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Abstract. Greenhouse farming is an agricultural management system that has 

showed its efficiency in intensifying food production. The importance of agriculture 

in the sustainable management of natural resources requires the development of op-

erational methodologies for mapping and monitoring farmland. This study aims to 

analyze the potential of time series of Sentinel-2 images for monitoring Plastic Cov-

ered Greenhouse (PCG) crops in Almería (Spain). For this, a set of 22 Sentinel-2 

images taken during 2021 were used. Throughout the year 2021, monthly field visits 

were made on 32 PCG to know the characteristics of these greenhouses, the crops 

they contained (i.e., tomato, pepper, cucumber, melon and watermelon) and their 

evolution over time. By combining both the satellite and the field data, the crops, 

which are growing into each PCG, can be characterized. Two different spectral in-

dices, NDVI (related to vegetative growth) and Brightness (related to the white-

washing of PCG), derived from the Sentinel-2 images shown their usefulness for 

differentiating crops growing under plastic sheet. This work could be the first step 

for discriminating crops through indices derived from Sentinel-2 images for the de-

velopment of future management strategies for PCG areas.  

Keywords: Sentinel-2; horticultural crops; time series; object-based analysis; 

greenhouse mapping.  
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1 Introduction 

During the last decades, food security has become a crucial global concern driven 

by projections of population increase and aggravated by the approaching pressure 

of climate change on agriculture [1,2,3]. Greenhouse farming is an agricultural man-

agement system that has showed its efficiency in intensifying food production. 

These systems constitute a possible alternative to ensure food supply [4].  

In 2018, the global surface area of plastic agricultural structures was estimated 

as ~3,400,000 ha, where 15% of this area was greenhouses and their area is growing. 

This increase as well as its importance raises the need to map and classify agricul-

tural plastic structures and the type of crops that could be planted [5].  

The province of Almería, located in the semi-arid coastal plain of Southeast 

Spain, has a big plastic covered greenhouses (PCG) area and an even larger crop-

growing surface, thanks to the scheduling of two growing cycles per year. These 

make Almeria the province with the highest concentration of protected crop surface 

(greenhouses) not only in Spain but in the world [6]. This large concentration of 

PCG requires transformative solutions for social, economic and environmental chal-

lenges and processes. In that sense, remote sensing offers coverage of large areas 

with precision and is a very efficient and contracted tool to improve management 

across scales [7]. 

Agriculture is of increasing importance in the management of sustainable natural 

resources and requires the development of operational methodologies for mapping 

and monitoring farmland. [8]. The data obtained by remote sensing offer a signifi-

cant contribution to provide regular and accurate images of land use and land cover, 

specifically of the agricultural sector. It takes special relevance considering its ap-

plicability in a new era of land cover analysis, which has been enabled by free and 

open access data (e.g., Sentinel-2 (2A and 2B), Landsat 8 or even Landsat 9 images), 

analysis-ready data, high-performance computing, and rapidly developing data pro-

cessing and analysis capabilities [9,10]. For instance, a combination of data from 

Sentinel-2A, Landsat 8 and Sentinel-2B provides a global median average revisit 

interval of 2.9 days [11]. 

In the last ten years, an increasing amount of scientific literature has been pub-

lished on PCG mapping from remote sensing, that has mainly focused on Landsat 

imagery and Sentinel-2. A few indices especially adapted to plastic sheet detection, 

such as the Index Greenhouse Vegetable Land Extraction (Vi), Plastic Greenhouse 

Index (PGHI), Moment Distance Index (MDI), Normalized Difference Builtup In-

dex (NDBI) and Greenhouse Detection Index (GDI) have been recently proposed 

[12]. 

The crop classification via remote sensing from medium resolution satellite im-

agery (e.g., Landsat or Sentinel-2) was commonly conducted by using pixel-based 

approaches until more than ten years. As a result of spaceborne sensors was allow-

ing the application of the object-based image analysis (OBIA) model to extract crop 
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types from satellite image time series. Peña-Barragán et al. [13] developed a meth-

odology for outdoor crop identification and mapping using OBIA and decision tree 

algorithms. This methodology was also applied to a Landsat time series to map sug-

arcane over large areas [14]. Adapting this research line to PCG horticultural crops 

(indoor crops), Aguilar et al. [15,16] went one step further by addressing the iden-

tification from using a single WorldView-2 satellite image and Sentinel-2 and Land-

sat 8 Operational Land Imager (OLI) time series. 

Satellite based vegetation index data, such as the normalized difference vegeta-

tion index (NDVI), is useful for estimating outdoor crop types because it is rela-

tively easy to get and globally scalable. NDVI is a common vegetation index that 

has been use since the 1970s. Singla et al. [17], identified outdoor types of sugarcane 

crops efficiently using a temporal profile of NDVI at any given scale. 

Remote sensing techniques are commonly used in agriculture and agronomy be-

cause, agricultural production follows strong seasonal patterns related to the biolog-

ical lifecycle of crops. The grown crops depend on the physical landscape (e.g., soil 

type), as well as climatic driving variables and agricultural management practices, 

among others factors. [18,19] 

This work is dealing with the optimized use of Sentinel-2 satellite image data for 

acquisition of consistent and near in time information associated to the greenhouse 

crops in spatial and temporal domain. The goal of the proposed study is to discrim-

inate different inside greenhouse crops based on the multi temporal Sentinel-2 re-

motely sensed data temporal profile of NDVI, Brightness and the agricultural man-

agement of PCG. 

2 Study area and datasets 

The research has been carried out in Almería one of the eight provinces that make 

up the autonomous community of Andalusia in southern Spain (Fig. 1). Over 32,554 

hectares of this province are currently dedicated to greenhouse crops production. 

Considering the area cultivated by product in the 20/21 season, production was 

52,350 hectares of which was 12,575 ha of watermelon, 12,310 ha of pepper, 8423 

ha of tomato, 8061 ha of zucchini, 5280 ha of cucumber, 3205 ha of melon, 2277 

ha o aubergine, and 219 ha of green bean. About 60.8% of greenhouses cultivated 

area in Almería in 2020/21 season had two crops grown per year [20]. 

The study area comprised a rectangle area of about 40 km2 centered on the 

WGS84 geographic coordinates of 36.7856°N and 2.6681°W. 
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 (. 1. (a) Location of the study area in Almería (Spain); (b) Detailed view of the study area and 

location of the reference horticultural crops growing under plastic-covered greenhouses (PCG). 

Coordinate system: ETRS89 UTM Zone 30N. 

2.1 Data set pre-processing 

The European Space Agency (ESA) provides free, open access products, for ex-

ample Sentinel 2 images level 2A (S2), that could be freely downloaded from Co-

pernicus Scientific Data Hub tool, used for this study. The Sentinel-2 mission offer 

a combination of systematic global coverage of land surfaces, a high revisit of five 

days at the equator under the same viewing conditions, a wide field of view for 

multi-spectral observations from 13 bands in the visible, near infrared and short-

wave infrared part of the electromagnetic spectrum [21].  

A time serie of 22 cloud-free Sentinel-2 satellite images (both Sentinel-2A and 

2B) were acquired in different dates (Table 1) during the 2021. In this study, the six 

20 m ground sample distance (GSD) bands (Red Edge1, 2 and 3, SWIR 1 and 2 and 

NIR8a) and four 10 m GSD bands (Blue, Green Red and NIR8) were used. These 

images were clipped according to the study area. 
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Table 1. Characteristics of the Sentinel-2A images. 

Orbit Granule Date of Acquisition  Sensor 

R094 30SFW January 3, 2021 2B 

R051 30SFW January 15, 2021 2A 

R094 30SFW February 7, 2021 2A 

R094 30SFW February 22, 2021 2B 

R051 30SFW March 14, 2021 2B 

R051 30SFW March 24, 2021 2B 

R094 30SFW April 18, 2021 2A 

R051 30SFW May 5, 2021 2A 

R051 30SFW May 25, 2021 2A 

R051 30SFW June 9, 2021 2B 

R051 30SFW June 29, 2021 2B 

R051 30SFW July 4, 2021 2A 

R051 30SFW July 19, 2021 2B 

R051 30SFW August 8, 2021 2B 

R051 30SFW August 28, 2021 2B 

R051 30SFW September 12, 2021 2A 

R051 30SFW September 17, 2021 2B 

R051 30SFW October 7, 2021 2B 

R051 30SFW November 11, 2021 2A 

R094 30SFW November 29, 2021 2B 

R051 30SFW December 6, 2021 2B 

R094 30SFW December 19, 2021 2B 

2.2 Horticultural Crops under PCG Reference Data 

A variety of data as farming practice, crop growth, agricultural management 

practices and greenhouse information as type, height, material is essential for car-

rying out this study. During 2021 were acquired field data to obtain rigorous and 

real information about 32 controlled greenhouses (Fig. 1b). Ground truth data at 

regular intervals of a month have been collected to extract the information related 

to the PCG crop growth cycle of controlled greenhouse. 

These greenhouses contained different crops and managements that in turn 

changed during the course of the year. Among the PCG crops present, the most 

represented were characterized. In this case, four different crops management: Long 

cycle (September–April cycles) cherry tomato, Long-cycle bell red pepper (Fig. 2), 

short crop cycles (two cycles per year autumn to winter cycle and spring to summer 

cycle) watermelon and cucumber and long cycle zucchini was controlled. 
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Fig. 2. Grow stage of Long-cycle bell red pepper. 

3 Methodology 

As shown in Figure 3, the methodology proposed in this article mainly includes 

three steps, process starts with Sentinel-2 data preprocessing. These satellite images 

after the preprocessing operations are further used to PCG crop characterization. 

Trimble eCognition Developer v. 10.1 software was employed for the Object-Based 

Image Analysis (OBIA) and the extraction of NDVI and Brightness. Finally, an 

assignment of classes of the horticultural crops studied under PCG in winter-spring 

2021 and summer-autumn 2022 is made. 

 

 

Fig. 3. Flow diagram of the methodology.  
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The crop characterization was evaluated using 32 polygons over of individual 

PCG. These polygons were manually segmented on the WV3 pansharpened image 

generated on July 11 image. Moreover, each polygon was digitized, adapting its 

boundary to the shape of each PCG. To prevent mixed pixels all the PCG polygons 

were get smaller by 10 m using the buffer tool in QGIS v 3.16 platform (QGIS 

Development Team 2021). This technique tried to avoid potentially mixed pixels 

located at the edges of the sampled PCG, which is a very usual point when working 

on medium-resolution satellite imagery as S2. 

Trimble eCognition Developer v. 10.1 software was employed for the extraction 

of the mean surface reflectance values of all the pixels inside of each polygon from 

S2 products. To do this, the chessboard segmentation algorithm included in eCog-

nition was applied to a previously digitized thematic layer containing the 32 refer-

ence polygons. The mean values of the Bottom-of-Atmosphere (BOA) reflectance 

values for all the pixels within an object for each band were labeled as basic spectral 

information and date. The rest of the features consisted of two spectral and vegeta-

tion indices for single images. All the pixels (with an enhanced spatial resolution of 

about 1.25 m) within the OBIA segments were considered. NDVI and Brightness 

were also computed for each polygon and date, using the mean values attained from 

Blue, Green Red, NIR8, SWIR1 and SWIR2 (Equations 1 and 2) 

 NDVI =
(NIR8-R)

(NIR8+R)
 (1) 

 Brightness =
(B+G+R+SWIR 1+SWIR 2)

5
 (2) 

4 Results and discussion 

A review of available literature revealed that the NDVI is the nucleus of land 

cover related information. Consequently, temporal and spatial variations in the nu-

merical values of the NDVI may be successfully used to crop growth monitoring 

[17,22] Brightness is another key factor that makes it possible to determine one of 

the actions on greenhouses that is easiest to detect in remote sensing, whitewashing 

[23]. These two indices and an exhaustive knowledge of the management tasks car-

ried out in the PCG crops controlled for this study, allow characterizing the crop. 
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a) 

 
b) 

Fig. 4. NDVI temporal profile of a) mean NDVI and b) mean brightness for long-cycle tomato. 

 

Long-cycle tomato crop is characterized by having higher NDVI values around 

0.2 in the winter months when the crop shows greater development and brightness 

peaks at the end of summer with values between 0.6 and 0.7, when whitewashing is 

carried out to the planting of the crop, as well as small whitewashes in spring that 

reach brightness values close to 0.5 (Fig. 4). 
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a) 

 
b) 

 

Fig. 5. NDVI temporal profile of a) mean NDVI and b) mean brightness for long-cycle bell red 

pepper. 

Long-cycle bell red pepper is characterized by NDVI values close to 0.30 in the 

winter months, and by receiving the strongest whitewashes at the end of summer, 

reaching brightness values above 0.8. Small whitewashes are also carried out in the 

spring months (Fig. 5). 
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a) 

 
b) 

 

Fig. 6. NDVI temporal profile of a) mean NDVI and b) mean brightness for watermelon-cucumber. 

Another widely distributed crop cycle in the study area is the combination of 

growing watermelon in spring and cucumber in winter. The watermelon crop under 

plastic is characterized by starting at the end of winter and presenting high NDVI 

values exceeding 0.4. In addition, it is a crop in which no whitewashing is carried 

out (Fig. 6). PCG Cucumber crop is a that undergoes whitewashing and also has 

high NDVI values, although these have greater variability due to the use of man-

agement techniques with greenhouse interior plastics. Although the characterization 

represented in this study is that of the PCG watermelon crop, it was observed that 

the PCG melon crop presents very similar spectral characteristics and management. 
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a) 

 
b) 

 

Fig. 7. NDVI temporal profile of a) mean NDVI and b) mean brightness for Zucchini. 

 

The zucchini crop, although less represented, was characterized in this study, 

presenting high values and NDVI in the winter months and no Whitewashing 

throughout the year (Fig. 7). 
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Fig. 8. Spectral signature plots extracted from S2 images for each PCG crop of December 6 S2 

image, except the watermelon, in which it was taken from April 18 image. 

 

An analysis of the spectral signature was carried out on Sentinel-2 images of the 

crops in which the highest NDVI values and lowest Brightness values, the moment 

where the reflectance values of the crop in the greenhouse are best remotely detected 

(Fig. 8). Each PCG crop presents a different spectral signature with different reflec-

tance values in each band, these differences are higher in the bands that are in the 

visible spectrum and in the near infrared. When the spectral signatures of the char-

acterized PCG crops are plotted (Fig. 8), they are characterized by increasing re-

flectance values as they approach the near-infrared spectrum. Specifically, it is the 

spectral signature of the PCG watermelon crop that has the largest differences be-

tween the reflectance values of the visible spectrum and the near-infrared spectrum, 

it is also the crop of the characterized ones that presents the highest NDVI values. 

Through the characteristics of NDVI and brightness that defined the mainly char-

acterized PCG crops (Fig. 4, 5, 6, and 7), ranges of between 0.05-0.1 were created 

for these two indices obtained from the values of the S2 images obtained from each 

of the objects analyzed, generating a decision rule for each PCG crop in each of the 

two seasons studied. 

Through previous studies [24,25], the ability of a vegetation index as robust as 

the NDVI to detect phenological variations in crops has been demonstrated, allow-

ing outdoor crops and land use to be mapped. By applying this methodology in PCG 

crops the potential of its application. 
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a) b) 

 
 

Fig. 9. Classes assigned by PCG crops characterized in the study area over manually digitized 

greenhouses on two seasons: a) Spring b) Autumn. 

In Figure 9 is visually observed that a large number of greenhouses reflect similar 

characteristics to those extracted from the 32 controlled PCG crops. The year is 

divided into two seasons, Spring and Autumn, because they present different crops 

and managements. During the Spring there is no differentiation between tomato and 

pepper PCG crops and during the autumn months there are no watermelon. 

Among the PCG crops used for this study, there was a papaya crop controlled. 

This PCG crop was characterized by obtaining NDVI values above 0.25 throughout 

the year and no Whitewashing is done throughout the year. Only the sample green-

house had these characteristics within the work area. 

Through previous studies [17,19,22,24,25], the ability of a vegetation index as 

robust as the NDVI to detect phenological variations in crops has been demon-

strated, allowing outdoor crops and land use to be mapped. This methodology re-

quires the collection of field data and remotely detected data over a period of time.  

On the other hand, it is a simple and innovative approach that can be transferred 

to other work areas. 

In addition, this technique could be improved with the application of specific 

rule-based or automatic classification techniques. Hence, protected horticultural 

crops characterization approach could be used as a previous step for automatic re-

mote sensing-based classifications. 



14  

5 Conclusions 

The present study demonstrated that temporal indices as NDVI and Brightness 

using an OBIA approach may be effectively used for the discrimination of PCG 

Crops.  

The previous analysis of the greenhouse conditions and crop management, as 

well as the extraction of the correct indices, is necessary for the characterization of 

the crops. 

The process of collecting the field data and extracting the data from the S2 im-

ages is laborious and needs to be done simultaneously over time. 

Although this study is carried out over one year, the results obtained indicate that 

studies carried out in longer time series would allow a better characterization of the 

PCG crops. 

Similar approaches could be used in other greenhouse areas and for analysis or 

estimation of production and yield or environmental parameters of crops. 
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