the number of components to be suggested
has been limited. A reduction of the 33 possible classes of the
objective field has been made, reducing the number of classes to
8. We have selected the components that are the most frequently
used. The recommendation system is then set up to suggest only
these 8 components to users. It is remarkable that the appear-
ances of these 8 cases selected account for 21882 instances (≈
78%). The possible cases of the actionComponents feature
that can be predicted are BioReserves, Clock2, CuttleRoads,
GeoParks, Heritage, Twitter, Weather and Wetlands. The
number of instances of each class and its frequency can be
seen in Table 4. Thus, the recommendation system is a hy-
brid between computational intelligence methods and a simpler
method that selects the 8 components most frequently used by
users of ENIA.

Even after the objective field classes reduction, the number
of possible cases is more than 12 million (4∗7∗4∗4∗4∗6∗4∗
4 ∗ 3 ∗ 3 ∗ 8 = 12.386.304 ≈ 12 ∗ 106). It remains a large num-
ber but, given the high number of occurrences of these classes,
and the high appearances frequency of the selected classes, it
is enough. The domain-specific experts, i.e., employees of the
environmental agency that make use of the application to per-
form their tasks, agree with this simplification. Besides, fol-
lowing their advice, the recommendation model will not sug-
gest components to users in every situation, it will only suggest
on the occasions that the likelihood of using a component is
sufficiently high to make a good recommendation. For exam-
ple, if the recommender system suggests a component with a
likelihood of 37%, the recommendation is not shown to users
because we have set a threshold of 50% of likelihood.

6

A.J. Fernández-García, L. Iribarne, A. Corral, J. Criado, J.Z. Wang. (2019): A Recommender System for Component-based Applications using Machine Learning Techniques. 
Knowledge-Based Systems Journal, Volume 164, 15 January 2019, Pages 68-84, Elsevier. ISSN: 0950-7051.

https://doi.org/10.1016/j.knosys.2018.10.019



Before FE After FE Consideration
idInteraction idInteraction Deleted
idUserClient idUser Deleted
idSession idSession Deleted
operationPerformed operationPerformed Deleted. Instances filtered by add or addGroup
name name Deleted
surname surname Deleted
email email Deleted
userType userType Kept
userSubType userSubType Deleted
birthDate Age Processed
deviceType deviceType Kept
interactionType interactionType Kept
dateTime season New Feature (Splitting)

partOfTheDay New Feature (Splitting)
temperature New Feature (from external sources)
weatherDescription New Feature (from external sources)

latitude Country Interaction New Feature (Merging)
longitude
countryOrigin countryOrigin Kept
areaOrigin areaOrigin Deleted
actionComponent actionComponent Objective field

Table 2: Features transformation carried out in the Feature Engineering process

Feature Cases (Possible Values) Type
weatherDescription Clouds, Clear, Fog, Mist Categorical Feature
temperature <-10, -10-0, 0-10, 10-20, 20-30, 30-40, >40 Categorical Feature
countryInteraction Not limited possibilities. When creating the dataset: 4 cases Categorical Feature
countryOrigin Not limited possibilities. When creating the dataset: 4 cases Categorical Feature
userType Tourist, Farmer, Technical, Politician Categorical Feature
age <18, 18-25, 26-35, 36-50, 51-65, >65 Categorical Feature
season Spring, Summer, Fall, Winter Categorical Feature
partOfTheDay Morning, Afternoon, Evening, Night Categorical Feature
deviceType Computer, SmartPhone, Tablet Categorical Feature
interactionType MouseKeyboard, Touch, Voice Categorical Feature
actionComponent Not limited possibilities. When creating the dataset: 33 cases. Limited to 8. Categorical Label

Table 3: Set of features describing an Interaction after processing the original raw dataset

Class Instances Frequency
GeoParks 5572 0.25463
Heritage 4760 0.21753
CuttleRoads 3038 0.13883
Twitter 2618 0.11964
Weather 2282 0.10428
Wetlands 1400 0.06397
BioReserves 1302 0.05950
Clock2 910 0.04158

Total 21882 1

Table 4: Most frequently used components

4.4. Feature Selection
The set of attributes of a dataset should be as significant as

possible to describe the nature of the reality they represent. It
may seem that a large number of features can better describe a
problem and (with them) better predictive models can be built,
but this is not entirely true. Feature Selection methods can help
to reduce overfitting [4] and avoid high-dimensional spaces and
the sparsity of data [22] that datasets with a large set of at-
tributes may have. Also, a feature subset of a dataset implies
shorter training times building the models by removing redun-
dant or irrelevant features.

In this work, we make use of feature selection methods that
support all data type features, specifically the Mutual Informa-
tion Score and Chi-Squared Statistic methods available in the
Microsoft Azure Machine Learning Studio (AzureML) [28].

4.4.1. Mutual Information Score
The Mutual Information Score method is defined as:

I(X; Y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x) p(y)

)
; (1)

where p(x, y) is the joint probability function of X and Y ,
and p(x) and p(y) are the marginal probability distribution func-
tions of X and Y respectively [18].

Table 5 shows the results of applying the Mutual Informa-
tion Score selection method to the ENIA dataset and Figure 3
illustrates the relevance of each feature.

Feature MR MO CR CO
userType 0.078864 1 383.256110 1
age 0.036541 2 170.996097 2
countryInteraction 0.022832 3 106.796770 4
weatherDescription 0.020199 4 91.611703 5
partOfTheDay 0.018090 5 73.870284 6
countryOrigin 0.017928 6 121.178845 3
deviceType 0.003489 7 14.995899 7
interactionType 0.002720 8 11.730771 8
season 0.001766 9 7.233112 9
temperature 0 10 0 10

Table 5: Mutual Information Score and Chi-Squared Statistics results (MR:
Mutual Information Result; MO: Mutual Information Order; CR: Chi-Squared
Result; and CO: Chi-Squared Order)
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Figure 3: Mutual Information Score and Chi-Squared Statistic Features Relevance

The relevance of the userType feature is far higher than
any other feature, followed by the age, countryInteraction
and weatherDescription features, that also have consider-
able weight. Conversely, the deviceType and the interac-

tionType features have little relevance, probably because the
vast majority of users interactions has been performed in desk-
top computers by means of mouse and keyboard. The tempera-
ture feature has no relevance, probably because that feature
can be highly correlated with the season and partOfTheDay

features.

4.4.2. Chi-Squared Statistic
The Chi-Squared Statistic method is defined as:

X2 =

n∑
i=1

m∑
j=1

(
O(i, j) − E(i, j)

)2

E(i, j)
; (2)

where O(i, j) is the observed value of two nominal variables
and E(i, j) is the expected value of two nominal values. The ex-
pected value can be calculated with the following formula:

E(i, j) =

∑c
i=1 O(i, j)

∑c
k=1 O(k, j)

N
; (3)

where
∑c

i=1 O(i, j) is the sum of the ith column and
∑c

k=1 O(i, j)
is the sum of the kth column [26].

Table 5 shows the results of applying the Chi-Squared Statis-
tics selection method to the ENIA dataset and Figure 3 illus-
trates the relevance of each feature.

When we observe Figure 3 and Table 3 we can appreci-
ate that there is not very much difference. Both Mutual Infor-
mation Score and Chi-Squared Statistic methods have thrown
similar results. The main difference is that the weight of the
countryOrigin feature in the Chi-Squared Statistic method is
higher than the countryInteraction and weatherDescrip-
tion features in comparison with the Mutual Information Score
method.

4.4.3. Features Selected
The features selected to create a subset of the original dataset

are:

Dataset = {

userType,

age,

countryOrigin,

countryInteraction,

weatherDescription,

partOfTheDay,

deviceType,

interactionType,

actionComponent (label)

}

Taking into account the finding of the Feature Selection
methods, the deviceType and interactionType features wo-
uld have been discarded, but we have kept them since we ex-
pect that soon enough, ENIA web application user access from
smartphones or tablets will increase and we want this recom-
mendation system to automatically evolve over time. When cre-
ating the models, each is built using both datasets, the original
and the subset of the original with the most significant features.
The results are evaluated and their performance compared.

5. Recommendation Model and Experiments

This section analyses the machine learning algorithms used
to create the recommendation models and presents the results
of the experiments conducted. We evaluate the recommenda-
tion model’s accuracy and performance based on relevant met-
rics obtained from the empirical study, to determine which rec-
ommendation model is more suitable to deploy. By selecting
the more accurate model the recommendation system will pro-
vide ENIA users with the most suitable components, thereby
improving their user experience.
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5.1. Recommendation Model
There are plenty of algorithms available in the literature that

can be applied in order to create recommendation models. Like-
wise, by adjusting the parameters of these algorithms, there are
many more configurations possible that directly affect their per-
formance and accuracy.

In this case, it is worth noting that we are facing a multi-
class classification problem, where each instance can be classi-
fied into more than two classes, specifically, in as many classes
as components are available to suggest to users. Although the
possibility exists of turning binary classification algorithms into
multiclass classifiers, we’ve decided to make use of algorithms
that naturally allow decisions between more than two classes.

We make use of four multiclass classification algorithms
available in Microsoft Azure Machine Learning Studio [28].
We make use of the AzureML implementation because of the
ease of setting up web services over trained models to deploy
them that this platforms offers. We also value positively the fact
that readers can easily access these algorithms as anonymous
guests on the platform for free and reproduce the experiments
conducted in this paper.

The well known classification algorithms proposed are Mul-
ticlass Decision Forest, Multiclass Decision Jungle, Multiclass
Neural Network and Multiclass Logistic Regression.

5.1.1. Multiclass Decision Forest (DF)
Decision trees algorithms build a tree-like structure where

each node represents a question over an attribute. The answers
to that question create new branches to expand the structure
until the end of the tree is reached, being the leaf node the one
that indicates the predicted class. The Decision Forest (DF)
algorithm, graphically illustrated in Figure 4, creates several
decision trees and votes the most popular output of them. The
implementation used in this paper does not directly count the
output of them but sum the normalized frequency ( f̂ ) of each
output in each tree to get the label with more “probability”:

f̂ =
1
T

T∑
t=1

ft(x); (4)

where T is the number of trees and x the probability of each
class.

The parametrization followed in this experiment built 8 de-
cision trees with a maximum depth of 32 levels each. The
amount of 128 splits are generated per node to select the op-
timal split. In order to generate a leaf node, just a sample is
required. To resample the dataset for each decision tree the
Bagging method, also known as bootstrap aggregation is ap-
plied [6].

The bagging method consists of duplicating the original data-
set D to a new dataset D′ for each decision tree. D and D′ have
the same size n. When creating and evaluating models the orig-
inal dataset is divided in two parts: training and evaluation.
The instances used for training and for evaluation are different
in each new dataset D′ since they are selected randomly with
replacement.

Figure 4: Decision Forest Parametrization

5.1.2. Multiclass Decision Jungle (DJ)
The Decision Jungle (DJ) algorithm is an extension of the

Decision Forest algorithm where each tree is replaced by a DAG
(directed acyclic graph). The structure of a DAG is illustrated
in Figure 5. It is more memory-efficient because it eliminates
the need for repeating leaf nodes and allows branches to merge
but, as a disadvantage, takes more computing time.

Figure 5: DAG Parametrization

The parametrization followed in this experiment built 8 de-
cision DAGs with a maximum depth of 32 levels each. The
maximum width of each decision DAG is 128 and the number
of steps for each level optimization of the graph is 2048. As in
the case of the decision forest algorithm, to resample the dataset
for each decision DAG the Bagging method is applied.

5.1.3. Multiclass Artificial Neural Network (ANN)
The Artificial Neural Network (ANN) algorithm creates a

set of interconnected levels, where each level consists of a set
of nodes (neurons) that receives input and produces weighted
outputs. The nodes of layer 1 are the inputs, the nodes of the
last layer are the output and the nodes in between are called
“hidden nodes”. A neural network can be seen as a weighted
directed acyclic graph.

The parametrization followed in this experiment built an
ANN with a fully connected structure -i.e., every node of each
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layer is connected with every node of the previous and next
layer. There is only 1 hidden layer with 100 nodes. The in-
stances are processed a maximum of 100 times if the ANN has
not converged yet. The learning rate is set to 0.1 and the mo-
mentum (weight applied to nodes from previous iterations) is
set to 0, with these values we want the model to converge fast
but avoid local minimums.

5.1.4. Multiclass Logistic Regression (LR)
The Multiclass Logistic Regression (LR) algorithm or Multi-

nomial Logistic Regression), generalizes logistic regression with
more than two possible classes to predict. It predicts the output
probability of a class by fitting data to a logistic function. LR
aims to build a function that describes the relationships between
the input features and the class label.

The parametrization followed in this experiment to build
the logistic regression model set the Optimization Tolerance
1 ∗ 10(−6). This parameter set the threshold that each iteration
has to surpass to continue fitting the model to the dataset. The
L1 and L2 regularization weights that deal with the sparsity of
data and with no sparse data respectively, are set to 1.

5.2. Experiment Results

In this subsection, we present the results of the experiments
conducted that aim to build a useful recommendation model to
suggest the most feasible components to users of a component-
based interface software application, thereby enhancing the user
experience and improving their engagement with the interface.
Due to the fact that the number of classes to predict was too
high according to the number of instances of our dataset, we
reduced the number of components to suggest from 33 to 8.
Thus, the recommendation model will suggest only the 8 most
used components to users in the ENIA application, which are:
BioReserves, Clock2, CuttleRoads, GeoParks, Heri-

tage, Twitter, Weather and Wetlands.
To build the model, we have selected the four classification

algorithms previously discussed, which are Decision Trees, De-
cision Jungle, Artificial Neural Networks and Logistic Regres-
sion. We have applied each of these algorithms to the whole
dataset after applying the Feature Engineering techniques dis-
cussed in section 4.2. We have also applied these algorithms
to a subset of the dataset we have extracted using the Mutual
Information Score and Chi-Squared Statistic Feature Selection
methods described in Section 4.4.

Figure 6 shows the results of the experiments by plotting the
accuracy of the models created with each algorithm, with and
without reducing the original dataset applying Features Selec-
tion methods. The figure clearly indicates that the model built
with Artificial Neural Networks gets higher accuracy than the
model built using the other algorithms, while the Decision For-
est and Decision Jungle tree-like algorithms present the worst
results, especially the Decision Jungle.

Figure 6 also shows that the results are better when applying
Feature Selection methods to the dataset than using the whole
dataset. The exact numerical results can be seen in Table 6.
We could foresee that a features subset selection of the original

dataset could get better results, given the number of instances
and the number of possible hypothesis. A high sparsity of data
in high-dimensional spaces does not only computationally pe-
nalizes the creation of a model but also affects to its efficiency,
decreasing the accuracy of the model.

Algorithm FS OA AA
Decision Forest 0.604878049 0.901220
Decision Forest X 0.646341463 0.911585
Decision Jungle 0.398747390 0.849687
Decision Jungle X 0.434237996 0.858559
Logistic Regression 0.718978102 0.929745
Logistic Regression X 0.740875912 0.935219
Neural Network 0.788321168 0.947080
Neural Network X 0.802919708 0.950730

Table 6: Overall and Average Accuracy (FS: Feature Selection; OA: Overall
Accuracy; AA: Average Accuracy)

DF DJ ANN LR

0.4

0.5

0.6

0.7

0.8

Without FS With FS

Figure 6: Overall Accuracy

Nevertheless, the sparsity of data itself, is not necessarily a
problem if there are insights or knowledge to infer from data,
as happens in this scenario. In ENIA, users’ behavior clearly
follows some patterns, as is borne out by the high accuracy
of the models created. Inferring that patterns would be diffi-
cult in high-dimensional spaces with the lack of data that our
dataset may have but, by reducing the number of features of
the dataset with a subset of the most relevance features, we can
avoid the problems derived from the curse of dimensionality in
high-dimensional spaces. Thus, creating models using a subset
of features selected by Feature Selection methods we can get
greater accuracy. The models we have created obtain good re-
sults, reaching 80% accuracy in the case of the Artificial Neural
Network model. This happens for the models built using every
algorithm, obtaining better results in all cases with a subset of
the features of the original dataset.

The good results that every model offers, independently of
the algorithm used to build it, is remarkable. Even the Deci-
sion Jungle algorithm applied to the whole dataset, which is
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the model that presents least accuracy, throws an accuracy of
0.398747390. If one of the 8 possible classes were to be cho-
sen randomly, the probability of guessing would be 0.125. It
means that the worst model built by applying machine learning
techniques triplicates the possibilities of suggesting a suitable
component to users when they need it, in the case that compo-
nents were to be chosen randomly.

In our case study, there is a class imbalance, i.e., the most
frequent case GeoParks has six times the number of occur-
rences than the less frequent case Clock2, as previously shown
in Table 4. The class imbalance is not extremely high but it
needs to be considered. For this reason, the Overall Accu-
racy measure is not enough, we also need the Average Accu-
racy measure to really determine the performance of the mod-
els. The Overall Accuracy indicates the correctly predicted in-
stances (number of correctly predicted items / total of items to
predict). The Average Accuracy measures the ability to predict
classes with few occurrences, difficult to predict (sum of the ac-
curacy for each class predicted / number of classes). Table 6
presents both measures and we can see that given the perfor-
mance of the Average Accuracy the models created using the
Decision Forest and Decision Jungle algorithms have problems
predicting the less frequent classes and the Artificial Neural-
Networks and Logistic Regression models behave more consis-
tently across all classes to predict.

Data can be analyzed in more detail by studying the Con-
fusion Matrix. A Confusion Matrix is a table layout where
each row represents the number of instances of each class and
each column represents the class that has been predicted by the
model. In this table, we can obtain a reliable performance of
the model beyond the global accuracy. We have created a cus-
tomized Confusion Matrix (Table 7) that has been divided into
two parts. The upper part shows the results of the models cre-
ated using the whole dataset and the lower part shows the re-
sults of the models created using a subset of features. Each cell
shows 4 values, corresponding to each algorithm used.

The detailed values of the accuracy of each model predict-
ing each class are shown in Table 7. We have also created a
surface chart representing the Confusion Matrix, shown in Fig-
ure 7, that helps to easily visualize the results thrown by the
models created. As can be noted from this chart, the Deci-
sion Forest and Decision Jungle algorithms, regardless of using
the whole dataset or a subset of it, show a high concentration
of occurrences that are not correctly predicted at the bottom
part of their chart. The bottom part of the graphic corresponds
to the instances where the predicted class is GeoParks, the
most common label. Additionally, the Decision Jungle algorit-
hms have serious problems predicting the Weather, Heritage
and Clock2 components. It looks like these algorithms tend
to predict the most common label GeoParks. Conversely, the
Artificial Neural Networks and Logistic Regression algorithms
present better results, specifically the model created using Ar-
tificial Neural Networks is particularly suitable for creating the
recommendation system that we aim to create in this research.
The surface chart shows that this model is very consistent ac-
curately predicting all classes as well as being highly accurate
predicting the most uncommon classes. These attributes ensure

Figure 7: Surface Chart representing the Confusion Matrix
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BR C2 CR GP HT TW WT WL

BR

0.72 0.00 0.00 0.25 0.02 0.00 0.00 0.00 DF
0.58 0.00 0.11 0.25 0.00 0.00 0.04 0.00 DJ
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ANN
0.75 0.00 0.00 0.19 0.00 0.00 0.06 0.00 LR

C2

0.07 0.52 0.00 0.34 0.00 0.00 0.07 0.00 DF
0.00 0.22 0.22 0.56 0.00 0.00 0.00 0.00 DJ
0.12 0.75 0.00 0.00 0.00 0.12 0.00 0.00 ANN
0.07 0.47 0.00 0.33 0.13 0.00 0.00 0.00 LR

CR

0.00 0.00 0.67 0.26 0.03 0.03 0.03 0.00 DF
0.00 0.00 0.67 0.33 0.00 0.00 0.00 0.00 DJ
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 ANN
0.00 0.00 0.42 0.24 0.15 0.00 0.15 0.03 LR

GP

0.00 0.00 0.04 0.90 0.02 0.02 0.03 0.00 DF
0.00 0.00 0.02 0.97 0.00 0.00 0.01 0.00 DJ
0.00 0.04 0.00 0.92 0.04 0.00 0.00 0.00 ANN
0.02 0.00 0.00 0.97 0.02 0.00 0.00 0.00 LR

HT

0.00 0.00 0.00 0.60 0.39 0.00 0.01 0.00 DF
0.00 0.00 0.01 0.85 0.11 0.00 0.03 0.00 DJ
0.00 0.00 0.00 0.09 0.87 0.00 0.04 0.00 ANN
0.00 0.00 0.02 0.22 0.72 0.00 0.04 0.00 LR

TW

0.00 0.00 0.09 0.47 0.07 0.36 0.02 0.00 DF
0.00 0.00 0.11 0.82 0.00 0.08 0.00 0.00 DJ
0.00 0.05 0.00 0.10 0.15 0.70 0.00 0.00 ANN
0.00 0.00 0.13 0.13 0.00 0.71 0.03 0.00 LR

WT

0.02 0.00 0.13 0.37 0.05 0.05 0.40 0.00 DF
0.00 0.00 0.14 0.79 0.00 0.00 0.07 0.00 DJ
0.00 0.00 0.07 0.10 0.13 0.07 0.60 0.03 ANN
0.04 0.00 0.00 0.10 0.10 0.00 0.76 0.00 LR

WL

0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.93 DF
0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.68 DJ
0.00 0.00 0.18 0.00 0.18 0.00 0.00 0.64 ANN
0.00 0.00 0.07 0.29 0.07 0.00 0.07 0.50 LR

(a) Without Feature Selection

BR C2 CR GP HT TW WT WL

BR

0.81 0.00 0.00 0.19 0.00 0.00 0.00 0.00 DF
0.63 0.00 0.07 0.30 0.00 0.00 0.00 0.00 DJ
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ANN
0.75 0.00 0.00 0.13 0.00 0.00 0.13 0.00 LR

C2

0.00 0.72 0.00 0.28 0.00 0.00 0.00 0.00 DF
0.00 0.22 0.25 0.50 0.00 0.00 0.00 0.03 DJ
0.25 0.75 0.00 0.00 0.00 0.00 0.00 0.00 ANN
0.07 0.60 0.00 0.27 0.07 0.00 0.00 0.00 LR

CR

0.00 0.00 0.62 0.36 0.00 0.00 0.03 0.00 DF
0.00 0.00 0.69 0.27 0.00 0.00 0.00 0.04 DJ
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 ANN
0.00 0.00 0.52 0.18 0.06 0.03 0.15 0.06 LR

GP

0.00 0.00 0.00 0.94 0.02 0.01 0.03 0.00 DF
0.00 0.00 0.03 0.96 0.01 0.00 0.00 0.00 DJ
0.00 0.00 0.00 0.96 0.04 0.00 0.00 0.00 ANN
0.02 0.00 0.00 0.98 0.00 0.00 0.00 0.00 LR

HT

0.00 0.00 0.00 0.55 0.39 0.01 0.05 0.00 DF
0.00 0.00 0.02 0.74 0.22 0.00 0.01 0.01 DJ
0.04 0.00 0.00 0.09 0.87 0.00 0.00 0.00 ANN
0.00 0.00 0.04 0.28 0.64 0.00 0.04 0.00 LR

TW

0.00 0.00 0.07 0.51 0.00 0.38 0.04 0.00 DF
0.00 0.00 0.14 0.80 0.00 0.06 0.00 0.00 DJ
0.00 0.00 0.00 0.25 0.05 0.70 0.00 0.00 ANN
0.00 0.00 0.08 0.08 0.00 0.76 0.08 0.00 LR

WT

0.00 0.00 0.02 0.51 0.00 0.00 0.48 0.00 DF
0.00 0.00 0.11 0.74 0.00 0.00 0.14 0.01 DJ
0.00 0.00 0.07 0.17 0.07 0.07 0.63 0.00 ANN
0.04 0.00 0.00 0.12 0.08 0.00 0.76 0.00 LR

WL

0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.86 DF
0.00 0.00 0.23 0.14 0.00 0.00 0.00 0.64 DJ
0.00 0.00 0.18 0.00 0.18 0.00 0.00 0.64 ANN
0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.64 LR

(b) With Feature Selection

Table 7: Confusion Matrix (Components {BR: BioReserves; C2: Clock2; CR: CuttleRoads; GP: GeoParks; HT: Heritage; TW: Twitter; WT: Weather; WL:
Wetlands}— ML Algorithms {DF: Decision Forest; DJ: Decision Jungle; ANN: Artificial Neural Network; LR: Logistic Regression})

Figure 8: Recommendation model output for a concrete scenario in ENIA
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that the model is reliable and we can conclude that the model
created using the Artificial Neural Networks, trained with a sub-
set that contains the most significant features extracted using
the Mutual Information Score and Chi-Squared Statistic Fea-
ture Selection methods, is the best model created to suggest the
most suitable component to users in component apps.

5.3. Deployment
Once the best model is selected, it has to be deployed in the

component-based application. The real output of the recom-
mendation system is the list of possible components to suggest,
along with the grade of certainty of the recommendation, ex-
pressed as a percentage.

In order to avoid the risk of forecasting a component that
is not good for a user in a concrete scenario, in ENIA we do
not directly suggest the most suitable component to a user ac-
cording to the output of the model. Instead, we evaluate if the
likelihood of the component suggested is higher than 50%. If
so, the component will be suggested to the end-user.

Figure 8 illustrates the output of the model for a concrete
scenario in the ENIA component-based web application. The
scored label is the class with higher probability, in this case,
the Wetlands component, is the class with the higher score
(0.544146). As the likelihood of this class is higher than 50%
we proceed to suggest the Wetlands component to the end-user
in this scenario.

6. Conclusions and Future Work

In this article, we address the problem of creating a recom-
mender system that is able to suggest to users of component-
based interfaces, which are the most suitable components for
them to use at a specific time. By forecasting the component
most closely aligned to each situation, we aim to improve the
user experience in the software application and thus, optimize
the possibilities of successfully achieving a good position in the
increasingly competitive software development market.

We have created several models using a dataset that con-
tains the interactions performed by users in component based
applications after applying Feature Engineering techniques and
Feature Selection methods. After this, we have evaluated and
compared the models created in terms of overall accuracy and
average accuracy, as well as analyzing the confusion matrix that
offers the specifying accuracy including the deviation that the
model may have predicting a class compared with the labeled
class. As a conclusion, all the recommender systems get good
results achieving an accuracy of up to 40%, with the Neural
Network models being the one that gets better performance,
yielding an accuracy of up to 80%. It is remarkable that Feature
Selection methods favorably affect to the results, increasing the
accuracy by an average of 3% in all cases.

In future works, it would be interesting to improve the rec-
ommendation of components in component-based user inter-
faces by following these practices:

a) Instead of using just the recommendation model with high-
est accuracy, the creation of a network that agglutinates

all the models and votes the most popular output of each
of them, considering the normalized accuracy of each,
could improve the overall performance.

b) Since there are components that are more frequently used
than others, with a huge difference, adding weights that
help to better forecast the less common classes would im-
prove the average accuracy of the recommendation model.

c) Given the rapid evolution of users and components in
component-based user interfaces and in the software de-
velopment market, a nice improvement would be the def-
inition of a coherent strategy to continuously update the
recommendation model so it can be adapted to the changes
in the software application environment.

Through the implementation of these improvements and the
continuous optimization of the dataset, adding more instances
and significant features, the recommendation system can be
properly optimized over time.

Acknowledgements

This work has been funded by the EU ERDF and the Spanish
Ministry of Economy and Competitiveness (MINECO) under Projects
TIN2013-41576-R and TIN2017-83964-R. A.J. Fernández-Garcı́a has
been funded by a FPI Grant BES-2014-067974. J.Z. Wang was funded
by the US National Science Foundation under Grant No.1027854.

References

[1] ENIA. Environmental Information Agent Project. http://acg.ual.

es/projects/enia/ui/. Online; last accessed 18 December 2017.
[2] Open Weather Map. https://openweathermap.org/. Online; last

accessed 18 December 2017.
[3] The Andalusian Environmental Information Network (REDIAM). http:

//www.juntadeandalucia.es/medioambiente/site/rediam/.
Online; last accessed 18 December 2017.

[4] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature Selection for Clus-
tering: A Review. Chapman&Hall, 2013.

[5] Dheeraj Bokde, Sheetal Girase, and Debajyoti Mukhopadhyay. Matrix
factorization model in collaborative filtering algorithms: A survey. Pro-
cedia Computer Science, 49(Supplement C):136 – 146, 2015.

[6] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140,
Aug 1996.

[7] Pedro A. Castillo, Antonio M. Mora, Hossam Faris, J.J. Merelo, Pablo
Garcı́a-Sánchez, Antonio J. Fernández-Ares, Paloma De las Cuevas, and
Marı́a I. Garcı́a-Arenas. Applying computational intelligence methods for
predicting the sales of newly published books in a real editorial business
management environment. Knowledge-Based Systems, 115(Supplement
C):133 – 151, 2017.

[8] Yehonatan Cohen, Danny Hendler, and Amir Rubin. Detection of mali-
cious webmail attachments based on propagation patterns. Knowledge-
Based S., 141:67 – 79, 2018.
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