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Abstract
InMediterranean areas, the co-evolution between social and natural systems has given
rise to heterogeneous and complex systems of interactions called agroecosystems,
in which strong relationships between socioeconomy, landscape and water flows
have been identified. In this context, water resources management is a prominent
area of research, particularly in semi-arid conditions, where a special set of chal-
lenges requires novel tools to deal with uncertainty, multiple sources of information
and expert knowledge. In this paper, Bayesian Networks are proposed as a means
to model the relationships between socioeconomy, landscape and water flows in a
Mediterranean agroecosystem, studying its behaviour under two scenarios of change
in land use trends: maintenance of traditional Mediterranean agriculture, and agricul-
tural intensification through the development of greenhouses. Results show that an
increase in the area of traditional agriculture would lead to better control of runoff
and increased primary productivity, measured as green water flows. By contrast, agri-
cultural intensification of the territory would provoke an increase in evaporation and
water losses. Due to the versatility of Bayesian networks, results can be expressed not
only as probabilities, but also using other metrics that can be computed from them.
Accordingly, Sensitivity Analysis to Evidence, Sensitivity Analysis to Parameters and
the Kullback–Leibler divergence were carried out. Bayesian Networks have demon-
strated their ability to deal with uncertainty inherent to natural systems, combining
expert knowledge, data from regional datasets andGeographical Information Systems,
and automatic training algorithms giving robust and proper results.
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divergence · Landscape change trends · Mediterranean agroecosystems · Sensitivity
analysis

Handling Editor: Pierre Dutilleul.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10651-019-00419-2&domain=pdf
http://orcid.org/0000-0003-1756-012X
http://orcid.org/0000-0001-9189-5468
http://orcid.org/0000-0001-8086-4738


48 Environmental and Ecological Statistics (2019) 26:47–86

1 Introduction

In Mediterranean areas, the co-evolution between society and natural systems that
has developed over the course of time has led to a complex patchwork of traditional
agriculture, natural areas and human infrastructures co-existing in a so-called agroe-
cosystem (Sal andGarcía 2007). In such a system there is a strong relationship between
the socioeconomy and the structure of a territory which affects water flows and the
provision of ecosystems services (Gordon et al. 2010; Rockstroem et al. 2010). Under
semi-arid conditions this relationships is evenmore important; this is the case in south-
ern Spain, where water supply is key and has become a prominent area of research.
Thus, in the field of water management planning and policy, researchers are address-
ing several of the challenges (Casadei et al. 2016; Kersebaum et al. 2016; Phan et al.
2016; Teegavarapu 2010), (i) the uncertainty inherent to these (socio)natural systems,
(ii) the existence of limited or incomplete data and (iii) the high number of variables.
In addition, planning needs to include knowledge from experts and stakeholders, but
their inclusion in the model training processes is usually difficult. These challenges
are even more evident under the current framework of Global Environmental Change
(GEC) (Hui et al. 2015).

One of themain impacts ofGEC is related to the relationship between landscape and
social and economic systems (Lambin and Meyfroidt 2010; Grau et al. 2003). There
is wide recognition in the literature that socioeconomic changes impact on landscape
structures and functions (Caillault et al. 2013; Rudel et al. 2009; Aranzabal et al. 2008;
Foley et al. 2005; Schmitz et al. 2005) and have a direct influence on water systems
(Maes et al. 2009; Scanlon et al. 2005). At the end of the 1990s, two new concepts were
proposed to introduce the whole water cycle into water management plans and policies
(Rockstroem 2000; Falkenmark 1997): the so-calledGreen andBlue water flows.Blue
water is the amount of rainfall that exceeds the soil’s storage capacity and flows into
rivers, lakes and aquifers whilst Green water refers to the rainfall that infiltrates into
the root zone of the soil to support the primary productivity of natural and agricultural
systems through evapotranspiration (Falkenmark and Folke 2002). Both flow through
natural subsystems across the landscape, participating in several ecological processes
of energy and material transport (Willaarts et al. 2012). The characteristics of soil and
the type and cover of vegetation determine the amount of water that evaporates back
to the atmosphere, infiltrates into the soil or flows away as runoff.

Modelling agroecosystems is therefore becoming more complex (Bonneau et al.
2016; Irvine and Gitelman 2011), as the inclusion of this new concepts of Green and
Blue water flows requires new tools that are capable of managing this complexity
and uncertainty, and of providing a common framework to include information from
different sources.

In the mid-1980s, Bayesian networks (BNs), was proposed for reasoning with
uncertainty in knowledge-based systems. They were introduced in environmental and
ecological modeling with some initials approximations at the end of the 1990s (Varis
and Kuikka 1997), but it was not until the beginning of 2000s when they started to
be considered as an appropriate tool in this field (Falk et al. 2015; Aguilera et al.
2011; Gitelman and Herlihy 2007; Pal et al. 2001). Focusing on water management,
Phan et al. (2016) reviewed their application into this field taking into account the geo-
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graphic distribution, data sources, software, model validation, climate change impacts,
decision-making process and whether BNs had been integrated with other modeling
tools or not. Their results demonstrated that BNs can be applied to a wide range of
problems related to water source. They also confirmed that experts and stakeholders
are involved in a high percentage of the reviewed studies, as compared to model train-
ing and validation being done directly from the data or by comparing them against
other traditional models. In this way, BNs can be integrated with other models, e.g.
with GIS techniques, though this approximation is still scarcely applied. All these
points have been encouraging researchers to apply BNs in the context of Integrated
Water ResourceManagement (Castelletti and Soncini-Sessa 2007a, b; Henriksen et al.
2007). This has led to the application of BNs in some European projects such as the
FP5-MERIT (Bromley et al. 2005) or the NeWater (Henriksen and Barlebo 2008).
However, as far as we know, applications of BNs in agroecosystems modelling are
still scarce (Frayer et al. 2014; Baynes et al. 2011; Sadoddin et al. 2005; Joshi et al.
2001).

The aim of the study was to model the relationships between socioeconomic struc-
ture, landscape and water flows in aMediterranean agroecosystem. A semi-arid catch-
ment was selected and a BNmodel was trained using data from three different sources
of information (Andalusian Environmental Information Network,BalanceMED model
and Andalusian Multiterritorial Information System). The objective is also focused
on show how BNs can be applied in the field of water resource modelling. Under
the framework of GEC and taking literature into account, two main landscape change
trends (maintenance of traditional croplands and agricultural intensification through
greenhouses) were included as scenarios of future change, and their impact over the
distribution of water flows were evaluated.

2 Materials andmethods

2.1 Study area

TheAdra catchment lies in a semi-arid part of south-eastern Spain (Fig. 1). It is located
in the provinces of Almería and Granada, bounded to the north by the Sierra Nevada
mountain range, to the south by the Mediterranean Sea, to the east by the Sierra de
Gádor, and to the west by the Sierra Filabresmountain ranges. Extending over 74.400
ha, it supports an estimated population of 12.400 people over fourteen municipalities.

This catchment supports various agricultural land uses, including agroecosystems,
with four areas being differentiated: (i) landscape in Sierra Nevada is characterized
by patches of the original Mediterranean forest with oak, and scrubland resulting
from several episodes of deforestation (García-Latorre and Sánchez-Picón 2001); (ii)
in the Sierra de Gádor foothills, land uses comprise traditional croplands including
olive and almond groves with patches of woodland and scrub, creating a complex and
heterogeneous landscape; (iii) in themiddle andwest of the area amixture of scrub and
patches of woodland is found, configured by 19th century mining and deforestation
of the natural forest (García-Latorre and Sánchez-Picón 2001); and, (iv) in the lower
reaches, intensive agriculture with greenhouses is the main land use.
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Fig. 1 Adra catchment is located in south-easternAndalusia, in the south ofSpain. Its landscape is configured
by a mosaic of different land uses

The socioeconomic structure is related to this landscape pattern, with a gradual
change from the upland mountain areas, with depopulated and ageing municipalities
to the lower elevations where agricultural activity implies an important immigration
rate and economic activity.

2.2 Data collection and pre-processing

The dataset comprises three groups of variables. Initially, information about the land-
scape was collected from the Andalusian Environmental Information Network as
shapefile information and pre-processed with ArcGIS 9.3. A total of 79 land uses
were initially collected, but using cartographic criteria,1 this number was reduced.
The total surface area of each land use in the study area was calculated, and those
occupying less than 0.5% of the total were eliminated. This pre-processing resulted
in just 17 different land uses being identified for the main study. The study area is
quite heterogeneous, which gives a mosaic of different, interrelated land uses. Thus,
each observation corresponds to a patch of land with an unique land use. In the data
set, each row (observation) represents the size (in hectares) occupied by this land use,
whilst the 16 remaining land use variables are equal to zero. This implies that the final
dataset contains 67% values equal to zero (Table 1).

For each patch (observation) the BalanceMED model (Willaarts et al. 2012;
Willaarts 2009) was applied to calculate Green and Blue water flows. It is a semi-
deterministic model developed for quantifying the hydrological functioning of a

1 Available in http://www.juntadeandalucia.es/medioambiente/site/rediam.

123

http://www.juntadeandalucia.es/medioambiente/site/rediam


Environmental and Ecological Statistics (2019) 26:47–86 51

Table 1 Variables collected, their mean values, standard deviation (SD) and the percentage of zero values
(% Zeros)

Variable Mean SD % Zeros

Ageing (rate) 28.4 5.41 0.00

Emigration rate (%) 4.7 2.71 0.00

Immigration rate (%) 4.2 1.73 0.00

Scrubland (Ha) 3.84 21.68 77.02

Woodland and sparse scrubland (Ha) 10.92 1.36 90.58

Woodland and dense scrubland (Ha) 0.77 10.01 96.62

Dense woodland (Ha) 1.82 11.75 87.85

Riverbed Vegetation (Ha) 0.02 0.40 99.27

Abandonment woody crops (Ha) 0.25 8.99 97.93

Traditional woody crops (Ha) 0.30 3.18 93.53

Sparse vegetation (Ha) 0.35 5.79 95.92

Rainfed crops (Ha) 1.14 13.24 87.73

Grazing land (Ha) 0.65 9.13 95.00

Riverbed areas (Ha) 0.075 1.07 98.51

Heterogeneous crops (Ha) 0.74 5.48 92.93

Wood and grazing land (Ha) 0.21 3.48 98.83

Irrigated crops (Ha) 0.30 4.03 95.38

Greenhouses (Ha) 0.002 0.05 99.53

Human infrastructures (Ha) 0.097 0.66 93.95

Water areas (Ha) 0.006 0.15 99.31

Non-productive green water (mm) 82.8 64.98 6.70

Productive green water (mm) 187.8 78.71 8.44

Consumptive blue water (mm) 10.68 51.48 94.30

Runoff blue water (mm) 137.8 137.5 14.68

Mediterranean catchment using long time series of monthly rainfall and potential
evapotranspiration data. The model assumes that a fraction of the total precipita-
tion is intercepted by vegetation or soil and evaporates directly as Non-Productive
Green Water (NPGW). Another fraction of the total precipitation can be intercepted
on impermeable surfaces and then returned to the atmosphere as Consumptive Blue
Water (CBW). The remaining precipitation reaches the soil and is taken up by plants
and transpired, this portion is called Productive Green Water flow (PGW). When the
infiltrated water exceeds the soil storage capacity, it can either percolate or drain as
Runoff BlueWater (RBW). This model was used just for data collection purposes, so it
was considered as a black box and no information about data uncertainty is available.

The socioeconomic variables included in the BN model take into account infor-
mation from literature (Schmitz et al. 2005) and expert knowledge. Accordingly,
only three variables were considered, which summarized the main socioeconomic
behaviour of the catchment: percentage of people older than 65 years old, called the
Ageing variable, and both emigration and immigration rates, calculated as the percent-
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age of the total population that migrate out of or into the study area, respectively. The
Andalusian Multiterritorial Information System2 was the source of this information.
The catchment contains a total of 14 municipalities; however, those covering less than
1% of the surface area were eliminated. The three were calculated for the remaining
municipalities. Again ArcGIS 9.3 was used to merge this municipal information with
the natural landscape data. Each observation (patch) was added into one municipal-
ity and merged with the corresponding municipal values for the three socioeconomic
variables. However, some observations belong to more than one municipality; in these
cases, a weighted mean was calculated from the percentage falling into each of the
municipalities included in the patch.

The final dataset contains 17 land use, 3 socioeconomic and 4 water flow variables
over 8017 observations.

Due to the high percentage of zero values (Table 1), all variables were discretized
using the Equal Frequency method with three intervals. The discretization selected is
devoted to partially solve the sparcity problem, in such a way that the first level of the
variables includes the zeros, and the other two levels model the variables. Some other
discretization methods were used, such Equal width and K-means, however they were
discarded because the results obtained were worst in terms of scenarios modeling.
Anyway, as it is shown in Ropero et al. (2018) in some cases discretizing the data does
not imply worst results.

2.3 Model description

Bayesian networks are a powerful statistical tool that allows information fromdifferent
sources, including expert knowledge, to be included. They can be used to study the con-
ditional relationships between the components of the model. They are defined (Jensen
and Nielsen 2007), specifically for discrete multinomial variables as: “a statistical
multivariate model for a set of variables X = {X1, . . . , Xn}, which is defined in terms
of two components: (i) a direct acyclic graph in which each vertex represents one of
the variables, linked by an edge which indicates the existence of statistical dependence
between them configuring the qualitative part, and (ii) the quantitative part as the con-
ditional probability distribution for each variable Xi , i = 1, . . . , n, given its parents
(pa) in the graph (pa(xi )) expressed in Conditional Probability Tables (CPTs)”.

Thus, they are based on graph theory and probability theory, and composed by a
visual part representing the structure of interaction between the variables, and a set of
CPTs that represent the strength of these relationships.

One of the main advantages of BNs is related to this qualitative component which
allows to be easily understood by experts in environmental and water sciences experts
who may be unfamiliar with the model’s mathematical context (Kelly et al. 2013;
Aguilera et al. 2011; Uusitalo 2007). In this way, BNs play an important part in the
model training step by identifying relationships between the variables, giving values
for the CPTs or even refining the structure previously trained from data (Aguilera et al.
2011). The structure of the network also means that, with no mathematical calculation
involved, the variable(s) that are relevant (or not) for a certain one can be known (Pearl

2 http://www.juntadeandalucia.es/institutodeestadisticaycartografia/sima/index2.htm.
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1988). This allows us to simplify the joint probability distribution (PDF) of the vari-
ables necessary to specify the model. Thus, BNs provide a compact representation of
the (PDF) over all the variables, defined as the product of the conditional distributions
attached to each node, so that

p(x1, . . . , xn) =
n∏

i=1

p(xi | pa(xi )). (1)

Furthermore, since relationships between variables are expressed using conditional
probability values, the output returned by this model is more expressive than other
noon probailisitcs/stochastics models outputs (Uusitalo 2007).

In several applications, once the model is trained and validated, new information is
received and needs to be included into the model with the aim of testing an scenario of
change, such as the effect of management decisions (Stafford et al. 2016) or climate
change impacts (Mantyka-Pringle et al. 2014). BNs allow this new information, or
evidence, to be included into one or more variables, through the so-called inference
process or probabilistic propagation, updating the CPTs of the remaining variables.
If we denote the set of evidenced variables as E, and its value as e, then the inference
process consists of calculating the posterior distribution p(xi |e), for each variable of
interest Xi /∈ E:

p(xi |e) = p(xi , e)
p(e)

∝ p(xi , e), (2)

since p(e) is constant for all Xi /∈ E. So, this process can be carried out computing
and normalizing the marginal probabilities p(xi , e), by this way:

p(xi , e) =
∑

x/∈{xi ,e}
pe(x1, . . . , xn), (3)

where pe(x1, . . . , xn) is the probability function obtained from replacing in p(x1, . . . ,
xn) the evidenced variables E by their values e.

This method is highly inefficient due to the large number of value combinations it
needs, and because of the storage problem it creates in the case of large networks. If the
conditional independence structure represented in the graph is exploited, the number
of computations needed in the inference process can be drastically reduced because
of the decrease of parameters to estimate in the conditional probability tables. The use
of BNs reduces drastically the number of parameters to estimate when modelling the
joint probability distribution, due to the factorization of the joint distribution (Eq 1).
As an example see Fig. 2. Assume that the domain of A = 2, B = 3, C = 2, D = 4 and E
= 4; the joint probability table would have 2*3*2*4*4 = 192 entries, which means to
estimate 191 parameters. However, by the factorization given by Eq. 1: P(A,B,C,D,E)
= P(A)*P(B|A)*P(C|A)*P(D|B,C)*P(E|C), which reduces the number of parameters
to be estimated to 1 + 4 + 2 + 18 + 6 = 31. Recall that the number of parameter to
estimate in each table is the number of entries−1. In this simple example the reduction
in the size is drastic, even though the number of variables is small. In bigger problems,
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Fig. 2 Example of a Bayesian
network with five variables

Fig. 3 Outline of the model training step

the joint probability table is easily unfeasible to compute without taking into account
the dependencies of the different variables given in the network. This differences also
have an impact when computing the marginal distribution of a given variable.

Based on this idea, several algorithms to compute the probabilities both exactly and
approximately havebeenproposed (Fung andChang1990;Lauritzen andSpiegelhalter
1988; Pearl 1988). Since our network is not extremely large the Join Tree Algorithm
was used.

2.4 Model training

Model was trained using Hugin software, and, more specifically, the learning wizard
toolbox (Andersen et al. 1990) with the PC algorithm (Spirtes et al. 1993). It is a set of
intuitive steps to perform themodel training process from the data and, if it is necessary,
with the inclusion of expert knowledge. This process can be summarized in Figs. 3
and 4. Once data were included into the learning wizard toolbox, all variables were
displayed and a set of topological rules can be included (i.e. variable X should or should
not be linked with variable Y ). In our case, based on literature and expert knowledge
(described in the introduction), general rules were proposed. Accordingly, variables
are classed into three types: (i) socioeconomic variables that summarize the behavior
of the social component, (ii) landscape represented by land use variables and, (iii)
water flows. There is a wide recognition of the relationship between socio-economy
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Fig. 4 Screenshot of Hugin learning wizard toolbox that shows the model training steps

and landscape and the scientific literature shows that socioeconomic changes affect
the structure of the landscape, and changes in the structure of the landscape would
affect water flows (Aranzabal et al. 2008; Schmitz et al. 2005). Therefore, it is well
documented that there are no direct links between socioeconomic variables and water
flows. So, the network should show links from socioeconomy to landscape and from
landscape to water flows, but no direct links between socioeconomic variables and
water flows Figs. 3i and 4i.

The second step consists of an initial model training. Hugin allows to estimate both
the structure and parameters of the model using the PC algorithm (Spirtes et al. 1993).
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It is based on χ2—conditional independence tests for discovering the (in)dependence
relationships between the variables, using the cross entropy statistic measured in the
sample:

G2 = 2
∑

i in cells

Oi ln

{
Oi

Ei

}
, (4)

where cells represents all the combinations of the categories of all the variables
involved in the test, O stands for the observed values and E for the expected values.
Note that, in the case of conditional independence, the expected values are computed
dividing by the restricted-to-condition sample size, and in the case of simple (0-level
conditional) independence, dividing by the total sample size.

This statistic is theoretically distributed as a χ2 distribution, with degrees of free-
dom, when testing the conditional independence of Xi and X j conditional on W:

d f = (Cat(Xi ) − 1) × (Cat(X j ) − 1) ×
n∏

i=1

Cat(Wi ), (5)

whereWi ∈ W and Cat(X) returns the number of categories of variable X . However,
each zero-observed cells decreases d f in one.

When the sample size available to carry out the test is less than ten times the number
of cells, the procedure assumes that the variables are conditionally dependent, and the
link is not removed (Spirtes et al. 1993).

The PC algorithm begins with a undirected complete graph, in which all variables
are assumed to be dependent on each other; then it is reduced by removing first, those
links joining nodes 0-level conditionally independent (marginally independent); then,
those links joining nodes verifying a 1-level conditionally independence, and so on.
Given a pair of variables Xi , X j , the set of variables to condition on is extracted from
the set of adjacent nodes to both Xi , X j . Through these tests, some variables were
considered totally independent and no link between them and the rest of variables
was added, so these variables were removed. It is important to note that, in the PC
algorithm, only the direction of certain links is set according to the independencies
found in the network. The direction of the rest of the nodes is set randomly, avoiding
the inclusion of cycles in the graph. Some other independence tests can be used (not
in the Hugin software) in the PC algorithm, such as the proposed by Zhang et al.
(2012), or even Fisher exact independence test, however they are not implemented in
Hugin and they would probably output marginal differences in the model (only some
links would change, those which don not show a clear dependence) which would be
minimized afterwards in the refining step by the experts.

So, once the structure was obtained according to the independence test carried out,
it is displayed by the learning wizard toolbox (Fig. 4ii) in order to decide if it will be
the final model structure or not. It gives the option to change the degrees of freedom
and show the changes in the network of relationships, in such a way that experts can
decide the more adequate level for each problem. Besides, since the PC determines the
direction of some links randomly, in this stepmodeler and experts can fix this direction.
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So that, before parameter estimation, expert can partially modified the structure of the
network, but according to the independence structure previously estimated. When all
these changes have been made, the parameters were finally estimated. from the data.
Note that the structural learning and the parameter estimation process are carried out
using the same training data; this is a standard procedure in Bayesian networks, and
no overfitting is produced, since, even though they are not independent, the structure
and the parameters of the network are considered two components of the network. The
parameters are estimated through the corresponding frequencies, which in this case
correspond to the maximum likelihood estimators. The form of the likelihood is

∏

i

∏

j

P(x ji |pa(x j )i ) (6)

with i = 1 to n, j = 1 to k (i iterates over the cases, j iterates over the variables in
the network).

In the upper formula, x ji is the value of variable j in case i , pa(x j ) are the parents
of variable X j in the graph and pa(x j )i are the values of the parents of variable X j

in the graph in case i .
The parameters estimations are then computed by

P(X j = x jk |pa(x j ) = v) = n(x jk, pa(x j ) = v)

n(pa(x j ) = v)
(7)

where P(X j = x jk) represents the probability that variable X j takes the value x jk ,
pa(x j ) = v represents that the parent variables of x j takes the values v, n(x jk, pa(x j )
represents the number of cases in the database in which variable X j = x jk and
pa(x j ) = v simultaneously, and n(pa(x j ) = v) represents the number of cases in the
database in which pa(x j ) = v.

Note that, even when literature and expert knowledge were included into the struc-
tural model training stage, the network of relationships were partially trained from the
data, whilst parameters were directly estimated from them.

2.5 Landscape change scenario

One of the main advantages of BNs is their ability to perform a prediction once new
information is received. This process provides an interesting tool for water managers
since information in terms of probability about the change in some variables given the
value of others can be observed and evaluated.

In this paper, the aim is to evaluate the impact of landscape change on both socioe-
conomic structure and generation of water flows. Thus, evidences are included into
land uses variables by setting the maximum probability into one of the three possibles
states. It means that, for example if the evidence is set in the State 2, (Appendix A,
Table 3) of the variable Rainfed crops then rather than find scattered small patches of
rainfed crops, these observations would occupy a larger area and provoke changes in
the most probable extension of other land uses as well.
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Agricultural intensification is one of the main trends of landscape change in
Mediterranean agroecosystems. The opposite trend is the maintenance of traditional
agricultural techniques. In this paper, two simple scenarios of land use planning were
proposed:

1. Maintenance of traditional croplands. The upper catchment of both Sierra Nevada
and Filabres, but mainly Sierra de Gádor, belies its cultural heritage with exten-
sive agriculture of olive, grapes and almonds, mixed with herbaceous crops and
small patches of scrub. Nowadays, this traditional activity is being abandoned
and substituted by intensive agriculture. This first scenario involves the protection
and promotion of traditional areas. Evidences are introduced into the following
variables: Traditional Woody Crops andHeterogeneous Crops are set to have max-
imum probability in State 2, while Abandonment Woody crops variable is set in
State 0. At the same time, State 1 of the variable Rainfed Crops is set to maximum
probability. This means that small and scattered patches of heterogeneous and tra-
ditional crops change to larger, more continuous areas, with the disappearance of
abandoned croplands (State 0 includes all zero values) and rainfed areas present
in moderate extent.

2. Agricultural intensification through greenhouses. The lower reaches of the
catchment include a significant proportion of agricultural intensification with
greenhouses and some areas of irrigated crops. This second scenario assumes this
intensification to extend to the foothills of the threemountain ranges. Evidencewas
introduced into the Greenhouse and Abandonment Woody crops variables, which
have the maximum probability in the highest interval, whilst Traditional Woody
crops, Rainfed Crops and Heterogeneous Crops variables are set in the State 0.
Finally, Irrigated crops is set to the maximum probability in State 1.

2.6 Model validation

Once evidences are included in the model and the remaining variables updated, the
Kullback–Leibler divergence was calculated to evaluate the difference between the a
priori and a posteriori situations for water flow variables. This measure is defined as a
non-symmetric measure of the difference between two probability distributions over
one variable. Let p(x) and q(x) are two probability distributions of a discrete random
variable x , the Kullback–Leibler divergence is defined as:

DKL(p(x)||q(x)) =
∑

p(x)ln
p(x)

q(x)
(8)

Thismetric gives us information about the global impact of both scenarios on thewater
flow variables, our variables of interest, in terms of divergence between the resulting
distributions. If there is a low-impact on the interest variables, the KL-divergence will
be small. On the contrary, if the impact is high and meaningful, there should be a
great difference between the a priori and a posteriori distributions, leading to a higher
KL-divergence. Since we will use a exact inference algorithm implemented in Hugin,
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we can always obtain the exact a posterior probability distributions, and then compute
the corresponding DKL exactly.

An alternativeway to validate results obtained by theBNwhen performing the prob-
ability propagation is a Sensitivity Analysis to Evidence (Jensen and Nielsen 2007),
which, given some hypothesis h over the variables of interest, provides detailed infor-
mation about which piece of evidence is really significant for h. Since the scenarios
proposed in the paper are defined by the instantiation of several variables of the net-
works, it is interesting to devise which of the evidences (or combination of them) that
compose the scenario are the most important. This is carried out by computing in a
systematic way the so-called normalized likelihood for every possible subset e

′ ⊆ e,
given by

P(h|e′
)

P(h)
(9)

as a way to measure the change in probability for h given different evidence combi-
nations. In the case of binary variables, just one value of Eq. (9) is provided; in the
case of variables with more than two possible states, a normalized likelihood value is
provided for each state.

A different question can be posed, which is to decide which evidence in a given
scenario supports a given hypothesis h1 against a contrary h2. In a similar way as
in Eq. (9), the ratio of the normalized likelihoods can be computed for each sub-
set e

′ ⊆ e, and then decide which evidences are good discriminators between both
hypothesis.

P(e
′ |h1)

P(e′ |h2) (10)

A third approach to validate the model is using so-called Sensitivity to Param-
eters, which give local measures of how robust the model is to small changes in
the parameters, e.g. probability values in the CPTs, of the model. Since the num-
ber of possible combinations make the problem intractable, it is solved in a local
way for each CPT-entry, and a goal variable to observe. Given an evidence e, a
goal variable state h, and a parameter s of a BN, P(h|e) is stablished as a func-
tion of s, which assuming proportional scaling (Jensen and Nielsen 2007), has the
form

P(h, e)

P(e)
= αs + β

as + b
(11)

and so, the variation of the h-value according to variations in s can easily be tracked.
α, β, a and b values are determined by entering two different values for s and

propagating, which yields a linear equation system whose solutions are α, β, a and
b.
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3 Results and discussion

3.1 Model structure and sensitivity to parameters

Before the model training step, a correlation matrix was calculated from the original
continuous data (Table 12), to identify linear relationships between the variables.
It was computed just as a pre-processing step in order to check that the relations
observed in the matrix were incorporated in the model through the automatic training
process. Only socioeconomic and water variables yielded coefficients above |0.4|, the
remaining giving coefficients of less than |0.1|.

However, the correlation matrix provides only information about linear relation-
ships, which is not the only type of relationship between variables. In this case, model
training using the PC algorithm allows (in)dependent relationships to be discovered
which, also, serves a process of variable selection. During training process, a set of
land use variables were completely independent with respect to the rest of variables,
and no links were added between them. As a results, six land use variables were elim-
inated, so that the definitive model was composed by 3 socioeconomic, 11 land use
and 4 water flow variables.

Taking advantage of the versatility of BNs, a prior expert knowledge was used
to train the structure of the model, considering general topological restrictions, by
following the ecological structure of the socioecosystems. By this means, direct rela-
tionships between socioeconomic variables and water flows were avoided. However,
the structure and parameters were directly estimated from the data.

Figure 5 shows the structure of the model with three levels of variables. In the first
level, social variables are related to each other and to land uses, i.e. Emigration acts

Fig. 5 Structure of the Bayesian network trained from the data using the PC algorithm, implemented in
HUGIN, and refined by experts
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Fig. 6 Sensitivity Analysis to Parameters for PGW variable. Blue color represents the maximum sensitivity
value, Red color the minimum sensitivity value and Green color, the average sensitivity value. When the
node is color in white, sensitivity values are equal to 0

as a parent of both Ageing and Immigration, Scrubland is linked to both Ageing and
Emigration, and Immigration variable is directly linked to Greenhouse. In a second
level, land uses are relatedwith the fourwater flowvariables.Here, there is a difference,
since blue water variables are linked to Irrigated crops andGreenhouses, land uses are
related to agriculture intensification, whilst greenwater are linked to natural vegetation
and extensive crops.

These relationships are even clearer from the Sensitivity to Parameters analysis.
This measures how sensitive the result of a propagation is against changes to the
parameters in other variables of the network. The analysis for each of our variables of
interest are shown in Figs. 6, 7, 8 and 9. Figures 6 and 7 show results for both kinds of
green water. These two variables are related to almost all land use and social variables,
whilst blue water (Figs. 8 and 9) is only related to a small subset of land uses and the
Immigration variable.

Each node is divided into three and shown in a different color. Each variable may
affect in a different way depending in the change in its parameters, so for each variable
there is a maximum, minimum and average impact on the inference process. If a
variable is dis-connected (via the d-separation rules) to the goal variable, then it will
be painted completely in white. The greatest the maximum and average values with
respect to the other variables, the brightest the color (the closest to zero the minimum
value, the lighter the color, being white if it is zero). This way we can easily observe
the most influential variables to the goal variable (Andersen et al. 1990). This value is
computed as the derivative of the so-called sensitivity function, which represents P(A
= a | E ) as a function of the (perturbation) values of other variables, see Van Deer Gag
and Renooij (2001) for more information.
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Fig. 7 Sensitivity Analysis to Parameters forNPGWvariable. Blue color represents themaximumsensitivity
value, Red color the minimum sensitivity value and Green color, the average sensitivity value. When the
node is color in white, sensitivity values are equal to 0

Fig. 8 Sensitivity Analysis to Parameters for CBW variable. Blue color represents the maximum sensitivity
value, Red color the minimum sensitivity value and Green color, the average sensitivity value. When the
node is color in white, sensitivity values are equal to 0

This metric gives us information about how robust the model is. In general, for all
water flow variables, values of parameter sensitivity are not so high, with the majority
of variables painted as white nodes, in the case of blue water (Figs. 8 and 9), or with
really clear colors (Figs. 6 and 7) for green water. This means our model is quite robust
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Fig. 9 Sensitivity Analysis to Parameters for RBW variable. Blue color represents the maximum sensitivity
value, Red color the minimum sensitivity value and Green color, the average sensitivity value. When the
node is color in white, sensitivity values are equal to 0

against various changes, so that, if small changes are included into the parameters, the
model will provide similar results.

3.2 Scenarios of change and sensitivity to evidence

The relationships between variables in the model are clearly observed for both scenar-
ios of change. Figure 10 shows the values for the Kullback–Leibler divergence which
gives information about the change to variables once the evidencewas included. Under
the scenario of Maintenance of Traditional croplands, Emigration and Immigration
took values below 0.01, whilst Ageing value was 0.09. By contrast, for the scenario of
Agricultural Intensification through Greenhouses, the Immigration variable gave the
lowest value in comparison to social variables.

In terms of probabilities, in the socioeconomic variables, the first scenario assumes
an increase in the probabilities of the State 0 for Immigration, whilst Emigration
remains similar. Ageing variable shows higher probabilities in the State 1 compared
to the a priori situation (Fig. 11). However, the scenario of agricultural intensification
leads to a higher probability for all social variables in State 2 (Fig. 11).

An increase of intensive agriculture with greenhouses assumes a larger workforce is
needed and that newpeople arewelcome into the area; Immigration takes higher values
of probability (García-Álvarez-Coque 2002). At the same time, since jobs are taken
up by outsiders, local people emigrate looking for a career unrelated to the agricultural
sector. In both scenarios, the Ageing variable takes a higher value of probability. This
tendency is more evident in the first scenario (Maintenance of traditional agriculture).
This is related to the fact that this type of landscape structure is usually maintained by
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Fig. 10 Kullback–Leibler values for the social andwater flow variables, and a selection of land use variables
in the comparison between a priori and both scenarios. NPGW,Non-ProductiveGreenWater; PGW, Produc-
tive Green Water; CBW, Consumptive Blue Water; RBW, Runoff Blue Water; Woodl.sp.scrub, Woodland
and sparse scrubland; woodl., Woodland

an old population through the maintenance of a subsistence agriculture. At the same
time, this landscape often attracts the interest of older people from North Europe: the
warmer weather and the lower cost of living encourages them to settle in places like
the Adra catchment (Fig. 11).

In the second level, relationships between landscape and water flows were estab-
lished. Figure 12 shows the changes under the first scenario: the maintenance of
traditional croplands. Evidences were included into the variables Traditional Woody
Crops, Abandonment Woody Crops, Rainfed Crops and Heterogeneous Crops. In the
case of Kullback–Leibler values (Fig. 10), land uses related to scrubland take values
of 0.22 (Scrubland) and 0.57 (Woodland and sparse and scrubland). For the water
flow variables, values are close to 0.20 except for Consumptive Blue Water, which is
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Fig. 11 Values of the probabilities of the socioeconomic variables both A priori and under the scenarios
of changes: maintenance of traditional croplands (Traditional) and Agricultural Intensification through
greenhouses (Greenhouse) . St. state

less than 0.001. Tables 4, 5, 6 and 7 (Appendix A) show the normalized likelihood for
all water flow variables under this first scenario of change, while Table 2 shows the
mean value of the ratio of normalized likelihood.

The Maintenance of Traditional Croplands scenario will lead to an increase of
several agricultural areas, mainly those related with herbaceous crops (Heterogeneous
crops), inwhich vegetation are usually separated by tracts of bare soil fromwhichwater
could directly evaporate provoking an increase in Non-Productive Green water which
becomes more probable in State 2 (Fig. 13). Also, the increase of vegetation cover
causes State 1 of Productive Green Water to become more probable (Fig. 13). Values
for the normalized likelihood are in accordance with the change in the probabilities,
with higher values for State 2 of NPGW, and State 1 of PGW. However, there are
some differences depending on the combination of variables evidenced. The highest
values are found when all, or even just three, variables are evidenced. However, if
onlyHeterogeneous cropswithRainfed or Traditional crops are evidenced, the impact
shows that PGW would become more probable in State 2, and State 0 for the NPGW.

CBW is similar to a priori. The Sensitivity Analysis to Evidence shows normalized
likelihood for CBWclose to 1, whichmeans no significant difference is found between
a priori and a posteriori distributions.

Special mentions is required for the relationship between Traditional Woody Crops
and RBW. Under the scenario of maintenance of the traditional agriculture, RBW
shows a great increase of the probability of State 0 (Fig. 13). This change is mirrored
by theKullback–Leibler value (Fig. 10) and the normalized likelihood (Table 5). These
values are distant from1, both above andbelow, and always higher for State 0 compared
to the other states for all possible combinations of evidenced variables. However, if
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Fig. 13 Values of the probabilities of the water flows variables both A priori and under the scenarios
of changes: maintenance of traditional croplands (Traditional) and Agricultural Intensification through
greenhouses (Greenhouse). St. state

Table 2 Values for the ratio of normalized likelihood (N.L.) for pair of variables in their most probable
state (expressed as RBW0, state 0 of RBW variable) in both scenarios: maintenance of traditional croplands
(traditional) and agricultural intensification through greenhouses (intensification)

Scenario Pair N.L.

Traditional RBW0 versus N PGW2 1.045

RBW0 versus PGW1 1.068

Intensification CBW1 versus PGW0 18.34

CBW1 versus RBW2 8.83

only theHeterogeneous Crops variable was evidenced, RBW is not affected. These
traditional Mediterranean systems are characterized by an heterogeneous landscape
as a result of the climate and traditional human activities (Castro-Nogueira et al. 2002;
González-Bernáldez 1981) which confers a series of advantages: control over runoff
water, soil development and nutrient retention (De-Lucio-Fernández et al. 2002). The
promotionof this heterogeneous and traditional structure provokes an increased control
of runoff water.

In order to evaluate if the scenario encouragesGreen Water or Blue Water, the ratio
of normalized likelihood was calculated between two pairs of variables: RBW State
0 versus NPGW State 2, and RBW State 0 versus PGW State 1. Table 2 shows that
the ratio of normalized likelihood in both cases are close to 1, so that, maintaining
traditional Mediterranean agriculture has a similar influence over both water flows.
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By contrast, the promotion of intensive agriculture with greenhouses implies a
more profound change in Blue Water (Fig. 14). In this case, the ratio of normalized
likelihood was evaluated between CBW State 1 versus PGW State 0, and CBW State
1 versus RBW State 2, giving values of 18.34 and 8.83 respectively (Table 2). These
values indicate that the scenario encourages CBW in favor of the other kinds of water
flow, with a greater difference with green water flow (PGW) than against the other
blue water (RBW). Figure 10 shows the values for the Kullback–Leibler divergence in
which land usesmetrics are lower than 0.1 in all caseswhilst bluewater presents values
higher than green water flows, with a remarkable value of 15.14 forConsumptive Blue
Water.

Looking at the probabilitiesCBWchanges dramatically from the a priori situation in
which State 0 carries a probability of 94.95, dropping to 0.00 as State 1 becomes more
probable. An increase of greenhouses will cover a proportion of the catchment with a
waterproof plastic surface, so increasing this CBW. Results for the impact support this
change with values in some combinations of variables over 20 (Table 8). However,
if the evidenced are only included into 2–3 variables including only Heterogeneous
crops and Traditional crops, impact value is equal to 1, which means no change is
found between a priori and a posteriori.

RBW change is also more evident with an increase from 27.43 to 91.75 of the
probability in State 2 (Fig. 13). The increase in evaporative losses reduces the water
available for human and agricultural supply (thus, in semiarid regions such as this,
efforts need to focus on optimisingwater use andminimisingwater losses). Evenwhen
this change is significant, values for the Kullback–Leibler and normalized likelihood
(Tables 9) are less deep than CBW values.

Changes in Green Water are less evident. Natural areas, PGW and NPGW become
more probable in State 0. The promotion of greenhouses in the second scenario implies
the substitution of extensive traditional crops and makes both Productive and Non
Productive Green Water more probable in the lowest values. These results can be seen
in Fig. 10 where values for Green Water are higher in the first scenario than in the
promotion of greenhouses scenario. Besides, normalized likelihood values are close
to 1 in both cases (Tables 10 and 11).

4 Conclusions

Amodel based on BNs was trained to study the relationships between socioeconomy,
land uses and water flows in a Mediterranean catchment. The impact of two land use
change trends on both social structure and water flows were also evaluated. Taking
advantage of the probabilistic nature of BNs, several metrics were obtained from the
results in such a way that the interpretation is richer. In particular, Sensitivity Analyses
to Evidence and to Parameters were carried out by evaluating normalized likelihood
values and the ratio of normalized likelihood, and the Kullback–Leibler divergence
between a priori and a posteriori distributions were calculated.

Once the relationships between the three components of the socioecosystems had
been analysed, two scenarios of land use change trend were evaluated. The mainte-
nance of traditional mediterranean croplands implies a more elderly population who
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establish their livelihood in the area, attracted by the heterogeneous landscape and
warm climate. At the same time, this heterogeneous landscape brings with it greater
control of runoff flowsandan increase in primaryproductivity,measured as greenwater
flows.By contrast, the scenario of agricultural intensification through greenhouses pro-
vokes a profound change in how water flows in the catchment are propagated, with a
significant increase in evaporative flows (both Consumptive and Runoff Blue Water)
which, in a semiarid area, implies an important water losses.

The ability ofBNs to face someof the challenges identified in thewatermanagement
field has been demonstrated. Firstly, the uncertainty inherent in natural systems can
be included into the model by means of probability values. In this paper, the changes
studied are not only identified in terms of directions (will the water flow increase or
decrease?), but also in terms of the probability of this change (this water flow will
become 20% more or less probable) and the impact.

The model shown in this paper was trained using both literature and expert knowl-
edge combined with an automatic training algorithm. Taken together with the visual
component of BNs, it allows complex problems to be modeled, taking account of
multiple relationships between variables, and making themmore easily understood by
non-mathematical experts.

However, some considerations have been made and future works can be identified.
In one hand, Balance MED model is an appropriate model for green and blue water
calculation in Mediterranean areas, but act, in certain way, as a black box. So, new
hydrological model able to calculate these flows but in a stochastic or probabilistic
way is needed. By this way, sensitivity analysis can be carried out in this step of the
problem. Variables collected were continuous, but they were discretized for structural
reasons.Another pointwould be develop this kind ofmodel using continuous variables.
Besides, water flows and territory are not stationary, and evolve along time. For that
reason, a step forward would be the develop of a temporal model able to study the
evolution of these water flows according to real and dynamic changes into the territory
and socioeconomic structure.
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tiveness through projects TIN2013-46638-C3-1-P and TIN2016-77902-C3-3-P; by the Junta de Andalucía
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Appendix A

Definition and thresholds for intervals/state for the discretization in the variables
included in the model.

See Table 3.
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Table 3 Variables, definition and thresholds for the intervals/states of the discretization

Variable Definition Thresholds

Ageing Percentage of the total population older than 65 years
old

22.6–26.1

Emigration rate Percentage of the total population that migrate out of
the study area

2.2–2.8

Immigration rate Percentage of the total population that migrate into the
study area

1.6–2.4

Scrubland Areas where the main vegetation cover is scrub 0.001, 3.26

Woodland and sparse scrubland Areas of woodland with less than 50% of scrubland 0.001, 2.7

Woodland and dense scrubland Areas of woodland with more than 50% of scrubland 0.001, 3.04

Dense woodland Areas of woodland with more than 50% of trees 0.001, 2.9

Riverbed vegetation Areas surrounded the riverbed with natural vegetation 0.001, 0.8

Abandonment woody crops Areas of abandonment olive, grapes and almond crops 0.001, 2.1

Traditional woody crops Areas with extensive agriculture of olive, grapes and
almonds, mixed with herbaceous crops and small
patches of scrub

0.001, 2.1

Sparse vegetation Areas of soil and a low density of vegetation cover 0.001, 4.1

Rainfed crops Areas of crops not irrigated 0.001, 1.9

Grazing land Areas of pasture 0.001, 2.2

Riverbed areas Areas surrounded the riverbed without vegetation 0.001, 1.4

Heterogeneous crops Areas with a mixture of different crops, both rainfed
and irrigated

0.001, 2.6

Wood and grazing land Areas of woodland with grazing 0.001, 3.2

Irrigated crops Areas of irrigated crops 0.001,1.5

Greenhouses Intensive agriculture under greenhouses 0.001, 0.9

Human infrastructures Those infrastructures made by human 0.001, 1.1

Water areas Rivers, wetlands and estuary 0.001, 0.5

Non-productive green water fraction of the total precipitation intercepted by
vegetation or soil and evaporates back to the
atmosphere

27.5–83.7

Productive green water fraction of the total precipitation reaches the soil and
taken up by plants and transpired

203.8–242.9

Consumptive blue water fraction of the total precipitation intercepted on
impermeable surfaces and then returned to the
atmosphere

10.7–468.1

Runoff blue water fraction of the total precipitation that can can either
percolate or drain when infiltrated water exceeds the
soil storage capacity

201.1–280.2

Appendix B

This appendix shows the tables of Normalized likelihood values for all water flows
variables in both scenarios.

See Tables 4, 5, 6, 7, 8, 9, 10, 11.

123



72 Environmental and Ecological Statistics (2019) 26:47–86

Table 4 Normalized likelihood values for CBW in the scenario of maintenance of tradicional croplands

Het.crops Aban.W.crops Trad.W.crops Rainfed St.0 St.1 St.2

False False False False 1 1 1

False False False true 1 1.04 1.02

False False True False 1 0.97 1

False False True True 0.99 1.08 1.11

False True False False 1 1 1

False True False True 1 1.04 1.02

False True True False 1 0.97 1

False True True True 0.99 1.08 1.11

True False False False 1 0.97 1

True False False True 1 1.01 1.06

True False True False 1 0.96 1

True False True True 1 0.96 1

True True False False 1 0.97 1

True True False True 1 1.01 1.06

True True True False 1 0.96 1

True True True True 1 0.96 1

St. state

Table 5 Normalized likelihood values for RBW in the scenario of maintenance of tradicional croplands

Het.crops Aban.W.crops Trad.W.crops Rainfed St.0 St.1 St.2

False False False False 1 1 1

False False False True 1.11 1.05 0.81

False False True False 1.74 0.81 0.34

False False True True 1.75 0.77 0.38

False True False False 1 1 1

False True False True 1.11 1.05 0.81

False True True False 1.74 0.8 0.34

False True True True 1.75 0.77 0.38

True False False False 1.06 1.01 0.92

True False False True 1.21 0.96 0.79

True False True False 1.88 0.72 0.27

True False True True 1.88 0.72 0.27

True True False False 1.06 1.01 0.91

True True False True 1.22 0.96 0.78

True True True False 1.89 0.71 0.27

True True True True 1.89 0.71 0.27

St. state
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Table 6 Normalized likelihood values for PGW in the scenario of maintenance of tradicional croplands

Het.crops Aban.W.crops Trad.W.crops Rainfed St.0 St.1 St.2

False False False False 1 1 1

False False False True 0.59 1.47 0.93

False False True False 1.02 1.49 0.64

False False True True 1.06 1.11 0.88

False True False False 0.99 1 1.01

False True False True 0.59 1.47 0.94

False True True False 1.02 1.49 0.64

False True True True 1.06 1.12 0.88

True False False False 0.85 0.89 1.18

True False False True 0.62 1.14 1.15

True False True False 0.74 2.09 0.4

True False True True 0.74 2.09 0.4

True True False False 0.84 0.89 1.19

True True False True 0.62 1.14 1.15

True True True False 0.73 2.11 0.4

True True True True 0.73 2.11 0.4

St. state

Table 7 Normalized likelihood values for NPGW in the scenario of maintenance of tradicional croplands

Het.crops Aban.W.crops Trad.W.crops Rainfed St.0 St.1 St.2

False False False False 1 1 1

False False False True 0.49 1.19 1.52

False False True False 0.69 0.77 1.94

False False True True 0.96 0.74 1.53

False True False False 1 1 1

False True False True 0.49 1.19 1.52

False True True False 0.69 0.77 1.94

False True True True 0.96 0.74 1.53

True False False False 1.23 0.99 0.64

True False False True 1.45 0.64 0.9

True False True False 0.49 0.7 2.38

True False True True 0.49 0.7 2.38

True True False False 1.23 0.99 0.64

True True False True 1.45 0.63 0.89

True True True False 0.49 0.7 2.38

True True True True 0.49 0.7 2.38

St. state
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Table 8 Normalized likelihood values for CBW in the scenario of agricultural intensification trough green-
house

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

False False False True False True 0 32.62 4.04

False False False True True False 0 34.48 1.75

False False False True True True 0 34.44 1.8

False False True False False False 1 1 1

False False True False False True 1 1 1

False False True False True False 0.09 24.62 10.05

False False True False True True 0.07 25.15 10.28

False False True True False False 0 32.64 4.02

False False True True False True 0 32.62 4.03

False False True True True False 0 34.45 1.79

False False True True True True 0 34.43 1.81

False True False False False False 1 1 1

False True False False False True 1 0.99 1

False True False False True False 0.16 22.85 9.43

False True False False True True 0.11 24.21 9.95

False True False True False False 0 32.64 4.02

False True False True False True 0 32.63 4.02

False True False True True False 0 34.48 1.75

False True False True True True 0 34.45 1.78

False True True False False False 1 1 1

False True True False False True 1 1 1

False True True False True False 0.09 24.62 10.05

False True True False True True 0.07 25.2 10.28

False True True True False False 0 32.64 4.02

False True True True False True 0 32.64 4.02

False True True True True False 0 34.45 1.79

False True True True True True 0 34.44 1.8

True False False False False False 1 1 1

True False False False False True 1 0.99 1

True False False False True False 0.09 24.68 10.21

True False False False True True 0.07 25.18 10.46

True False False True False False 0 32.64 4.02

True False False True False True 0 32.62 4.04

True False False True True False 0 34.44 1.8

True False False True True True 0 34.41 1.84

True False True False False False 1 1 1

True False True False False True 1 1 1

True False True False True False 0.04 26 10.66

True False True False True True 0.04 25.99 10.71

True False True True False False 0 32.64 4.02
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Table 8 continued

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

True False True True False True 0 32.62 4.03

True False True True True False 0 34.41 1.83

True False True True True True 0 34.39 1.86

True True False False False False 1 1 1

True True False False False True 1 1 1

True True False False True False 0.09 24.68 10.21

True True False False True True 0.06 25.24 10.44

True True False True False False 0 32.64 4.02

True True False True False True 0 32.64 4.02

True True False True True False 0 34.44 1.8

True True False True True True 0 34.42 1.82

True True True False False False 1 1 1

True True True False False True 1 1.01 1

True True True False True False 0.04 26 10.66

True True True False True True 0.03 26.02 10.69

True True True True False False 0 32.64 4.02

True True True True False True 0 32.64 4.01

True True True True True False 0 34.41 1.83

True True True True True True 0 34.4 1.84

St. state

Table 9 Normalized likelihood values for RBW in the scenario of agricultural intensification trough green-
house

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

False False False True False True 1 1 1

False False False True True False 0.97 0.98 1.05

False False False True True True 0.65 0.47 2.04

False False True False False False 0.61 0.44 2.13

False False True False False True 0.44 0.2 2.6

False False True False True False 0.44 0.19 2.61

False False True False True True 0.41 0.15 2.7

False False True True False False 0.42 0.14 2.71

False False True True False True 0.95 1.01 1.05

False False True True True False 0.94 0.99 1.09

False False True True True True 0.54 0.41 2.25

False True False False False False 0.54 0.39 2.26

False True False False False True 0.41 0.16 2.68

False True False False True False 0.43 0.16 2.67

False True False False True True 0.38 0.11 2.79

False True False True False False 0.4 0.11 2.77
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Table 9 continued

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

False True False True False True 0.84 1.02 1.16

False True False True True False 0.8 1.01 1.23

False True False True True True 0.58 0.47 2.13

False True True False False False 0.54 0.42 2.24

False True True False False True 0.31 0.2 2.77

False True True False True False 0.31 0.18 2.79

False True True False True True 0.26 0.15 2.88

False True True True False False 0.25 0.13 2.92

False True True True False True 0.79 1.03 1.22

False True True True True False 0.76 1.01 1.28

False True True True True True 0.47 0.4 2.34

True False False False False False 0.48 0.37 2.37

True False False False False True 0.28 0.16 2.85

True False False False True False 0.29 0.15 2.85

True False False False True True 0.22 0.1 2.98

True False False True False False 0.23 0.1 2.98

True False False True False True 1 1 1.01

True False False True True False 0.97 0.98 1.05

True False False True True True 0.59 0.43 2.15

True False True False False False 0.58 0.41 2.19

True False True False False True 0.44 0.2 2.6

True False True False True False 0.45 0.19 2.61

True False True False True True 0.42 0.15 2.69

True False True True False False 0.42 0.14 2.7

True False True True False True 0.95 1.01 1.05

True False True True True False 0.94 0.98 1.09

True False True True True True 0.51 0.37 2.32

True True False False False False 0.53 0.37 2.3

True True False False False True 0.42 0.16 2.68

True True False False True False 0.43 0.16 2.66

True True False False True True 0.39 0.11 2.78

True True False True False False 0.4 0.11 2.76

True True False True False True 0.84 1.02 1.17

True True False True True False 0.79 1.01 1.24

True True False True True True 0.54 0.42 2.23

True True True False False False 0.52 0.39 2.3

True True True False False True 0.31 0.2 2.76

True True True False True False 0.31 0.18 2.79

True True True False True True 0.26 0.15 2.88

True True True True False False 0.25 0.13 2.91
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Table 9 continued

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

True True True True False True 0.78 1.03 1.23

True True True True True False 0.75 1.01 1.29

True True True True True True 0.45 0.36 2.41

True True True False True True 0.46 0.35 2.41

True True True True False False 0.28 0.16 2.85

True True True True False True 0.29 0.15 2.84

True True True True True False 0.23 0.1 2.98

True True True True True True 0.23 0.1 2.97

St. state

Table 10 Normalized likelihood values for PGW in the scenario of agricultural intensification trough
greenhouse

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

False False False True False True 1 1 1

False False False True True False 1.1 0.91 1

False False False True True True 0.99 1.05 0.97

False False True False False False 1.09 0.97 0.96

False False True False False True 1.01 1.04 0.97

False False True False True False 1.11 0.94 0.97

False False True False True True 1.02 1.05 0.95

False False True True False False 1.13 0.96 0.95

False False True True False True 1 0.97 1.02

False False True True True False 1.1 0.87 1.03

False False True True True True 1 0.97 1.03

False True False False False False 1.1 0.9 1.01

False True False False False True 1.02 0.99 0.99

False True False False True False 1.12 0.9 0.99

False True False False True True 1.03 1 0.98

False True False True False False 1.14 0.91 0.97

False True False True False True 1.44 1.27 0.52

False True False True True False 1.58 1.15 0.51

False True False True True True 1.42 1.26 0.54

False True True False False False 1.56 1.17 0.51

False True True False False True 1.49 1.3 0.47

False True True False True False 1.62 1.17 0.47

False True True False True True 1.49 1.3 0.46

False True True True False False 1.63 1.18 0.46

False True True True False True 1.46 1.28 0.5

False True True True True False 1.6 1.15 0.5

False True True True True True 1.45 1.28 0.51
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Table 10 continued

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

True False False False False False 1.59 1.17 0.5

True False False False False True 1.5 1.31 0.46

True False False False True False 1.64 1.17 0.46

True False False False True True 1.51 1.31 0.44

True False False True False False 1.65 1.18 0.45

True False False True False True 1.01 1.01 0.99

True False False True True False 1.11 0.92 0.99

True False False True True True 1.01 1.04 0.97

True False True False False False 1.11 0.96 0.95

True False True False False True 1 1.03 0.98

True False True False True False 1.11 0.93 0.98

True False True False True True 1.01 1.04 0.96

True False True True False False 1.12 0.95 0.96

True False True True False True 1.01 0.98 1.01

True False True True True False 1.11 0.88 1.02

True False True True True True 1.01 0.98 1.01

True True False False False False 1.12 0.91 0.99

True True False False False True 1.01 0.98 1

True True False False True False 1.12 0.89 1

True True False False True True 1.02 0.99 0.99

True True False True False False 1.13 0.91 0.98

True True False True False True 1.45 1.28 0.51

True True False True True False 1.6 1.16 0.5

True True False True True True 1.44 1.27 0.52

True True True False False False 1.59 1.18 0.49

True True True False False True 1.48 1.29 0.48

True True True False True False 1.61 1.16 0.48

True True True False True True 1.49 1.3 0.47

True True True True False False 1.62 1.18 0.47

True True True True False True 1.47 1.29 0.49

True True True True True False 1.61 1.15 0.49

True True True True True True 1.47 1.29 0.49

True True True False True True 1.61 1.17 0.48

True True True True False False 1.49 1.3 0.47

True True True True False True 1.63 1.16 0.47

True True True True True False 1.5 1.31 0.45

True True True True True True 1.63 1.18 0.46

St. state
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Table 11 Normalized likelihood values for NPGW in the scenario of agricultural intensification trough
greenhouse

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

False False False True False True 1 1 1

False False False True True False 1.13 0.94 0.89

False False False True True True 0.83 0.93 1.4

False False True False False False 0.9 0.89 1.35

False False True False False True 0.88 0.94 1.31

False False True False True False 0.98 0.88 1.25

False False True False True True 0.81 0.98 1.36

False False True True False False 0.89 0.92 1.32

False False True True False True 1.02 1.02 0.94

False False True True True False 1.16 0.95 0.82

False False True True True True 0.83 0.94 1.39

False True False False False False 0.92 0.89 1.33

False True False False False True 0.88 0.94 1.29

False True False False True False 0.99 0.88 1.23

False True False False True True 0.8 0.99 1.35

False True False True False False 0.9 0.92 1.31

False True False True False True 1.07 0.93 1.01

False True False True True False 1.18 0.91 0.86

False True False True True True 0.88 0.85 1.48

False True True False False False 0.93 0.83 1.42

False True True False False True 0.94 0.85 1.37

False True True False True False 1.01 0.82 1.3

False True True False True True 0.88 0.85 1.47

False True True True False False 0.94 0.83 1.41

False True True True False True 1.09 0.94 0.95

False True True True True False 1.21 0.91 0.8

False True True True True True 0.88 0.85 1.47

True False False False False False 0.95 0.82 1.4

True False False False False True 0.94 0.85 1.37

True False False False True False 1.02 0.82 1.28

True False False False True True 0.88 0.85 1.47

True False False True False False 0.95 0.82 1.4

True False False True False True 0.99 1 1.02

True False False True True False 1.12 0.94 0.91

True False False True True True 0.83 0.94 1.39

True False True False False False 0.91 0.89 1.34

True False True False False True 0.89 0.93 1.3

True False True False True False 0.99 0.87 1.24
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Table 11 continued

Het.crops Aban.W.crops Trad.W.crops Greenh Irrg.crops Rainfed St.0 St.1 St.2

True False True False True True 0.81 0.97 1.36

True False True True False False 0.91 0.91 1.32

True False True True False True 1 1.02 0.96

True False True True True False 1.15 0.95 0.84

True False True True True True 0.82 0.95 1.38

True True False False False False 0.93 0.89 1.31

True True False False False True 0.89 0.94 1.29

True True False False True False 1.01 0.87 1.22

True True False False True True 0.81 0.98 1.36

True True False True False False 0.92 0.91 1.3

True True False True False True 1.05 0.93 1.03

True True False True True False 1.17 0.91 0.88

True True False True True True 0.88 0.85 1.48

True True True False False False 0.94 0.83 1.4

True True True False False True 0.94 0.85 1.37

True True True False True False 1.03 0.82 1.28

True True True False True True 0.88 0.85 1.47

True True True True False False 0.95 0.82 1.4

True True True True False True 1.08 0.94 0.98

True True True True True False 1.2 0.91 0.82

True True True True True True 0.88 0.85 1.47

True True True False True True 0.96 0.82 1.39

True True True True False False 0.94 0.85 1.36

True True True True False True 1.04 0.82 1.27

True True True True True False 0.88 0.85 1.47

True True True True True True 0.96 0.82 1.39

St. state

Appendix C

See Table 12.
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