
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04401-x

1 3

Implementation of three efficient 4‑digit fault‑tolerant
quantum carry lookahead adders

Francisco Orts1 · Gloria Ortega1 · Ernestas Filatovas2 · Ester M. Garzón1

Accepted: 22 February 2022
© The Author(s) 2022

Abstract
Adders are one of the most interesting circuits in quantum computing due to their
use in major algorithms that benefit from the special characteristics of this type of
computation. Among these algorithms, Shor’s algorithm stands out, which allows
decomposing numbers in a time exponentially lower than the time needed to do it
with classical computation. In this work, we propose three fault-tolerant carry look-
ahead adders that improve the cost in terms of quantum gates and qubits with respect
to the rest of quantum circuits available in the literature. Their optimal implementa-
tion in a real quantum computer is also presented. Finally, the work ends with a rig-
orous comparison where the advantages and disadvantages of the proposed circuits
against the rest of the circuits of the state of the art are exposed. Moreover, the infor-
mation obtained from such a comparison is summarized in tables that allow a quick
consultation to interested researchers.

Keywords Reversible adder · Quantum computing · Reversible circuit · Adder

Francisco Orts, Gloria Ortega, Ernestas Filatovas and Ester M. Garzón These authors contributed
equally to this work.

 * Francisco Orts
 francisco.orts@ual.es

 Gloria Ortega
 gloriaortega@ual.es

 Ernestas Filatovas
 ernestas.filatovas@mif.vu.lt

 Ester M. Garzón
 gmartin@ual.es

1 Informatics Department, Agrifood Campus of International Excellence (ceiA3), University
of Almería, Almería, Spain

2 Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04401-x&domain=pdf

 F. Orts et al.

1 3

1 Introduction

Quantum computing emerges as a computing paradigm that tries to reproduce the
characteristics of quantum mechanics to obtain computational advantages. While
it is currently under study to define what kind of problems can be solved more
efficiently with a quantum computer than with a classical computer, it has been
shown that there are problems that can be solved more efficiently with quantum
computing [1]. Quantum computing uses the concept of the quantum bit (qubit)
as a basic unit of information representing not one of two states as a bit does, but
a quantum state consisting of a combination of two values taken as the basis of
the space in which it is operating. Through this superposition of values, qubits
make it possible to represent and operate with probabilistic amplitudes, which
with some ingenuity can lead to results with fewer operations than a classical
computer. Other advantages offered by this disruptive are the possibility of repre-
senting information more efficiently, and the design of genuinely quantum models
that allow problems to be addressed in ways never seen before in classical com-
putation [2].

The most common way to programme a quantum computer is through the cir-
cuit paradigm. Since quantum mechanics is apparently reversible, these circuits
must be reversible. Small circuits are a valuable resource. This is due to the limi-
tations of current quantum computers and the high computational cost associated
with quantum simulators. Small circuits are of great interest even when they do
not offer any quantum advantage, since they can be used as part of larger algo-
rithms that take advantage of quantum computation [3]. One of the best examples
to illustrate this need for optimized circuits is Grover’s algorithm. This algorithm
makes it possible to speed up a search problem compared to existing classical
algorithms, if the search problem fulfils certain conditions [4]. An indispensable
element of Grover’s algorithm is the so-called oracle, which, to simplify its defi-
nition, consists of a circuit that checks whether an element of the search fulfils
a condition or not. The oracle is customizable to each problem (assuming that
the problem is susceptible to be solved by such an algorithm), and the optimiza-
tion of its design is fundamental to maintain the advantage achieved by the main
algorithm. A slow oracle with many operations would weigh down the reduction
in search iterations achieved by Grover’s algorithm, making the algorithm slower
overall than the classical alternatives [5].

Focusing on the optimization of quantum circuits, adders receive special inter-
est from the scientific community [6]. This is because adders are used to perform
modular exponentiation in Shor’s algorithm [7]. Shor’s algorithm is undoubt-
edly the most famous quantum algorithm, since it manages to factor numbers
and compute discrete logarithms in polynomial time (something that has not
been achieved to date in classical computing) [8]. The algorithm consists of sev-
eral operations that can be summarized in an inverse quantum Fourier transform
and a modular exponentiation, as it is shown in Fig. 1. The most computation-
ally intensive part of Shor’s algorithm is precisely the modular exponentiation.
It is intuitive to solve this operation using circuits that perform multiplication

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

or exponentiation. However, such circuits are currently too resource-intensive for
current quantum computers [9, 10]. Instead, adders are commonly used to per-
form this operation in a more resource-efficient way [11]. Achieving more opti-
mized adders will allow the acceleration of this part of Shor’s algorithm, as well
as scaling its applicability to larger number sizes. With the implications that this
algorithm has on such matters as cryptographic protocols [12], the interest in
achieving such optimization is real and tangible [13]. However, it would be a mis-
take to limit the interest of adders to Shor’s algorithm, as there is a plethora of
algorithms that use addition as part of their computational process [13–16].

In classical computer structure theory, there are several types of adders that can
be classified in two main groups: ripple carry adders and carry lookahead adders
[18]. As a rule, circuits of the first type are cheaper but slower. Circuits of the sec-
ond type are faster but more expensive since the increase in speed is achieved at
the cost of involving more resources [19]. They are faster as they are focused on
computing the carries of each pair of digits as soon as possible. Achieving a faster
circuit will always be desirable, but it is subject to being able to perform this opera-
tion efficiently with the available resources. Classical computing has not the hard
resource constraints existing in quantum computing, so “fast and expensive” adders
are the most common option used to speed up the computation of the sum and the
many sum-dependent operations [20]. However, the choice is not trivial in quan-
tum computing. If this choice is based solely on the aforementioned resource limita-
tion, the most obvious choice would be to use a ripple carry adder. But in quantum
computing there is an even bigger problem: noise [21]. Because of this noise, each
extra operation increases the probability of errors, so fewer operations also mean
less exposure to noise and a consequent reduction in errors. Of course, this also ben-
efits ripple carry adders, as they involve fewer operations. However, time is also a
crucial factor—the longer the circuit duration, the greater the exposure to noise. In
fact, current qubits slowly lose their state over time even in the absence of opera-
tions [21]. Therefore carry lookahead adders must also be valued in today’s quantum
computing, although in this case the need for resource optimization is even greater
than in the other type of adders. Moreover, it is also useful to keep them in mind for
the future. After the so-called Noisy Intermediate-Scale Quantum (NISQ) era (the
name given to the era in which computers have a moderate number of qubits, but not
large enough to solve significant problems free of noise effects), it can be assumed
that the focus of interest will be on achieving fast circuits [22]. Hence, the focus of
this paper is on carry lookahead adders.

Fig. 1 Circuit for Shor’s algorithm. n = 2(log
2
N) qubits are initialized to �0⟩ , and m = 2(log

2
N) qubits to

�1⟩ . A Hadamard transform is applied to the first n qubits, and then the second m qubits are multiplied by
f (x) = axmodN for some random a < N that has not common factors with N. Finally, the inverse quan-
tum Fourier transform on the first n qubits is applied [17]

 F. Orts et al.

1 3

Back to the noise problem, this is a physics problem that can be partially
solved by proper circuit design to reduce, as mentioned above, the circuit life-
time and the number of circuit operations. It is also possible to use error detec-
tion and correction codes to reduce the effects caused by noise. So-called T gate
is widely used as it enables the use of such codes in a quantum environment.
However, this gate has a high cost that can exceed by a factor of 100 the cost of
other gates [23–25]. Thus, the problem comes from the need to use T gates to
allow the use of error detection codes, but minimizing their use so that the total
cost of the circuit is not excessive. The use and optimization of these gates is so
widespread that two metrics have emerged in the scientific community focused on
measuring the number of T gates a circuit has, as well as the number of consecu-
tive T gates that make up the critical path of the circuit. They are called T-count
and T-depth, respectively. Although initially the quantum cost and delay metrics
were used, which contemplate all the gates involved in the circuit, the high cost of
the T gates makes the cost of the rest of the gates negligible [26]. Therefore, the
T-count and T-depth metrics are increasingly displacing these other metrics [9,
27, 28].

We have developed three reversible quantum adders that are focused on reducing
the T-depth and the T-count. The reduction of the number of required qubits has
also been prioritized, according to the imperative need to reduce resources that has
been discussed. Generic designs for any quantum computer are presented, and the
feasibility of optimally transposing these designs to the real 20-qubit IBM Q Tokyo
quantum computer has been studied as an example of how our circuits should be
mapped in a real quantum computer. In addition to the problems already mentioned,
the qubits of today’s quantum computers are not all connected to each other. The
architecture of such computers is organized as a graph with these qubits being the
nodes and relationships being established only between certain nodes. In this way,
two qubits participating in the same operation will have to perform extra operations
(with the consequent increase in slowness and resources) to move their information
to related nodes (qubits) and bring that information back to the original nodes. An
initial optimized design that assigns to each physical qubit the appropriate circuit
qubit will reduce these swap operations and reduce time and resources.

The main contributions of this paper are the following: (1) it presents three
reversible quantum carry lookahead adders focused on reducing the T-depth and the
T-count, and the number of ancilla qubits; (2) it demonstrates the proper way to con-
struct the proposed adders in a real quantum computer using the most efficient tech-
niques available in the literature; and (3) it compares the proposed adders with the
existing state-of-the-art circuits and shows the superiority of the proposed ones for
the case of addition between 4-digit numbers.

The rest of the paper is organized as follows. The basic concepts about quan-
tum circuits necessary to understand the proposed implementations are presented in
Section 2. Section 3 explains the methodology used to build the adders. The three
proposed circuits are presented and detailed in Sect. 4. A real implementation in the
specific quantum computer is presented in Sect. 5. In Section 6, an analysis of the
proposed adders and a comparison between them and the state-of-the-art adders is
carried out. Finally, Section 7 presents the conclusions.

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

2 Quantum circuits and gates

The most common way to program a quantum computer is by means of circuits.
Analogous to classical circuits, quantum circuits are built using gates. These “quan-
tum gates” can be expressed mathematically by complex unitary matrices that oper-
ate on qubits. There are an infinite number of gates, but there is a small set of them
that allows us to approximate the rest [5]. Only four different gates are used in the
circuits of this paper: the CNOT gate, the Toffoli gate, the Temporary logical-AND
gate, and its uncomputation. However, these gates (except the CNOT gate) are built
using other smaller gates (Z, T, S, and Hadamard gates, only Clifford+T gates are
considered in this work), so it is also necessary to describe these other gates. Among
these gates, we highlight the T gate, which is of vital importance in this work and
whose usefulness has already been explained in the previous section. The symbols
used to represent such gates in this work are shown in Fig. 2. A simple description
of them is given below. For the sake of simplicity, it is assumed that the measuring
devices will be fixed and that only the standard bases will be used for measuring.

• The Z gate leaves the amplitude of �0⟩ intact, but changes the sign of the ampli-
tude of �1⟩.

• The Hadamard gate creates an equal superposition of the two basis states.
• The T gate performs a �∕4 phase.
• The S gate performs a �∕2 phase.
• The CNOT gate operates on two qubits. One of them acts as a control, and the

other as a target, so that the gate exchanges base amplitudes if and only if the con-
trol qubit is in state �1⟩ . Mathematically, let �q⟩ = r�00⟩ + s�01⟩ + t�10⟩ + u�11⟩ a
random quantum state. Then, the result of applying a CNOT on this state q will
be r�00⟩ + s�01⟩ + u�10⟩ + t�11⟩.

• The Toffoli gate is a generalization of the CNOT gate, but involving two con-
trol qubits. The most optimized implementation of this gate in terms of T-cost is
shown in Fig. 3 [24].

• The temporary logical-AND gate was presented by Gidney in [29] (Fig. 4). This
gate performs an AND operation on the value of two qubits and stores it in a
third qubit that needs to be initialized to a specific value of 1

√
2

(�0⟩ + e
i�

4 �1⟩).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Symbol of the gates used in the proposed circuits: a CNOT gate, b Toffoli gate, c Temporary
logical-AND gate, and d Peres gate. Moreover, other gates are used to build the Toffoli gate and the
Temporary logical-AND gate and its uncomputation: e Hadamard gate, f Z gate, g T gate, and h S gate

 F. Orts et al.

1 3

• Given qubits A, B, and C, the Peres gate produces an effect similar to that of
applying a Toffoli gate with A and B acting as control qubits and C as the target,
and then applying a CNOT gate with A as the control qubit and B as the target.

For the reasons stated in the introduction, this work aims to minimize the num-
ber of T gates. Of the gates used (CNOT, Toffoli, Temporary logical-AND, and its
uncomputation), the CNOT gates and the uncomputation of the temporary logical-
AND operation do not involve the use of T gates. The Toffoli and Temporary logi-
cal-AND gates have a T-count of 7 and 4, respectively, as can be seen in Figures 3
and 4 (it is important to note that the S gate also counts as a T gate). Similarly, we
set their T-depth as 3 and 2, respectively. However, the second gate requires prepar-
ing a specific quantum state and cannot be applied on a qubit already in use.

On the other hand, it is necessary to revert qubits that have been used to perform
auxiliary operations and no longer have a useful value to their initial value. This is
called uncomputation of garbage outputs. In the case of wanting to revert a Toffoli
operation, another Toffoli gate will be necessary with the corresponding expense in
T gates [30]. However, in the case of a temporary logical-AND construction, revers-
ing such an operation by means of its uncomputation gate has no extra cost in terms
of T gates, as it is shown in Fig. 5.

2.1 Fault‑tolerance

It has been mentioned before that current quantum computers suffer from external
and internal noise, which causes errors in their computation. Reducing the number

Fig. 3 Symbol of the Toffoli gate and its implementation. It has a T-count of 7 and a T-depth of 3

Fig. 4 Symbol of the temporary logical-AND gate and its implementation. It has a T-count of 4 and a
T-depth of 2. The S gate counts as a T gate to compute these metrics

Fig. 5 Symbol of the uncompu-
tation of the temporary logical-
AND gate. No T gates are used

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

of operations and the depth of the circuit reduces the noise exposure of the circuits
and therefore, also the errors. It is equally important to consult the current state of
the quantum computer to choose which physical qubits to work on, since depending
on the current calibration, not all qubits offer the same stability at all times [31]. It
is also essential to adapt the designs to the specific topologies of the devices to be
operated on in order to reduce the number of SWAP operations, which will have a
positive impact on the number of resulting operations and the depth of the circuit.
However, using these strategies alone is insufficient.

A widespread technique for building fault-tolerant quantum circuits is to design
them using only Clifford+T gates [30, 32, 33]. A circuit built exclusively with these
gates will allow the use of error correction codes [34–36], which together with
the aforementioned strategies will improve its error tolerance. In reality, the use
of CNOT, S and H gates is sufficient to implement an error correction strategy in
a quantum device. However, the Clifford group is not sufficient to implement any
function in such devices. This is why the T gate is often added to the Clifford group
(forming the Clifford+T group) to achieve a universal group of quantum gates.
However, the high cost of the T gate (it is obvious from its name that it is included in
the Clifford+T group) is a subject of special care, giving rise to the aforementioned
T-count and T-depth metrics as explained above.

At the beginning of Section 2, it was stated that there is a set of gates that allows
all the others to be approximated. For the sake of accuracy, it is useful to clarify that
with a finite set of quantum gates it is impossible to reproduce exactly the infinite
possible quantum gates. However, the group of gates that constitutes the Clifford+T
set does allow to approximate any other function. For this reason, this group is
labelled as “universal” [5].

3 Methodology to design carry look‑ahead adders

Let S = A + B be the operation to be performed, where A = aN−1, ..., a0 and
B = bN−1, ..., b0 are two positive numbers expressed in binary notation, and N is the
maximum size of binary digits (bits) handled. Quite intuitively, addition will begin
with the sum of the least significant pair of digits, i.e. a

0
 and b

0
 . This operation pro-

duces two results: the sum of the digits, which we can express as s
0
= a

0
⊕ b

0
 , and

the carry output, which we mathematically represent as Ci+1 = a
0
b
0
 . Circuits capa-

ble of performing the addition of two digits and returning their sum and carry output
are commonly called half adders. From here on, we continue computing the sum of
the digits ai and bi , with i = 1 up to N − 1 , but now taking into account the carry gen-
erated by the previous pair ai−1 and bi−1 . To account for the previous carry (formally
named carry input), the operations si and Ci+1 are rewritten as si = ai ⊕ bi ⊕ Ci and
Ci+1 = (ai ⊕ bi)Ci ⊕ aibi . Circuits capable of performing the addition of three digits
and returning their sum and carry output are commonly called full adders. As a rule,
an adder can be constructed to allow the addition of numbers of size N by connect-
ing one half adder and N − 1 full adders. For the sake of clarity, it is mentioned that
it is also common to use N full adders, allowing an input carry to be incorporated
even at the beginning.

 F. Orts et al.

1 3

Although constructing a circuit in the manner indicated in the previous paragraph is
simple, the complexity will be O(N) since the sum of each pair of digits needs to wait
until the sum of the previous pair has been calculated. In order to reduce this delay and
to parallelize the computation of the sums of pairs, carry lookahead adders anticipates
their carries by a recurrence relation. In particular, they are based in the computation
of two signals, Gi and Pi (commonly named carry generation and carry propagation,
respectively), which can be calculated as follows [19]:

using such signals, the computation of the carries can be redefined as follows:

Although the methodology described above is the most widely used for construct-
ing carry lookahead adders, other alternatives have been proposed in the literature
[37, 38]. Some of these alternatives have been used in the construction of adders for
quantum computing, as we discussed in [13]. Particularly interesting is the work pre-
sented by Bahadori et al. [38], where the authors use a hybrid methodology for the
calculation of the sum, whereby modules called carry lookahead sub-tree (CLST)
are constructed to allow a quick calculation of the carries. In turn, these modules are
combined in a linear way to calculate the sum as a whole. In our work, the focus is
on the methodology used to build the CLST blocks, whose conversion to a quantum
circuit can be done by minimizing the T-count with respect to the implementation of
a circuit based on Gi and Pi signals.

CLST blocks define two new signals called Alive (Al) and Generate (Gn) to calcu-
late the carry outputs. Initially, such signals are computed for each i-pair according to
these expressions:

Then, they are redefined as:

where i and j are related to a pair of consecutive outputs from the previous level,
and k with the output at the new level. Figure 6 shows the structure of a CLST block
of size N = 4 , which is the size used in the present work. In the figure, the white
squares represent the first level where each pair of digits (a

0
b
0
 to a

3
b
3
) computes the

signals according to Eq. 3. Once the value for each pair is computed, a tree structure
is followed, computing the successive signal values using equation 4.

However, the CLST block does not calculate some intermediate carries that are nec-
essary to calculate partial results of the sum. In the work of Bahadori et al. [38], such
values are calculated by other circuits, which are not of interest in the present work.

As far as our adders are concerned, the carries can be computed as follows:

(1)Gi = aibi; Pi = ai + bi

(2)Ci+1 = Gi + PiCi

(3)Ali = ai + bi; Gni = aibi

(4)Alk = AliAlj; Gnk = Gni + GnjAli

(5)Ck = Gni + GnjAli

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

The proposed circuits use equations 3,4 and 5 to perform the addition, although they
require some extra operation to complete the addition. Moreover, it is necessary to
implement the circuits taking into account the peculiarities of quantum computing,
such as reversibility. These extra operations are detailed in the next section.

4 Design of the quantum adders

Three circuits (adders) are presented in this section. They follow the same meth-
odology but differ in the way they perform some operations. Initially, we describe
the necessary steps to reproduce the first circuit, which of the three is the one that
most directly implements the methodology explained in the previous section. Sub-
sequently, we explain how to implement circuits two and three from this first circuit.

The first proposed circuit (will be referred to as Circuit 1) uses only three kinds
of gates to implement equations 3, 4, and 5: the CNOT gate, the temporary logi-
cal-AND gate, and its uncomputation gate. The main objective of the circuit is to
keep the T-count as small as possible, avoiding the use of the Toffoli gate, which,
as explained above, has a higher cost both in the operation itself and later on by
uncomputing the generated garbage outputs. The first level of Gni signals of Eq. 3,
and the Al signals referred in Eq. 4 are computed using temporary-logical AND
gates. Therefore, an extra qubit will be necessary for each of these operations. Gnk
of Eq. 4 is also partially computed using temporary-logical AND gates, in particu-
lar the product GnjAli . All other operations of Eq. 3 and 4 are OR logic operations.
However, due to the definition of the signals Gn and Al, the two entries of such OR
operations cannot in any case be 1 at the same time (except as stated in Eq. 3 for
Ali). Therefore, such operations can be computed using CNOT gates. Regarding the
carries of Eq. 5, they will be treated the same as Gnk in Eq. 4, although it is neces-
sary to calculate the signals not previously computed by means of Eqs. 3 and 4.

Once it became clear how each operation is implemented, the first step is to
reproduce the CLST block of Fig. 6 using the quantum gates mentioned in the
previous paragraph to compute Al and Gn. Once the signals are computed, the

Fig. 6 Structure of the CLST
block proposed in [38], for
the N = 4 case. White boxes
computes Eq. 3, whereas black
boxes computes Eq. 4

 F. Orts et al.

1 3

calculation of the digits of the sum, si = ai ⊕ bi ⊕ Ci , is carried out. As it was
mentioned, the carries Ci not included in the CLST block must be calculated in
order to complete the sum. Of course, it is not necessary to wait for the CLST
block to finish its calculations before starting the computation of these carries,
but their computation can start as soon as the values they need are already avail-
able. The complete design of Circuit 1 is shown in Fig. 7 for the case N = 4 .
Although in this paper the proposal is focused on the case N = 4 , the methodol-
ogy is given below in detail to build the circuit for any size N:

• Step 0: The data are codified into the circuit using basis encoding. Two pairs of
N qubits are required to represent each of the two N-digit numbers A and B.

• Step 1: Gni = aibi (Eq. 3) is computed for each pair of digits (that is, for i = 0
to N − 1). To implement these operations, temporary-logical AND gates will be
used. Such gates involve an ancilla qubit. Therefore, N extra qubits will be neces-
sary in the circuit. All these calculations can be performed in parallel as there are
no dependencies between them.

• Step 2: Ali is calculated for i = 1 to N − 1 according to Eq. 3. Since Al
0
 is not

used in the CLST block, it is not computed. These operations are carried out
using CNOT gates, being ai the control qubits and bi the target one.

• Step 3: From this point on, Eq. 3 is no longer used for any calculations, but
is replaced by Eq. 4. For u = 1 to log(N) − 1 and for v = 1 to N

2u
− 1 , AliAlj

and AljAlk are computed using temporary logical-AND for indexes i = 2
uv ,

j = 2
uv + 2

u , and k = 2
uv + 2

u−1.

Fig. 7 First proposed quantum carry-lookahead adder, labeled as Circuit 1. It has a T-count of 36 and a
T-depth of 10. The number of ancilla qubits is 9. ai and bi are the digits of the numbers to be added, and
si are the digits of the result. The qubit marked as A are auxiliary qubits prepared in a special state. The
vertical lines are used to separate the necessary steps for the construction of the circuit and are shown for
the sake of clarity. However, to minimize the logical depth of the circuit, some intermediate uncomputa-
tions are made

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

• Step 4: For u = 1 to log(N) and for v = 0 to N
2u
− 1 : to compute Gni + GnjAli

and Gnj + GnkAlj for indexes i = 2
uv , j = 2

uv + 2
u , and k = 2

uv + 2
u−1 . The

products GnAl are computed using temporary-logical AND gates.
• Step 5: For i = 0 to N−2

2
 , temporary-logical AND gates are applied to compute

the carries not included in the CLST block. Such carries are used to calculate
Ci ⊕ bi , which is necessary to compute the digits of S. According to Eq. 5, the
carries are computed using the Al and Gn signals of the one or two previous
levels (i.e. Cj−k;k = 1 or 2) [38]. Due to such dependencies, they can not be
computed in parallel. However, only two T-depth levels are required, avoiding a
higher expansion in terms of T-depth presented in other adders.

• Step 6: The circuit is uncomputed to revert all garbage outputs to the initial
state of the qubits. Before their uncomputation, the carries are used to compute
Ci ⊕ bi (using CNOT gates).

• Step 7: S is completed performing ai ⊕ bi for each pair ai and bi (using, again,
CNOT gates).

The use of temporary-logical AND gates greatly reduces the T-count and T-depth
of the circuit, but at the cost of increasing the required number of ancilla qubits. In
particular, the circuit of Fig. 7 has 9 ancilla qubits. This number can be reduced by
replacing temporary logical-AND gates by Toffoli ones. Performing these changes
will increase the T-count and T-depth, but there are some operations in the circuit
that can be carried out with Toffoli gates without increasing these values too much.
For instance, in those operations where it is not necessary to uncompute the qubits
since they are the values of the result. This is the case of s

4
 . On the other hand, we

can also replace the temporary logical-AND gates used to perform a
0
b
0
⊕ b

1
 and

a
2
b
2
⊕ b

3
 , which created a lattice of nested auxiliary qubits. These changes reduce

the ancilla qubits from 9 to 5, with the counterpart of increasing the T-count from
36 to 51, and the T-depth from 10 to 11, respectively. The high increment in the
T-count is due the Toffoli gate that performs a

0
b
0
⊕ b

1
 , since another Toffoli gate

is necessary at the end to uncompute it. This new version of the circuit (will be
referred to as Circuit 2) is shown in Fig. 8.

Fig. 8 Second proposed quantum carry-lookahead adder, labeled as Circuit 2. It has a T-count of 51 and
a T-depth of 11, but it saves 4 ancilla qubits. The numbers to the left of the circuit identify the position of
each qubit, and are shown for ease of understanding in future explanations

 F. Orts et al.

1 3

A third version of the circuit can be obtained at the cost of needing one more
auxiliary qubit but significantly reducing the T-count. If the mentioned operation
a
0
b
0
⊕ b

1
 is computed using a temporary logical-AND gate instead of a Toffoli one,

the following Toffoli gate (used to uncompute the previous one) can be also replaced
by an uncomputation gate of the temporary logical-AND. This simple operacion
will reduce the T-count from 51 to 41, keeping the T-depth invariant. At the cost,
as mentioned above, of increasing the auxiliary qubits by one. This third version is
shown in Fig. 9. It will be referred to as Circuit 3.

5 Mapping circuits on a real quantum computer

The three circuit designs, shown in Fig. 7, 8, and 9, respectively, represent the oper-
ations that must be applied to achieve S = A + B . However, in a real quantum com-
puter, these designs can hardly be directly applied since the available qubits on such
a computer are not all connected to each other.

As an example, the topology of the IBM Q Tokyo computer is shown in
Fig. 10. Let us suppose that we intend to implement Circuit 2, this circuit is
taken as an example since it is the one that requires the least number of qubits.
If we directly map Circuit 2 onto IBM Q Tokyo, qubit 0 of the computer will

Fig. 9 Third proposed quantum carry-lookahead adder, labeled as Circuit 3. It has a T-count of 41 and a
T-depth of 11. The number of ancilla qubits is 6

Fig. 10 Map for the IBM Q
Tokyo architecture

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

receive a
0
 , qubit 1 will receive b

0
 , qubit 2 will receive the first auxiliary qubit,

and so on. The first quantum gate, a temporary logical-AND gate that performs
the operation a

0
b
0
 and writes the result into the first auxiliary qubit, requires a

connection of the first three qubits. However, as seen in Fig. 10, the first three
qubits of the computer are not all connected to each other. Specifically, qubits 0
and 2 have no direct connection. Many other operations in Circuit 2 cannot be
made directly as there is no real physical connection between the corresponding
qubits.

The way quantum computers solve this problem is to perform SWAP opera-
tions to exchange the values between physical qubits so that these values remain
in qubits that do have a physical connection. The SWAP operation does not
involve increasing the T-count or the T-depth. However, they do increase the
overall quantum cost of the circuit and, obviously, make the circuit last longer.
It has already been mentioned that longer lifetime means more noise exposure.
Therefore, it is a priority to minimize the number of SWAP operations needed to
implement the circuit in the real quantum computer.

The problem of efficiently mapping a circuit to a topology (i.e. minimizing
SWAP operations) is widely addressed in the literature [31, 39, 40]. This prob-
lem is a general case of fitting a graph into a larger graph, and it is beyond the
scope of this paper to study such a problem in its most general case. We have
considered the work proposed by Bhattacharjee et al. [31] to develop the optimal
implementations for each candidate machine minimizing losses caused by SWAP
operations. Let a configuration Ct be a set of ordered tuples (qi, v) , where qubit qi
is at location v in cycle t. The objective is to determine how many switch gates
are needed to transform the location of the qubits of an initial configuration C and
a topology graph T so that all pairs of qubits in the first level of operations (the
first set of operations in the circuit, which we can denote as L

1
) are neighbours,

and then modify the location of the qubits again to be neighbours for the second
level of operations (L

2
) and so on, until the last level (Lk) is fulfilled and the com-

bined delay of the switch gates and the gates present in the real circuit is minimal.
Mathematically speaking, the target can be specified as follows:

being ai,t 1 if there are gates in Level i that are scheduled in cycle t, and 0 otherwise.
Figure 11 shows, in matrix format, the relationships between the physical

qubits of the quantum computer. It is equivalent to the diagram in Fig. 10. Fig-
ure 12 shows, also in matrix format, the necessary relationships to directly imple-
ment Circuit 2. Applying the algorithm of Bhattacharjee et al., it is obtained that
the most optimal mapping of Circuit 2 in the machine is the one shown in Fig. 13.
Although there is no direct implementation that totally eliminates the need for
SWAP operations, it is only necessary to move the value of one qubit of the cir-
cuit (number 7 in the figure).

(6)Minimize

k∑

i=0

T∑

t=0

tai,t

 F. Orts et al.

1 3

There is one final consideration that must be taken into account. Not all connec-
tions between qubits are equally reliable, but the margin of error of each connection
can be quantified. The algorithm of Bhattacharjee et al. also allows prioritizing qubit
assignments taking into account these values so that quantum gates can be imple-
mented while minimizing error. Since these values depend on the current calibration
of the machine, we have not included them.

Fig. 11 Map for the IBM Q Tokyo architecture

Fig. 12 Map with the necessary connections between qubits in Circuit 2

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

6 Results and discussion

The proposed and the state-of-the-art circuits have been designed and reproduced in
Python and executed in IBM Quantum Experience devices and simulators. Once this
reproduction has been carried out, the number of involved qubits, the number of T
gates, and the number of T gates that must be executed sequentially, were counted
using a simple Python routine (taking into account that some gates do not explic-
itly state their T-count and T-depth, and making the appropriate conversion), thus
obtaining the metrics described below.

From the explanation of the circuit methodology, as well as the graphical designs
shown in the corresponding section, it is clear that Circuits 1, 2, and 3 have a
T-count of 36, 51, and 41, respectively; and a T-depth of 10, 11, and 11, respec-
tively. In terms of ancilla qubit, they need 9, 5, and 6 qubits, respectively. None of
the proposed circuits use non-valid operations for a quantum environment, nor do
they contain garbage outputs. These values can be easily verified by knowing that
a Toffoli gate has a T-count of 7, and a T-depth of 3, a temporary-logical gate has
a T-count of 4 and a T-depth of 2 (and its uncomputation has no cost in terms of T
gates), and no other gate involved in the circuits has T-count nor T-depth. In terms
of T-count:

• Circuit 1 has 9 temporary logical-AND gates: 9 × 4 = 36.
• Circuit 2 has 4 temporary logical-AND gates and 5 Toffoli gates:

4 × 4 + 5 × 7 = 51.
• Circuit 3 has 5 temporary logical-AND gates and 3 Toffoli gates:

5 × 4 + 3 × 7 = 41.

In terms of T-depth:

• Circuit 1 computes sequentially 5 temporary logical-AND gates: 5 × 2 = 10.

(a) (b)

Fig. 13 (a) Circuit 2 mapped into the IBM Q Tokyo architecture. The numbers used correspond to the
order of the qubits shown in Figure 8, starting from the top. SWAP operations are only required to move
node 7 (b

2
 in Figure 8). (b) The connection between qubits in Circuit 2 is graphically shown for the sake

of clarity

 F. Orts et al.

1 3

• Circuit 2 computes sequentially 1 temporary logical-AND gate and 3 Toffoli
gates: 1 × 2 + 3 × 3 = 11 . Figure 8 shows that the first temporary logical-AND
gates are computed in parallel to the first Toffoli gate. The Toffoli gate is slower,
so it is the gate that sets the speed (the T-depth in this case) in this first part.

• Circuit 3 computes sequentially 1 temporary logical-AND gate and 3 Toffoli
gates: 1 × 2 + 3 × 3 = 11.

In order to compare the proposed circuits with those available in the literature, we
have mainly relied on two sources. The first source is an exhaustive review of quan-
tum adders [13], which makes different comparisons between the various types of
adders. One of these comparisons is devoted precisely to carry lookahead adders.
The second source we have used is the paper by Thapliyal et al. [30], which pre-
sents four carry lookahead adders and also makes a complete comparison between
adders in this category. Between the two papers, they analyse a very large number
of adders. In order not to extend the comparison in this section too much by includ-
ing information already collected in these papers, the comparison shown below only
includes the best circuits collected in such sources.

Table 1 summarizes a comparison in terms of T-count, T-depth, and ancilla qubits
between the best adders in the state-of-the-art and our three circuits. In terms of
T-count and T-depth, the best options are the Out-FT-QCLA1 circuit and Circuit 1.
Both circuits have the same T-count, 36, and the same T-depth, 10. However, Circuit
1 has one less ancilla input. The next best circuit in these terms is Circuit 3 with 41,
but it involves only 6 ancilla qubits, that is 3 fewer qubits than Circuit 1 and 4 with
respect to the Out-FT-QCLA1 circuit. However, it also increases the T-depth by 1
compared to both circuits. On the other hand, the best circuits in terms of ancilla
qubits are the In-FT-QCLA1 circuit and Circuit 2, with only 5 ancilla qubits. Nev-
ertheless, the circuit of [30] has a T-count and a T-depth of 76 and 22, respectively,
whereas ours has values that outperform it greatly: 51 and 11, respectively.

The methodology used to build the proposed circuit can be applied to build larger
adders. In such sizes, the adders proposed by Thapliyal et al. [30] would be the
most efficient in terms of T-count, T-depth, and ancilla inputs. It is due to the fact
that intermediate carry calculations are increasingly omitted to compute the values

Table 1 Depth and cost comparisons between the most optimized 4-digit adders in terms of T gates

Adder T-count T-depth Ancilla qubits

Drapper et al. [41] 70 18 6
Lisa et al. [42] 60 40 8
Thapliyal et al. (Out-FT-QCLA1) [30] 36 10 10
Thapliyal et al. (Out-FT-QCLA2) [30] 48 13 6
Thapliyal et al. (In-FT-QCLA1) [30] 56 20 13
Thapliyal et al. (In-FT-QCLA2) [30] 76 22 5
Circuit 1 36 10 9
Circuit 2 51 11 5
Circuit 3 41 11 6

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

indicated by Eq. 4. These uncomputed carries will have to be calculated using Eq. 5,
causing an extra cost that does not occur in adders that use the classical methodol-
ogy. This analysis focuses, as indicated, on the 4-digit size. For this size, our contri-
butions are the most efficient in terms of T-count, T-depth, and ancilla qubits, as can
be observed in Table 1.

7 Conclusions

We have presented three versions of a 4-digit carry lookahead adder optimized in
terms of T-count, T-depth, and number of ancilla qubits. These adders use an alter-
native methodology that allows a fast calculation of the carries using operations
with a lower associated T-count. Firstly, the design of the three adders, which have
been based exclusively on Clifford+T gates, has been described in detail, showing
the necessary steps, gates and qubits to build them. It has also been explained how
the adders benefit from the temporary-logical AND and its capacity of optimizing
resources in contrast to Toffoli gates to build the blocks defined in [38], adding sev-
eral modifications to adapt it to a quantum environment. Secondly, it has been indi-
cated the proper way to construct the circuits in a real quantum computer in order
to avoid increases in their delay that make them more vulnerable to noise. We have
also shown how this process does not lead in any case to an increase of the T-count
or T-depth. Finally, we have carried out a comparison in terms of T-depth, T-count,
and number of ancilla qubits between our circuits and the best adders available in
the literature. From this comparison, it can be observed that the proposed adders
outperform the state-of-the-art circuits in terms of T-depth, T-count, and number of
ancilla qubits.

As future work, it is intended to study the implementation of this methodology
for larger sizes. The extra operations necessary to calculate the carries and the sums
that are not included in the CLST block increase as the size of the numbers A and B
increases their size. But if a sufficiently efficient implementation is found for them,
the T-count and T-depth values could be reduced with respect to the circuits studied
in Table 1 for such sizes.

Acknowledgements This work has been supported by the projects: RTI2018-095993-B-I00 (funded by
MCIN/AEI/10.13039/501100011033/ FEDER “A way to make Europe”); P20_00748, UAL2020-TIC-
A2101, and UAL18-TIC-A020-B (funded by Junta de Andalucía and the European Regional Develop-
ment Fund, ERDF).

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

 F. Orts et al.

1 3

directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Nielsen MA, Chuang IL (2002) Quantum computation and quantum information. Cambridge Uni-
versity Press, New York

 2. Schuld M, Sinayskiy I, Petruccione F (2015) An introduction to quantum machine learning. Con-
temp Phys 56(2):172–185

 3. Pérez-Salinas A, Cervera-Lierta A, Gil-Fuster E, Latorre JI (2020) Data re-uploading for a universal
quantum classifier. Quantum 4:226

 4. Grover LK (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the
Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219

 5. Bernhardt C (2019) Quantum computing for everyone. MIT Press, Cambridge
 6. Singh D, Jakhodia S, Jajodia B (2022) Experimental evaluation of adder circuits on ibm qx hard-

ware. Inventive computation and information technologies. Springer, New York
 7. Pavlidis A, Gizopoulos D (2014) Fast quantum modular exponentiation architecture for shor’s fac-

toring algorithm. Quantum Inf Comput 14(7–8):649–682
 8. Shor PW (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Pro-

ceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 . Ieee
 9. Gayathri S, Kumar R, Dhanalakshmi S, Dooly G, Duraibabu DB (2021) T-count optimized quantum

circuit designs for single-precision floating-point division. Electronics 10(6):703
 10. Nagamani A, Ramesh C, Agrawal VK (2018) Design of optimized reversible squaring and sum-of-

squares units. Circuits, Syst, Signal Process 37(4):1753–1776
 11. Liu X, Yang H, Yang L (2021) Cnot-count optimized quantum circuit of the shor’s algorithm. arXiv

preprint arXiv: 2112. 11358
 12. Rivest RL, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key

cryptosystems. Commun ACM 21(2):120–126
 13. Orts F, Ortega G, Combarro E, Garzón E (2020) A review on reversible quantum adders. J Netw

Comput Appl 170:102810
 14. Orts F, Ortega G, Garzón E (2019) An optimized quantum circuit for converting from sign-magni-

tude to two’s complement. Quantum Inf Process 18(11):332
 15. Orts F, Ortega G, Cucura A, Filatovas E, Garzón E (2021) Optimal fault-tolerant quantum compara-

tors for image binarization. J Supercomput 77:1–12
 16. Martín-Guerrero JD, Lamata L (2022) Quantum machine learning: a tutorial. Neurocomputing

470:457–461
 17. Vandersypen LM, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL (2001) Experi-

mental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature
414(6866):883–887

 18. Harris SL, Harris D (2015) Digital design and computer architecture, ARM. Morgan Kaufmann,
Burlington

 19. Floyd TL (2014) Digital fundamentals, 11th edn. Prentice Hall, Saddle River
 20. Hennessy JL, Patterson DA (2011) Computer architecture: a quantitative approach. Elsevier,

Amsterdam
 21. Cheng K-W, Tseng C-C (2002) Quantum plain and carry look-ahead adders. arXiv preprint

quant-ph/0206028
 22. Preskill J (2018) Quantum computing in the NISQ era and beyond. Quantum 2:79
 23. Miller DM, Soeken M, Drechsler R (2014) Mapping NCV circuits to optimized Clifford+T circuits.

In: International Conference on Reversible Computation, pp. 163–175 . Springer
 24. Amy M, Maslov D, Mosca M, Roetteler M (2013) A meet-in-the-middle algorithm for fast syn-

thesis of depth-optimal quantum circuits. IEEE Trans Comput Aided Des Integr Circuits Syst
32(6):818–830

 25. Amy M, Maslov D, Mosca M (2014) Polynomial-time t-depth optimization of clifford+ T circuits
via matroid partitioning. IEEE Trans Comput Aided Des Integr Circuits Syst 33(10):1476–1489

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2112.11358

1 3

Implementation of three efficient 4‑digit fault‑tolerant…

 26. Paler A, Oumarou O, Basmadjian R (2021) On the realistic worst case analysis of quantum arithme-
tic circuits. arXiv preprint arXiv: 2101. 04764

 27. Fösel T, Niu MY, Marquardt F, Li L (2021) Quantum circuit optimization with deep reinforcement
learning. arXiv preprint arXiv: 2103. 07585

 28. Kissinger A, van de Wetering J (2020) Reducing the number of non-clifford gates in quantum cir-
cuits. Phys Rev A 102(2):022406

 29. Gidney C (2018) Halving the cost of quantum addition. Quantum 2:74
 30. Thapliyal H, Muñoz-Coreas E, Khalus V (2021) Quantum circuit designs of carry lookahead adder

optimized for T-count T-depth and qubits. Sustain Comput Inf Syst 29:100457
 31. Bhattacharjee D, Saki AA, Alam M, Chattopadhyay A, Ghosh S (2019) MUQUT: Multi-constraint

quantum circuit mapping on NISQ computers. In: 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 1–7 . IEEE

 32. Czarnik P, Arrasmith A, Coles PJ, Cincio L (2021) Error mitigation with clifford quantum-circuit
data. Quantum 5:592

 33. Mirizadeh SMA, Asghari P (2021) Fault-tolerant quantum reversible full adder/subtractor: Design
and implementation. Optik, 168543

 34. Paler A, Polian I, Nemoto K, Devitt SJ (2017) Fault-tolerant, high-level quantum circuits: form,
compilation and description. Quantum Sci Technol 2(2):025003

 35. Zhou X, Leung DW, Chuang IL (2000) Methodology for quantum logic gate construction. Phys Rev
A 62(5):052316

 36. Boykin PO, Mor T, Pulver M, Roychowdhury V, Vatan F (2000) A new universal and fault-tolerant
quantum basis. Inf Process Lett 75(3):101–107

 37. Pai Y, Chen Y (2004) The fastest carry lookahead adder. In: Proceedings. DELTA 2004. Second
IEEE International Workshop on Electronic Design, Test and Applications, pp. 434–436

 38. Bahadori M, Kamal M, Afzali-Kusha A, Afsharnezhad Y, Salehi EZ (2017) CL-CPA: a hybrid
carry-lookahead/carry-propagate adder for low-power or high-performance operation mode. Inte-
gration 57:62–68

 39. Lye A, Wille R, Drechsler R (2015) Determining the minimal number of swap gates for multi-
dimensional nearest neighbor quantum circuits. In: The 20th Asia and South Pacific Design Auto-
mation Conference, pp. 178–183 . IEEE

 40. Maslov D, Falconer SM, Mosca M (2008) Quantum circuit placement. IEEE Trans Comput Aided
Des Integr Circuits Syst 27(4):752–763

 41. Draper TG, Kutin SA, Rains EM, Svore KM (2004) A logarithmic-depth quantum carry-lookahead
adder. arXiv preprint quant-ph/0406142

 42. Lisa NJ, Babu HMH (2015) Design of a compact reversible carry look-ahead adder using dynamic
programming. In: 2015 28th International Conference on VLSI Design, pp. 238–243 . IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/2101.04764
http://arxiv.org/abs/2103.07585

	Implementation of three efficient 4-digit fault-tolerant quantum carry lookahead adders
	Abstract
	1 Introduction
	2 Quantum circuits and gates
	2.1 Fault-tolerance

	3 Methodology to design carry look-ahead adders
	4 Design of the quantum adders
	5 Mapping circuits on a real quantum computer
	6 Results and discussion
	7 Conclusions
	Acknowledgements
	References

