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Effects of point cloud density, interpolation method and grid 
size on derived Digital Terrain Model accuracy at micro 
topography level
F. Agüera-Vega a, M. Agüera-Puntasa, P. Martínez-Carricondo a, F. Mancinib 

and F. Carvajal a

aDepartment of Egineering, University of Almería (Agrifood Campus of International Excellence, ceiA3), 
Mediterranean Research Center of Economics and Sustainable Development (CIMEDES), Almería, Spain; 
bDepartment of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Modena, Italy

ABSTRACT
The objective of this study was to evaluate the effects of the three 
dimensional (3D) point cloud density derived from Unmanned 
Aerial Vehicle (UAV) photogrammetry (using Structure from 
Motion (SfM) and Multi-View Stereopsis (MVS) techniques), the 
interpolation method for generating a digital terrain model (DTM), 
and the resolution (grid size (GS)) of the derived DTM on the 
accuracy of estimated heights in small areas, where a very accurate 
high spatial resolution is required. A UAV-photogrammetry project 
was carried out on 13 m × 13 m bare soil with a rotatory wing UAV at 
10 m flight altitude (equivalent ground sample distance = 0.4 cm), 
and the 3D point cloud was derived. A stratified random sample 
(200 points in each square metre) was extracted and from the rest of 
the cloud, 15 stratified random samples representing 1, 2, 3, 4, 5, 10, 
15, 20, 30, 40, 50, 60, 70, 80, and 90% were extracted. Five replica
tions of each percentage were extracted to analyse the effect of 
cloud density on DTM accuracy. For each of these 15 × 5 = 75 
samples, DTMs were derived using four different interpolation 
methods (Inverse Distance Weighted (IDW), Multiquadric Radial 
Basis Function (MRBF), Kriging (KR), and Triangulation with Linear 
Interpolation (TLI)) and 15 DTM GS values (20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 
2, 1, 0.67, 0.50, and 0.40 cm). Then, 75 × 4 × 15 = 4500 DTMs were 
analysed. The results showed an optimal GS value for each inter
polation method and each density (most of the cases were equal to 
1 cm) for which the Root Mean Square Error (RMSE) was the mini
mum. IDW was the interpolator that yielded the best accuracies for 
all combinations of densities and GS. Its RMSE when considering the 
raw cloud was 1.054 cm and increased by 3% when a point cloud 
with 80% extracted from the raw cloud was used to generate the 
DTM. When the point cloud included 40% of the raw cloud, RMSE 
increased by 5%. For densities lower than 15%, RMSE increased 
exponentially (45% for 1% of raw cloud). The GS minimizing RMSE 
for densities of 20% or higher was 1 cm, which represents 2.5 times 
the ground sample distance of the pictures used for developing the 
photogrammetry project.
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1. Introduction

A Digital Elevation Model (DEM) is a mathematical representation of an object and is often 
used for describing terrains and their elevations. It plays an important role in applications 
related to terrain modelling, hydrological modelling, or landscape evolution due to the 
erosion process (Mancini et al. 2013; Asal 2016; Jaud et al. 2016; Schwendel and Milan 
2019).

Furthermore, Unmanned Aerial Vehicles (UAVs) can collect data that combined with 
remote sensing techniques, provide three dimensional (3D) models and orthophoto
graphs with a high spatial and temporal resolution (Jaud et al. 2016). These products 
are very useful for landscape monitoring, e.g. reconstruction of extreme topography 
(Agüera-Vega et al. 2018), precision agriculture (Martinez-Guanter et al. 2019; Campos 
et al. 2019; Agüera Vega et al. 2015), landslide monitoring (Rossi et al. 2018), and erosion 
assessment (Gong et al. 2019; Eltner et al. 2015; Castillo et al. 2012; Momm et al. 2013).

The integration of photogrammetry and computer vision has provided the Structure 
from Motion (SfM) technique, which makes it possible to collect images from different 
heights and in different directions with greater flexibility and high quality results 
(Atkinson 1996; Hartley and Zisserman 2003). SfM automatically solves the geometry of 
the scene and the camera positions and orientation without the need to specify a priori 
a network of targets that have known 3D positions (Snavely, Seitz, and Szeliski 2008; 
Westoby et al. 2012; Vasuki et al. 2014). The Multi-View Stereopsis (MVS) technique has 
been incorporated into SfM, which allows the 3D structure to be derived from overlapping 
photography acquired from multiples angles. Furthermore, the Scale Invariant Feature 
Transform (SIFT) operator has been shown to be one of the most robust for key-point 
detection for generating 3D point clouds from two dimensional (2D) photographs 
(Remondino and El-Hakim 2006; Juan and Gwun 2009). All this has led to the so-called 
UAV-photogrammetry, which consists of taking pictures from a non-metric camera 
mounted on a UAV to obtain a 3D point cloud representing the studied object.

The extraction of precise and reliable 3D metric information from images requires 
accurate camera calibration procedure (Luhmann, Fraser, and Maas 2016; Remondino and 
Fraser 2006). Camera calibration is the determination of internal geometry of a camera. 
Furthermore, the most commonly sensor used in UAV-photogrammetry are consumer 
digital cameras (Carrivick, Smith, and Quincey 2016) and these have unstable and fluctu
ating internal geometry (Nex and Remondino 2014). Since there is not easy solution to 
estimate the parameters that define this geometry, several proposals have been studied 
(e.g. Pérez, Agüera, and Carvajal 2013; Gašparovic and Gajski 2016). Remondino and Fraser 
(2006) proposed a calibration methods classification according to the parameter estima
tion and optimization technique employed: linear techniques, non-linear techniques, and 
a combination of both of these techniques. With SfM approaches, calibration can be 
carried out using a large number of tie points, which provide redundancy in the solution, 
and can yield a high internal precision, but it can mask deficiencies in the external 
accuracy and reliability (Nesbit and Hugenholtz 2019; Luhmann, Fraser, and Maas 2016). 
Nevertheless, following well-proven rules for self-calibration an accurate self-calibration, 
observation errors can be minimized, providing in this way more accurate estimates of 
calibration parameters, enabling accurate and reliable measurements from practically any 
camera (Remondino and Fraser 2006).
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Given a 3D point cloud, several factors affect the accuracy of the DEM, such as the 
density and distribution of the point cloud, grid resolution, and the interpolation method 
used to generate the DEM. UAV-photogrammetry is able to generate high 3D point 
densities, however, this must be accompanied by the proper system for data storage, 
data processing, and manipulation of large volumes of data. High 3D point densities and 
high DEM grid resolution imply long processing time both in point cloud generation and 
DEM generation. Therefore, reductions of such high point densities help reduce the cost 
of data acquisition and data computation (Singh et al. 2015). Although reduction in point 
cloud densities and DEM grid size (GS) reduction are expected to have direct effects on 
DEM characteristics, if those effects are not significant for a given application, this could 
result in saving in data acquisition and processing costs by a balance between them.

Although there are no published works studying these effects on data generated from 
UAV-photogrammetry, there are some on a 3D cloud point generated with terrestrial 
Light Detection and Ranging (LiDAR) technology. For example, Anderson, Thompson, and 
Austin (2005) reduced the original LiDAR point cloud, resulting in datasets with 50%, 25%, 
10%, 5%, and 1% of their original densities. Furthermore, they used two interpolators 
(Inverse Distance Weighted (IDW) and ordinary Kriging (KR)) to generate the DEM. A study 
of the errors concluded that LiDAR datasets could withstand substantial data reductions 
and maintain adequate accuracy for elevation predictions and that simple interpolation 
approaches such as IDW could be sufficient for generating the DEM.

Similarly, Liu et al. (2007) explored the effect of point cloud density acquired with 
LiDAR and examined the scope for data volume reduction without affecting the efficiency 
in data storage and processing. They concluded that although datasets could be reduced 
to increase the efficiency of DEM generation, the maximum level of data reduction 
depends on the original data density, interpolation method, DEM GS, and terrain char
acteristics. Liu and Zhang (2008) then explored the effects of LiDAR data density on the 
accuracy of DEMs and examined how much a set of this data could be reduced while 
maintaining adequate accuracy for DEM generation. They concluded that data reduction 
mitigates the data redundancy and improves data processing efficiency in terms of both 
storage and processing time.

For a large area, Singh et al. (2015) evaluated the effects of LiDAR point cloud density 
on the biomass estimation of remnant forest in a rapidly urbanizing region and concluded 
that data with an average point spacing of 0.70 to 1.50 m could result in cost-effective 
acquisition and data processing. Furthermore, Asal (2016) evaluated the effects of reduc
tion in airborne LiDAR data on the visual and statistical characteristics of the created DEM 
and concluded that the DEM accuracy decreased by only 4.83% when the point cloud was 
reduced by 50%.

All the above related works were developed for large areas, but there are occasions 
that require the study of smaller areas with a high level of detail and the required scale for 
representing these is therefore greater than that required for representing larger areas. In 
this sense, Asensio et al. (2019) developed a methodology based on a wind tunnel and 
a 3D laser scanner to estimate wind erosion, relating the change in microrelief to soil loss. 
They worked on 120 cm2 microplots with 2.98 × 106 3D points scanned in each studied 
plot. Then, two 0.1 cm × 0.1 cm resolution Digital Terrain Models (DTMs), one before and 
one after wind simulation, were generated and compared to estimate soil loss. The 
interpolation method to obtain the DTMs was not indicated.
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Similarly, Schmid, Schack-Kirchner, and Hildebrand (2014) used a high-resolution 
terrestrial laser scanner to assess erosion risk due to mechanized logging with crawler 
harvesters on steep slopes. The plots studied were 20 m2 and were scanned before and 
after the logging operation and after one year of exposure to rain. The surface roughness 
was estimated from DTMs with resolutions of 0.5 mm × 0.5 mm and 1 cm × 1 cm. The 
interpolation method was not mentioned. One conclusion of this work was that the 
roughness index calculated was influenced by DTM resolution.

García-Serrana, Gulliver, and Nieber (2018) formulated the relevance of the fractal 
approach for understanding the relationship of surface roughness to overland flow 
patterns. The system used to generate the 3D point cloud was based on close-range 
photogrammetry and the DTM was generated with 0.1 cm × 0.1 cm resolution. No 
indications about the interpolation method used to generate the DTM were given. The 
study of Smith and Warburton (2018) used SfM surveys to examine its ability to represent 
the fine details and to quantify roughness for different peat surfaces. To realize these 
objectives, they derived two DTMs, one at 0.1 cm × 0.1 cm resolution and one at 0.5 cm × 
0.5 cm resolution. The interpolation method used was not mentioned.

In view of all these mentioned works, it can be stated that both LiDAR and SfM 
techniques generate high-density 3D point clouds and that it would be interesting to 
study the relationship between data density reduction and the accuracy of the generated 
DEM. The objective of this study is therefore to evaluate the effects of 3D point cloud 
density derived from UAV-photogrammetry and SfM and MVS techniques, the interpola
tion method used to generate the DEM, and the resolution (GS) of the derived DEM on the 
accuracy of the estimated heights in small areas, where a very high spatial resolution and 
accuracy are required.

2. Materials and methods

2.1. Study site

The study site was located in Tabernas Desert (Almería), Southeast Spain. The south- 
west and north-east coordinates UTM (Zone 30, European Terrestrial Reference System 
89 (ETRS89)) of this area are (548948, 4096735) and (548961, 4096748), respectively. It 
is a square 13 m × 13 m in size that covers an area of 169 m2. The selection of this 
area was based on its morphology, which includes a wide range of variability. 
Furthermore, the terrain is free of vegetation, meaning there was no difference 
between the Digital Surface Model (DSM), the DTM, and the DEM. The elevation 
range was 4.8 m. Figure 1 represents the location of the study site and an orthophoto 
and contour map of the study site.

2.2. Image collection

The images used in this work were taken from a rotatory wing DJI Mavic Air with four 
rotors. Its weight is 430 g, and it is equipped with a navigation system using GPS and 
GLONASS. In addition, it is equipped with a front, rear, and lower vision system that allows 
it to detect surfaces with a defined pattern and adequate lighting and avoid obstacles 
within a range between 0.5 m and 10 m. Furthermore, the UAV is equipped with a Red 
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Green Blue (RGB) camera with a 1/2.3” Complementary Metal Oxide Semiconductor 
(CMOS) sensor, f/2.8 aperture, and 12 megapixels (4056 × 3040) mounted on a motion- 
compensated three-axis gimbal. The lens has a fixed focal length of 24 mm (equivalent to 
the 35 mm format) and a horizontal Fiel Of View (FOV) of 85°.

The flight was carried out with an autopilot using the UgCS software (UgCS 2019), 
which allows a flight altitude fitted parallel to the ground to be configured by introducing 
a DSM of the study site. In this way, there was no scale difference between photographs. 
This DSM was generated previously in the same field visit through a photogrammetric 
project that was processed on site. Flight altitude was set at a constant distance of 10 m, 
which yielded a ground sample distance (GSD) of 0.46 cm. The forward and side overlaps 
were 85% and 65%, respectively.

Furthermore, the coordinates of four Ground Control Points (GCPs) placed on the 
corners of the study area and marked with targets that were A3 format in size (297 × 
420 mm) were measured with the Global Navigation Satellite System (GNSS). This was 
done by working with differential corrections in real-time kinematic (RTK) mode, with the 
base station on a geodesic pillar located within 1 km of the studied site. Both the rover 
and base GNSS receivers were Trimble R6 units. With this configuration, the maximum 

Figure 1. Location of the study area (red points in the figures on the left), orthophoto (top right), and 
contour map (bottom right). Coordinates are UTM (zone 30, ETRS89).
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horizontal and vertical Root Mean Square Error (RMSE) were ±9 and ±16 mm, respectively. 
Regardless, the purpose of this task was to get high accuracy in the georeference of the 
DSM, not to check its accuracy.

2.3. Photogrammetric processing

The photogrammetric project was processed using Pix4Dmapper Pro version 3.1.23 
(Pix4Dmapper 2019), a software application based on the SfM and MVS techniques 
mentioned in the introduction section. This software was set to obtain the highest 3D 
point cloud density and quality by adjusting the following processing options in the Point 
Cloud Densification box: Image Scale, which defines the scale of the images at which 
additional 3D points are computed was fixed to 1 and the Multiscale option was selected; 
Point Density, which defines the density of the densified point cloud was fixed to high, the 
maximum level; and the Minimum Number of Matches, which represents the minimum 
number of valid re-projections of this 3D point to the images was fixed to 6 to produce 
a point cloud with high quality.

Eighteen images were taken on 8 March 2019 and were checked to ensure no 
blurred images were included in the project. None of these images was discarded. 
Processinng included self-calibrating bundle block using camera internal orientation 
parameters: focal length, principal point, and lens distortion terms, consisting in 
three radial (R1, R2 and R3), and two tangential (T1 and T2) and camera external 
orientation paramenters, consisting in location coordinates and orientation (roll, 
pitch, yaw). Camera calibration was carried out using non-linear techniques, starting 
from a set of parameters given for the camera manufacturer. This method provides 
a rigorous and accurate modelling of the camera internal orientation and lens 
distortion parameters through an iterative least-squares estimation process (Brown 
1971). In this way, the calculated parameters were: f = 5.549 mm, principal point 
X coordinate = 3.025 mm, principal point Y coordinate = 2.246 mm, R1 = 0.242, 
R2 = −0.763, R3 = 0.609, T1 = 0.001 and T2 = 0.000034. Location coordinates and 
orientation all the images were loaded from the Exchangeable image file format 
(Exif) data.

Identification of the GCPs in the images was carried out visually using an incorporated 
tool in the processing software for assigning the absolute geolocation of the photogram
metric block. Each of these four GCPs was in at least 10 photographs and the projection 
error (average distance in the images where each GCP had been marked and where it had 
been reprojected) ranged from 0.315 to 0.803 pixels. The product obtained from the 
photogrammetric project used in this study was the 3D point cloud.

2.4. 3D point cloud processing

To study the influence of the 3D point cloud density, the interpolation method, and the 
GS of the derived DSM on the accuracy of the DSM, a factorial experimental design was 
carried out. Figure 2 shows the flowchart of the procedure followed in this study. The 
whole procedure described in this section was programmed using Golden Software 
ScripterTM, which works with the Surfer 8.01 (Golden Software 2019) modelisation engine 
via instructions written in a Visual Basic-like programming language.
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2.4.1. Datasets
Considering the objectives proposed in this work, the errors inherent in the coordi
nates of the 3D points generated in the photogrammetric project have been consid
ered null. Obviously, the point cloud has an inherent error, but we studied only the 
error inherent to the interpolator used to generate the DSM from the point cloud. In 
this work, we use SfM only to have a point cloud with characteristics (density and 
distribution) associated to this thecnique. From the initial 3D point cloud, a random 
sample of 200 Check Points (CPs) were extracted for every square metre of the study 
site. Therefore, a total of 200 × 13 × 13 = 33800 CPs were used to evaluate the derived 
DSM accuracy. Furthermore, 15 stratified random samples with different numbers of 
points were extracted from the remaining points, with five repetitions per sampling 
density. The sampling densities were those corresponding to 1, 2, 3, 4, 5, 10, 15, 20, 30, 
40, 50, 60, 70, 80, and 90% of the total number of 3D points in the generated cloud, 
which were named as d1, d2, d3, d4, d5, d10, d15, d20, d30, d40, d5, d60, d70, d80, 
and d90, respectively. The raw point cloud was named d100. These 5 × 15 = 75 files 
were extracted from the raw 3D point cloud using an informatics program developed 
by the authors in Visual Basic v6.0 language.

2.4.2. Interpolation methods
The interpolation methods evaluated in this work are Inverse Distance Weighted (IDW), 
Multiquadric Radial Basis Function (MRBF), Kriging (KR), and Triangulation with Linear 
Interpolation (TLI), which are all incorporated in the above-mentioned software Surfer 
8.01. For each of the 75 extracted files and for each of the interpolation methods, the DSM 
GS was set at 15 different values: 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.67, 0.50, and 0.40 cm. 
Then, 75 × 15 × 4 = 4500 DSMs were analysed.

Study site: Square terrain 
(13 m × 13 m = 169 m2) 

From the remaining points, stratified 
random sampling for every sample 
density (15 levels: d1 to d90). Five 
replications for each density. 

15 levels × 5 replications = 475 
samples

UAV-photogrammetry 
project (GSD = 0.46 cm) 

3D point cloud 

Check points: 
Stratified random sampling. 

Extract 200 random points for every m2 

For each sample, generate DSMs 
using four different interpolators 

(IDW, KR, MBRF, and TLI) and 15 
different GSs (from 20 cm to 0.4 cm). 
75 samples × 15 GSs × 4 interpolators 

= 4500 DSMs analysed 

Root Mean Square Error at check 
points to assess the accuracy

Figure 2. Flowchart of the procedure followed in this study.
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2.4.2.1. Inverse distance weighted. This is a weighted average interpolator and one of 
the most used for surface modelling. It is based on the idea that the influence of one point 
relative to another declines with the distance from the grid node, where the value is 
interpolated. The weighting factor assigned to each data point determines the rate at 
which this influence decreases as the distance increases. It is an exact and local inter
polator that uses the Equation (1) to estimate the value for a non-sampling point (X, Y): 

ZEstimated
j ¼

Pi¼mj
i¼1

Zi

dβ
i;j

Pi¼mj
i¼1

1
dβ

i;j

; (1) 

where ZEstimated
j is the interpolated height in the jth DSM node, Zi (i = 1, 2, . . ., mj) is the ith 

point height of the cloud used to interpolate the jth DSM node, di;j is the distance 
between the jth DSM node and the ith point of the cloud used to interpolate the jth 
DSM node, mj is the number of points of the cloud used to interpolate the jth DSM node, 
and β is the weighting power. In this study β = 2.

2.4.2.2. Radial basis function. This exact interpolator includes a diverse group of 
interpolation methods that use a basic equation dependent on the distance between 
the interpolated point and the sampling points (Carlson and Foley 1992). Its expression 
that is generally used to interpolate topographic surfaces is given in Equation (2). 

ZEstimated
j ¼

Xi¼mj

i¼1
aiΨ ri;j
� �

; (2) 

where ZEstimated
j is the interpolated height in the jth DSM node, Ψ ri;j

� �
represents the radial 

basis functions, ri;j is the distance between the jth DSM node and the ith point of the cloud 
used to interpolate the jth DSM node, ai are scalar values (called weights) assigned to each 
point of the cloud used to interpolate the jth DSM node, and mj is the number of points of 
the cloud used to interpolate the jth DSM node.

To calculate the scalar values ai, it is necessary to solve the linear system M × A = Z, 
where M is an mj-order square matrix containing the distances between the DSM node 
and the points used to interpolate this node, A is a vector containing the ai values that 
have to be calculated, and Z is a vector containing the height of each point used to 
interpolate this node.

In terms of the ability to fit the data and to produce a smooth surface, the Multiquadric 
method is considered by many authors the best of all the radial basis function methods 
(Franke 1982; Powell 1990). In the MRBF, the radial basis functions take the form exposed 
in Equation (3). 

Ψ rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p
; (3) 

where r is the distance from the node to the point of the cloud and c is the smoothing 
factor. There is no universal method to calculate this factor and several authors have 
proposed different formulas (e.g. Carlson and Foley (1991)). In this study, the Equation (4) 
is used (Golden Software 2019): 

c2 ¼
D2

25� n
; (4) 
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where D is the length of the diagonal of the data extent and n is the number of 
data points.

2.4.2.3. Kriging. This is a geostatistical interpolation method that has demonstrated 
good behaviour in many fields. It attempts to express the trends suggested in a data 
sample (3D point cloud), which means, for example, that high points might be connected 
along a ridge rather than isolated by bullseye type contours. The general expression for 
Ordinary Kriging is given in Equation (5). 

ZEstimated
j ¼

Xi¼mj

i¼1
λiZi (5) 

where ZEstimated
j is the interpolated height in the jth DSM node, Zi (i ¼ 1, 2, . . ., mj) is 

the ith point height of the cloud used to interpolate the jth DSM node, and λi is the 
weight assigned to each point of the cloud used to interpolate the jth DSM node. 

These values should be set so that the estimator is unbiased (
Pi¼mj

i¼1 λi ¼ 1) and the 
variance is minimal. mj is the number of points of the cloud used to interpolate the jth 
DSM node.

2.4.2.4. Triangulation with linear interpolation. This is an exact interpolator that uses 
the optimal Delaunay triangulation (Lee and Schachter 1980), creating triangles by draw
ing lines between data points in such a way that no triangle edges are intersected by 
other triangles. In this way, the entire studied surface will be covered by a 3D triangle net 
and the height estimation at a given grid node is made by linear interpolation considering 
the triangle that covers that node.

2.4.3. Evaluation of DEM accuracy
As mentioned in Section 2.4.1, 33800 points were extracted from the raw 3D point cloud 
to check the accuracy of the extracted elevations from the DSMs created from reduced 
point data densities. The measure used to evaluate the performance of the DSMs was the 
RMSE (Yang and Hodler 2000), calculated with Equation (6). 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi¼n

i¼1 ZEstimated
i � ZReal

i

� �2

n

s

; (6) 

where ZReal
i is the elevation of the ith (i = 1, 2, 3, . . ., 33800) CP extracted from the 

3D point cloud, ZEstimated
i is the elevation estimated for theith CP in the DSM under 

study, and n is the number of CPs (33800). For each CP, its estimated Z was 
calculated from the derived raster grid considering its X and Y coordinates. A set 
of five RMSE values corresponding to each replication was calculated for each 
combination of the 3D point cloud density, DSM GS, and interpolator. Analysis of 
variance (ANOVA) of the designed factorial model was carried out by taking the 
RMSE as the dependent variable and the interpolation method and sampling 
density as the independent variables.
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3. Results

The raw 3D point cloud derived from the photogrammetric project yielded 10516447 
points, which corresponds to 62227 points m-2 Table 1 shows the correspondence 
between the studied percentages of points extracted from the raw point cloud, the 
number of points, the point cloud density or number of points per square metre, and 
the square GS of a DSM that has as many nodes as points extracted from the raw cloud 
(equivalent square GS), which ranged from 4.01 cm to 0.4 cm. The number of points per 
square metre ranged from 622 to 62227. From here, the percentage of the extracted 
points will be referred to as density as they are directly related.

Figure 3 shows the relationship between the DSM GS and the RMSE (average of five 
repetitions) for each point cloud density studied. To clarify this figure, the logarithmic 
scale was used in both axes. As can be observed in this figure, all curves show a similar 
shape: as the GS decreases, the RMSE also decreases until reaching a certain GS value 
(which was not the same in all cases but was close to 1 cm), from which the RMSE then 
increases. Moreover, for the four interpolation methods, the curves are ordered by 
density, meaning that for a given interpolator the curve corresponding to a certain 
density was below that corresponding to a lower density. For a given interpolation 
method, the differences in RMSE between different densities were lower at the extremes 
and higher in the central zone, which is precisely where the minimum RMSE values were 
found. This means that the influence of point density on the RMSE for large and small GS 
values was not as noticeable as when the GS values were close to or somewhat greater 
than the optimum.

Table 2 shows the minimum RMSE (average of the five replications) and the GS that 
was reached for each interpolator and 3D point cloud density studied. For a given RMSE 
column, values with the same letter are not statistically different (p < 0.05).

In view of this table, it can be stated that for densities equal or greater than d20, the 
minimum RMSE has been reached for a GS equal to 1 cm for all interpolation methods. For 
densities lower than d20, the optimum GS varied depending on the interpolation method 
used and up to d2, the highest optimum GS was 3 cm. For the lowest point density 
studied, d1, the optimal GS values were different for each interpolation method: 10, 4, 6, 
and 3 cm for IDW, KR, MRBF, and TLI, respectively. The ANOVA and least significant 
difference tests showed that when considering each interpolation method separately, 
the RMSE values were grouped into statistically different sets (p < 0.05). These differences 
were most clearly shown for the IDW and KR methods, where there were no overlaps 
between the sets. For the MRBF and TLI, the value sets were not as well defined as for the 
other interpolators. RMSE values corresponding to d80 and d90 form a homogeneous 
group for all interpolation methods (MRBF and TLI overlap with other groups of values).

Figure 4 shows the data presented in Table 2. The curves representing the minimum 
RMSE reached for each 3D point cloud density and each interpolation method show an 
asymptotic tendency as the point density increases towards the RMSE corresponding to 
d100. It can also be seen that the curve corresponding to the MRBF method is the one that 
is most separated from the rest.

After studying these results, two groups in each interpolation method were consid
ered: one including the RMSEs of d40 and the other including those of d80. The ANOVA 
showed statistical differences (p < 0.05) between interpolation methods in both groups.
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Figure 3. RMSE (y-axes, cm) for each GS (x-axes, cm), interpolation method, and point cloud density. 
Interpolation method: (a) IDW; (b) KR; (c) MRBF; (d) TLI. Point cloud density: * d1; ■ d2; ○ d3; ● d4; Δ 
d5; ▲ d10; ×d15; ♦ d20; Ñ d30; ▼ d40; + d50; ◊ d60; □ d70; │ d80; ▬ d90; and # d100. To clarify this 
figure, the logarithmic scale was used in both axes.
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4. Discussion

UAV-derived 3D point clouds provide a new strategy for monitoring terrain surfaces with 
an extremely high level of spatial and temporal resolution. These clouds were used to 
derive DSMs, which provide a very useful basis for carrying out calculus related to terrain 

Table 2. The minimum RMSE (cm) and the GS for which it was found (optimum GS, cm) for each 
interpolator and 3D point cloud density studied. RMSE values are the average of the five replications. 
In each RMSE column, values with the same letter are not statistically different. The last row shows 
data corresponding to the raw 3D point cloud.

IDW KR MRBF TLI

Density (%) Opt. GS RMSE Opt. GS RMSE Opt. GS RMSE Opt. GS RMSE

d1 10 1.529a 4 1.478a 6 1.660a 3 1.477a

d2 2 1.380b 3 1.368b 3 1.505b 3 1.372b

d3 2 1.318 c 2 1.313 c 3 1.442 c 2 1.325 c

d4 2 1.290d 2 1.291d 3 1.417 c,d 2 1.309d

d5 2 1.260e 2 1.263e 3 1.406d 2 1.284e

d10 1 1.193 f 2 1.216 f 2 1.346e 1 1.248 f

d15 1 1.162 g 1 1.191 g 2 1.306 f 1 1.210 g

d20 1 1.136 h 1 1.161 h 1 1.265 g 1 1.181 h

d30 1 1.121i 1 1.148i 1 1.241 g,h 1 1.172 h

d40 1 1.110 j 1 1.135 j 1 1.225 h,i 1 1.152i

d50 1 1.106 j 1 1.132 j 1 1.225 h,i 1 1.154i

d60 1 1.103 j 1 1.127 j 1 1.215 h,i 1 1.148i

d70 1 1.101 j 1 1.126 j 1 1.217 h,i 1 1.145i,j

d80 1 1.089 k 1 1.114 k 1 1.203i 1 1.133 j

d90 1 1.088 k 1 1.114 k 1 1.197i 1 1.131 j

d100 1 1.054 1 1.097 1 1.173 1 1.116

3D point cloud density (%) 
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Figure 4. Minimum RMSE reached for each interpolator (□ IDW; ◊ KR; ○ MRBF; Δ TLI) vs. 3D point cloud 
density studied. RMSE values are the average of the five replications.
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monitoring. In the literature, virtually all work studying the accuracy of the DSMs gener
ated from data acquired with SfM and MVS techniques does not separate the error due to 
the 3D point cloud generation process from the interpolation method used to generate 
the DSM, the fixed GS, or the number of points in the point cloud.

All curves shown in Figure 3 (RMSE vs. GS, for all interpolation methods and densities 
studied) have a minimum RMSE value reached for a certain GS and values smaller than 
these yield a worse RMSE. This indicates that the generated DSM does not fit as well as 
those generated with a bigger GS. Although there are works in which the relationships 
between the optimal GS and other factors, such as the point cloud density, terrain 
morphology, and others have been established (e.g. Hengl (2006)), all of them were 
carried out on larger areas and point densities lower than those considered in this 
work. Table 2 indicates that the GS for which the minimum RMSE was reached for each 
interpolator and each density was not related to the 3D point cloud density or to the 
interpolation method. From d100 to d20, the optimum GS was 1 cm. For values lower than 
d20, the optimum GSs adopt different values but are not related to density or the 
interpolator.

For all the studied interpolation methods, data density was related to DSM accuracy: 
RMSE increased as data density decreased. This is because as the distance between the 
sample points increased, the accuracy of the generated DSM decreased (Anderson, 
Thompson, and Austin 2005). Anderson, Thompson, and Austin (2005) studied a set of 
six reduced 3D point clouds derived from a series of 10 100-ha LiDAR-tiled study sites. 
Point densities ranged from 181.03 points m−2 (no reduced point cloud) to 1.80 
points m−2 (1% of raw cloud). Furthermore, they used two interpolation methods: IDW 
and KR. For the IDW interpolator, the results showed an increase of RMSE from density 
equal to 100% (17.31 cm) to density equal to 1% (35.66 cm). Then, the increase repre
sented 106% of the minimum RMSE. For the KR interpolator, an increase from 0.01% 
(34.24 cm) to 1% (17.25 cm) represented 98.5% of the minimum RMSE.

Liu et al. (2007) found similar results using the IDW interpolator on a set of six reduced 
3D point clouds derived from a raw LiDAR cloud. They studied densities from 0.037 
points m−2 (no reduced point cloud) to less than 0.001 points m−2 (1% of raw cloud) in 
a study area of 113 km2. An increase of RMSE from 100% (18.4 cm) to 1% of the 3D point 
cloud (64.1 cm) represented 248% with respect to the minimum RMSE.

The study site of the present work was 169 m2 in area and the point densities ranged 
from 62227 points m−2 (no reduced point cloud) to 622 points m−2 (1% of raw cloud) 
(Table 1). This study, as opposed to those cited above, was looking for highly accurate and 
detailed microscale topography and therefore the point densities should be higher than 
those used in the cited works.

Considering the minimum and maximum RMSEs found for each interpolation method 
(Table 2), the increases represented 45% for IDW (from 1.529 to 1.054 cm), 35% for KR 
(from 1.478 to 1.097 cm), 42% for MRBF (from 1.660 to 1.173 cm), and 32% for TLI (from 
1.477 to 1.116 cm). All these increases were lower than those reported by Anderson, 
Thompson, and Austin (2005) and Liu et al. (2007). Nevertheless, Asal (2016) reported an 
increase of RMSE of approximately 260% when the point cloud was reduced to 6%.

For each density value studied, the RMSE values derived from the four interpolators 
were ordered from highest to lowest as follows: IDW, KR, TLI, and RBF. Although the 
differences between the RMSEs derived from the IDW, KR, and TLI interpolators were not 
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very large, the classical method of IDW clearly proved to be more appropriate than the 
others, which agrees with some of the developers of UAV-photogrammetric software 
(Metashape 2019; Pix4Dmapper 2019) who have used this interpolation method to 
generate DSMs. Nevertheless, Anderson, Thompson, and Austin (2005) reported no dis
cernible difference in RMSE between IDW and KR and a similar conclusion was derived 
from the results of Lloyd and Atkinson (2002).

Within each interpolation method, the least significant difference test carried out 
on the RMSE showed d80 and d90 to be homogeneous groups (p < 0.05), another 
homogeneous group from d40 to d70, and densities from d30 to d1 are homoge
neous groups themselves. All these homogeneous groups were clearly defined for 
IDW and KR. For TLI, the groups were a bit more diffuse, and even more so for RBF 
(Table 2). Similar to what was observed in the data presented in this work, Anderson, 
Thompson, and Austin (2005), Liu et al. (2007), and Asal (2016) observed an asymp
totic tendency of RMSE to d100 RMSE as point cloud density increases (Figure 4), but 
they reported a homogeneous RMSE group from d100 to d50, which does not agree 
with our results.

The reported elevation accuracies of DSMs generated from UAV photogrammetry and 
SfM and MSV techniques are 3.1 cm (Cryderman, Bill Mah, and Shufletoski 2014), 4 cm 
(Oniga, Breaban, and Statescu 2018), 4.7 cm (Agüera-Vega, Carvajal-Ramírez, and 
Martínez-Carricondo 2017), and 6.62 cm (Uysal, Toprak, and Polat 2015), but none of 
these indicate the part of the error attributable to the DSM generation process, which may 
be needed to define methodologies to maximize the accuracy of the DSM.

5. Conclusions

UAV-photogrammetry based on SfM and MSV offers high-accuracy and high-density 3D 
point clouds for detailed representation of terrain surfaces. Very high-density data can 
entail redundant information, however, and long processing times may therefore be 
needed to generate the DSM. Furthermore, knowledge of how each factor involved in 
the generation of the DSM influences the error associated with it could help develop 
methodologies to minimize this error.

This work studied how the 3D point cloud density and the interpolation method affect 
DSM accuracy for data acquired from UAV and using SfM and MSV techniques.

The main conclusions derived from the results of this work are as follows:

● Point cloud density, GS, and interpolation method significantly affect DSM accuracy.
● Although differences in accuracy between IDW, KR, and TLI are not very high, IDW 

showed lower RMSE values. MRBF yielded the worse accuracies.
● The higher the point density, the greater the accuracy of the DSM. For the IDW 

interpolator, the RMSE for the 3D point cloud generated from UAV-photogrammetry 
software including SfM and MVS techniques was 1.054 cm. The RMSE increased by 
3% when a point cloud with 80% extracted from the raw cloud was used to generate 
the DSM. When the point cloud included 40% of the raw cloud, RMSE increased by 
5%. For densities lower than 15%, RMSE increased exponentially (45% for 1% of raw 
cloud).
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● The GS that minimized the RMSE for densities of 20% or higher was 1 cm, which 
represents two times the GSD of the pictures used for developing the photogram
metry project.

● The results of this study show the possibility of stablishing empirical relationships 
between the expected RMSE in the interpolation of a grid DSM and such variables as 
point cloud density, GS, and even interpolator used. For example, the observed 
relationship between RMSE and point cloud density is adjusted with remarkable 
approximation to a decreasing potential. Similarly, relationship between RMSE and 
GS shows a remarkable approximation to a parabolic function. Therefore, to gen
erate a DSM with a given RMSE, it could be possible to stablish the appropriate GS 
and/or point cloud density for a particular interpolator, with the economy in com
puting time and file size.

● Further analysis is needed to check the generalizations of the conclusions, such as 
different surface morphologies, GSD, and even interpolation variant (e.g. power 
different from 2 in the IDW interpolator).
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