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Abstract

Probabilistic Decision Graphs (PDGs) are a class of graplnmdels that can naturally encode
some context specific independencies that cannot alwaySitiergly captured by other popular
models, such as Bayesian Networks. Furthermore, infereacebe carried out efficiently over
a PDG, in time linear in the size of the model. The problem afieng PDGs from data has
been studied in the literature, but only for the case of cetepiiata. In this paper we propose an
algorithm for learning PDGs in the presence of missing datae proposed method is based on
the EM algorithm for estimating the structure of the modelval as the parameters. We test our
proposal on artificially generated data with different saté missing cells, showing a reasonable
performance.

1 Introduction dressed by Jaeger et al. (2006), where an algorithm
based on the optimisation of a score is proposed for
The Probabilistic Decision Graph (PDG) model wasjearning from complete data. However, the task of
first introduced by Bozga and Maler (1999), andjearning PDGs in the presence of missing data has
was originally proposed as an efficient represennot yet been explored in the literature. The diffi-
tation of probabilistic transition systems. In this culty arises in the computation of the score for a
study, we consider the more generalised version ofnodel given the database with missing values. A
PDGs proposed by Jaeger (2004). similar problem is found in the case of learning BNs
PDGs constitute a class of probabilistic graphicalfrom incomplete databases. Friedman (1997) ad-
models that can represent some context specific irdressed this problem by proposing an algorithm for
dependencies that can not efficiently be captured bgstimating the structure of a BN model based on the
Bayesian network (BN) models. Also, probabilis- Expectation-Maximisation (EM) principle (Demp-
tic inference can be carried out directly in the PDGster et al., 1977; Lauritzen, 1995).
structure and has a time complexity linear in the size e propose an algorithm for learning PDGs in-
of the PDG model. This makes learning of PDGs eSspired by the proposal of Friedman (1997), based
pecially interesting, as we are learning directly thegn the EM principle. Both the structure and the pa-
inference structure, which is in contrast to the usualgmeters are re-adjusted in each iteration of the al-
scenario when learning general BN models. gorithm. That is, the adjustments made to the struc-
The performance of the PDG model w.r.t. generakure are guided by the expected increase in some
probability estimation has previously been studiedscore metric, while the adjustments made to the pa-
and results suggest that the model in general peframeters are guided by the expected likelihood of a
forms competitively when compared to BN or Naive completed version of the incomplete data.
BN models (Nielsen and Jaeger, 2006). The PDG
model has also been successfully applied to supep  Background and Notation
vised classification problems (Nielsen et al., 2007).
In this paper we are concerned with the estima\We will denote random variables by uppercase let-
tion of PDGs from data. The problem has been adters, e.g. X, and sets with boldface uppercase let-



ters, e.g.X. WhenX; is a discrete categorical ran-
dom variable, we will by lowercase lettes ; refer
to thej'th state ofX; under some ordering. We will
by R(X;) refer to the set of possible states Xf,
and byR(X) = xx,exR(X;) whenX is a set of
variables. We will use; as a shorthand faRR(X;)|.

Example 2.1. A forest F' over binary variables
X = {Xop,..., X7} can be seen in Figure 1(a),
and a PDG structure oveX w.rt. F' in Figure
1(b). The labelling of nodes in the PDG-structure
is indicated in subscripts and (redundant) by the
dashed boxes, e.g., the nodes represeniingare

By lowercase bold letters we refer to joint states of{i» o, 12 ;}. Dashed edges correspond to edges la-

sets of variables, e.gx € R(X). WhenX; € X
andx € R(X) we denotex[X;] the projection ofk
onto coordinatex;.

Let G = (V,E) be a directed graph structure
with set of nodesV = {Vi,...,V,} and set of
directed edge®€ C V x V. We will then by
chq(V;) and pas(V;) refer the set of children of
V; and parents of; respectively in structurés,
hencechq(V;) = {V; € V : (V;,V;) € E} and
paq(Vi) ={V; e V: (V;,V;) € E}. Atreeis a di-
rected acyclic graph where one unique ndfles V
is designated root and has no parents (V) = ()
while all other nodes have exactly one parent.
forest structure is a set of such trees.

2.1 The Probabilistic Decision Graph Model

A PDG encodes a joint probability distribution
over a set of categorical random variabXs =
{X1,...,X,} by afactorisation defined by a struc-
ture over a set of local distributions.

Definition 2.1 (The PDG Structure)Let F' be a for-
est structure oveX = {Xi,...,X,}. APDG-
structureG = (V,E) for X w.rt. F is a set of
rootedacyclic directed graphs over nodasg, such
that:

1. Each nodes € V represents a uniqué’; € X
and all X; € X are represented by at least one
noderv € V. We will byv; ; refer to thej'th
node representingy; under some ordering of
the set of nodes representidd.

. For each node; ;, each possible state; ;, of
X; and each successoXy € chp(X;) there
exists exactlypneedge(v; ;,vy,) € E with la-
bel z; »,, wherevy,; is some node representing
X5

Let X;, € chp(X;). By succ(vij, Xi,xin) We
refer to the unique node, ; representingX, that is
reached fromy; ; by following the edge with label
Ti -

belled 0 and solid edges correspond to edges la-
belled 1, for instanceucc(vs o, Xe,0) = v6,1-

A PDG structure is instantiated by assigning to
every node a local probability distribution over the
variable that it represents. By a PDG model over
discrete random variableX = {X;,..., X, } we
refer to a pailg = (G, ®) whereG is a PDG struc-
ture overX and® is an instantiation ofy. We de-
note byp”is the local distribution assigned to node
vi j, and byp;. the probability for state; 5, in lo-
cal distributionp”i-i. The semantics of the local dis-
tribution p*ii is defined by the path(s) leading to

Athe nodey; ; from the root, that is, how; ; can be

reached Let G be a PDG structure over variables
X w.rt. forestF’. A nodey;; in G is reachedby
x € R(X) if

e v;jisarootinG, or

o X; € chp(Xy), vy, is reached bk andv; ; =
suce (v, Xi, x[X3]).

By reachq(i,x) we denote the unique node repre-
senting.X; reached by in PDG-structures.

A PDG modelG = (G, ®) over variableX rep-
resents a joint distributio®Y by the following fac-
torisation:

P(x)= [ »

X,’EX

reachg (%,x)
x[X] ’

1)
Example 2.2. To instantiate the PDG structure in
Fig. 1(b), we assign a local distribution to each
node in the structure with the probabilistic interpre-
tation given in Fig. 1(c). We can read some context
specific independencies of this table, eXj; is in-
dependent oK only in the contexfX, = 0.

2.2 Selecting PDG models using complete data

For assessing models in the presence of observed
data, we can use a penalised likelihood score func-
tion. LetG be a PDG model over variables =



pyu'0 = P(Xo) pyg"U = P(X3|X0 = O,Xl = 1) pys'1 = P(X5 X4 = 0)

pyl'0 = P(X1|X() = 0) py3’1 = P(X3|X1 = 0) [)Vb"0 = P(XG X4 = 1,X5 = 1)

pyl'1 = P(X1|X0 = 1) pyg"2 = P(X3|X0 = 1,X1 = 1) pyG'1 = P(XG X4 =0V {X4 = 1,X5 = 0})
p"0 = P(X5|Xo =0) p"° = P(X4) P = P(X7]Xy = X5)

P2l = P(X[Xo=1) p"0 = P(Xs5[Xs = 1) "™ = P(X1| X4 # X5)

(©

Figure 1: A forestF' over binary variableX = { X, ..

., X7} is shown in (a), and a PDG-structure over

X w.r.t. variable fores#' is shown in (b). In the PDG-structure in (b), solid edges abelled with value 1
and dashed edges are labelled with value 0. In (c), we haieated the probabilistic interpretation of the
parameters for each node in the PDG structure of (b).

{X1,...,X,} and letD be a set ofN complete

andDj; = D \ Dp. We can compute the expected

observations oX, then we define a general score log likelihood of D in modelG (over variablesX),

function as:
S\(D,G) = (1~ X)- L(D,G) — A~ size(G), (2)

where0 < X\ < 1, size(G) is some measure of com-
plexity of G and L(D, G) is the log-likelihood ofD
giveng. A typical definition ofsize(G) is the num-
ber of free parameters in modgl Using the follow-
ing notationD = {XF :1<i<n,1<k<N},
the log-likelihoodL(D, G) is:

N
L(D,G) =log [[ PY(XT,.... X})
k=1

N
= log PY(XT,..., X))

k=1
n

T (3
i=1 h=1 j=1

Z Z #D (@i p, vij)log pars . (3)
whereu; is the number of nodes representikigand
#p(F) is the count of instances D satisfying re-
quirementE. For example, in Eq. (3¥p (i, vi ;)
is the count of data items ID where variableX; is
observed in state; ;, and where the; ; is reached.

3 Learning from Incomplete Data

Assume incomplete data, thatlid = Do U D)y,
whereDy is the elements oD containing a value

given some distributior”* overD,, as:

E[L(D,G)|Do, P]

n T (%3

Y>> E#p(winvig)llogps .

i=1 h=1j=1

(4)

where the second expectation also is with respect to
Do and P*. In a structural EM algorithm like the
one proposed by Friedman (1997), we optimise the
expected likelihood instead of directly optimising
the likelihood which in the presence of incomplete
data no longer decomposes. Decomposability of the
likelihood is important for model selection in which
the search procedure in each step evaluates candi-
date models from a neighbourhood that is generated
from a current model by local transformation. We
define the expected score as a functign

Q(9,D[g")
(1= NFE[L(D,G)|Do,G"] — Asize(G) .

(5)

In Eq. (5) we use the current modgt as the refer-
ence distributionP*. The structural EM procedure
can now be stated as in Algorithm 1.

First, in line 5 of Alg. 1 we basically need to find
MAP parameters foG. Exact methods are usu-
ally intractable, so normally some approximation



Algorithm 1 The structural EM procedure Assuming that we have the initial tree structure

1. procedure SEM(D) o F over the variables, we initialise a PDG model

%. tetfo: (G, ©7) be the initial model. as follows: for every variableX; € X with

4: repeat pap(X;) = X, we createv; = r new nodes

5: eort! — irgr?%XQGG",@),DIDo,g") {Vi1,viz2, ... Vi, } representingX;. We then con-

ega .

6 G"*' — argmax Q((G,-), D|Do, (G, ©" 1)) nect every node, ; representingX; such that
GeEN(GM) . X — . i

7. Gr (G @ SUC-C(bV(w)’(XZti’]xk’Z)d Viyz- Thlat is, for St?]teff’zgf

8. el variable X}, the nodey; . is always reached. Con-

9: until Q(G™,D|G" ") < Q(G" !, D|Do,G" ") structing the initial PDG model in this way allows

10: return g" every variable to be modelled as marginally depen-

dent on its parent and its set of childrenAn

. . . Finally, we use a random parametrisati® of
method is employed. Originally, Friedman (1997) the initial structure®.

proposed to use a standard EM approach in this step

while Pefa et al. (2000) propose as a more Compuz 1 The Neighbourhood of a Model

tationally efficient alternative to use theanch and ) ) ] )
boundprocedure of Ramoni and Sebastiani (1997)!N this subsection we explain how the neighbour-

However, the choice of approach in this step is nof’°0d V(G) of a PDG structurei is generated.
crucial to the following discussion in Sec. 4. We include operations that work on the PDG struc-

Second, in line 6 of Alg. 1, the functiat'(-) is ture only, and leave the structure over the variables

the neighbourhood generating function. We will de_fixe_d. Operations that_change the structure over the
fine simple split and merge operations that imple_varlablr—)_s (e.g. operations tha_t swap the posmqn of
ment structural modifications for generating neigh-tWO variables) are problematic as they potentially

bours from a current PDG modél We will show require the creation of a lot of new node connec-

how to compute the expectations needed to evaluattéo_ns_' Offhand, itis not intuitive to us how to best do
the expected score of a neighbour. this in general, and therefore we choose to focus on

the following two less dramatic structural changes
4 SEM for PDG Models that have both previously been used by Jaeger et al.

(2006) for learning in the case of complete data
In this section we will explain how Alg. 1 can be ap-
plied to PDG models. First, for constructing an ini- Merging Nodes The merge operator takes a pair
tial model we need a forest structure over the vari-0f nodes{v; ., v;;} representing the same variable
ables in the domain. We accomplish this using theXi- The nodes/; , andv;;, are selected such that
algorithm of Chow and Liu (1968) that induces a succ(Via, Xj, Zin) = succ(vip, Xj,z;5) for any
maximum weight spanning tree using mutual infor-statez; , € R(X;) and childX; € chp(X;) in the
mation as the edge weights. In Sec. 5 we explairyariable forestt”. The merge operation then sim-
how to compute mutual information from incom- Ply consists in replacing nodes, andv;; with a
plete data. new nodey; ., wherev; . has as children exactly the

Inducing the initial tree by finding a maximum children ofw; , (or v;;) and as parents inherits the

weight spanning tree using mutual information asunion of parents of; , and parents of; .

edg:e-we;ghtsf, Lsigldfferiint UO:? Elr e\;loruslil z:Opose?nSplitting Nodes The splitting operator takes as in-
aJpapeoZl:: e?salo 2oogc 2 teita:‘ofcgnzst'(s)naele'i put a single node; ; with m parents where < m,
(Jaeg v ) R . artional -~ ond replaces; ; with m new nodes all representing
dependence is used to assign marginally indepens ’ : . .
: o . X;. Each new node inherits all the childrengf;,

dent variables in different trees and conditionally ’
independent variables in different sub-trees. In this *Jaeger et al. (2006) use an additional third operator that
study we use the above mentioned mutual informatedirects edges. We leave this operator out of the algorithm

fi b d thod it is | data-int . for simplicity. Furthermore, for a given tree structure otree
Ion based method as It Is less data-intensive COrT\7ariabIes, any PDG structure can be reached from any other

pared to repeateg2 tests. PDG structure using only merge and split operations.



and exactly one unique parent:gf;. parametric EM step in line 5 of Alg. 1. Therefore,
these counts have already been computed for struc-
tureG" in line 5 of Alg. 1, and can easily be made
In this section we detail how to compute the scoreavailable at no extra cost.

QUG ),D|Do, (G,0)) of a neighbourG’ €

N (G) generated by merging two nodes or splitting
a node. In fact, we will not compute the full ex- Letinc(;;) be the set of edges incoming #9;

pected score, but only the terms that are different. in PDG structure; = (V,E), that isinc(v;,;) =
{(vk,z,vi5) € E}. By [y, we will denote theu'th

4.2.1 Scoring a Merge Operation element ofinc(v; ;) under some ordering. With;
Assume PDG' is constructed from PD@ =  we denote the node replacing; for its uth incom-
(G,©) by merging nodes; ., ;5 € V; instruc-  ing edge. Node; ; is representing variabl&’; and
ture G. Let the nodev;. be the one replac- let the parent ofX; in the variable forest bex,
ing v;,, and ;5 in G’, and assume that we have hence by the definition of PDG structure, all par-
computed (and stored) all expected counts of thent nodes of; ; represent variableX;,. The ex-
form E[#p(zin,vij)|Do,G]. Then, computing pected count& [#p (v ”,xzh)|D0, G| for the node
the expected counts for modgl under distribu- v}, wherel};, = (4., v;;) is labelled with state
tion PY reduces to computing expected counts fOI’xk g isthen:
vie,» Which can be done efficiently from expecta-

tions #p (v, Vi) and#p (z;p, vip), thatis : El#p (v zin)Do,g] =

E k2 y Ui D ’ (7
El#n (i, %i.)|Do. 6] = FR B 2i)[D0- G- (D)

E#p(ih, via)| Do, G+E#D (i, vip) Do, G) . The expectation in Eg. (7) can not be recon-
structed from expected counts already computed for
Hence, computing the difference in expectedg in the structural parametric EM step of Alg. 1
score AQmerge (Viasvip) = Q(G',DDp,G) —  (line 5) as was the case for the counts needed to
Q(G,D|Dy, G) reduces to computing the differ- evaluate a merge operation. However, anticipating
ence between the terms of the expected score irthat we will need such counts, we can store them
volving nodes; , andy; ;, and the new node; .: during the computation of expectations in line 5
of Alg. 1. Assume that we have these expected
AQmerge (Via, vip) = Q(G',D|G) — Q(G,DIG) counts available for structur@ under the distribu-
tion defined by the PDG mod¢l = (G,©). We
(ZE Ly — Ly — LZ“’IDO,Q]> can then compute the differenc®Q i (v;.;) =
Q(G',D|G) — Q(G,D|G) for PDG modelG’ with
+A-(r;—1) (6) structureG’ generated by splitting nodg ; in struc-
ture G, as follows:

4.2 Scoring a Neighbour Model

4.2.2 Scoring a Split Operation

wherev; . is the node resulting from merging,
andv; p, andL"ZJ is the term in the log-likelihood AQ it (Vi) = Q(G',DIG) — Q(G,DIG)
correspondlng to node; ; and thehth state ofX;.
The expectation in (6) obviously can be computed - [Z (ZE ”IDo, ]>
term by term, and we see th&[L,*|Do,G] = 1
El#p (0, Vi) Do, G]log Elpz., Do, G], where
the expectatiorE[p,. |Do, G is computed as the E[LZ"HDO,Q]] — A(linc(v; ;)| — 1)(r; — 1),
fraction Z#D(@inviclDo.G] - e count#p (v q) ®)

E[#p(i,c)|Do,d]
isjust ) | #D(Tih, Via)-

The expectationsE[#p(z; x, v )| Do,G] for  where the log-likelihood term&: are as described
any stater; , € R(X;) and nodev;; € V; are inSec.4.2.1. Further, itis clear that we can not split
exactly the expectations we would compute in thea root node as it is without parents.




4.3 Computing the Expectations
In order to compute the expected counts in sections

Algorithm 2 EM for estimating the mutual infor-
mation

. . L
4.2.1and 4.2.2, itis necessary to calculate probabil-,.

ities of the formPY ({v is reachedh X; = z;}|Y =
y) for all X; € X andv € V;, whereG is a PDG
over variableX andy is a joint observation of vari-
ablesy c X.

The computation of such probabilities can be
done efficiently using the algorithm described by g

© Nogakr®

Jaeger (2004), which carries out the inference inLo:
time linear in the size of the PDG model. Broadly 11:
speaking, the desired probability is computed byio:
13:
node in the structure we compute parts of the prod4:
uct in (1) corresponding to incoming edges and out*™

first restricting the PD@ to'Y = y. Then, for each

going edges. And, finally using these intermediate
results stored in each node we can compute the de-
sired conditional probabilities. We refer the reader

to (Jaeger, 2004, Section 4) for details on PDG in- .

ference.

procedure EM_MutuallnformationD)

Let @ = {6, i = 1,...,|RX)|, j =
1,...,|R(Y)|} be arandom parametrisation ez, v).
n < 0.

repeat

forall i =1,...,|R(X)|do
forall j=1,...,|R(Y)|do
Eij — E#p(X =z:,Y =y;)|0"]
en+1 - @
forall i =1,...,|R(X)|do
forall j=1,...,|R(Y)|do
n+1 E;;
oL STy
®n+1 - ®n+1 U {92;—{»1}
n—mn+ 1.
until L(D|@™) < L(D|@™1).
Estimatel (X,Y) as:

[R(X)R(Y)]

T n 9:7,
I(X,y)= > > 6log pno
i=1 j=1 1.7.7

return 1(X,Y).

5 Estimating the Mutual Information with
Missing Data

The mutual information between two random vari-

ablesX andY is defined as:
|R(X)| |R(Y)| p(z5,9;)
I(X,Y) = p(wi, y;) log ———2—
Z.Zl ; P p(e)p(y;)
9

As the joint distribution ofX andY” is unknown,

E

and calculating, for each record, the probability
P{X =uz;,Y =y,;|d,®"}. Thatis, we compute:

[#D(X =, Y = y])|@n]

Y P{X =u,Y =y;/d,©"} . (10)
deD

The probability in Eq. (10) will be equal to O if
the record has a value different te;, y;) and equal

we need to estimate the mutual information fromto 1 if the record is exactly equal t@;, y;). If some

data. Assume we have a databddeprobably

of the cells in the record is missing, the probability

containing missing data. We require estimates fofs computed using the current estima€s.

0ij = p(xi,y;), i = p(wi) ando; =p(y;) fori =
L...,|R(X)landj = 1,...,|R(Y)|. Actually, we

only need to estimaté;;, sincet; = Z‘j]i(ly)‘ 0
R(X
andﬂ,j = Z‘ (1 ) 91]

1=

Experiments

In order to test Alg. 1 we have performed exper-
iments over different synthetic databases sampled

SinceD may contain missing data, we can usefrom PDG models with 10, 20 and 40 variables gen-
the EM algorithm to estimate the required parame_erated at randofn We will refer to 'these models
ters. The detailed procedure is givenin Alg. 2. a@s rnd10, md20 and rnd40 respectively. From each

Notice that steps 5 and 9 in algorithm 2 corre-PDG model, we constructed four databases contain-
spond, respectively, to the E and M steps of algoing 250, 500, 1000 and 2000 complete samples.
rithm EM. For each database, we have considered differ-

The valueE;; computed in line 7 of Alg. 2 is ent rates of missing values, ranging fraific to
the expected number of records Id where X 30%. For each rate of missing values we generated
takes itsi-th value andY takes itsj-th value. It

) ’ *The PDG models were generated at random with the re-
is computed by exploring all the records € D

striction that they consist of a single variable tree.
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Figure 2: Mean and standard deviation of log-likelihood ofadidation set of 10000 complete samples
computed in the models leant from datasets sampled from Inied&0 (a), rnd20 (b) and rnd40 (c). The
log-likelihood of the generating models are indicated la¢gimé¢he plots.

50 databases from the original (complete) database Second, in the experiment using 2000 samples
by randomly erasing the value in a fraction of thefrom the rnd10 model (Fig. 2(a)) we observe an in-
cells according to the rate of missing values. Thecrease in likelihood up until a rate of 10% missing
learning algorithm was then executed on each ofalues. This behaviour may be caused by the algo-
the 50 databases measuring the quality of the learmithm over-fitting to the complete (rate 0% missing
model as the log-likelihood of a separate validationvalues) training data, while the introduction of some
database containing 10000 complete samples. missing values helps the algorithm learn a less spe-
As score function we used thg, function of cific model with better ability to generalise. How-
equation (2) with\ adjusted according to the size ever, we only observe this behaviour for that specific
of the database to give a tradeoff between size andata set which is somewhat unexpected assuming
likelihood equivalent to the one imposed by the BIC our explanation is valid.
scoré. Finally, in order to speed up the algorithm, Lastly, the initial tree structure is created using
we put a limit of 10 iterations in each parametric the classical algorithm of Chow and Liu (1968) as
EM* and 100 iterations in structural EM (the loop explained in Sect. 4. This initial model is itself a

of Alg. 1). very commonly used model in probability estima-
tion due to its simple restricted syntax and conse-
6.1 Results quently efficient learning and inference. We there-

In Fig. 2(a-c) we show plots of mean and standardiore compare the quality of our final model to this
deviations of the log-likelihood of models learnt in initial model. From each experiment with miss-
the experiments described above. ing data (72 total) we measured the likelihood of
First, the plots of Fig. 2 in general show the ex-the validation data in the initial model as well as
pected behaviour as mean likelihood generally dein the final PDG model. Using a Wilcoxon signed
creases as a result of increasing the proportion ofank test for paired samples with significance level
missing cells in the training data, while standard de-0.05, we found significantly lower likelihood of the
viation increases. We note, also as expected, th®DG model in 2 cases, no significant difference in 5
the experiments on the larger data sets reach higheases while in 65 cases we found significant better
likelihood on the validation data and also show alikelihood of the PDG model. The PDG performed
more stable performance with less increase in starsignificantly worse when using 500 samples of the
dard deviation as the rate of missing values is intnd10 model with 25% and 30% missing cells, and
creased. no significant difference could be established for the
L experiments using the 250 samples of rnd10 with
. . 30% missing, the 500 samples of rnd10 with 20%
observations yields BIC tradeoff. .. . .
“We run a 100 iterations parametric EM to optimise the pa-m|ssmg’ the 250 samples of rnd20 with 30% miss-
rameters of the final model. ing, the 500 samples of rnd20 with 30% missing and

1
3Setting\ = (% + 1) where N is the number of



the 500 samples of rnd40 with 30% missing. dence trees.IEEE Transactions on Information
Theory 14(3):462—-467.
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