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Abstract

Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode
some context specific independencies that cannot always be efficiently captured by other popular
models, such as Bayesian Networks. Furthermore, inferencecan be carried out efficiently over
a PDG, in time linear in the size of the model. The problem of learning PDGs from data has
been studied in the literature, but only for the case of complete data. In this paper we propose an
algorithm for learning PDGs in the presence of missing data.The proposed method is based on
the EM algorithm for estimating the structure of the model aswell as the parameters. We test our
proposal on artificially generated data with different rates of missing cells, showing a reasonable
performance.

1 Introduction

The Probabilistic Decision Graph (PDG) model was
first introduced by Bozga and Maler (1999), and
was originally proposed as an efficient represen-
tation of probabilistic transition systems. In this
study, we consider the more generalised version of
PDGs proposed by Jaeger (2004).

PDGs constitute a class of probabilistic graphical
models that can represent some context specific in-
dependencies that can not efficiently be captured by
Bayesian network (BN) models. Also, probabilis-
tic inference can be carried out directly in the PDG
structure and has a time complexity linear in the size
of the PDG model. This makes learning of PDGs es-
pecially interesting, as we are learning directly the
inference structure, which is in contrast to the usual
scenario when learning general BN models.

The performance of the PDG model w.r.t. general
probability estimation has previously been studied
and results suggest that the model in general per-
forms competitively when compared to BN or Naı̈ve
BN models (Nielsen and Jaeger, 2006). The PDG
model has also been successfully applied to super-
vised classification problems (Nielsen et al., 2007).

In this paper we are concerned with the estima-
tion of PDGs from data. The problem has been ad-

dressed by Jaeger et al. (2006), where an algorithm
based on the optimisation of a score is proposed for
learning from complete data. However, the task of
learning PDGs in the presence of missing data has
not yet been explored in the literature. The diffi-
culty arises in the computation of the score for a
model given the database with missing values. A
similar problem is found in the case of learning BNs
from incomplete databases. Friedman (1997) ad-
dressed this problem by proposing an algorithm for
estimating the structure of a BN model based on the
Expectation-Maximisation (EM) principle (Demp-
ster et al., 1977; Lauritzen, 1995).

We propose an algorithm for learning PDGs in-
spired by the proposal of Friedman (1997), based
on the EM principle. Both the structure and the pa-
rameters are re-adjusted in each iteration of the al-
gorithm. That is, the adjustments made to the struc-
ture are guided by the expected increase in some
score metric, while the adjustments made to the pa-
rameters are guided by the expected likelihood of a
completed version of the incomplete data.

2 Background and Notation

We will denote random variables by uppercase let-
ters, e.g.X, and sets with boldface uppercase let-
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ters, e.g.X. WhenXi is a discrete categorical ran-
dom variable, we will by lowercase letterxi,j refer
to thej’th state ofXi under some ordering. We will
by R(Xi) refer to the set of possible states ofXi,
and byR(X) = ×Xi∈XR(Xi) whenX is a set of
variables. We will useri as a shorthand for|R(Xi)|.
By lowercase bold letters we refer to joint states of
sets of variables, e.g.x ∈ R(X). WhenXi ∈ X

andx ∈ R(X) we denotex[Xi] the projection ofx
onto coordinateXi.

Let G = 〈V,E〉 be a directed graph structure
with set of nodesV = {V1, . . . , Vn} and set of
directed edgesE ⊂ V × V. We will then by
chG(Vi) and paG(Vi) refer the set of children of
Vi and parents ofVi respectively in structureG,
hencechG(Vi) = {Vj ∈ V : (Vi, Vj) ∈ E} and
paG(Vi) = {Vj ∈ V : (Vj, Vi) ∈ E}. A tree is a di-
rected acyclic graph where one unique nodeVr ∈ V

is designated root and has no parentspaG(Vr) = ∅
while all other nodes have exactly one parent. A
forest structure is a set of such trees.

2.1 The Probabilistic Decision Graph Model

A PDG encodes a joint probability distribution
over a set of categorical random variablesX =
{X1, . . . ,Xn} by a factorisation defined by a struc-
ture over a set of local distributions.

Definition 2.1 (The PDG Structure). LetF be a for-
est structure overX = {X1, . . . ,Xn}. A PDG-
structureG = 〈V,E〉 for X w.r.t. F is a set of
rootedacyclic directed graphs over nodesV, such
that:

1. Each nodeν ∈ V represents a uniqueXi ∈ X

and allXi ∈ X are represented by at least one
nodeν ∈ V. We will byνi,j refer to thej’th
node representingXi under some ordering of
the set of nodes representingXi.

2. For each nodeνi,j , each possible statexi,h of
Xi and each successorXk ∈ chF (Xi) there
exists exactlyoneedge(νi,j, νk,l) ∈ E with la-
bel xi,h, whereνk,l is some node representing
Xk.

Let Xk ∈ chF (Xi). By succ(νi,j,Xk, xi,h) we
refer to the unique nodeνk,l representingXk that is
reached fromνi,j by following the edge with label
xi,h.

Example 2.1. A forest F over binary variables
X = {X0, . . . ,X7} can be seen in Figure 1(a),
and a PDG structure overX w.r.t. F in Figure
1(b). The labelling of nodes in the PDG-structure
is indicated in subscripts and (redundant) by the
dashed boxes, e.g., the nodes representingX2 are
{ν2,0, ν2,1}. Dashed edges correspond to edges la-
belled 0 and solid edges correspond to edges la-
belled 1, for instancesucc(ν5,0,X6, 0) = ν6,1.

A PDG structure is instantiated by assigning to
every node a local probability distribution over the
variable that it represents. By a PDG model over
discrete random variablesX = {X1, . . . ,Xn} we
refer to a pairG = 〈G,Θ〉 whereG is a PDG struc-
ture overX andΘ is an instantiation ofG. We de-
note bypνi,j the local distribution assigned to node
νi,j, and byp

νi,j
xi,h

the probability for statexi,h in lo-
cal distributionpνi,j . The semantics of the local dis-
tribution pνi,j is defined by the path(s) leading to
the nodeνi,j from the root, that is, howνi,j can be
reached. Let G be a PDG structure over variables
X w.r.t. forestF . A nodeνi,j in G is reachedby
x ∈ R(X) if

• νi,j is a root inG, or

• Xi ∈ chF (Xk), νk,l is reached byx andνi,j =
succ(νk,l,Xi,x[Xk]).

By reachG(i,x) we denote the unique node repre-
sentingXi reached byx in PDG-structureG.

A PDG modelG = 〈G,Θ〉 over variablesX rep-
resents a joint distributionP G by the following fac-
torisation:

P G(x) =
∏

Xi∈X

p
reachG(i,x)
x[Xi]

. (1)

Example 2.2. To instantiate the PDG structure in
Fig. 1(b), we assign a local distribution to each
node in the structure with the probabilistic interpre-
tation given in Fig. 1(c). We can read some context
specific independencies of this table, e.g.X6 is in-
dependent ofX5 only in the contextX4 = 0.

2.2 Selecting PDG models using complete data

For assessing models in the presence of observed
data, we can use a penalised likelihood score func-
tion. Let G be a PDG model over variablesX =
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X0

X1

X3

X2

X4

X5

X6 X7

(a)

X0 ν0,0

X1 ν1,0 ν1,1 X2 ν2,0 ν2,1

X3 ν3,0 ν3,1 ν3,2

X4 ν4,0

X5 ν5,0 ν5,1

X6 ν6,0 ν6,1 X7 ν7,0 ν7,1

(b)

pν0,0 = P (X0) pν3,0 = P (X3|X0 = 0, X1 = 1) pν5,1 = P (X5|X4 = 0)
pν1,0 = P (X1|X0 = 0) pν3,1 = P (X3|X1 = 0) pν6,0 = P (X6|X4 = 1, X5 = 1)
pν1,1 = P (X1|X0 = 1) pν3,2 = P (X3|X0 = 1, X1 = 1) pν6,1 = P (X6|X4 = 0 ∨ {X4 = 1, X5 = 0})
pν2,0 = P (X2|X0 = 0) pν4,0 = P (X4) pν7,0 = P (X7|X4 = X5)
pν2,1 = P (X2|X0 = 1) pν5,0 = P (X5|X4 = 1) pν7,0 = P (X7|X4 6= X5)

(c)

Figure 1: A forestF over binary variablesX = {X0, . . . ,X7} is shown in (a), and a PDG-structure over
X w.r.t. variable forestF is shown in (b). In the PDG-structure in (b), solid edges are labelled with value 1
and dashed edges are labelled with value 0. In (c), we have indicated the probabilistic interpretation of the
parameters for each node in the PDG structure of (b).

{X1, . . . ,Xn} and letD be a set ofN complete
observations ofX, then we define a general score
function as:

Sλ(D,G) = (1 − λ) · L(D,G) − λ · size(G) , (2)

where0 < λ < 1, size(G) is some measure of com-
plexity of G andL(D,G) is the log-likelihood ofD
givenG. A typical definition ofsize(G) is the num-
ber of free parameters in modelG. Using the follow-
ing notationD = {Xk

i : 1 ≤ i ≤ n, 1 ≤ k ≤ N},
the log-likelihoodL(D,G) is:

L(D,G) = log
N
∏

k=1

P G(Xk
1 , . . . ,Xk

n)

=

N
∑

k=1

log P G(Xk
1 , . . . ,Xk

n)

=

n
∑

i=1

ri
∑

h=1

vi
∑

j=1

#D(xi,h, νi,j) log p
νi,j
xi,h

, (3)

wherevi is the number of nodes representingXi and
#D(E) is the count of instances inD satisfying re-
quirementE. For example, in Eq. (3)#D(xi,h, νi,j)
is the count of data items inD where variableXi is
observed in statexi,h and where theνi,j is reached.

3 Learning from Incomplete Data

Assume incomplete data, that isD = DO ∪ DM ,
whereDO is the elements ofD containing a value

andDM = D \DO. We can compute the expected
log likelihood ofD in modelG (over variablesX),
given some distributionP ∗ overDM as:

E[L(D,G)|DO , P ∗] =
n
∑

i=1

ri
∑

h=1

vi
∑

j=1

E[#D(xi,h, νi,j)] log p
νi,j
xi,h

, (4)

where the second expectation also is with respect to
DO andP ∗. In a structural EM algorithm like the
one proposed by Friedman (1997), we optimise the
expected likelihood instead of directly optimising
the likelihood which in the presence of incomplete
data no longer decomposes. Decomposability of the
likelihood is important for model selection in which
the search procedure in each step evaluates candi-
date models from a neighbourhood that is generated
from a current model by local transformation. We
define the expected score as a functionQ:

Q(G,D|G∗) =

(1 − λ)E[L(D,G)|DO ,G∗] − λsize(G) . (5)

In Eq. (5) we use the current modelG∗ as the refer-
ence distributionP ∗. The structural EM procedure
can now be stated as in Algorithm 1.

First, in line 5 of Alg. 1 we basically need to find
MAP parameters forG. Exact methods are usu-
ally intractable, so normally some approximation
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Algorithm 1 The structural EM procedure
1: procedure SEM(D)
2: LetG0 = 〈G0,Θ0〉 be the initial model.
3: n← 0
4: repeat
5: Θn+1 ← argmax

Legal Θ

Q(〈Gn,Θ〉,D|DO,Gn)

6: Gn+1 ← argmax
G∈N (Gn)

Q(〈G, ·〉, D|DO, 〈Gn,Θn+1〉)

7: Gn+1 ← 〈Gn+1,Θn+1〉
8: n← n + 1
9: until Q(Gn,D|Gn−1) ≤ Q(Gn−1,D|DO, Gn−1)

10: return Gn−1

method is employed. Originally, Friedman (1997)
proposed to use a standard EM approach in this step
while Peña et al. (2000) propose as a more compu-
tationally efficient alternative to use thebranch and
boundprocedure of Ramoni and Sebastiani (1997).
However, the choice of approach in this step is not
crucial to the following discussion in Sec. 4.

Second, in line 6 of Alg. 1, the functionN (·) is
the neighbourhood generating function. We will de-
fine simple split and merge operations that imple-
ment structural modifications for generating neigh-
bours from a current PDG modelG. We will show
how to compute the expectations needed to evaluate
the expected score of a neighbour.

4 SEM for PDG Models

In this section we will explain how Alg. 1 can be ap-
plied to PDG models. First, for constructing an ini-
tial model we need a forest structure over the vari-
ables in the domain. We accomplish this using the
algorithm of Chow and Liu (1968) that induces a
maximum weight spanning tree using mutual infor-
mation as the edge weights. In Sec. 5 we explain
how to compute mutual information from incom-
plete data.

Inducing the initial tree by finding a maximum
weight spanning tree using mutual information as
edge-weights, is different from previously proposed
approaches for inducing variable forests/trees. In
(Jaeger et al., 2006) aχ2 test for conditional in-
dependence is used to assign marginally indepen-
dent variables in different trees and conditionally
independent variables in different sub-trees. In this
study we use the above mentioned mutual informa-
tion based method as it is less data-intensive com-
pared to repeatedχ2 tests.

Assuming that we have the initial tree structure
F over the variables, we initialise a PDG model
as follows: for every variableXi ∈ X with
paF (Xi) = Xk, we createvi = rk new nodes
{νi,1, νi,2, . . . , νi,vi

} representingXi. We then con-
nect every nodeνk,j representingXk such that
succ(νk,j,Xi, xk,z) = νi,z. That is, for statexk,z of
variableXk the nodeνi,z is always reached. Con-
structing the initial PDG model in this way allows
every variable to be modelled as marginally depen-
dent on its parent and its set of children inF .

Finally, we use a random parametrisationΘ0 of
the initial structureG0.

4.1 The Neighbourhood of a Model

In this subsection we explain how the neighbour-
hood N (G) of a PDG structureG is generated.
We include operations that work on the PDG struc-
ture only, and leave the structure over the variables
fixed. Operations that change the structure over the
variables (e.g. operations that swap the position of
two variables) are problematic as they potentially
require the creation of a lot of new node connec-
tions. Offhand, it is not intuitive to us how to best do
this in general, and therefore we choose to focus on
the following two less dramatic structural changes
that have both previously been used by Jaeger et al.
(2006) for learning in the case of complete data1.

Merging Nodes The merge operator takes a pair
of nodes{νi,a, νi,b} representing the same variable
Xi. The nodesνi,a andνi,b are selected such that
succ(νi,a,Xj , xi,h) = succ(νi,b,Xj , xi,h) for any
statexi,h ∈ R(Xi) and childXj ∈ chF (Xi) in the
variable forestF . The merge operation then sim-
ply consists in replacing nodesνi,a andνi,b with a
new nodeνi,c, whereνi,c has as children exactly the
children ofνi,a (or νi,b) and as parents inherits the
union of parents ofνi,a and parents ofνi,b.

Splitting Nodes The splitting operator takes as in-
put a single nodeνi,j with m parents where2 ≤ m,
and replacesνi,j with m new nodes all representing
Xi. Each new node inherits all the children ofνi,j,

1Jaeger et al. (2006) use an additional third operator that
redirects edges. We leave this operator out of the algorithm
for simplicity. Furthermore, for a given tree structure over the
variables, any PDG structure can be reached from any other
PDG structure using only merge and split operations.
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and exactly one unique parent ofνi,j .

4.2 Scoring a Neighbour Model

In this section we detail how to compute the score
Q(〈G′, ·〉,D|DO , 〈G,Θ〉) of a neighbourG′ ∈
N (G) generated by merging two nodes or splitting
a node. In fact, we will not compute the full ex-
pected score, but only the terms that are different.

4.2.1 Scoring a Merge Operation

Assume PDGG′ is constructed from PDGG =
〈G,Θ〉 by merging nodesνi,a, νi,b ∈ Vi in struc-
ture G. Let the nodeνi,c be the one replac-
ing νi,a and νi,b in G′, and assume that we have
computed (and stored) all expected counts of the
form E[#D(xi,h, νi,j)|DO,G]. Then, computing
the expected counts for modelG′ under distribu-
tion P G reduces to computing expected counts for
νi,c, which can be done efficiently from expecta-
tions#D(xi,h, νi,a) and#D(xi,h, νi,b), that is :

E[#D(xi,h, νi,c)|DO,G] =

E[#D(xi,h, νi,a)|DO,G]+E[#D(xi,h, νi,b)|DO,G] .

Hence, computing the difference in expected
score ∆Qmerge(νi,a, νi,b) = Q(G′,D|DO,G) −
Q(G,D|DO,G) reduces to computing the differ-
ence between the terms of the expected score in-
volving nodesνi,a andνi,b and the new nodeνi,c:

∆Qmerge(νi,a, νi,b) = Q(G′,D|G) − Q(G,D|G)

= (1 − λ)

(

ri
∑

h=1

E[L
νi,c

h − L
νi,a

h − L
νi,b

h |DO,G]

)

+ λ · (ri − 1) (6)

whereνi,c is the node resulting from mergingνi,a

andνi,b, andL
νi,j

h is the term in the log-likelihood
corresponding to nodeνi,j and thehth state ofXi.
The expectation in (6) obviously can be computed
term by term, and we see thatE[L

νi,c

h |DO,G] =
E[#D(xi,h, νi,c)|DO,G] log E[p

νi,c
xi,h

|DO,G], where
the expectationE[p

νi,c
xi,h

|DO,G] is computed as the

fraction E[#D(xi,h,νi,c)|DO,G]
E[#D(νi,c)|DO ,G] . The count#D(νi,a)

is just
∑ri

h=1 #D(xi,h, νi,a).
The expectationsE[#D(xi,h, νi,j)|DO,G] for

any statexi,h ∈ R(Xi) and nodeνi,j ∈ Vi are
exactly the expectations we would compute in the

parametric EM step in line 5 of Alg. 1. Therefore,
these counts have already been computed for struc-
tureGn in line 5 of Alg. 1, and can easily be made
available at no extra cost.

4.2.2 Scoring a Split Operation

Let inc(νi,j) be the set of edges incoming toνi,j

in PDG structureG = 〈V,E〉, that is inc(νi,j) =
{(νk,z, νi,j) ∈ E}. By luνi,j

we will denote theu’th
element ofinc(νi,j) under some ordering. Withνu

i,j

we denote the node replacingνi,j for its uth incom-
ing edge. Nodeνi,j is representing variableXi and
let the parent ofXi in the variable forest beXk,
hence by the definition of PDG structure, all par-
ent nodes ofνi,j represent variableXk. The ex-
pected countsE[#D(νu

i,j , xi,h)|DO,G] for the node
νu

i,j whereluνi,j
= (νk,z, νi,j) is labelled with state

xk,g is then:

E[#D(νu
i,j, xi,h)|DO,G] =

E[#D(νk,z, xk,g, xi,h)|DO,G] . (7)

The expectation in Eq. (7) can not be recon-
structed from expected counts already computed for
G in the structural parametric EM step of Alg. 1
(line 5) as was the case for the counts needed to
evaluate a merge operation. However, anticipating
that we will need such counts, we can store them
during the computation of expectations in line 5
of Alg. 1. Assume that we have these expected
counts available for structureG under the distribu-
tion defined by the PDG modelG = 〈G,Θ〉. We
can then compute the difference∆Qsplit (νi,j) =
Q(G′,D|G) − Q(G,D|G) for PDG modelG′ with
structureG′ generated by splitting nodeνi,j in struc-
tureG, as follows:

∆Qsplit(νi,j) = Q(G′,D|G) − Q(G,D|G)

= (1 − λ)

[

ri
∑

h=1

(

m
∑

u=1

E[L
νu

i,j

h |DO,G]

)

−

E[L
νi,j

h |DO,G]

]

− λ(|inc(νi,j)| − 1)(ri − 1) ,

(8)

where the log-likelihood termsL·
· are as described

in Sec. 4.2.1. Further, it is clear that we can not split
a root node as it is without parents.
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4.3 Computing the Expectations

In order to compute the expected counts in sections
4.2.1 and 4.2.2, it is necessary to calculate probabil-
ities of the formP G({ν is reached∧Xi = xi}|Y =
y) for all Xi ∈ X andν ∈ Vi, whereG is a PDG
over variablesX andy is a joint observation of vari-
ablesY ⊂ X.

The computation of such probabilities can be
done efficiently using the algorithm described by
Jaeger (2004), which carries out the inference in
time linear in the size of the PDG model. Broadly
speaking, the desired probability is computed by
first restricting the PDGG toY = y. Then, for each
node in the structure we compute parts of the prod-
uct in (1) corresponding to incoming edges and out-
going edges. And, finally using these intermediate
results stored in each node we can compute the de-
sired conditional probabilities. We refer the reader
to (Jaeger, 2004, Section 4) for details on PDG in-
ference.

5 Estimating the Mutual Information with
Missing Data

The mutual information between two random vari-
ablesX andY is defined as:

I(X,Y ) =

|R(X)|
∑

i=1

|R(Y )|
∑

j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
.

(9)
As the joint distribution ofX andY is unknown,

we need to estimate the mutual information from
data. Assume we have a databaseD probably
containing missing data. We require estimates for
θij = p(xi, yj), θi. = p(xi) andθ.j = p(yj) for i =
1, . . . , |R(X)| andj = 1, . . . , |R(Y )|. Actually, we

only need to estimateθij , sinceθi. =
∑|R(Y )|

j=1 θij

andθ.j =
∑|R(X)|

i=1 θij.
SinceD may contain missing data, we can use

the EM algorithm to estimate the required parame-
ters. The detailed procedure is given in Alg. 2.

Notice that steps 5 and 9 in algorithm 2 corre-
spond, respectively, to the E and M steps of algo-
rithm EM.

The valueEij computed in line 7 of Alg. 2 is
the expected number of records inD where X

takes itsi-th value andY takes itsj-th value. It
is computed by exploring all the recordsd ∈ D

Algorithm 2 EM for estimating the mutual infor-
mation
1: procedure EM MutualInformation(D)
2: Let Θ0 = {θij , i = 1, . . . , |R(X)|, j =

1, . . . , |R(Y )|} be a random parametrisation ofp(x, y).
3: n← 0.
4: repeat
5: for all i = 1, . . . , |R(X)| do
6: for all j = 1, . . . , |R(Y )| do
7: Eij ← E [#D(X = xi, Y = yj)|Θ

n]

8: Θn+1 ← ∅
9: for all i = 1, . . . , |R(X)| do

10: for all j = 1, . . . , |R(Y )| do
11: θn+1

ij ←
Eij

P|R(X)|
k=1

P|R(Y )|
l=1

Ekl

12: Θn+1 ← Θn+1 ∪ {θn+1
ij }

13: n← n + 1.
14: until L(D|Θn) ≤ L(D|Θn−1).
15: EstimateI(X, Y ) as:

Î(X, Y ) =

|R(X)|
X

i=1

|R(Y )|
X

j=1

θ
n
ij log

θn
ij

θn
i.θ

n
.j

.

16: return Î(X, Y ).

and calculating, for each record, the probability
P {X = xi, Y = yj|d,Θn}. That is, we compute:

E [#D(X = xi, Y = yj)|Θ
n] =

∑

d∈D

P {X = xi, Y = yj|d,Θn} . (10)

The probability in Eq. (10) will be equal to 0 if
the record has a value different to(xi, yj) and equal
to 1 if the record is exactly equal to(xi, yj). If some
of the cells in the record is missing, the probability
is computed using the current estimatesΘn.

6 Experiments

In order to test Alg. 1 we have performed exper-
iments over different synthetic databases sampled
from PDG models with 10, 20 and 40 variables gen-
erated at random2. We will refer to these models
as rnd10, rnd20 and rnd40 respectively. From each
PDG model, we constructed four databases contain-
ing 250, 500, 1000 and 2000 complete samples.

For each database, we have considered differ-
ent rates of missing values, ranging from5% to
30%. For each rate of missing values we generated

2The PDG models were generated at random with the re-
striction that they consist of a single variable tree.
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Figure 2: Mean and standard deviation of log-likelihood of avalidation set of 10000 complete samples
computed in the models leant from datasets sampled from model rnd10 (a), rnd20 (b) and rnd40 (c). The
log-likelihood of the generating models are indicated beneath the plots.

50 databases from the original (complete) database
by randomly erasing the value in a fraction of the
cells according to the rate of missing values. The
learning algorithm was then executed on each of
the 50 databases measuring the quality of the learnt
model as the log-likelihood of a separate validation
database containing 10000 complete samples.

As score function we used theSλ function of
equation (2) withλ adjusted according to the size
of the database to give a tradeoff between size and
likelihood equivalent to the one imposed by the BIC
score3. Finally, in order to speed up the algorithm,
we put a limit of 10 iterations in each parametric
EM4 and 100 iterations in structural EM (the loop
of Alg. 1).

6.1 Results

In Fig. 2(a-c) we show plots of mean and standard
deviations of the log-likelihood of models learnt in
the experiments described above.

First, the plots of Fig. 2 in general show the ex-
pected behaviour as mean likelihood generally de-
creases as a result of increasing the proportion of
missing cells in the training data, while standard de-
viation increases. We note, also as expected, that
the experiments on the larger data sets reach higher
likelihood on the validation data and also show a
more stable performance with less increase in stan-
dard deviation as the rate of missing values is in-
creased.

3Settingλ =
“

2N
log(N)

+ 1
”−1

whereN is the number of

observations yields BIC tradeoff.
4We run a 100 iterations parametric EM to optimise the pa-

rameters of the final model.

Second, in the experiment using 2000 samples
from the rnd10 model (Fig. 2(a)) we observe an in-
crease in likelihood up until a rate of 10% missing
values. This behaviour may be caused by the algo-
rithm over-fitting to the complete (rate 0% missing
values) training data, while the introduction of some
missing values helps the algorithm learn a less spe-
cific model with better ability to generalise. How-
ever, we only observe this behaviour for that specific
data set which is somewhat unexpected assuming
our explanation is valid.

Lastly, the initial tree structure is created using
the classical algorithm of Chow and Liu (1968) as
explained in Sect. 4. This initial model is itself a
very commonly used model in probability estima-
tion due to its simple restricted syntax and conse-
quently efficient learning and inference. We there-
fore compare the quality of our final model to this
initial model. From each experiment with miss-
ing data (72 total) we measured the likelihood of
the validation data in the initial model as well as
in the final PDG model. Using a Wilcoxon signed
rank test for paired samples with significance level
0.05, we found significantly lower likelihood of the
PDG model in 2 cases, no significant difference in 5
cases while in 65 cases we found significant better
likelihood of the PDG model. The PDG performed
significantly worse when using 500 samples of the
rnd10 model with 25% and 30% missing cells, and
no significant difference could be established for the
experiments using the 250 samples of rnd10 with
30% missing, the 500 samples of rnd10 with 20%
missing, the 250 samples of rnd20 with 30% miss-
ing, the 500 samples of rnd20 with 30% missing and
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the 500 samples of rnd40 with 30% missing.

7 Concluding Remarks

In this paper we have proposed an algorithm for
learning PDG models in the presence of missing
data. Our proposal was inspired by previous work
on learning BN models from incomplete data by
Friedman (1997). We have tested our proposal on
synthetic data sampled from randomly constructed
PDG models. The experiments show that the algo-
rithm performs well and behaves well even when
the rate of missing cells are increased. Statistical
tests shows significant improvement in quality over
the initial Markov tree models in 65 out of the 72
experiments with incomplete data.

The algorithm introduced here can be extended in
various ways. For instance, the use of other scores
could be considered. Also, a Bayesian approach
could be followed as in (Friedman, 1998).

We have only focused on the scenario where data
is missing completely at random (MCAR). MCAR
is the most general setting, and when data is truly
MCAR, one could employ simpler and more ef-
ficient approaches to learning, such as available-
case-analysis. We plan to investigate simpler and
less general approaches in the future. Future stud-
ies also include the extension of the current algo-
rithm to handle scenarios where unobserved vari-
ables are known to influence the observed data. Fi-
nally, a more exhaustive comparative analysis in-
cluding other inference efficient graphical models
(such as Naı̈ve Bayes models) will be the focus of
the next stage of this study.
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