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Abstract: The development of lightweight sensors compatible with mini unmanned aerial vehicles
(UAVs) has expanded the agronomical applications of remote sensing. Of particular interest in this
paper are thermal sensors based on lightweight microbolometer technology. These are mainly used
to assess crop water stress with thermal images where an accuracy greater than 1 ◦C is necessary.
However, these sensors lack precise temperature control, resulting in thermal drift during image
acquisition that requires correction. Currently, there are several strategies to manage thermal drift
effect. However, these strategies reduce useful flight time over crops due to the additional in-flight
calibration operations. This study presents a drift correction methodology for microbolometer
sensors based on redundant information from multiple overlapping images. An empirical study was
performed in an orchard of high-density hedgerow olive trees with flights at different times of the
day. Six mathematical drift correction models were developed and assessed to explain and correct
drift effect on thermal images. Using the proposed methodology, the resulting thermally corrected
orthomosaics yielded a rate of error lower than 1◦ C compared to those where no drift correction
was applied.

Keywords: UAV; uncooled thermal sensor; precision agriculture; thermal orthomosaic

1. Introduction

World agriculture faces three major challenges that represent an apparent contradiction: to feed
a growing population, to contribute to the reduction of rural poverty, and to manage the natural
resource base [1,2]. Precision agriculture is believed to be an efficient method of crop production
because it is accurate, inputs are optimized leading to reduced costs and environmental impact,
and because it provides an audit trail that consumers and legislation require [3]. Precision agriculture
emphasizes spatial-temporal data analysis and management jointly rather than singularly [4], as well
as requiring a detailed description of canopy status and its variation in the field during the growth
cycle [1].

Remote sensing methods have been demonstrated to be very useful in monitoring large areas
while remaining cost effective [5]. Traditional remote sensing techniques have used manned aerial
or satellite platforms to measure canopy reflectance in the electromagnetic spectrum range from 400
to 2500 nm [6]. These platforms have a temporal and spatial resolution that limits their utility in
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agriculture assessments due to the dynamic changes in crops in relation to the environment [7,8].
In recent years, unmanned aerial systems (UASs) have been used in a broad range of applications,
including precision agriculture projects, principally because unmanned aerial vehicles (UAVs) have
become more reliable, their performance (flight time, range) has improved, and the sensors have
miniaturized [9]. Therefore, UAS technology allows for the possibility of acquiring information with
high spatial and temporal resolution. In precision agriculture where analyses are performed of yield
variation over a field and across years, half of the variation comes from year to year variation [10].
A well-timed sequence of UAV flights can contribute to the analyses of spatial and temporal variations.

A variety of sensors can be used as payload on board UAVs, ranging from Light Detection
and Ranging system (LiDAR) [11,12], Red-Green-Blue (RGB) [13,14], multispectral [15,16],
and hyperspectral [17,18] to thermal [19,20]. Infrared thermography allows users to monitor plant
water status for detecting stress or for applying deficit irrigation techniques [21], to monitor for
infections [22], water stress detection [20,23] or for phenotyping plants [24,25].

To date, two different thermal systems are available: cooled and uncooled. The first, being very
sensitive and highly accurate, are used on board satellite and aerial platforms. However, they are large,
heavy, and power consuming. Uncooled thermal sensors are used as UAV payloads because they are
smaller, lighter, and consume less power than cooled thermal sensors [26]. However, they are not as
sensitive nor as accurate. Microbolometers are uncooled infrared radiation thermal sensors distributed
in an array. Low values of noise-equivalent temperature difference (NETD) in uncooled thermal
sensors, reaching 20 mK, have allowed their use in applications where only cooled thermal sensors
were once suitable. However, temperature drift continues to be a disadvantage causing unwanted
detector gain and offset non-uniformity in registered temperature data.

To combat this, a non-uniformity correction (NUC) is applied to remove noise using digital signal
processing techniques on the detector output signal. It requires knowledge of coefficient corrections
for every detector in the array [27]. For each detector in the array, a determined gain and offset is
stored in the sensor. However, the change of the offset coefficient has to be updated due to the thermal
drift effect. This temperature drift is principally caused by the detector’s casing, which overheats and
dissipates power and heat onto the detectors and electronic circuits. Hence, it is necessary to perform
thermal drift correction and periodically update the correction values for each detector [28]. Without
this correction, the temperature error would increase by approximately 0.7 ◦C per minute [29].

The most commonly used approach to compensate for thermal drift is shutter based [28,30].
Others have used a contact sensor between the detector matrix and the lens [31] or other locations
inside the sensor [32], as well as “blind” pixels whose signal does not depend on the radiation of
the observed scene [33]. Other types of NUCs are scene-based methods, which are divided into
two categories: statistical [34] and registration-based methods [35].

Prior to flight, uncooled thermal sensors need to be stabilized after being switched on [36].
During this period, the absolute temperature progressively shifts until it is stabilized. As such, it is
necessary to consider how environmental variables affect the registered temperature values, especially
during a long acquisition period [37], and take into account wind effect, varying cloud cover, position,
and orientation of the sensor during the UAV flight. To remove thermal drift effects and simultaneously
apply radiometric correction, some authors program UAV flights to cover ground targets with known
temperatures. At the cost of useful UAV flight time, radiometric calibration coefficients are calculated so
that the UAV can repeatedly fly over the nearest ground target and thus eliminate thermal drift [38,39].

The goal of this study was to determine a methodology using high spatial resolution thermal
imagery acquired from a UAV while removing temperature drift independently of NUC applied by
the sensor without any extra UAV flight operations. The specific objectives of this work were aimed at
(i) modeling temperature drift effect; and the assessment of (ii) different drift models at (iii) different
hours of the day.
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2. Materials and Methods

The presented study was carried out in Córdoba, Spain (north latitude 37◦56′05′ ′, west longitude
4◦42′59′ ′, WGS 84) in June 2016, using a 10 ha orchard of high-density hedgerow olive trees
(Olea europaea L. cv Arbequina). Figure 1 shows the development of olive trees during the growing
season. Being a typical Mediterranean region, the climate is characterized by warm, dry summers and
cool, wet winters with an average annual rainfall equal to 180 mm.

Figure 1. Development of olive trees during the growing season.

2.1. UAV Campaigns

The unmanned aerial vehicle (UAV) used was an MD4-1000 multi-rotor drone (Microdrones GmbH,
Siegen, Germany). This UAV is a quadcopter with an entire carbon design. The system has a maximum
payload equal to 1.2 kg. It uses 4 × 250 W gearless brushless motors and reaches a cruising speed of
15.0 m/s. The UAV was equipped with a Gobi 640-GiGe thermal sensor (Xenics nv, Leueven, Belgium),
which is an uncooled long-wave infrared (LWIR) thermal sensor delivering raw digital images at 16 bits of
sensor calibrated radiance with a dynamic range from−20 ◦C to 120 ◦C and a spectral resolution of 0.05 ◦C.
It has a focal length equal to 18 mm and operates in a spectral band range from 8 µm to 14 µm. Registered
images have a dimension equal to 640× 480 pixels and a pixel pitch of 17 µm. Moreover, it has an onboard
image processing system to perform a non-uniformity correction, an auto offset, and an auto gain. However,
the continuous changing conditions in which the sensor operates cause temperature values to degrade
throughout the UAV flight although the image processing system is operating. In this manuscript, the NUC
has been deactivated, obtaining a set of images without any compensation. A stabilization procedure on the
thermal sensor was conducted before each UAV flight as described in Berni et al. [36]. The thermal sensor
was pre-heated for twenty minutes on field before each UAV flight to stabilize its internal temperature.
The sensor was connected to a stick PC Asus QM1 (Asustek Computer Inc., Taiwan, China) to store the
images via an Ethernet port. Sensor weight totaled 710 g with flight duration equal to 20 min.

UAV flights were performed on 1 June 2016 at 120 m above ground level with a ground sample
distance (GSD) equal to 11.3 cm (Figure 2). Side and forward lap settings were 80% and 70%,
respectively, with 632 images registered. Five aluminum disks were placed on the plot as ground
control points (GCPs), one in each corner and the other in the center of the study area. Because of the
low emissivity of aluminum GCPs, they were visible in thermal images. Each GCP was measured with
the stop-and-go technique through relative positioning by means of the NTRIP protocol (The Radio
Technical Commission for Maritime Services, RTCM, for Networked Transfer via Internet Protocol)
using two GNSS (global navigation satellite system) receivers. One of the receivers was a reference
station for the GNSS Red Andaluza de Posicionamiento (RAP) network from the Institute for Statistics
and Cartography of Andalusia, Spain, and the other, a Leica GS15 GNSS (Leica Geosystems AG,
Heerbrugg, Switzerland), functioned as the rover receiver.
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The UAV flew over the crop at 8:30, 12:30, 16:00, and 18:30 local time in clear skies. A Davis
Vantage Pro2 weather station (Davis Instrument Corp., Hayward, CA, USA) was used to monitor
climate conditions during the UAV flights. This weather station was equipped with a three-cup
anemometer, an air temperature and humidity sensor, and a barometer. Table 1 shows air temperature,
percentage of relative humidity, mean wind speed, and atmospheric pressure during each UAV flight
on this date. These UAV flights were used to acquire thermal images of soil and crop under different
atmospheric and temperature conditions.

Table 1. Atmospheric conditions for individual unmanned aerial vehicle (UAV) flights on 1 June 2016.

UAV Flight (Local Time)

8:30 12:30 16:00 18:30

Air temperature (◦C) 21 30 36 37
Relative humidity (%) 48 26 18 17

Mean wind speed (m/s) 2 3 6 6
Atmospheric pressure (hPa) 1022.6 1021.2 1018.4 1017.4

Figure 2. Flight planning and distribution of ground control points.

2.2. Thermal Image Processing

Thermal images were processed in three stages: thermal drift correction, geometric correction,
and radiometric correction. Figure 3 describes the drift correction applied to the thermal images.
As previously discussed, thermal drift is when the same location in the terrain presents different
temperature values in different images. Thermal drift correction is based on points having a constant
temperature during the UAV flight. In the first stage, a set of distinctive features are extracted from
the UAV images using algorithms based on “structure from motion” (SfM) techniques described by
Lowe [40]. SfM techniques extract individual features in each thermal image that are matched to their
corresponding feature in the other images from the same UAV flight. As Figure 3 shows, a point
appears in several images that belongs to different laps, each having a different temperature value due
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to drift effect. Every thermal image has a temporal reference, allowing the drift effect to be evaluated
as it occurred in flight. In the proposed methodology, sensor drift is modeled as a function of time
where each point of each image has a timestamp obtained by a GNSS sensor from the UAV autopilot.
This methodology is applied to the set of characteristics extracted by the SfM algorithms. As a result,
a mathematical model that describes thermal drift as it occurs for the duration of the UAV flight is
achieved. Subsequently, this model is applied to all thermal images to obtain a new thermal image
where temperature values are uniform on all corresponding points along the UAV flight. Six different
drift correction models (DCMs) were developed to describe thermal drift for the duration of the UAV
flight: exponential, exponential, lineal and polynomial order two, three, and four. Each DCM was
applied to the UAV thermal images to generate a new collection of images, which were orthorectified
and then processed into thermal orthomosaics.

Figure 3. Graphical description of thermal drift correction model (DN: digital number, t: time).

To obtain a single thermal orthomosaic of the area of interest, images have to be aerotriangulated,
rectified, and finally mosaicked. Based on previous research results, Pix4dmapper by Pix4D SA was
selected (Lausanne, Switzerland) and described by Mesas-Carrascosa [15] to do this processing.
Afterward, digital numbers (DNs) of the thermal orthomosaics were converted to temperature
values using the information obtained by the radiometric calibration of the sensor provided by the
manufacturer. Finally, remotely sensed temperatures are influenced by the environmental conditions
present at the time of UAV flight. Atmospheric correction of surface temperature is essential to extract
absolute temperature measurements from thermal images, requiring the application of a radiative
transfer model [41], a vicarious calibration [42], or an empirical method [43]. In this research, using
an empirical method, two extreme temperature panels of 0.5 × 0.5 m were placed in the plot to
record the hottest (black polymer panel) and the coldest (white polymer panel) temperatures on scene.
Reference panels were close to five times larger than the GSD and, therefore, several homogeneous
pixels appear in the thermal images. A temperature measurement of each reference panel was collected
for each UAV flight with a Flir E60 heat gun (Flir Systems, Oregon, USA). These measurements were
later used to correct the atmospheric effect on the thermal mosaics, applying an empirical line method,
which defines a linear relationship between absolute temperature and sensor temperature [44].
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2.3. Validation

The analysis of the proposed methodology was applied to all UAV flights both with and without
thermal drift correction. A total of 37 georeferenced checkpoints (CPs) were placed along a transect
perpendicular to the laps and crossing the middle zone of the plot and were read for temperature
using a Flir E60 heat gun. These values were compared to the extracted values from the thermal
orthomosaics obtained from the flights. The mean error and root mean square error (RMSE) were
calculated for each model and flight. Moreover, Akaike’s information criterion (AIC) [45] was used
to identify the relative importance among all possible sets of DCMs per UAV flight where the best
performing in each flight was identified by the lowest AIC score.

In addition, the correlation between flight time and thermal drift was defined. To do this, the
thermal images in which a CP appeared were analyzed. Of all the possible thermal images where a CP
appeared, the images with the most centrally situated CP were used in the mosaic process to obtain
a thermal orthomosaic, as this is the standard method. As each image has an associated timestamp,
each CP was temporally registered as it appeared in flight, which was then evaluated for the influence
of flight time on thermal drift for each thermal orthomosaic obtained by a DCM.

3. Results

Figure 4 shows the variation of digital number per second (∆DN/t) along the duration of the UAV
flights on features extracted from images and the different DCMs per flight developed for the proposal
methodology. Comparing the four UAV flights, digital number per second in raw images varied both in
absolute and relative terms. Therefore, the thermal sensor did not show a defined pattern in registering
temperatures. Each DCM calculated per flight and its correlation coefficient (R2) are summarized in
Table 2. At 8:30 a.m. (Figure 4a), ∆DN/t had no defined behavior, showing a disperse distribution.
Regardless of the mathematical model used, the correlation coefficient showed a value between 0.370
with the linear model and 0.382 for the exponential model of order 2. Therefore, there were no clear
differences a priori between DCMs applied to thermal orthomosaics. At 12.30 p.m. (Figure 4b), ∆DN/t
started to show a trend in its relation to flight duration as R2 of some DCMs revealed. In this case, at the
beginning of the UAV flight the ∆DN/t showed lower values over time (between 0 and 100 s) but then
the variation increased, reaching the highest variation between 200 and 400 s. Thereafter, the variation
decreased to values equal to the beginning of the UAV flight until 700 s where it again increased,
although it did not reach the initial maximum values. In this flight, the bicubic model showed the
highest R2, equal to 0.482, while the exponential model had the lowest, 0.190. At 16.00 p.m. (Figure 4c),
∆DN/t showed a defined evolution as the UAV flight progressed, which was reflected in higher R2

values for all the DCMs. In this mission, ∆DN/ sec showed maximum values at the beginning of the
UAV flight and then decreased over time. The exponential order 2 and lineal models had the lowest R2

value (0.688) while the bicubic model had, again, the highest R2 value (0.836). The other DCMs had
an R2 value higher than 0.7. Finally, the mission at 18:30 p.m. (Figure 4d) showed more oscillations
during flight time; however, the range of ∆DN/ sec values was narrow. With this mission, maximum
variations occurred at the beginning of the UAV flight, decreasing as the flight progressed. R2 values
were between 0.67 and 0.69 with no clear differences between the DCMs. Therefore, in analyzing the
behavior of ∆DN/t along the UAV flight duration for these missions, it is possible to assert that the
thermal sensor was not stable and that its operation varied in each UAV flight.

Regarding R2, the DCMs obtained from the UAV flights at 16:00 p.m. and 18:30 p.m. had higher
values than those from 8:30 a.m. and 12:30 p.m. because ∆DN/ sec showed a shorter range of values
by time. This is due to the fact that ∆DN/t per second was different for each UAV flight, occurring
with a lower frequency at later UAV flights.
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Figure 4. Relationship obtained between the variation of digital number per second (∆DN/sec)
and flight duration for exponential, exponential order 2, lineal, quadratic, bicubic, and quartic drift
correction models at (a) 8:30 a.m., (b) 12:30 p.m., (c) 16:00 p.m., and (d) 18:00 p.m.

Table 2. Drift correction models for each mission and coefficient of correlation (R2 ).

DCM Type Time of Flight Equation R2

Exponential order 1

8:30 c = 7.160·e−5.677·10−4·t 0.375 *
12:00 c = 9.317·e−4.1911·10−4·t 0.190 n.s.
16:00 c = 19.923·e−0.001·t 0.733 **
18:30 c = 18.368·e−0.001·t 0.688 **

Exponential order 2

8:30 c = 3.833·10−7·e0.017·t + 7.227·e−6.131·10−4·t 0.382 *
12:00 c = 13.121·e−9.923∗10−4·t − 6.958·e−0.007·t 0.398 *
16:00 c = 20.316·e−0.001·t + 8.155·10−14·e−0.36·t 0.688 **
18:30 c = 6.985·104·e−2.791·t − 6.9833·10−4·e−2.7889·10−4·t 0.675 **
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Table 2. Cont.

DCM Type Time of Flight Equation R2

Lineal

8:30 c = −0.003·t + 7.048 0.370 *
12:00 c = −0.003·t + 9.321 0.210 n.s.
16:00 c = −0.015·t + 18.062 0.688 **
18:30 c = −0.015·t + 16.991 0.673 **

Quadratic

8:30 c = 2.339·10−6·t2 − 0.005·t + 7.28 0.379 *
12:00 c = −9.601·10−6·t2 + 0.004·t + 8.120 0.286 n.s.
16:00 c = −2.117·10−5·t2 + 0.034·t + 20.780 0.755 **
18:30 c = −4.587·10−6·t2 + 0.019·t + 17.576 0.676 **

Bicubic

8:30 c = 4.786·10−9·t3 − 3.401·t2 − 0.003·t + 7.117 0.380 *
12:00 c = 6.913·10−8·t3 − 9.654·10−5·t2 + 0.033·t + 6.098 0.482 *
16:00 c = 7.632·10−8·t3 − 7.838·10−5·t2 + 4.128·10−4·t + 18.299 0.836 **
18:30 c = 4.006·10−8·t3 − 4.858·10−5·t2 − 0.001·t + 16.233 0.694 **

Quartic

8:30 c = 1.630·10−11·t4 − 2.185·t3 + 1.056·10−6·t2 − 0.005·t + 7.270 0.381 *
12:00 c = 7.068·10−11·t4 − 4.838·10−8·t3 − 3.426·10−5·t2 + 0.002·t + 6.51 0.474 *
16:00 c = −3.173·10−6·t4 + 6.261·10−7·t3 − 3.828·10−4·t2 + 0.058·t + 15.927 0.799 **
18:30 c = −1.351·10−10·t4 + 2.791·10−7·t3− 1.837·10−4·t2 + 0.025·t+ 15.138 0.688 **

The asterisks indicate the level of significance (* p < 0.05, ** p < 0.001, n.s. not significant).

Figure 5 shows the thermal orthomosaic histograms for each flight mission with the applied
DCMs, as well as without a DCM; Table 3 summarizes the statistics for each. First, the histograms
manifest a clear difference between the thermal orthomosaics where a DCM was applied compared to
those where no DCM was applied. Moreover, the temperature distribution was quite similar in all the
thermal orthomosaics where a DCM was applied. Because the study area had two differentiated classes,
vegetation and bare soil, a bimodal distribution was expected to describe temperature distribution
of the scene. However, at the 8:30 a.m. UAV mission (Figure 5a), all thermal orthomosaics had
a normal distribution as Sarle’s bimodality coefficient (SBC) showed. The temperature range on
those thermal orthomosaics where a DCM was applied ranged from 15 to 35 ◦C, 20 ◦C occurring
with the most frequency. Conversely, the thermal orthomosaic without any drift correction showed
a broader temperature range from 15 to 43 ◦C and a right-skewed distribution. Instead of a bimodal
distribution, a normal distribution of temperatures occurred in the early morning on the thermal
orthomosaics with drift correction because the bare soil and vegetation had not yet absorbed heat
from the sunlight and consequently the temperatures of both were similar. Therefore, at this hour,
both classes showed no clear difference in thermal behavior. Conversely, at 12:30 p.m. (Figure 5b),
the UAV flight histograms showed two different shapes irrespective of whether a DCM was applied
or not. However, when no drift correction was applied, the temperature distribution was, again,
similar to a normal distribution with SBC being less than 5/9. As a result, the non-corrected histogram
did not properly mark bare soil and vegetation with different temperatures. On the other hand, all
drift-corrected thermal orthomosaics showed an SBC higher than 5/9, having a bimodal distribution
with two differentiated peaks. In this mission, bare soil and vegetation had different behaviors as
they correlated to sunlight. Although both classes increased their temperature, vegetation (left peak)
showed a mean temperature equal to 30 ◦C, which was lower than bare soil (right peak), which reached
a mean value equal to 50 ◦C. At 16:30 p.m. (Figure 5c), both vegetation and bare soil increased in
temperature, which was properly shown when a DCM was applied. If corrections were not applied,
the temperatures were also higher but the classes were not accurately represented in the histogram.
A comparison of the histograms shows that vegetation temperature increased as the day progressed,
reaching the highest temperature at 18:30 p.m. while soil temperature increased until 16:30 p.m. and
then began to decrease. At 18:30 p.m. (Figure 5d), the left peak of the histogram has a higher frequency
than the right peak as the vegetation maintained a stable temperature while the bare soil temperature
decreased, which also caused the distance between the peaks to be reduced. These results are because
the soil was cooling due to the declining sun and greater shadow cover.

All of the DCMs used successfully described this occurrence from 12:30 p.m. to 18:30 p.m. Moreover,
the histograms of each DCM for every flight had a similar distribution with the quartic model presenting



Remote Sens. 2018, 10, 615 9 of 17

the greatest differences in portions of the flights. The histograms show that from 12:30 p.m., the temperature
difference between the vegetation and bare soil was quite distinctive and remained so until 16:30 p.m.
when the difference began to decrease. Therefore, as in Bellvert et al. (2014) [43], it is recommended that
thermal UAV flights with agronomic objectives are performed between 12:00 and 16:30 p.m. However,
without the method proposed in this paper, non-corrected thermal orthomosaics will not sufficiently
differentiate soil and vegetation.

Figure 5. Thermal orthomosaic histograms at (a) 8:30 a.m., (b) 12:30 p.m., (c) 16:30 p.m., and (d) 18:30 p.m.
for each drift correction model and without correction.

Table 3. Statistics of thermal orthomosaics.

Time of Flight Exponential Exponential Order 2 Lineal Quadratic Cubic Quartic No DCM

8:30 a.m. Range 35.33 35.66 35.66 35.68 34.64 34.33 43.16
Mean 20.92 20.96 20.88 20.95 20.96 21.10 28.35

SD 3.29 3.28 3.30 3.29 3.28 3.26 7.14
SBC 0.38 0.38 0.38 0.38 0.38 0.38 0.47

12:30 p.m. Range 50.08 50.03 50.15 50.31 49.80 50.72 62.38
Mean 40.74 40.50 40.53 40.48 40.61 40.98 47.68

SD 8.87 8.89 8.92 8.91 8.87 8.80 10.43
SBC 0.66 0.66 0.66 0.66 0.66 0.67 0.45
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Table 3. Cont.

Time of Flight Exponential Exponential Order 2 Lineal Quadratic Cubic Quartic No DCM

16:00 p.m. Range 50.89 49.82 50.52 50.08 50.18 48.71 74.52
Mean 49.19 49.20 48.66 49.22 49.37 47.84 58.66

SD 9.41 9.24 9.35 9.25 9.19 9.73 13.06
SBC 0.68 0.68 0.68 0.68 0.68 0.65 0.48

18:30 p.m. Range 43.78 39.65 42.83 41.17 42.46 43.74 49.57
Mean 39.57 39.47 39.37 39.46 39.55 38.61 46.69

SD 5.24 5.26 5.28 5.24 5.23 5.55 8.32
SBC 0.67 0.67 0.66 0.67 0.67 0.66 0.48

SBC: Sarle’s bimodality coefficient. SD: standard deviation.

Validation

Once the histograms of the drift corrected thermal orthomosaics accurately described the presence
of vegetation and bare soil in the study area, the next step was to analyze which DCM had the greatest
thermal accuracy. Figure 6 illustrates the 16:30 p.m. thermal orthomosaics with the applied DCMs,
which are detailed in Table 2, as well as without drift correction. When drift correction was not applied
(Figure 6g), the resulting thermal orthomosaics ordered the temperature values. From a visual analysis,
neither bare soil nor vegetation showed stable temperature. Moreover, temperature changed along the
north and south laps, registering higher temperature values as the UAV flight progressed. This effect
is pronounced in this paper because NUC was switched off to obtain an extreme example; in other
cases, the drift effect would be less pronounced. This also explains the pronounced skewness in
the non-corrected histograms presented in Figure 5. Based on the authors’ results, the temperature
variation for this sensor under normal conditions was less than 0.5 ◦C per minute, similar to the
variations reported by Olbrycht and Więcek (2015) [29].

Regarding the thermal orthomosaics where a DCM was applied (Figure 6a–f), no visual temperature
differences from north to south were detected. Instead, the temperature variations were linked to the state
of vegetation and bare soil as explained by the histogram analysis above. In addition, comparing all of the
thermal orthomosaics generated with a DCM resulted in similar orthomosaics with the exception of the
quartic model (Figure 6f). This model generated colder temperatures in the south of the plot compared to
the north of the plot, which was not present in the other DCMs. These differences were not detected in the
field campaign, suggesting that the quartic model did not adequately describe thermal drift in the UAV
flights. This result occurred for all of the UAV flights assessed.

Table 4 summarizes the results of thermal quality control on the thermal orthomosaics from each
UAV flight with and without the applied DCMs by mean error and standard deviation (SD) and Akaike’s
information criterion (AIC). In addition, a correlation coefficient (r2) between error and flight progress was
calculated. In all the orthomosaics, as expected, where a DCM was not applied, the temperature errors were
higher than where a DCM was applied. Therefore, it is necessary to pre-process thermal images taking
into account the behavior of the microbolometer registering temperature values. The 8:30 a.m. mission
showed a higher rate of error than the other UAV missions independent of which DCM was applied.
At this time, the error ranged from 0.88 ± 0.8 ◦C using the bicubic model correction to 1.01± 0.81 ◦C
using the exponential correction model. These higher errors are explained by the different environmental
conditions while performing the UAV flight and measuring ground truth. In the early morning, the sun is
ascending and an object’s or coverage’s superficial temperature changes in a short time interval. Although
ground truth measurements were performed immediately after the UAV flight finished (twenty minutes),
the duration of the UAV flight was long enough for temperature values of the olive trees and bare soil to
change both for images and for on-ground measurements, influencing this mission’s results. At 12:30 p.m.,
the mean error decreased to values around 0.2 ◦C ± 0.5 ◦C for all DCMs applied with the cubic model
generating the smallest error (0.10 ◦C± 0.45 ◦C) while the exponential model order 2 had the highest error
(0.29 ◦C± 0.56 ◦C). Conversely, at 16:30 p.m., the errors differed depending on the DCM used. For this
mission, the quartic model showed the highest error (1.57◦ ± 1.22 ◦C) while the cubic model had the
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lowest (0.06 ± 0.45 ◦C). Finally, at 18:30 p.m., the cubic model again showed the greatest accuracy with
an error equal to 0.26± 0.58 ◦C and the quartic model being the worst with an error equal to 1.55± 0.85 ◦C.
Even so, the highest mean error and SD were found in those thermal orthomosaics where no DCM was
applied, independent of the mission. Moreover, the calculated AIC scores identified the cubic model as the
most consistent DCM, showing the minimum score in each UAV flight.

Figure 6. Comparison of thermal orthomosaics at 16:30 p.m. with drift model corrections: (a) exponential,
(b) exponential order 2, (c) lineal, (d) quadratic, (e) bicubic, (f) quartic, and (g) no correction.

Table 4. Mean error, standard deviation (SD), Akaike’s information criterion (AIC), and coefficients of
correlation (r2) for each model correction and mission.

Exponential Exponential 2 Lineal Quadratic Cubic Quartic No DCM

8:30 Mean 1.013 0.898 0.913 0.901 0.888 0.895 −2.929
SD 0.818 0.804 0.815 0.800 0.803 0.758 2.792

AIC 3.777 0.832 3.593 2.574 0.779 18.472 –
r2 0.027 0.004 0.001 0.005 0.049 0.645 ** 0.918 **

12:30 Mean 0.288 0.291 0.225 0.222 0.105 0.212 −3.555
SD 0.590 0.560 0.556 0.569 0.459 0.584 3.012

AIC 39.833 27.437 36.364 31.673 26.671 56.955 –
r2 0.007 0.025 0.052 0.08 0.006 0.322 ** 0.959 **

16:30 Mean 0.112 -0.152 0.518 -0.123 -0.065 1.573 −12.158
SD 0.588 0.493 0.795 0.508 0.450 1.224 7.363

AIC 18.219 7.452 11.329 7.765 2.314 31.893 –
r2 0.391 ** 0.156 * 0.667 ** 0.168 * 0.001 0.359 ** 0.915 **

18:30 Mean 0.379 0.409 0.524 0.404 0.265 1.557 −9.544
SD 0.648 0.622 0.627 0.626 0.585 0.857 5.433

AIC 12.992 6.888 13.871 9.006 2.568 29.432 –
r2 0.001 0.009 0.032 0.005 0.022 0.568 ** 0.880 **

Pearson’s analysis. ** Correlation is significant at the 0.01 level (2-tailed); * Correlation is significant at the 0.05 level (2-tailed).
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To demonstrate, Figure 7 shows the relationship between temperature obtained from the UAV flight
and the on-ground measurements at 16:30 p.m. The continuous line represents a perfect correlation of
temperatures between both sets of temperatures and a discontinuous line represents the adjusted lineal
model from both sets. When no DCM was applied (Figure 7g), the temperature values in the thermal
orthomosaic did not show any relationship with those on the ground having a broad range of variation.
On the other hand, in general, when a DCM was applied, temperature values on the thermal orthomosaics
and their corresponding on-ground measurement were similar. However, there were differences between
the DCMs. The quartic model (Figure 7f) yielded the highest deviation from a perfect correlation although
not as broad as in the case of not using a DCM. The same occurred when the exponential model (Figure 7a)
or lineal model (Figure 7c) was applied, although not as evident as in the previous case. The remaining
DCMs considered did not show significant differences in their temperature values.

Figure 7. Correlation for each drift correction model (DCM) between temperature values from the thermal
orthomosaic and on-ground measurement at 16:30 p.m. unmanned aerial vehicle (UAV) flight. DCM:
(a) exponential, (b) exponential order 2, (c) lineal, (d) quadratic, (e) cubic, (f) quartic and (g) no correction.



Remote Sens. 2018, 10, 615 13 of 17

Moreover, to have an acceptable range of temperature error, it is necessary that this error
occurs independently of the flight duration, meaning that the drift effect of the microbolometer
has been adjusted accordingly. Table 4 shows this relationship through a correlation coefficient and
its Pearson analysis and Figure 8 shows the relation between error and flight duration for each
thermal orthomosaic obtained from the 16:30 p.m. mission where a DCM was applied. As expected,
the thermal orthomosaics where a DCM was not applied showed high R2 between error and flight
duration in all UAV flights, meaning that the error is dependent on flight duration. As to the thermal
orthomosaics where a DCM was applied, the quartic model was the one whose errors showed
a significant correlation with flight duration in all UAV flights. The other DCMs had no significant
correlation at 8:30 a.m., 12:30 p.m., and 18:30 p.m. At 16:30 p.m., the cubic model was the only DCM
whose results were independent of flight duration. Therefore, when considering the relationship
between temperature error and flight duration, the cubic model adequately described drift effect on
temperature measurements on all performed UAV flights. In this study and our experience, using the
Gobi 640 thermal sensor on subsequent UAV flights has shown that the cubic drift model is the most
adequate. However, for other thermal sensors, it is recommendable to analyze which model would
better describe drift effect using the proposed methodology.

Figure 8. Relationship for each DCM between temperature error and flight duration for the 16:30 p.m.
mission. DCM: (a) exponential, (b) exponential order 2, (c) lineal, (d) quadratic, (e) cubic, (f) quartic.

The temperature error obtained in this research when a DCM was applied is equal to those
described in the literature [8,38] and therefore presents itself as another option for agronomical projects.
Moreover, the proposed methodology presents an advantage as it optimizes flight time. In other
studies, it is necessary to stabilize the sensor in flight [36] or it is necessary to recurrently fly over
temperature targets for reference to calibrate thermal images [38]. These two strategies spend the
limited battery charge and, therefore, reduce the area covered by the UAV flight due to the decrease in
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useful flight time. With the proposed methodology, flight time is maximized without loss of accuracy
in temperature values. Moreover, it allows the use of a thermal sensor on board the UAV regardless of
the drift effect.

The UAV flights were performed under stable weather conditions and were of short duration
(20 min) and as such, there were no changes in the surface temperature. However, UAV flights with
longer duration (longer than 30 min) and/or under unstable weather conditions must be evaluated in
future work due to changes in atmospheric or sunlight conditions. In these cases, in addition to the drift
correction, it would be necessary to have an instantaneous atmospheric correction adapted to the UAV
flight conditions. One possible methodology is to equip the UAV platform with additional sensors that
record values of temperature, relative humidity, atmospheric pressure, incident radiation, and wind
speed. These parameters would allow the possibility of determining the atmospheric conditions linked
to each individual thermal image and, therefore, at each moment of flight time. These parameters
along with the drift effect model would allow more precise and accurate temperature values.

4. Conclusions

Remote sensing using lightweight uncooled thermal sensors on board UAVs is a useful tool for
measuring crop temperatures. However, drift effect on registered temperatures can invalidate its
agronomical applications where an accuracy greater than 1 ◦C is necessary. The present research has
developed methodology to remove drift effect on temperature using a lightweight microbolometer
thermal sensor on board a UAV. In this study, removing drift effect on thermal images is based on
redundant information around objects that appear in different overlapping images from a UAV flight
that covers the area of interest. Different mathematical models were explored to describe drift effect
with the cubic drift model yielding the best results on separate missions performed for this research.

These models were tested in four UAV missions at different hours at the same location. If no
drift correction was applied, the thermal orthomosaics did not adequately describe crop temperatures,
invalidating their use within an agronomical context. Contrarily, if a drift correction model was applied
using the proposed methodology, the results improved with a range of error that would be adequate
for agronomical projects. Moreover, the accuracy is in the same range as other authors’ results but with
the added benefit of not requiring any special in air UAV flight operation and thusly increasing useful
flight time. This is an important point to those UASs with short flight durations due to limited battery
power. In addition, this methodology was applied to a single UAV flight and, therefore, the proposed
drift correction model is adaptable to specific flight conditions.

In this study, the cubic drift model offered the best results. However, the authors recommend
exploring the behavior of a particular uncooled thermal sensor to determine which model would best
describe the drift effect using the proposed methodology.
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