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Abstract: Introduction: Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease
mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white
matter of the brain and spinal cord. It is considered one of the most common neurological diseases
of non-traumatic origin in young people, especially in women. Recent studies point to a possible
association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an
alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and
inconclusive. Objective: To conduct a systematic review on the relationship between gut microbiota
and multiple sclerosis. Method: The systematic review was conducted in the first quarter of 2022.
The articles included were selected and compiled from different electronic databases: PubMed,
Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were:
“multiple sclerosis”, “gut microbiota”, and “microbiome”. Results: 12 articles were selected for the
systematic review. Among the studies that analysed alpha and beta diversity, only three found
significant differences with respect to the control. In terms of taxonomy, the data are contradictory,
but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae,
Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella
and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain
fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed.
Conclusions: Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls.
Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the
chronic inflammation that characterises this disease. Therefore, future studies should consider the
characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both
diagnostic and therapeutic strategies.

Keywords: multiple sclerosis; gut microbiota; microbiome: short-chain fatty acid

1. Introduction

Multiple sclerosis (MS) is a chronic, inflammatory, neurodegenerative condition caused
by autoimmune reactions which progressively demyelinate the central nervous system
(CNS) and the spinal cord [1,2]. It seems to begin when autoreactive T cells cross the blood–
brain barrier (BBB) and provoke specific cascades in the CNS, leading to inflammation and
axonal degeneration [3,4], although it is not clear what causes T cells activation [5].

MS affects an estimated 2.3 million people worldwide and its incidence is increasing
from 50 to 300 per 100,000 inhabitants, affecting women 3-fold times [1,6,7]. It is the most
common non-traumatic neurological disabling disorder in young people. It causes disability,
including intestinal disfunction in more than 70% of cases [8], cognitive impairment, and
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a severe decrease in quality of life in young adults between 20 and 40 years old [7,9].
MS aetiology remains unclear; interactions between environmental and genetic factors
appear to promote the disease [2,6,9–11]. In addition to genetics, environmental factors
such as obesity, tobacco use, microbiota alterations, Epstein–Barr virus (EBV) infection or
vitamin B deficiency play an important role in progression of the disease [10,12]. Regarding
the evolution of the disease, MS has been classified into subgroups such as relapsing–
remitting (RRMS), secondary progressive (SPMS), primary progressive (PPMS), progressive–
relapsing (PRMS), and benign (BMS) [13]. In RRMS (83–90% of cases), the flare-ups of
neurological symptoms are practically reversible, which recur unpredictably and may
disappear completely or leave some sequelae, and, between relapses there seems to be
no progression of MS. SPMS is described as a disease of continuous progression, with
or without flare-ups, irrelevant remissions, and phases of stability. Only 10% of patients
present with PPMS, which starts with disabling flare-ups with no response to treatment
and has a slow onset and progressive deterioration. RPMS is characterized by occasional
exacerbations in a progressive course of the disease. Finally, in BMS, after the diagnosis of
the disease, the patient retains functional capacity for 10–15 years [14].

Research is currently focusing on the influence of the gut microbiota (GM) on the onset
and development of MS [15–17]. GM is the combination of bacteria, fungi, archaea, eukary-
otes, and viruses that reside in the intestinal mucosa, and Actinobacterium, Bacteroidetes,
Firmicutes, Fusobacteria, Proteobacteria, and Verrucomicrobia are the main phyla that
compose it [18]. GM microorganisms contribute to food digestion and fermentation, nu-
trient absorption, vitamin synthesis, epithelial cell maturation, intestinal barrier integrity,
protection against inflammation and pathogens, and metabolic regulation [19,20].

GM may impact on the CNS and participate in its regulation through neurochemical
changes, while the CNS is a crucial element in the regulation of gut function and homeosta-
sis. This complex interaction is well-known as the gut–brain axis (GBA) [21]. Bidirectional
interactions between gut and brain have an important role in gastrointestinal function mod-
ulation such as motility, secretion, blood flux regulation, intestinal permeability, immunity
activity, and visceral sensations, including pain, where evidence suggests that GM has a
vital role. GM can interact with the brain through activation of immune, endocrine, and
neural pathways, including vagal afferents and through microbial metabolites which act
directly or indirectly in the brain [22–24].

Some molecules derived from microorganisms, such as short-chain fatty acids (SCFAs),
may have a relevant role in the gut-brain axis. SCFAs such as butyric acid (BA), acetic acid
(AA), and propionic acid (PA) are produced in the colon by non-digestible carbohydrates
undergoing bacterial fermentation [21,25]. SCFAs have important immunomodulatory
functions mediated by increasing the number of T regulatory cells and suppressing the
collaborative T cells (Th) 17 and 1, which lead to an anti-inflammatory response state [26].
Likewise, SCFAs can cross the BBB by using transporters located in the endothelial cells and
influence CNS neuroinflammation [27,28]. Specifically, BA, compared to PA and AA, has
strong immunomodulatory properties and regulates inflammatory processes by maintain-
ing the balance of Th 17 cells and the levels pro and anti-inflammatory cytokines [25,29].

A disruption in GM composition, so-called gut dysbiosis, plays a fundamental role in
several autoimmune conditions, including intestinal inflammatory disease, rheumatoid
arthritis, and type 1 diabetes [30]. MS has also been associated with dysbiosis, including
depletion and enrichment of certain bacteria in patients compared to healthy people [31–33].
However, a cause–effect relationship between MS and intestinal dysbiosis has not been
clearly established. Considering all of the above, there seems to be an association between
MS and GM. Thus, the objective of the present work is to perform a systemic review about
the relation between intestinal microbiota and MS.
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2. Materials and Methods

The systematic review was conducted in the first trimester of 2022 using studies
published between January 2018 and March 2022. The PRISMA (Preferred Reporting Items
for Systematic reviews and Meta-Analyses) recommendations were utilized [34].

2.1. Databases

The PICO (Patient, Intervention, Comparation, Outcome) method was used to design
a search strategy. Accordingly, the objective of review was reflected in the question: “does
it exist a relation between intestinal microbiota and MS?”

Articles were selected and collected from 6 electronic databases: PubMed, Cochrane
Library, ProQuest, The Cumulative Index of Nursing and Allied Literature Complete
(CINAHL), ScienceDirect, and Scopus. The terms used to access to the articles of interest in
the mentioned databases were a combination of natural language and structured language
using the Medical Subject Heading (MeSH) thesaurus: “multiple sclerosis”, “gut micro-
biota”, and “microbiome”, and using “AND” between terms and “OR” between synonyms.
Research strategies are shown in Table 1.

Table 1. Description of the research strategies performed in each database.

Database Search Strategy

PubMed ((((microbiome or gut microbiota [Title/Abstract]) AND Clinical Trial[ptyp]))
AND ((((multiple sclerosis [Title/Abstract])) AND Clinical Trial[ptyp]))

Cochrane “gut microbiota” or microbiome and “multiple sclerosis”
ProQuest “gut microbiota” or microbiome and “multiple sclerosis”
CINAHL “gut microbiota” or microbiome and “multiple sclerosis”

ScienceDirect “gut microbiota” or microbiome and “multiple sclerosis”

Scopus
(TITLE-ABS-KEY (“gut microbiota”) OR TITLE-ABS-KEY (microbiome) AND

TITLE-ABS-KEY (“multiple sclerosis”)) AND PUBYEAR > 2017 AND
(LIMIT-TO (DOCTYPE, “ar”))

2.2. Study Eligibility Criteria

The inclusion criteria used for this review were (i) Cohort studies, transversal studies,
patient and control comparative studies, and comparative cohort studies (analytic obser-
vational studies) in MS patients, (ii) articles analysing GM in MS patients, (iii) articles
analysing SCFAs in intestinal metabolome, (iv) articles including a population of study
composed of MS diagnosed individuals between 18 and 70 years old (including all the MS
subtypes) and (v) studies published in both English and Spanish.

In addition, the exclusion criteria included (i) systematic reviews, metanalysis, book
chapters, doctoral dissertations, end-of-study projects, congress publications, clinical proto-
cols, and letters to the editor, (ii) other study designs, such as interventional studies and
studies without a control group, and (iii) articles analysing intestinal metabolome, but
no SCFAs.

Restrictions in relation to geographical location, setting (community or hospital), or
the course of the clinical study were not applied.

2.3. Selection of Studies and Methodological Quality

Study eligibility was performed in three phases. The first phase consisted of reading
the title of identified articles in the research database. Once selected, all abstracts were
reviewed in a second phase, and, finally, a full reading was used to clarify the suitability of
the article for analysis. The eligibility process was conducted by the first two authors (AOR,
PR) independently and in duplicate; if consensus could not be achieved, a third author (DC)
was consulted. In relation with the included studies, a bibliometric analysis was performed
on the following variables: (i) author and year, (ii) number of participants and controls,
(iii) intestinal microbiota changes compared to control group, and (iv) changes in SCFAs
compared to control groups.
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Regarding the quality of the studies, the Newcastle Ottawa scale (NOS) [35], which
evaluates bias in observational studies, was applied. The NOS records 8 items with
3 subscales and is scored up to 9 points. A study is considered to be of high quality when its
score is ≥7. It uses predefined criteria and assigns up to 9 stars, with a maximum of 4 stars
for the quality of patients selected, 2 for the comparability between cases and controls, and
3 starts for exposure or outcomes.

3. Results

After the database research, 1004 results were obtained (27 in PubMed, 229 in Scopus,
196 in ScienceDirect, 509 in Proquest, 12 in Cochrane, and 31 in CINAHL). Articles related
to the objective, which fulfilled the inclusion criteria, were selected, and duplicated articles
were discarded. Preliminary title selection facilitated the exclusion of duplicated articles
(21 articles excluded after reading title and abstract). After selection, 100 results were
obtained. Subsequently, articles that were not relevant to the topic (oral microbiota),
interventional articles, animal studies, or studies on other demyelinating pathologies were
excluded, resulting in 16 articles. The next step consisted of a second reading of the full
text based on the exhaustive analysis of the study, excluding all the articles which did not
fit because of inadequate participants. Finally, 12 articles were obtained for final revision,
as shown in the flowchart (Figure 1).
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3.1. Studies Characteristics

Twelve articles were included in this research [17,36–46]. The characteristics of the
studies reviewed, as well as the main variables analysed, are listed in Table 2. All studies
involved a total of 570 MS cases and 478 controls, i.e., healthy subjects without a diagnosis
of the disease. A total of 54% of the study population was diagnosed with MS. The majority
(301/570, 53%) of the cases presented a remittent–recurrent course, while 9.3% (53/570)
were diagnosed with PPMS, and 3.5% (20/570) were diagnosed with BMS. A total of 34.4%
(196/570) were diagnosed with MS without subtype specification. Seven studies used
McDonald 2010 criteria for MS diagnosis, one used Poser criteria [44], and four did not
specify the diagnosis method [37,39,41,45].

Table 2. Summary of the articles included in the study.

Reference
Participants

Cases/Control
♂/♀♂/♀

Microbial Dysbiosis and
SCFAs Metabolome

[17] 24 RRMS/25
3/21 3/22

No 6= diversity α

↓ Clostridium leptum and Bacteroides thetaiotaomicron
↓ Faecalibacterium, Prevotella, Lachnospiraceae anaerostipias, Bifidobacterium longum,

Faecalibacterium prausnitzii, Parabacteroides and Escherichia
↓ +SCFAs

[36] 30 RRMS/14
9/21 7/7

No 6= diversity α

↑ Firmicutes and Actinobacteria
↓ Proteobacteria and Lentisphaerae

[43] 30 RRMS/20
13/17 8/12

↑ Bacteroides fragilis
↑ Bacteroide fragilis with 30 years old
↑ Bacteroides relapse rate ≥ 1.4

[41] 129 MS/58
36/93 29/29 ↓ butyrate

[44] 18 RRMS/18
2/16 2/16

No 6= diversity α

↑ Bacteroides and ↓ Actinobacteria
↑ Bacteroides, Flavobacterium and Parabacteroides

↓ Bifidobacteria and Streptococcus

[42] 22 MS/33
8/14 12/21

No 6= diversity α

↓ Faecalibacterium, Roseburia, Haemophilus, Bilophila, Dorea, Butyricicoccus, Gemella,
Clostridium XIVb and Granulicatella

[45] 95 RRMS/54
30/65 21/33

↑ plasmatic acetate
No 6= propionate nor butyrate

[37] 26 RRMS 12 SPMS/38
18/20 18/20

No 6= diversity α

↓ Lachnospiraceae
↑ Akkermansia, Collinsella, Eubacterium and Prevotella
↓ Parabacteroides, Roseburia, Coprococcus and Blautia

[39] 26 RRMS/39
4/22 12/27

↓ diversity α

↑ Bacteroidetes
↓ Coprococo, Clostridium, nc. Ruminococcaceae, Paraprevotella and Methanobrevibacter

[40] 15 PPMS/15
9/6 8/7

↑ diversity α

↑ Verrucomicrobia
↑ Actinomycetaceae, Verrucomicrobiaceae, Desulfovibrionaceae, nc. Firmicutes,

Acidaminococcaceae, nc. Clostridia, Eubacteriaceae, Verrucomicrobiaceae,
Oxalobacteraceae, Christensenellaceae and Corynebacteriaceae

↑ Gemmiger and nc. Ruminococcaceae
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Table 2. Cont.

Reference
Participants

Cases/Control
♂/♀♂/♀

Microbial Dysbiosis and
SCFAs Metabolome

[38]
45 MS/44

15AC 16AH 14AA
11/34 16/28

MS vs. control: ↑ Clostridia
MS AC vs. control: ↑ Verrucomicrobia and ↑ Akkermansia

MS AH and AA vs. control: ↑ Adlercreutzia
MS AH vs. control: ↑ Blautia, Holdemanía and Dorea
↓ Prevotella, Slackia, Lachnospira and Dialister

MS AA vs. control: ↑ Butyricococcus

[46]
98 (52 RRMS o 26 PPMS

o 20 BMS)/120
39/59 48/72

No 6= diversity
↑ Alistipes, Anaerotruncus, Clostridium cluster IV, Lactobacillus, Methanobrevibacter,

Olsenella, Parabacteroides, Ruminococcus, Sporobacter
↓ Butyricicoccus, Faecalicoccus, Gemmiger, Intestinibacter y Roseburia

MS: Multiple Sclerosis; RRMS: Remittent Recurrent; PPMS: Primary Progressive; VS: versus; SCFAs: short chain
fatty acids; AC: American Caucasian; AH: American Hispanic; AA: Afroamerican; α: Alpha; β: Beta; Diversity
α: measures the variety of species present in a sample; Diversity β: measures differences in the composition of
microbial communities between samples; ♂: men; ♀: women; +: Marginal; nc: non classified; ↓: decrease in MS vs.
control; ↑: increase in MS vs. control.

All the studies provided demographic data, with the women/men ratio being 388/182
(68%/32%) for MS and 394/184 (61.5%/38.5%) for controls. Only in one study was the
percentage of men higher, 60% of MS cases and 53% of controls [40]. Furthermore, two
studies reported on the ethnicity of patient, one of them distinguishing between Caucasian,
Hispanics, and Afroamericans [38], and another only identified Caucasians, where 80% of
the controls were Caucasian compared 95% of the MS cases [17]. Three studies recruited the
participants in the USA [17,38,39], two in Spain [36,45], one in Italy [37], one in Belgium [46],
and one in China [42], Brasil [44], Israel [41], Egypt [43] and Russia [40]. As shown in
Table 3, all the revised articles were low risk regarding NOS scale [35].

Table 3. NOS risk of bias evaluation.

Reference Selection Comparability Exposition Conclusion

[17] FFFF F FF Low risk

[36] FFFF F FFF Low risk

[43] FFFF F FFF Low risk

[41] FFFF F FFF Low risk

[44] FFFF F FFF Low risk

[42] FFFF F FFF Low risk

[45] FFFF F FFF Low risk

[37] FFFF F FFF Low risk

[39] FFFF F FFF Low risk

[40] FFFF F FFF Low risk

[38] FFFF F FFF Low risk

[46] FFFF F FFF Low risk
F indicates the quality of the studies, when the sum of the F is <4: low-quality study; 4–6 F: moderate-quality
study and ≥7 F: high-quality study.

3.2. Microbial Dysbiosis

Ten of the twelve selected articles evaluated GM, and eighty percent analysed alpha
and beta diversity. Alpha diversity was evaluated in eight studies. On the one hand, a
decrease in alpha diversity was observed in RRMS cases [39], while an increase in alpha
diversity was shown in PPMS [40]. In the remaining studies, no statistically significant
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differences were found, affirming that there are no apparent discrepancies in the diversities
between MS cases and controls.

3.3. Taxonomy Diversity

Analysing the specific taxonomic differences in the assessed articles, we found no
uniform observations among the studies as shown in Table 4 [36,38], whereas it diminished
in 40% of the studies [17,37,42,46]. At the phylum level, Firmicutes was observed to increase
in 20% of the studies [36,38], while, conversely, it decreased in 40% of them [17,37,42,46].
Bacteroidetes increased in 30% [39,43,44] and diminished in 10% of the cases [17]. Acti-
nobacteria increased [36] and decreased in 10% of the studies [44]. Proteobacteria and
Lentispharaea decreased in 10% of the studies [36].

Table 4. Clue findings of relative abundances regarding taxon levels: MS vs. control group cases.

Taxon/Reference [17] [36] [43] [44] [42] [37] [39] [40] [38] [46]
Firmicutes

Actinobacteria
Proteobacteria
Lentisphaerae
Bacteroidetes

Phylum

Verrumicrobia
Class Clostridio

Lachnospiraceae
Family

Ruminococcaceae
Bifidobacterium

Roseburia
Coprococcus

Butyricicoccus
Lachnospira
Akkermansia

Blautia
Parabacteroides

Dorea
Ruminococcus

Faecalibacterium
Prevotella

Methanobrevibacter

Genre

Dialister
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Regarding the class, Clostridia increased in one study [38] and decreased in another
one [40]. With respect to families, the family Lachnospiraeae significantly decreased in con-
trols, and Ruminococcaceae increased [40] and decreased in controls [44]. Furthermore, two
articles found a decrease in bacteria of the genus Bifidobacterium [17,44]. Similarly, two other
articles found a decrease in Coprococcus [37,39], Butyricoccus [42,46], and Lachnospira [37,38].
In contrast, Akkermansia was significantly increased compared to controls [37,38,40]. Blautia
was also found increased in three articles [36,42,44] but decreased in two other works [37,38].
There was also controversy regarding Parabacteroides, which was increased in two stud-
ies [44,46], but decreased in two others [17,37]. This same divergence was observed in other
genera, such as Dorea, which was both augmented [38] and decreased in MS depending on
the research [37,42]. Likewise, Ruminococcus, Faecalibacterium, Prevotella, Methanobrevibacter,
and Dialister also increased and diminished depending on the article [17,36–38,42,46].
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Two studies evaluated GM at different phases of MS. Stratifying MS patients accord-
ing to disease severity showed significantly less diversity in SPMS compared to RRMS
and controls [37]. Other studies compared intestinal microbiota in different MS sub-
types, considering the use of interferon. Microbiota richness was lower in RRMS pa-
tients treated with interferon and patients with non-treated RRMS during the relapse com-
pared to BMS and PPMS. Controls and non-treated active RRMS showed an intermediate
microbial richness [46].

In this regard, the 10 revised articles agree that MS patients have a different in-
testinal microbiota than controls, with different abundancies depending on the micro-
biota [17,36–40,42–44,46].

3.4. Metabolome

Four of the twelve studies analysed SCFA levels in intestinal metabolome, and those
levels were compared between patients and controls [17,37,41,45]. These four selected
articles analysed serum SCFA levels, finding decreases in BA [37,41] and increases in
AA [45]. Consistent with this, there was a trend towards a decrease in the SCFAs in the
faeces of MS patients compared to controls [17].

4. Discussion

The causes of multiple sclerosis are unknown, but there is evidence to indicate that
GM may influence the immune system and, consequently, impact on the disease. Therefore,
our aim was to analyse recent literature with the objective of investigating the relation
between intestinal microbiota and MS. In the present systematic review, 12 case-control
studies with intestinal dysbiosis were included, as well as SCFA alterations in patients
with MS.

4.1. Microbial Dysbiosis

As for studies examining alpha diversity and beta diversity, only three studies found
significant differences in MS compared to the controls. A decrease in alpha diversity
was found in RRMS associated with cases of chronic low-grade inflammation [39,47].
This diversity was observed in other autoimmune diseases, such as inflammatory bowel
disease [48,49], preclinic type 1 diabetes [50,51], and psoriatic arthritis [52], as well as
inflammatory diseases such as obesity [53]. Previous studies also indicate that alpha
diversity tends to decrease in patients with normalized active RRMS during remission [54].
An increase in alpha diversity [40] related to PPMS was also found. This MS subtype is
quite strange [14], so the information about the structure and composition of intestinal
microbiota is scarce. These changes in alpha diversity can be explained depending on
whether the disease is active or not. In addition, it is necessary to elucidate whether these
changes are the product of an immune response or whether they promote autoimmunity.
In this regard, recent research proposes that EBV infection contributes to the production of
B cells that stimulate the activation of these CNS inflammatory responses [55].

On the other hand, changes in beta diversity were observed, with no changes in alpha
diversity between Hispanic American subjects with MS and controls [38]. Furthermore, a
difference in beta diversity was also found in other previous studies [32,54,56,57]. Accord-
ing to our results, other reviews found no significant differences between alpha and beta
diversity in MS [58,59].

4.2. Bacterial Taxonomy

Taxonomic differences reflected in the revised studies are quite diverse, making it
difficult to draw firm conclusions. For this reason, and to simplify our results, we will
focus on highlighting differences in gut microbial communities between MS cases and
matched controls in two or more studies. Thus, we observed a decrease in Firmicutes
phylum [17,42,46] and an increase in phylum Bacteroidetes [39,43]. These phyla are SCFA
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producers with immunoregulatory functions and, therefore, their alterations affect MS [60].
These alterations have also been detected in Chron’s disease [61].

Regarding intestinal bacteria families, Lachnospiraceae was found diminished [17].
Previous studies have shown a decrease in this family in MS patients [54], a decrease that
was also observed in Alzheimer patients [62].

Intestinal bacteria genres Bifidobacterium [17,44], Roseburia [37,42], Coprococcus [37,39],
Butyricicoccus [42,46], Lachnospira [17,37], Dorea [37,42], Faecalibacterium [17,42], and Pre-
votella [17,38] were also found to be decreased. Bifidobacterium has a fundamental role in
immune response regulation as well as SCFA production, specifically AA [63]. Previous
data corroborate the findings of this review, as low levels of this bacterium have been linked
to MS [64]. In fact, probiotic administration might produce an anti-inflammatory effects in
MS patients [65].

Prevotella, which is associated with a fibre-rich diet and has regulatory functions
through the generation of butyrate [54], also decreased. This decrement has been observed
in previous studies [32,57,66,67], which support a possible link between this bacteria and
MS, as is the case with other conditions such as diabetes mellitus type 2 [68] or non-alcoholic
fatty liver [69].

The Faecalibacterium low levels are consistent with the levels observed in other stud-
ies [57,70–72], as well as in other diseases such as inflammatory intestinal conditions and
irritable bowel syndrome [61,73,74]. Faecalibacterium can convert acetate and lactate into
butyrate [32], so these bacteria are considered butyrate producers. Butyrate is thus reduced
in inflammatory conditions such as MS [75]. Among its properties, its capacity to attenuate
inflammation has been shown in preclinical studies of colitis in mice by modulating mucosa
T cells [76].

Similarly, Coprococcus, Butyricicoccus, and Lachnospira, butyrate-producing bacteria,
have been observed diminished in previous studies and in other pathologies [56,67,72,77,78].
Roseburia, also decreased in MS patients, is a SCFA producer and essentially a butyrate
producer [79]. In addition, Roseburia reduction has been observed in other pathologies such
as juvenile idiopathic arthritis [80,81], Behcet syndrome [66,82], irritable bowel syndrome,
obesity, type 2 diabetes, nervous system affections, and allergies [79,83–85].

Although some of the revised studies in the present work have found a decrease in
Dorea, other research has shown an increase in MS patients [86] and also in other pathologies
such as Chron’s disease [87]. Therefore, Dorea appears to have either proinflammatory or
anti-inflammatory functions depending on the surrounding intestinal bacteria and/or the
available nutrients [86].

In contrast, an increase in Akkermansia [37,38,40], Blautia [36,42,44], and Ruminococ-
cus [36,46] has been demonstrated. Akkermansia has immunoregulatory effects by converting
mucin to SCFAs [26]. However, as it degrades intestinal mucosa, it can cause intestinal
inflammation [88]. Its increase has also been observed in previous studies [32,54,56,57,72]
supporting a possible link between its increase and MS, as occurs in other conditions
such as Parkinson’s [89,90] and in children with autism spectrum disorders (ASD) [91].
Regarding Blautia, it is an acetate producer [92], which can impulse insulin release and
promote metabolic syndromes such as hyperglyceridemia, fatty liver disease, and insulin
resistance [93]. Ruminococcus plays an important role in SCFA production and in decreasing
inflammation. Furthermore, it is part of the healthy GM, although some species degrade
mucosa and, consequently, increase inflammatory conditions such as in MS [94].

It is worth noting that GM composition is subjected to many complex interactions
and there are many confounding factors that might influence its healthy levels, mak-
ing a comprehensive comparison difficult. The disparity in GM among revised stud-
ies might be related to patient and control characteristics: MS types, age, disease du-
ration, sample ubication, ethnicity, and the intake of disease-modifying drugs [95–98].
How these factors contribute to variation in GM is complex, context-dependent, and not
completely understood [97].
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Accordingly, differences in study methodology could explain, at least in part, the
variability observed among studies. Thus, revised studies have used different proto-
cols regarding stool collection, as some were collected by the participants themselves at
home [37–39,43–46], while others were collected at the hospital [17,36,40,42]. Differences
were also observed in the amplification of the V region of the 16S rRNA target gene,
with some studies using the V3-V4 region [37,40,42,44], and others only amplifying the
V4 region [36,38,39,46].

4.3. SCFA Alteration

Regarding SFCAs, revised articles indicated a decrease in BA serum levels in MS pa-
tients, in agreement with a decrease in SCFA-producing bacteria [37,41]. These results are
consistent with previous studies showing a decrease in many butyrate-producing bacteria
in MS patients [32,37,72], as well as in other autoimmune diseases [50,52]. Similarly, an
increase in AA was found in MS patients [45]. This is the most abundant SCFA produced
by intestinal bacteria, although it may also be converted to acetyl-CoA by glycolysis. Fur-
thermore, some colonic bacterial strains can convert butyrate through cross-feeding mech-
anisms [27]. Under conditions of intestinal dysbiosis, SCFA production is often reduced,
contributing to an inflammatory environment [99]. In animal models, some results suggest
that SCFAs influence the pathogenesis of experimental autoimmune encephalomyelitis
and, consequently, the same context is likely to be found in MS [100]. SCFAs produced by
GM may alter cellular activity, contribute to modulated immune cells [101], and may also
have inhibitory effects on EBV reactivation in MS [55]. Therefore, future research should
evaluate the role of GM and EBV reactivity in MS.

In fact, in recent years, accumulated evidence on the protective effect of SCFAs has been
updated in preclinical data and, recently, in MS patients. Studies support the possibility
that SCFAs are potential bidirectional regulators [102]. Several studies have confirmed
that SCFAs can promote T cell differentiation directly into proinflammatory cytokine-
producing T cells depending on the cytokine context. Thus, SCFAs and their receptors
may have the potential to regulate CNS autoimmune inflammation both positively and
negatively [103,104]. In particular, SCFAs can cross the BBB via endothelium-localised
transporters [27,28]. Therefore, in a dysbiotic situation, the production of SCFAs decreases,
which would contribute to an inflammatory state favouring neuroinflammation [99].

It is worth mentioning that if a high fibre diet is ingested, SCFA levels might be
drastically altered [105], and it has been suggested that such diets are related to increased
levels of butyrate production [106]. Of the four revised studies, only one indicates a dietary
control, finding a negative correlation between meat intake and levels of SCFA-producing
bacteria [17]. In addition to diet, other factors that alter SCFA levels, such as body mass
index, smoking, drug treatment, and probiotic intake [107–111], could be taken into account
in future research. There are only few studies evaluating the effect of disease-specific drugs
on GM, although some studies suggest that these therapies may restore the intestinal
ecosystem to a state of eubiosis [112]. Our results seem to point in this line, as interferon
beta-treated patients have similar bacterial abundancy to heathy subjects in different taxa,
which are altered in untreated MS patients [36].

In terms of GM modulation, probiotic intake has been found to improve mental health
in MS patients, possibly by reducing levels of inflammatory and oxidative biomarkers and
decreasing insulin resistance [113,114]. In fact, preclinical studies suggest that probiotic
intake may have beneficial effects in reducing the incidence and severity of MS, delaying its
progression, and ameliorating motor function impairment. These effects might be mediated
by the modulation of immune and inflammatory markers and the GM composition [115].

Ultimately, the studies reviewed in this article highlight the relationship between
GM and MS, although a cause–effect relationship between MS and dysbiosis has not yet
been established [94,116]. However, new research suggests that disturbed GM may lead
to deficient SCFA production by intestinal bacteria, which may deplete the beneficial
anti-inflammatory effects on the CNS [117]. Therefore, future work might consider the
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characterisation and modulation of the MS-associated microbiota as a strategic diagnostic
and therapeutic target.

4.4. Limitations

In the present review, several limitations have to be determined. The main restriction is
that methodological differences between the revised studies are not considered. In addition,
all the included studies used a relatively moderate sample size, with a total of 570 MS
cases and 478 controls from different regions of the world. Finally, we have reported the
results in the taxon observed similarly in two or three studies; some associations might be
overlooked, especially in the least abundant taxon.

5. Conclusions

Despite a modest cohort size, diversity in geographical location of participants, and
sample processing, the present systemic review brings to light a dysbiosis of the GM in MS
patients compared to healthy controls. More specifically, and despite variability among
different studies, consistent patterns have been found, as many taxa were identified as
over- or under-represented in MS compared to controls. Most of the altered bacteria are
SCFA producers, which might explain the chronic inflammation which characterises this
disease. Therefore, future research should consider the characterisation and modulation of
the MS-associated microbiota as a target for diagnosis and therapy.
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