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Abstract

Active microrheology has emerged in recent years as a new technique to
probe microscopically the mechanical properties of materials, particularly,
viscoelastic ones. In this technique, a colloidal tracer is pulled through the
material, and its dynamics is monitored. The interpretation of results usually
relies on the Stokes-Einstein approximation, which is valid for a continuous
medium in equilibrium. In this work, we have studied with simulations a
suspension of quasi-hard colloidal spheres, where a large tracer is pulled by
a constant force. The Navier-Stokes equation for a continuous bath predicts
important finite size effects, decaying as the inverse box size, which require
simulations of different systems to extract the microviscosity of a bulk system.
A strategy to optimize the scheduling of the simulation tasks on a multi GPU-
CPU cluster based on the adaptation of a genetic algorithm is presented here,
and used to study the effect of different conditions on the friction experienced
by the tracer (adding the tracer volume to the total system volume, fixing
the center of mass of the system, varying the fluid friction coefficient and
tracer size). It is observed that the theoretical prediction is not followed, but
deviations are observed for large systems in all cases. These are attributed
to the finite size of the bath particles, and the intrinsic dynamics of colloidal
systems, as shown by the analysis of the velocity profile in the bath.
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1. Introduction

Soft matter is characterized by the interplay of very different length
and time scales. Physically, this is achieved, e.g., in suspensions of macro-
molecules or colloids, where the solvent degrees of freedom and macromolecule
diffusion extend over many different scales [1, 2]. This poses a major problem
in resolving all of them, both computationally and experimentally, which is
typically tackled integrating out the fast degrees of freedom, or using effec-
tive models [3]. The canonical example is probably Brownian hard spheres,
where internal degrees of freedom are absent and the solvent dynamics is in-
tegrated in the so-called Brownian motion; still, the separation between short
time and long time diffusion of the colloidal particles provokes viscoelastic
behavior when the glass transition is approached.

In order to probe the complex mechanical behaviour of soft matter, several
techniques have been developed [4]. In addition to the direct measurement
using bulk rheology, where macroscopic stresses are applied, microrheology
has emerged over the last decades as a new methodology, both in the passive
or active modes [5, 6, 7, 8]. Here, the dynamics of a tracer (typically of
colloidal size) is studied, with an external force driving it (active microrheol-
ogy), or without any force (passive microrheology). This approach, initially
thought for expensive or difficult to obtain samples [9, 10], but still in de-
velopment [11, 12], requires a deep understanding of the interplay of the
dynamics of bath and tracer, in particular due to the non-affine strain field
provoked by the latter [13, 14]. It is therefore compulsory to test the theory
models to be used in the interpretation of the results.

Computer simulations have emerged as an ideal tool to test these mod-
els, using simple systems, whose bulk properties are well-known [7]. However,
because simulations consider always a finite number of particles, finite-size
effects can appear. This is even more plausible, since the hydrodynamic cor-
relations, expected from models based on a continuum description of the bath
[15], have a very long range. This makes the simulation work a formidable
task because a large number of particles have to be considered to obtain the
trajectory of a single tracer; even more, a large number of trajectories are
needed to average out the thermal noise and initial conditions; and finally
different system sizes have to be considered [16, 17].

Previous simulation works in this line have focused on passive microrhe-
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ology, i.e. the dynamics of a large unperturbed tracer, in a bath of hard
spheres undergoing Newtonian dynamics [16, 17, 18, 19, 20]. In this way,
those works have simulated the motion of a nanocolloidal particle, resulting
in Brownian motion, and the fluctuation-dissipation theorem. The results
show good qualitative agreement with the predictions from continuum the-
ory for the bath, and when the tracer is larger than around five times the
bath particles the agreement is quantitative. Active microrheology in a bath
of hard spheres, on the other hand, has been studied with tracers of size
comparable to the bath particles, with Brownian, Langevin, or Stokesian mi-
croscopic dynamics [7, 21, 22, 23, 24, 25, 26, 28]. Both the simulation and
theoretical models show that the effective friction coefficient experienced by
the tracer has a plateau for small pulling forces, where the properties of the
bath are probed – linear response and generalized Stokes-Einstein relations
are expected to be applicable here. Upon increasing the driving force, the ef-
fective friction enters a so-called force-thinning regime, where the coefficient
decreases, until a plateau is eventually reached for strong pullings [29].

We present here simulations of active microrheology in a system of quasi-
hard Brownian spheres with large tracers. These, however, are affected by
strong finite size effects, requiring simulations of different sizes. Given the
large number of independent simulations of different lengths, a multi GPU-
CPU cluster was used, which supplies processors with several CPU-cores and
GPUs. A sequential code to compute simulations on CPU-cores, and a par-
allelized one for computing on GPUs, prepared previously [30], have been
used. To reduce the runtime for the set of simulations it is very important
to distribute the different simulations among CPU-cores and GPUs in a bal-
anced way, i.e. with a minimal idle processors time. This is a challenge due
to the heterogeneity of simulations and computational power of CPU-cores
and GPUs. A genetic algorithm has been implemented to obtain a near op-
timal balance in the distribution of simulations on the clusters, which is the
result of this work (freely available at https://github.com/2forts/GENS). We
focus on a system with a bath volume fraction of 50%, and a tracer three
times larger than the bath particles. The scheme presented here optimizes
the whole set of simulations required to analyze the friction coefficient. The
acceleration of the single trajectories, due to the GPU parallelization, has
allowed us to simulate large systems and study the effects of different pa-
rameters of the simulations of active microrheology in colloidal hard spheres,
aiming to identify the optimal simulation conditions to test the theoretical
model. For large systems, the simulation data deviate from the theoretical
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prediction, and the velocity field in the bath oscillates in phase with the den-
sity. More interestingly, we show that the velocity in the bath decays faster
than predicted, and becomes negligible for distances similar to the simulation
box size where the deviations appear.

The manuscript is organized as follows: In Section 2 the physical system is
described, and the model used for its analysis introduced. Our scheme for the
distribution of the tasks among the computational resources is described in
section 3. Section 4 is devoted to the presentation of the results, in particular
analysing the effects of the consideration of the volume of the tracer, the size
of the tracer, or fixing the center of mass of the systems. In the final part of
this section, we study the velocity profile induced in the bath by the moving
tracer, and compare it with the theoretical predictions from the Navier-Stokes
equation. Finally, the conclusions are presented in Section 5.

2. System details

Microrheology in a colloidal system is simulated considering N polydis-
perse Brownian particles containing the tracer (labeled with j = 1) in a cubic
box with periodic boundary conditions. Microscopic Brownian dynamics is
modelled with the Langevin equation of motion, which for particle j reads
[35]:

mj
d2 rj
dt2

=
∑
i 6=j

Fij − γj
d rj
dt

+ fj(t) + Fextδj1 (1)

where mj is the particle mass, and the terms in the right hand side correspond
to the interaction forces between particles i and j, the friction with solvent,
Brownian force and the external force, which acts only on the tracer (as shown
by the Kronecker-delta symbol, δj1). The friction force is proportional to the
particle velocity, and the proportionality constant is given by γi = γ0ai,
where ai is the particle radius. This expression mimics the Stokes formula
for low Reynolds numbers, γi = 6πηai, where η is the solvent viscosity. The
Brownian force, f(t), is random, but its intensity is linked to the friction force,
as given by the fluctuation-dissipation theorem, 〈fj(t) · fj(t′)〉 = 6kBTγjδ(t−
t′), where kBT is the thermal energy and δ(x) is the Dirac-delta symbol [35].

The direct interaction between particles i and j is derived from the central
inverse-power potential:
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V (r) = kBT

(
r

aij

)−36

(2)

with r = |r| and aij the center to center distance between the particles.
It has been shown previously that with this potential the particles behave
effectively as hard spheres [36]. To avoid crystallization at high density, size
polydispersity is introduced in the bath. Sizes for the bath particles are
selected from a flat distribution of width 2δ = 0.2a, with a the mean radius
of the bath particles. All particles, including the tracer, have the same mass:
mj = m.

In the simulations, the system is equilibrated with the tracer for a long
time without the external force. At t = 0, the external force is switched on,
and the tracer trajectory is recorded. The long-time steady tracer velocity,
〈v〉, is calculated as the slope of the tracer displacement vs. time, and aver-
aged over many independent trajectories. This allows the calculation of the
effective friction coefficient using the steady-state relationship Fext = γeff〈v〉.
Previous simulations (with tracers of the same size as the bath particles)
have shown that γeff develops a plateau for small forces, indicating a linear
regime (Newtonian behaviour) [7, 21, 22]. We intend to focus here in this
linear regime for small forces, using tracers larger than the bath particles.

However, the use of periodic boundary conditions in the three dimensions
implies that the actual simulated system is a cubic array of tracers pulled
in an infinite bath. Because the lattice spacing in this array of tracers is
given by the size of the simulation box, this is a finite size effect. In order
to analyze, and eventually correct it, a continuum model based on solving
the Navier-Stokes equation for an infinite array of tracers in a Newtonian
viscous fluid is used [15]. Hasimito [15] showed that the friction coefficient,
γeff, experienced by a cubic array of tracers is related to the lattice spacing,
L, as:

1

γeff

=
1

γ∞

(
1− c

L

)
(3)

where γ∞ is the friction coefficient measured in an infinite system, and c is a
constant that depends on the array structure (simple cubic, BCC, FCC, ...).
In our case, due to the periodic boundary conditions, the simple cubic array
applies, yielding c = 2.8373 at [15].

Based on this result, the full analysis of microrheology therefore requires
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Figure 1: Snapshots of the systems with N = 216 and 32768 particles (left and right
panels, respectively), with the same scale. The tracer, with at/a = 3, is marked in red,
and the particles in front of it have been removed.

simulations of systems with different sizes, to extrapolate the friction coef-
ficient γ∞ using Eq. 3, for a single value of the force, volume fraction, or
tracer size. Because the simulation time for a system of N particles evolves
as ∼ N lnN , it is important to state the validity of this extrapolation, which
is the main aim of the present work.

Previous simulations in passive microrheology, i.e. without external force
acting on the tracer, have shown that Eq. 3 describes the dependence of the
diffusion coefficient (Deff = kBT/γeff) on the system size [16, 17]. Evenmore,
the value of γ∞, extracted from the fitting corresponds to the Stokes value,
with slip boundary conditions and the viscosity calculated from Green-Kubo
integration of the stress autocorrelation function [16]. We check here if those
conclusions are valid for a finite force, helping in understanding the gener-
alized Stokes-Einstein relation. The application of an external force implies
a continuous input of energy in the system, needing an energy sink, where
this energy is dissipated, which is an important difference with respect to
previous works in passive microrheology. In our case, energy is dissipated in
the friction with the solvent, given by γ0.

In order to test the theoretical model, we have run simulations of systems
with N = 216, 512, 1000, 2197, 4096, 8000, 15625 and 32768 particles. Fig.
1 presents snapshots of the extreme sizes, with a tracer three times larger
than the bath particles, at = 3 a. In our simulations, lengths are measured
in units of the mean bath particle radius, a, energy in units of the thermal
energy kBT , and mass in units of the particle mass, m. For the friction
coefficient with the solvent, we take γ0 = 5

√
mkBT/a, which gives a mean
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single particle diffusion coefficient of D0 = kBT/γ0 = 0.2 a
√
kBT/m for the

bath particles. The volume fraction of the bath is φ = 0.50. The external
force is applied in the x-axis. The equations of motion are integrated using

the Heun algorithm [37], with a time step of δt = 0.0005 a
√
m/kBT . In this

algorithm, the friction force is integrated analytically in the time interval δt.

3. Computational implementation

From a computational point of view, the problem requires a large set of
simulations of tracer trajectories in systems of different sizes (N); therefore,
the use of high performance computing is mandatory.

In the model it is possible to identify two parallelism levels. Level 1
allows us to accelerate the computation of a single tracer trajectory; and
level 2 is related to the computation of several trajectories. To compute
the function γ0/γeff(a/L) it is necessary to analyze the tracer dynamic for
different sizes of the bath. Therefore, the second level of parallelism can be
exploited executing simulations with different number of particles in parallel,
needed for the extrapolation leading to γ∞.

We have accelerated the computation of a single tracer trajectory (level 1)
by means of GPU computing using CUDA interface [30, 31]. Our attention
has been focused on the acceleration of the routines which evaluate the tracer
dynamics; mainly, the calculation of interaction forces and integration of the
equations of motion [32]. Every simulation of the tracer dynamic includes
a massive parallelism since the same computation has to be completed for
all particles in the bath. This parallelism is harnessed by the simulations
computed on GPUs.

The whole set of simulations (level 2) to analyze the friction coefficient has
been distributed on modern Multi-GPU clusters, which provide CPU-cores
and GPUs which can compute several simulations in parallel. A subset of
tracer trajectories can be computed in parallel on the CPU-cores and GPUs
of a cluster. This way, every CPU-core (GPU) can execute the sequential
code in Fortran (CUDA) to compute a single tracer trajectory, and the whole
set of tasks can be run on the heterogeneous cluster with the collaboration
of the CPU-cores and the GPUs. Moreover, the computational loads of the
corresponding tasks are also different because the computation of trajectories
in systems with different sizes are needed. Consequently, it is necessary
to define an appropriated tasks scheduling to obtain the optimal parallel
performance. Several strategies have been devised for this purpose, some of
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them specifically for particle systems [33]. Here, we have adapted a genetic
algorithm (GA) to optimize the trajectories scheduling.

There is a wide variety of previous work where genetic algorithms are
used to solve scheduling problems [34]. GA works with a set of individu-
als which represent every possible solution of the scheduling policy problem
(population). The procedure evolves iteratively starting with a random set of
individuals, P0, and at every iteration, i, the selection and genetic operators
are applied to the population, Pi. Thus, the population is constantly evolv-
ing. The selection mechanism allows that the individuals of new populations
are closer to the optimal.

The methodology to execute the microrheology model with several system
sizes on a Multi-GPU cluster includes the following stages:

1. Profiling stage, which estimates the sequential runtime of the microrhe-
ology model on every computational resource (GPU/ CPU-core) for the
considered system sizes of the problem.

2. GA scheduling estimation, which plans the set of trajectories on every
CPU-core and GPU to optimize the parallel runtime of all simulations
by the GA. The inputs of this stage are: the profiling stage output,
the number of computational resources of every type on the cluster
(number of GPUs/ CPU-cores) and the number of trajectories of every
system size of the model.

3. Parallel execution of the model on the cluster according to the schedul-
ing estimation.

The software to carry out stages 2 and 3 has been implemented in Python
and is freely available at https://github.com/2forts/GENS.

To analyze the friction coefficient, we study the set of simulations with
sizes: N = 216, 512, 1000, 2197, 4096, 8000, 15625 and 32768, with 500 trajec-
tories of 500 time units (corresponding to 106 time steps). So, the model has
to compute a total of 4000 trajectories. A state-of-the-art cluster has been
considered as the test platform. It is composed by 4 nodes with a multipro-
cessor of 16 CPU-cores (Bullx R424-E3 Intel Xeon E5 2650 with 8GB RAM)
and 2 GPUs NVIDIA Tesla M2070.

Table 1 shows the runtime on a CPU-core and a GPU to simulate a single
trajectory on such test platform obtained in the profiling stage. The accel-
eration factors (AF) on GPU vs. CPU-core to simulate a single trajectory
are also included. High acceleration factors, specially for large system sizes,
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are obtained (up to 24×). However, for small problems the use of the GPU
computing has no advantage.

From the profiling data, the scheduling is estimated by the GA accord-
ing to the available resources on the cluster. If the 8 GPUs of the cluster
and 56 CPU-cores are used (8 CPU-cores are devoted to controlling the 8
GPUs) to simulate the 4000 trajectories included in the model, the runtime
is 202, 4 hours when the GA scheduling is applied. If only a multiprocessor
of a node was exploited, the runtime would be 2905 hours for all trajectories.
To illustrate the advantages of the GA scheduling in terms of runtime for the
analyzed model, Table 2 shows the runtime for the GA and a Round Robin
approach for several configurations of the cluster and also the GA acceler-
ation factor (GAAF). The results show that the GAAF ranges from 1, 0×
(the homogeneous cluster configurations) to 2, 7× (the most heterogeneous
cluster configuration). So the more heterogeneous the cluster is, the more
advantages the GA reaches. Therefore, the use of a multi GPU-CPU cluster
in combination with the GA scheduling have allowed that every simulation
is executed on a CPU/GPU according to its size, reaching a considerably
reduction of the total runtime of the microrheology model.

Table 1: Execution time (in seconds) of the simulation of a single trajectory for the
eight sizes of the problem (N). tGPU and tCPU columns identify the runtime for a single
trajectory on a GPU NVIDIA Tesla M2070/a and CPU-core Bullx R424-E3, respectively.
AF is the acceleration factor of a GPU vs. a CPU-core for each N .

N tGPU tCPU AF
216 1580 790 0.5
512 1785 1860 1.0

1000 2240 3715 1.7
2197 2930 8710 3.0
4096 4450 18065 4.1
8000 7650 43080 5.6

15625 12050 113940 9.5
32768 20012 479313 24.0

4. Results

The effective friction coefficient probed by a tracer of the same size as
the bath particles develops a plateau for small driving forces, and decreases
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Table 2: Parallel execution time, in hours, for a Round Robin placement (RR) and the
GA solving 500 trajectories of 500 time units (N = 216, 512, 1000, 2197, 4096, 8000 and
15625) for the cases A) 14 CPU-cores and 2 GPUs; B) 28 CPU-cores and 4 GPUs; C) 28
CPU-cores and 8 GPUs; D) 56 CPU-cores and 8 GPUs; E) 8 GPUs and F) 64 CPU-cores.
GAAF shows the GA acceleration factor.

A B C D E F
RR 844.8 422.4 369.6 211.2 290.4 211.2
GA 410.4 206.4 139.2 102.5 283.2 206.4

GAAF 2.1 2.0 2.7 2.1 1.0 1.0

for increasing forces [7], in analogy with the shear viscosity in bulk systems.
We will focus here on the linear regime at small forces, with large tracers,
which is expected to be closer to the model of Newtonian fluids used in the
theoretical description. Thus, we study first the behaviour of γeff with the
external force for a tracer three times larger than the bath particles, at/a = 3.
Fig. 2 shows the results for two systems with different number of particles:
N = 2197 and N = 216. Indeed, γeff depends strongly on the system size, as
expected from the theoretical analysis discussed previously.

The effective friction coefficient shows the same qualitative behaviour for
a large tracer as the previously reported for at = a (a plateau at small forces,
followed by a force-thinning regime), irrespective of the number of particles
in the system. The linear regime at small forces extends to Fext ≈ 10 kBT/a.
Thus, we select a force of Fext = 2.5 kBT/a, which is well inside this linear
regime. In the following, we first study finite size effects in different cases,
and then compare with the theoretical model.

The first point we analyze is the volume occupied by the tracer. In the
simulations shown in Fig. 2, the tracer is inserted in the system, compressing
it, and increasing effectively the volume fraction of the bath. Note that the
increase of volume fraction is larger for smaller systems. In the theoretical
model, the properties of the bath are not affected by the insertion of the
tracer, or by modifying the tracer lattice spacing, namely, the simulation box
size. We have thus run simulations with different simulation boxes keeping
the volume fraction of the system (bath and tracer) constant, and equal to
50% in all cases. The results are presented in Fig. 3, in comparison with
the data from simulations without correcting the tracer volume. Both data
sets agree for large systems, where the volume of the tracer is negligible,
compared with the volume of the whole system, but differ significantly for
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Figure 2: Effective friction coefficient for a system with at/a = 3, normalized with the
friction with the solvent atγ0. Two system sizes are considered, N = 216 and N = 2197,
as labeled.

small systems. Notably, in this case, the friction coefficient is much larger
when the tracer volume is not added to the system, due to the increase of
effective volume fraction in the bath (note that the inverse friction coefficient
is plotted in the figure).

In comparing with the theoretical prediction, we note that the simulation
data for the system without the volume correction fits better to the expected
qualitative behaviour for small systems (namely, a decreasing linear trend of
1/γeff vs. 1/L). However, the results from the theoretical model are more
strict than a linear dependence of 1/γeff vs. 1/L; eq. 3 implies a relation
between the slope and intercept. The thick dashed line in Fig. 3 shows
the theoretical prediction (γ∞ is fitted), for small and intermediate systems.
The fitting is not satisfactory, probably due to the important differences
between the simulated system and the theoretical model (continuous bath
vs. particles, Newtonian fluid vs. viscoelastic bath, boundary condition in
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Figure 3: Effect of considering the volume of the tracer: normalized effective friction
coefficient for a system with at/a = 3 as a function of the inverse system size, for a system
with volume correction, or without it, as labeled. The thick dashed line is a free linear
fitting to the data without volume correction, for systems up to N = 8000 particles, and
the thick line is the fitting according to the theoretical model, Eq. 3.

the tracer surface...).
It must be mentioned that these deviations were not observed in pas-

sive microrheology [16, 17] (recall that Newtonian dynamics were used those
simulations and no force was applied). In our case, however, the agreement
with the theory is not quantitative. Still, a decreasing linear dependence is
found for 1/γeff vs. 1/L (thin dashed line) although for large systems the
data deviate from the linear trend.

The effect of fixing the center of mass (CM) of the system, or leaving
it free is studied next. The application of an external force, even though
applied onto a single particle, implies a displacement of the CM, while in
a macroscopic system, this should be fixed. The CM can be fixed in the
simulations artificially, correcting the particle positions at every time step.
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Figure 4: Effect of fixing the center of mass of the system in microrheology: normalized
inverse effective friction coefficient as a function of the inverse system size, for a system
with the CM fixed or free, as labeled. The dashed line is a linear fitting to the data for
small and intermediate systems.

Again, this aspect is absent in the theoretical model, where the solvent is
an incompressible Newtonian fluid. Fig. 4 presents the results of γeff for
different system sizes from simulations with the CM fixed, in comparison
with the results leaving it free (in both cases the tracer volume has not been
considered in the total volume of the system).

The results for both cases differ for small sizes, but agree for large systems,
when the effect of pulling a single particle becomes negligible, and thus the
correction of the particle motion is less important. The data with the CM
fixed deviate from a linear trend at both small and large systems, while the
data for the free CM follows the linear trend, as shown above. Thus the
following simulations are run with the CM free, to improve the comparison
with the theory.

The microscopic motion of the particles is also affected by the solvent
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Figure 5: Effect of the solvent friction coefficient γ0 on the effective friction coefficient.
The lines show the linear fittings (dashed lines).

friction coefficient, γi = γ0ai – large values of γ0 reduce the effect of iner-
tia, making the dynamics more Brownian like. Again, the theoretical model
does not consider explicitly this aspect; the bath in the theory is a contin-
uous medium and not Brownian. Fig. 5 presents the results of simulations
with different values of γ0. Upon increasing the friction with the solvent,
γeff/γ0 decreases, as the contribution from the solvent to the total friction
experienced by the tracer increases. On the other hand, in all cases, the in-
verse friction coefficient shows a linear dependence on 1/L for not-too-large
systems, as shown by the thin dashed lines.

Finally, we study the effect of the tracer size, as the assumption of a
continuous bath is expected to be applicable if the tracer is much larger
than the bath particles. Fig. 6 presents the results of the inverse effective
friction coefficient as a function of the inverse system size for at/a = 3 and
at/a = 4. In both cases, the CM is free, the volume of the tracer has not
been considered, and γ0 = 5

√
mkBT/a. The results show the same trend
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Figure 6: Effect of varying the tracer size, as labeled. The dashed lines show again the
linear fittings to the data from small and intermediate systems.

for both sets of data; namely, a linear trend appears for small systems (thin
dashed lines), while both of them deviate for large systems. The figure also
allows checking if γeff is linear with the tracer size, as expected from Stokes’
law. The results, however, indicate that the friction coefficient grows with
at faster than linear, indicating that the Stokes’ regime is not valid in this
system and for this range of tracer sizes.

The analysis presented so far have shown that the theoretical prediction
is only qualitatively followed for small and intermediate systems, with the
appropriate conditions in the simulations, but fails for large systems in all
cases. Thus, we analyze in the following the reason for this discrepancy.

Within the theoretical model, the friction experienced by the tracer is
calculated from the velocity profile in the bath [38]. Therefore, we study
the velocity of the bath particles in the simulations and compare it with
the theoretical result. Because for large systems γeff becomes independent
on the system size, we focus on the system with N = 15625 particles and
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compare the velocity map with the theoretical results for a single particle in
an incompressible Newtonian fluid. The latter is given, in polar coordinates,
by [38]:

vr(r, θ) = utracer cos θ

(
3at
2r
− a3

t

2r3

)
(4)

vθ(r, θ) = −utracer sin θ

(
3at
4r

+
a3
t

4r3

)
(5)

where θ is the angular coordinate, measured from the force direction, and
utracer is the tracer velocity. This result is valid for low Reynolds number,
which is indeed our case; a rough estimate of the ratio of inertia to viscous
forces is (mutracer/at)/(γat) which is below 0.1 in all cases.

Fig. 7 shows both components of the velocity in the bath (divided by the
tracer velocity) from simulations (left panels) and theory (right ones). In the
simulations, the system with N = 15625 has been run for ca. 5 · 104 time
units (amounting to 108 integration steps), to improve the statistics. The
comparison shows some important differences, and some similarities. The
normal component shows that the velocity in front of the tracer is positive
in both the simulations and theory, and negative behind it; however while it
decays monotonously to zero from the tracer to infinity in the theory , panel
(c), in the simulations, it oscillates – panel (a). Transversal to the force, the
velocity has a negligible normal component both in the simulations and in
the theory.

The angular component (bottom panels), on the other hand, shows also
some differences between the simulations and the theory. In the model, panel
(d), the minimum is in the tracer surface, perpendicular to the force direction
(recall that stick boundary conditions are assumed in the tracer surface), and
decays monotonously to zero. The simulations, shown in panel (b),are much
noisier, but a dip develops in this region; further from the tracer (in the
direction perpendicular to the force), vθ becomes positive (but small) and
decays to zero far from the tracer. In this case, oscillations are not observed,
probably due to the poor statistics.

The radial component is studied in more detail in Fig. 8, where the bath
velocity in front of the tracer is studied (to reduce the statistical noise, it has
been averaged over an angle of 30o). The oscillations of the bath velocity have
a wavelength of one (bath) particle diameter, and reproduce the oscillations
of the density profile (black line). Thus, these are a direct consequence of
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Figure 7: Velocity maps in the bath from simulations (panels (a) and (b)) and theory
(panels (c) and (d)); the radial (angular) component is presented in the top (bottom)
panels.

the finite size of the bath particles. The inset to this figure presents the
same data on a logarithmic scale, showing that the bath velocity in front
of the particle decays faster in the simulations than in the theory, probably
due to the friction with the solvent and the Brownian motion that disrupt
the transfer of momentum in the bath. Notably, the velocity in the bath is
negligible, within the noise level, for distances of ca. 20− 25a. The systems
with a box size smaller than (twice) this value should present interactions
between the tracer and its periodic images due to the cutoff of the velocity
profile. In systems with a large simulation box, the velocity profile can decay
inside the box, and the friction experienced by the tracer is not affected by its
periodic images. It can be concluded, therefore, that large systems, beyond
this limit, should be free of finite size effects, and the limit corresponds to
the systems of 8000 particles, as indeed observed in the evolution of γeff vs.
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Figure 8: Normalized radial component of the bath velocity in front of the tracer, from
simulations (red points and lines) and theory (thick blue line). The bath density is also
presented (thin black line), scaled. The inset shows the same velocity data in logarithmic
scale.

L, studied previously.

5. Conclusions

We have presented simulations of active microrheology in hard colloids.
This system is strongly affected by finite size effects, which have been an-
alyzed using a model developed previously for an array of tracers moving
in a Newtonian fluid. According to the model, the inverse effective friction
felt by the tracer depends linearly on the inverse lattice parameter. In order
to test this prediction, different simulation conditions have been proposed
(consideration of the tracer volume, motion of the center of mass, tracer size,
and friction with the solvent), but deviations for large systems are observed
in all cases, although linear trends have been observed in particular cases for
small and intermediate systems.
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The deviations of γeff with respect to the theoretical behaviour indicate
that the approximations in the theoretical model are too strong for the sim-
ulated system. This invalidates the use of this model to extract the effective
friction coefficient for a macroscopic system from the linear extrapolation
1/L → 0. Previous simulations of passive microrheology in a bath of par-
ticles undergoing molecular dynamics did follow the linear trend, and could
use it to extract γ∞ and check Stokes’ law. The failure of the model in our
case must be attributed to the different microscopic dynamics, which is dissi-
pative in our case. This, presumably, implies a damping for the shear waves,
and a saturation of the finite size effect predicted by the theory.

Computationally, on the other hand, it presents an important advan-
tage; namely, simulations in a large enough system can be used to obtain
the effective friction coefficient probed by a tracer, skipping the necessity of
making simulations with different system sizes and rely on an extrapolation
to 1/L → 0. It must be mentioned, however, that the minimum size of the
system to avoid finite size effects may depend on the tracer size.

The results presented here concern a system of quasi-hard spheres, i.e.
with short-range interactions. While it is difficult to extrapolate these re-
sults for systems with interactions of longer range, structural correlations
will extend to larger distances, possibly increasing the range of validity of
the continuous medium approximation for the bath. However, it the micro-
coscopic dynamics is indeed responsible for the damping of the shear waves
and hydrodynamic correlations, as proposed here, it should eventually domi-
nate over long enough distances, making a proper analysis of finite size effects
mandatory. The technique proposed here (GA scheduling of simulation tasks
of different loads) is a powerful tool for this analysis.

Acknowledgments

This work has been supported by the Spanish Science and Technology
Commission (CICYT) under contracts TIN2015-66680 and FIS2015-69022-
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