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Abstract
Adders are one of the most interesting circuits in quantum computing due to their 
use in major algorithms that benefit from the special characteristics of this type of 
computation. Among these algorithms, Shor’s algorithm stands out, which allows 
decomposing numbers in a time exponentially lower than the time needed to do it 
with classical computation. In this work, we propose three fault-tolerant carry look-
ahead adders that improve the cost in terms of quantum gates and qubits with respect 
to the rest of quantum circuits available in the literature. Their optimal implementa-
tion in a real quantum computer is also presented. Finally, the work ends with a rig-
orous comparison where the advantages and disadvantages of the proposed circuits 
against the rest of the circuits of the state of the art are exposed. Moreover, the infor-
mation obtained from such a comparison is summarized in tables that allow a quick 
consultation to interested researchers.
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1 Introduction

Quantum computing emerges as a computing paradigm that tries to reproduce the 
characteristics of quantum mechanics to obtain computational advantages. While 
it is currently under study to define what kind of problems can be solved more 
efficiently with a quantum computer than with a classical computer, it has been 
shown that there are problems that can be solved more efficiently with quantum 
computing [1]. Quantum computing uses the concept of the quantum bit (qubit) 
as a basic unit of information representing not one of two states as a bit does, but 
a quantum state consisting of a combination of two values taken as the basis of 
the space in which it is operating. Through this superposition of values, qubits 
make it possible to represent and operate with probabilistic amplitudes, which 
with some ingenuity can lead to results with fewer operations than a classical 
computer. Other advantages offered by this disruptive are the possibility of repre-
senting information more efficiently, and the design of genuinely quantum models 
that allow problems to be addressed in ways never seen before in classical com-
putation [2].

The most common way to programme a quantum computer is through the cir-
cuit paradigm. Since quantum mechanics is apparently reversible, these circuits 
must be reversible. Small circuits are a valuable resource. This is due to the limi-
tations of current quantum computers and the high computational cost associated 
with quantum simulators. Small circuits are of great interest even when they do 
not offer any quantum advantage, since they can be used as part of larger algo-
rithms that take advantage of quantum computation [3]. One of the best examples 
to illustrate this need for optimized circuits is Grover’s algorithm. This algorithm 
makes it possible to speed up a search problem compared to existing classical 
algorithms, if the search problem fulfils certain conditions [4]. An indispensable 
element of Grover’s algorithm is the so-called oracle, which, to simplify its defi-
nition, consists of a circuit that checks whether an element of the search fulfils 
a condition or not. The oracle is customizable to each problem (assuming that 
the problem is susceptible to be solved by such an algorithm), and the optimiza-
tion of its design is fundamental to maintain the advantage achieved by the main 
algorithm. A slow oracle with many operations would weigh down the reduction 
in search iterations achieved by Grover’s algorithm, making the algorithm slower 
overall than the classical alternatives [5].

Focusing on the optimization of quantum circuits, adders receive special inter-
est from the scientific community [6]. This is because adders are used to perform 
modular exponentiation in Shor’s algorithm [7]. Shor’s algorithm is undoubt-
edly the most famous quantum algorithm, since it manages to factor numbers 
and compute discrete logarithms in polynomial time (something that has not 
been achieved to date in classical computing) [8]. The algorithm consists of sev-
eral operations that can be summarized in an inverse quantum Fourier transform 
and a modular exponentiation, as it is shown in Fig.  1. The most computation-
ally intensive part of Shor’s algorithm is precisely the modular exponentiation. 
It is intuitive to solve this operation using circuits that perform multiplication 



1 3

Implementation of three efficient 4‑digit fault‑tolerant…

or exponentiation. However, such circuits are currently too resource-intensive for 
current quantum computers [9, 10]. Instead, adders are commonly used to per-
form this operation in a more resource-efficient way [11]. Achieving more opti-
mized adders will allow the acceleration of this part of Shor’s algorithm, as well 
as scaling its applicability to larger number sizes. With the implications that this 
algorithm has on such matters as cryptographic protocols [12], the interest in 
achieving such optimization is real and tangible [13]. However, it would be a mis-
take to limit the interest of adders to Shor’s algorithm, as there is a plethora of 
algorithms that use addition as part of their computational process [13–16].

In classical computer structure theory, there are several types of adders that can 
be classified in two main groups: ripple carry adders and carry lookahead adders 
[18]. As a rule, circuits of the first type are cheaper but slower. Circuits of the sec-
ond type are faster but more expensive since the increase in speed is achieved at 
the cost of involving more resources [19]. They are faster as they are focused on 
computing the carries of each pair of digits as soon as possible. Achieving a faster 
circuit will always be desirable, but it is subject to being able to perform this opera-
tion efficiently with the available resources. Classical computing has not the hard 
resource constraints existing in quantum computing, so “fast and expensive” adders 
are the most common option used to speed up the computation of the sum and the 
many sum-dependent operations [20]. However, the choice is not trivial in quan-
tum computing. If this choice is based solely on the aforementioned resource limita-
tion, the most obvious choice would be to use a ripple carry adder. But in quantum 
computing there is an even bigger problem: noise [21]. Because of this noise, each 
extra operation increases the probability of errors, so fewer operations also mean 
less exposure to noise and a consequent reduction in errors. Of course, this also ben-
efits ripple carry adders, as they involve fewer operations. However, time is also a 
crucial factor—the longer the circuit duration, the greater the exposure to noise. In 
fact, current qubits slowly lose their state over time even in the absence of opera-
tions [21]. Therefore carry lookahead adders must also be valued in today’s quantum 
computing, although in this case the need for resource optimization is even greater 
than in the other type of adders. Moreover, it is also useful to keep them in mind for 
the future. After the so-called Noisy Intermediate-Scale Quantum (NISQ) era (the 
name given to the era in which computers have a moderate number of qubits, but not 
large enough to solve significant problems free of noise effects), it can be assumed 
that the focus of interest will be on achieving fast circuits [22]. Hence, the focus of 
this paper is on carry lookahead adders.

Fig. 1  Circuit for Shor’s algorithm. n = 2(log
2
N) qubits are initialized to �0⟩ , and m = 2(log

2
N) qubits to 

�1⟩ . A Hadamard transform is applied to the first n qubits, and then the second m qubits are multiplied by 
f (x) = axmodN for some random a < N that has not common factors with N. Finally, the inverse quan-
tum Fourier transform on the first n qubits is applied [17]
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Back to the noise problem, this is a physics problem that can be partially 
solved by proper circuit design to reduce, as mentioned above, the circuit life-
time and the number of circuit operations. It is also possible to use error detec-
tion and correction codes to reduce the effects caused by noise. So-called T gate 
is widely used as it enables the use of such codes in a quantum environment. 
However, this gate has a high cost that can exceed by a factor of 100 the cost of 
other gates [23–25]. Thus, the problem comes from the need to use T gates to 
allow the use of error detection codes, but minimizing their use so that the total 
cost of the circuit is not excessive. The use and optimization of these gates is so 
widespread that two metrics have emerged in the scientific community focused on 
measuring the number of T gates a circuit has, as well as the number of consecu-
tive T gates that make up the critical path of the circuit. They are called T-count 
and T-depth, respectively. Although initially the quantum cost and delay metrics 
were used, which contemplate all the gates involved in the circuit, the high cost of 
the T gates makes the cost of the rest of the gates negligible [26]. Therefore, the 
T-count and T-depth metrics are increasingly displacing these other metrics [9, 
27, 28].

We have developed three reversible quantum adders that are focused on reducing 
the T-depth and the T-count. The reduction of the number of required qubits has 
also been prioritized, according to the imperative need to reduce resources that has 
been discussed. Generic designs for any quantum computer are presented, and the 
feasibility of optimally transposing these designs to the real 20-qubit IBM Q Tokyo 
quantum computer has been studied as an example of how our circuits should be 
mapped in a real quantum computer. In addition to the problems already mentioned, 
the qubits of today’s quantum computers are not all connected to each other. The 
architecture of such computers is organized as a graph with these qubits being the 
nodes and relationships being established only between certain nodes. In this way, 
two qubits participating in the same operation will have to perform extra operations 
(with the consequent increase in slowness and resources) to move their information 
to related nodes (qubits) and bring that information back to the original nodes. An 
initial optimized design that assigns to each physical qubit the appropriate circuit 
qubit will reduce these swap operations and reduce time and resources.

The main contributions of this paper are the following: (1) it presents three 
reversible quantum carry lookahead adders focused on reducing the T-depth and the 
T-count, and the number of ancilla qubits; (2) it demonstrates the proper way to con-
struct the proposed adders in a real quantum computer using the most efficient tech-
niques available in the literature; and (3) it compares the proposed adders with the 
existing state-of-the-art circuits and shows the superiority of the proposed ones for 
the case of addition between 4-digit numbers.

The rest of the paper is organized as follows. The basic concepts about quan-
tum circuits necessary to understand the proposed implementations are presented in 
Section 2. Section 3 explains the methodology used to build the adders. The three 
proposed circuits are presented and detailed in Sect. 4. A real implementation in the 
specific quantum computer is presented in Sect. 5. In Section 6, an analysis of the 
proposed adders and a comparison between them and the state-of-the-art adders is 
carried out. Finally, Section 7 presents the conclusions.
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2  Quantum circuits and gates

The most common way to program a quantum computer is by means of circuits. 
Analogous to classical circuits, quantum circuits are built using gates. These “quan-
tum gates” can be expressed mathematically by complex unitary matrices that oper-
ate on qubits. There are an infinite number of gates, but there is a small set of them 
that allows us to approximate the rest [5]. Only four different gates are used in the 
circuits of this paper: the CNOT gate, the Toffoli gate, the Temporary logical-AND 
gate, and its uncomputation. However, these gates (except the CNOT gate) are built 
using other smaller gates (Z, T, S, and Hadamard gates, only Clifford+T gates are 
considered in this work), so it is also necessary to describe these other gates. Among 
these gates, we highlight the T gate, which is of vital importance in this work and 
whose usefulness has already been explained in the previous section. The symbols 
used to represent such gates in this work are shown in Fig. 2. A simple description 
of them is given below. For the sake of simplicity, it is assumed that the measuring 
devices will be fixed and that only the standard bases will be used for measuring.

• The Z gate leaves the amplitude of �0⟩ intact, but changes the sign of the ampli-
tude of �1⟩.

• The Hadamard gate creates an equal superposition of the two basis states.
• The T gate performs a �∕4 phase.
• The S gate performs a �∕2 phase.
• The CNOT gate operates on two qubits. One of them acts as a control, and the 

other as a target, so that the gate exchanges base amplitudes if and only if the con-
trol qubit is in state �1⟩ . Mathematically, let �q⟩ = r�00⟩ + s�01⟩ + t�10⟩ + u�11⟩ a 
random quantum state. Then, the result of applying a CNOT on this state q will 
be r�00⟩ + s�01⟩ + u�10⟩ + t�11⟩.

• The Toffoli gate is a generalization of the CNOT gate, but involving two con-
trol qubits. The most optimized implementation of this gate in terms of T-cost is 
shown in Fig. 3 [24].

• The temporary logical-AND gate was presented by Gidney in [29] (Fig. 4). This 
gate performs an AND operation on the value of two qubits and stores it in a 
third qubit that needs to be initialized to a specific value of 1

√
2

(�0⟩ + e
i�

4 �1⟩).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2  Symbol of the gates used in the proposed circuits: a CNOT gate, b Toffoli gate, c Temporary 
logical-AND gate, and d Peres gate. Moreover, other gates are used to build the Toffoli gate and the 
Temporary logical-AND gate and its uncomputation: e Hadamard gate, f Z gate, g T gate, and h S gate
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• Given qubits A, B, and C, the Peres gate produces an effect similar to that of 
applying a Toffoli gate with A and B acting as control qubits and C as the target, 
and then applying a CNOT gate with A as the control qubit and B as the target.

For the reasons stated in the introduction, this work aims to minimize the num-
ber of T gates. Of the gates used (CNOT, Toffoli, Temporary logical-AND, and its 
uncomputation), the CNOT gates and the uncomputation of the temporary logical-
AND operation do not involve the use of T gates. The Toffoli and Temporary logi-
cal-AND gates have a T-count of 7 and 4, respectively, as can be seen in Figures 3 
and 4 (it is important to note that the S gate also counts as a T gate). Similarly, we 
set their T-depth as 3 and 2, respectively. However, the second gate requires prepar-
ing a specific quantum state and cannot be applied on a qubit already in use.

On the other hand, it is necessary to revert qubits that have been used to perform 
auxiliary operations and no longer have a useful value to their initial value. This is 
called uncomputation of garbage outputs. In the case of wanting to revert a Toffoli 
operation, another Toffoli gate will be necessary with the corresponding expense in 
T gates [30]. However, in the case of a temporary logical-AND construction, revers-
ing such an operation by means of its uncomputation gate has no extra cost in terms 
of T gates, as it is shown in Fig. 5.

2.1  Fault‑tolerance

It has been mentioned before that current quantum computers suffer from external 
and internal noise, which causes errors in their computation. Reducing the number 

Fig. 3  Symbol of the Toffoli gate and its implementation. It has a T-count of 7 and a T-depth of 3

Fig. 4  Symbol of the temporary logical-AND gate and its implementation. It has a T-count of 4 and a 
T-depth of 2. The S gate counts as a T gate to compute these metrics

Fig. 5  Symbol of the uncompu-
tation of the temporary logical-
AND gate. No T gates are used
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of operations and the depth of the circuit reduces the noise exposure of the circuits 
and therefore, also the errors. It is equally important to consult the current state of 
the quantum computer to choose which physical qubits to work on, since depending 
on the current calibration, not all qubits offer the same stability at all times [31]. It 
is also essential to adapt the designs to the specific topologies of the devices to be 
operated on in order to reduce the number of SWAP operations, which will have a 
positive impact on the number of resulting operations and the depth of the circuit. 
However, using these strategies alone is insufficient.

A widespread technique for building fault-tolerant quantum circuits is to design 
them using only Clifford+T gates [30, 32, 33]. A circuit built exclusively with these 
gates will allow the use of error correction codes [34–36], which together with 
the aforementioned strategies will improve its error tolerance. In reality, the use 
of CNOT, S and H gates is sufficient to implement an error correction strategy in 
a quantum device. However, the Clifford group is not sufficient to implement any 
function in such devices. This is why the T gate is often added to the Clifford group 
(forming the Clifford+T group) to achieve a universal group of quantum gates. 
However, the high cost of the T gate (it is obvious from its name that it is included in 
the Clifford+T group) is a subject of special care, giving rise to the aforementioned 
T-count and T-depth metrics as explained above.

At the beginning of Section 2, it was stated that there is a set of gates that allows 
all the others to be approximated. For the sake of accuracy, it is useful to clarify that 
with a finite set of quantum gates it is impossible to reproduce exactly the infinite 
possible quantum gates. However, the group of gates that constitutes the Clifford+T 
set does allow to approximate any other function. For this reason, this group is 
labelled as “universal” [5].

3  Methodology to design carry look‑ahead adders

Let S = A + B be the operation to be performed, where A = aN−1, ..., a0 and 
B = bN−1, ..., b0 are two positive numbers expressed in binary notation, and N is the 
maximum size of binary digits (bits) handled. Quite intuitively, addition will begin 
with the sum of the least significant pair of digits, i.e. a

0
 and b

0
 . This operation pro-

duces two results: the sum of the digits, which we can express as s
0
= a

0
⊕ b

0
 , and 

the carry output, which we mathematically represent as Ci+1 = a
0
b
0
 . Circuits capa-

ble of performing the addition of two digits and returning their sum and carry output 
are commonly called half adders. From here on, we continue computing the sum of 
the digits ai and bi , with i = 1 up to N − 1 , but now taking into account the carry gen-
erated by the previous pair ai−1 and bi−1 . To account for the previous carry (formally 
named carry input), the operations si and Ci+1 are rewritten as si = ai ⊕ bi ⊕ Ci and 
Ci+1 = (ai ⊕ bi)Ci ⊕ aibi . Circuits capable of performing the addition of three digits 
and returning their sum and carry output are commonly called full adders. As a rule, 
an adder can be constructed to allow the addition of numbers of size N by connect-
ing one half adder and N − 1 full adders. For the sake of clarity, it is mentioned that 
it is also common to use N full adders, allowing an input carry to be incorporated 
even at the beginning.
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Although constructing a circuit in the manner indicated in the previous paragraph is 
simple, the complexity will be O(N) since the sum of each pair of digits needs to wait 
until the sum of the previous pair has been calculated. In order to reduce this delay and 
to parallelize the computation of the sums of pairs, carry lookahead adders anticipates 
their carries by a recurrence relation. In particular, they are based in the computation 
of two signals, Gi and Pi (commonly named carry generation and carry propagation, 
respectively), which can be calculated as follows [19]:

using such signals, the computation of the carries can be redefined as follows:

Although the methodology described above is the most widely used for construct-
ing carry lookahead adders, other alternatives have been proposed in the literature 
[37, 38]. Some of these alternatives have been used in the construction of adders for 
quantum computing, as we discussed in [13]. Particularly interesting is the work pre-
sented by Bahadori et al. [38], where the authors use a hybrid methodology for the 
calculation of the sum, whereby modules called carry lookahead sub-tree (CLST) 
are constructed to allow a quick calculation of the carries. In turn, these modules are 
combined in a linear way to calculate the sum as a whole. In our work, the focus is 
on the methodology used to build the CLST blocks, whose conversion to a quantum 
circuit can be done by minimizing the T-count with respect to the implementation of 
a circuit based on Gi and Pi signals.

CLST blocks define two new signals called Alive (Al) and Generate (Gn) to calcu-
late the carry outputs. Initially, such signals are computed for each i-pair according to 
these expressions:

Then, they are redefined as:

where i and j are related to a pair of consecutive outputs from the previous level, 
and k with the output at the new level. Figure 6 shows the structure of a CLST block 
of size N = 4 , which is the size used in the present work. In the figure, the white 
squares represent the first level where each pair of digits ( a

0
b
0
 to a

3
b
3
 ) computes the 

signals according to Eq. 3. Once the value for each pair is computed, a tree structure 
is followed, computing the successive signal values using equation 4.

However, the CLST block does not calculate some intermediate carries that are nec-
essary to calculate partial results of the sum. In the work of Bahadori et al. [38], such 
values are calculated by other circuits, which are not of interest in the present work.

As far as our adders are concerned, the carries can be computed as follows:

(1)Gi = aibi; Pi = ai + bi

(2)Ci+1 = Gi + PiCi

(3)Ali = ai + bi; Gni = aibi

(4)Alk = AliAlj; Gnk = Gni + GnjAli

(5)Ck = Gni + GnjAli
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The proposed circuits use equations 3,4 and 5 to perform the addition, although they 
require some extra operation to complete the addition. Moreover, it is necessary to 
implement the circuits taking into account the peculiarities of quantum computing, 
such as reversibility. These extra operations are detailed in the next section.

4  Design of the quantum adders

Three circuits (adders) are presented in this section. They follow the same meth-
odology but differ in the way they perform some operations. Initially, we describe 
the necessary steps to reproduce the first circuit, which of the three is the one that 
most directly implements the methodology explained in the previous section. Sub-
sequently, we explain how to implement circuits two and three from this first circuit.

The first proposed circuit (will be referred to as Circuit 1) uses only three kinds 
of gates to implement equations 3, 4, and 5: the CNOT gate, the temporary logi-
cal-AND gate, and its uncomputation gate. The main objective of the circuit is to 
keep the T-count as small as possible, avoiding the use of the Toffoli gate, which, 
as explained above, has a higher cost both in the operation itself and later on by 
uncomputing the generated garbage outputs. The first level of Gni signals of Eq. 3, 
and the Al signals referred in Eq.  4 are computed using temporary-logical AND 
gates. Therefore, an extra qubit will be necessary for each of these operations. Gnk 
of Eq. 4 is also partially computed using temporary-logical AND gates, in particu-
lar the product GnjAli . All other operations of Eq. 3 and 4 are OR logic operations. 
However, due to the definition of the signals Gn and Al, the two entries of such OR 
operations cannot in any case be 1 at the same time (except as stated in Eq. 3 for 
Ali ). Therefore, such operations can be computed using CNOT gates. Regarding the 
carries of Eq. 5, they will be treated the same as Gnk in Eq. 4, although it is neces-
sary to calculate the signals not previously computed by means of Eqs. 3 and 4.

Once it became clear how each operation is implemented, the first step is to 
reproduce the CLST block of Fig.  6 using the quantum gates mentioned in the 
previous paragraph to compute Al and Gn. Once the signals are computed, the 

Fig. 6  Structure of the CLST 
block proposed in [38], for 
the N = 4 case. White boxes 
computes Eq. 3, whereas black 
boxes computes Eq. 4
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calculation of the digits of the sum, si = ai ⊕ bi ⊕ Ci , is carried out. As it was 
mentioned, the carries Ci not included in the CLST block must be calculated in 
order to complete the sum. Of course, it is not necessary to wait for the CLST 
block to finish its calculations before starting the computation of these carries, 
but their computation can start as soon as the values they need are already avail-
able. The complete design of Circuit 1 is shown in Fig.  7 for the case N = 4 . 
Although in this paper the proposal is focused on the case N = 4 , the methodol-
ogy is given below in detail to build the circuit for any size N:

• Step 0: The data are codified into the circuit using basis encoding. Two pairs of 
N qubits are required to represent each of the two N-digit numbers A and B.

• Step 1: Gni = aibi (Eq. 3) is computed for each pair of digits (that is, for i = 0 
to N − 1 ). To implement these operations, temporary-logical AND gates will be 
used. Such gates involve an ancilla qubit. Therefore, N extra qubits will be neces-
sary in the circuit. All these calculations can be performed in parallel as there are 
no dependencies between them.

• Step 2: Ali is calculated for i = 1 to N − 1 according to Eq. 3. Since Al
0
 is not 

used in the CLST block, it is not computed. These operations are carried out 
using CNOT gates, being ai the control qubits and bi the target one.

• Step 3: From this point on, Eq.  3 is no longer used for any calculations, but 
is replaced by Eq.  4. For u = 1 to log(N) − 1 and for v = 1 to N

2u
− 1 , AliAlj 

and AljAlk are computed using temporary logical-AND for indexes i = 2
uv , 

j = 2
uv + 2

u , and k = 2
uv + 2

u−1.

Fig. 7  First proposed quantum carry-lookahead adder, labeled as Circuit 1. It has a T-count of 36 and a 
T-depth of 10. The number of ancilla qubits is 9. ai and bi are the digits of the numbers to be added, and 
si are the digits of the result. The qubit marked as A are auxiliary qubits prepared in a special state. The 
vertical lines are used to separate the necessary steps for the construction of the circuit and are shown for 
the sake of clarity. However, to minimize the logical depth of the circuit, some intermediate uncomputa-
tions are made



1 3

Implementation of three efficient 4‑digit fault‑tolerant…

• Step 4: For u = 1 to log(N) and for v = 0 to N
2u
− 1 : to compute Gni + GnjAli 

and Gnj + GnkAlj for indexes i = 2
uv , j = 2

uv + 2
u , and k = 2

uv + 2
u−1 . The 

products GnAl are computed using temporary-logical AND gates.
• Step 5: For i = 0 to N−2

2
 , temporary-logical AND gates are applied to compute 

the carries not included in the CLST block. Such carries are used to calculate 
Ci ⊕ bi , which is necessary to compute the digits of S. According to Eq. 5, the 
carries are computed using the Al and Gn signals of the one or two previous 
levels (i.e. Cj−k;k = 1 or 2) [38]. Due to such dependencies, they can not be 
computed in parallel. However, only two T-depth levels are required, avoiding a 
higher expansion in terms of T-depth presented in other adders.

• Step 6: The circuit is uncomputed to revert all garbage outputs to the initial 
state of the qubits. Before their uncomputation, the carries are used to compute 
Ci ⊕ bi (using CNOT gates).

• Step 7: S is completed performing ai ⊕ bi for each pair ai and bi (using, again, 
CNOT gates).

The use of temporary-logical AND gates greatly reduces the T-count and T-depth 
of the circuit, but at the cost of increasing the required number of ancilla qubits. In 
particular, the circuit of Fig. 7 has 9 ancilla qubits. This number can be reduced by 
replacing temporary logical-AND gates by Toffoli ones. Performing these changes 
will increase the T-count and T-depth, but there are some operations in the circuit 
that can be carried out with Toffoli gates without increasing these values too much. 
For instance, in those operations where it is not necessary to uncompute the qubits 
since they are the values of the result. This is the case of s

4
 . On the other hand, we 

can also replace the temporary logical-AND gates used to perform a
0
b
0
⊕ b

1
 and 

a
2
b
2
⊕ b

3
 , which created a lattice of nested auxiliary qubits. These changes reduce 

the ancilla qubits from 9 to 5, with the counterpart of increasing the T-count from 
36 to 51, and the T-depth from 10 to 11, respectively. The high increment in the 
T-count is due the Toffoli gate that performs a

0
b
0
⊕ b

1
 , since another Toffoli gate 

is necessary at the end to uncompute it. This new version of the circuit (will be 
referred to as Circuit 2) is shown in Fig. 8.

Fig. 8  Second proposed quantum carry-lookahead adder, labeled as Circuit 2. It has a T-count of 51 and 
a T-depth of 11, but it saves 4 ancilla qubits. The numbers to the left of the circuit identify the position of 
each qubit, and are shown for ease of understanding in future explanations
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A third version of the circuit can be obtained at the cost of needing one more 
auxiliary qubit but significantly reducing the T-count. If the mentioned operation 
a
0
b
0
⊕ b

1
 is computed using a temporary logical-AND gate instead of a Toffoli one, 

the following Toffoli gate (used to uncompute the previous one) can be also replaced 
by an uncomputation gate of the temporary logical-AND. This simple operacion 
will reduce the T-count from 51 to 41, keeping the T-depth invariant. At the cost, 
as mentioned above, of increasing the auxiliary qubits by one. This third version is 
shown in Fig. 9. It will be referred to as Circuit 3.

5  Mapping circuits on a real quantum computer

The three circuit designs, shown in Fig. 7, 8, and 9, respectively, represent the oper-
ations that must be applied to achieve S = A + B . However, in a real quantum com-
puter, these designs can hardly be directly applied since the available qubits on such 
a computer are not all connected to each other.

As an example, the topology of the IBM Q Tokyo computer is shown in 
Fig.  10. Let us suppose that we intend to implement Circuit 2, this circuit is 
taken as an example since it is the one that requires the least number of qubits. 
If we directly map Circuit 2 onto IBM Q Tokyo, qubit 0 of the computer will 

Fig. 9  Third proposed quantum carry-lookahead adder, labeled as Circuit 3. It has a T-count of 41 and a 
T-depth of 11. The number of ancilla qubits is 6

Fig. 10  Map for the IBM Q 
Tokyo architecture
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receive a
0
 , qubit 1 will receive b

0
 , qubit 2 will receive the first auxiliary qubit, 

and so on. The first quantum gate, a temporary logical-AND gate that performs 
the operation a

0
b
0
 and writes the result into the first auxiliary qubit, requires a 

connection of the first three qubits. However, as seen in Fig. 10, the first three 
qubits of the computer are not all connected to each other. Specifically, qubits 0 
and 2 have no direct connection. Many other operations in Circuit 2 cannot be 
made directly as there is no real physical connection between the corresponding 
qubits.

The way quantum computers solve this problem is to perform SWAP opera-
tions to exchange the values between physical qubits so that these values remain 
in qubits that do have a physical connection. The SWAP operation does not 
involve increasing the T-count or the T-depth. However, they do increase the 
overall quantum cost of the circuit and, obviously, make the circuit last longer. 
It has already been mentioned that longer lifetime means more noise exposure. 
Therefore, it is a priority to minimize the number of SWAP operations needed to 
implement the circuit in the real quantum computer.

The problem of efficiently mapping a circuit to a topology (i.e. minimizing 
SWAP operations) is widely addressed in the literature [31, 39, 40]. This prob-
lem is a general case of fitting a graph into a larger graph, and it is beyond the 
scope of this paper to study such a problem in its most general case. We have 
considered the work proposed by Bhattacharjee et al. [31] to develop the optimal 
implementations for each candidate machine minimizing losses caused by SWAP 
operations. Let a configuration Ct be a set of ordered tuples (qi, v) , where qubit qi 
is at location v in cycle t. The objective is to determine how many switch gates 
are needed to transform the location of the qubits of an initial configuration C and 
a topology graph T so that all pairs of qubits in the first level of operations (the 
first set of operations in the circuit, which we can denote as L

1
 ) are neighbours, 

and then modify the location of the qubits again to be neighbours for the second 
level of operations ( L

2
 ) and so on, until the last level ( Lk ) is fulfilled and the com-

bined delay of the switch gates and the gates present in the real circuit is minimal. 
Mathematically speaking, the target can be specified as follows:

being ai,t 1 if there are gates in Level i that are scheduled in cycle t, and 0 otherwise.
Figure  11 shows, in matrix format, the relationships between the physical 

qubits of the quantum computer. It is equivalent to the diagram in Fig. 10. Fig-
ure 12 shows, also in matrix format, the necessary relationships to directly imple-
ment Circuit 2. Applying the algorithm of Bhattacharjee et al., it is obtained that 
the most optimal mapping of Circuit 2 in the machine is the one shown in Fig. 13. 
Although there is no direct implementation that totally eliminates the need for 
SWAP operations, it is only necessary to move the value of one qubit of the cir-
cuit (number 7 in the figure).

(6)Minimize

k∑

i=0

T∑

t=0

tai,t
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There is one final consideration that must be taken into account. Not all connec-
tions between qubits are equally reliable, but the margin of error of each connection 
can be quantified. The algorithm of Bhattacharjee et al. also allows prioritizing qubit 
assignments taking into account these values so that quantum gates can be imple-
mented while minimizing error. Since these values depend on the current calibration 
of the machine, we have not included them.

Fig. 11  Map for the IBM Q Tokyo architecture

Fig. 12  Map with the necessary connections between qubits in Circuit 2 
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6  Results and discussion

The proposed and the state-of-the-art circuits have been designed and reproduced in 
Python and executed in IBM Quantum Experience devices and simulators. Once this 
reproduction has been carried out, the number of involved qubits, the number of T 
gates, and the number of T gates that must be executed sequentially, were counted 
using a simple Python routine (taking into account that some gates do not explic-
itly state their T-count and T-depth, and making the appropriate conversion), thus 
obtaining the metrics described below.

From the explanation of the circuit methodology, as well as the graphical designs 
shown in the corresponding section, it is clear that Circuits 1, 2, and 3 have a 
T-count of 36, 51, and 41, respectively; and a T-depth of 10, 11, and 11, respec-
tively. In terms of ancilla qubit, they need 9, 5, and 6 qubits, respectively. None of 
the proposed circuits use non-valid operations for a quantum environment, nor do 
they contain garbage outputs. These values can be easily verified by knowing that 
a Toffoli gate has a T-count of 7, and a T-depth of 3, a temporary-logical gate has 
a T-count of 4 and a T-depth of 2 (and its uncomputation has no cost in terms of T 
gates), and no other gate involved in the circuits has T-count nor T-depth. In terms 
of T-count:

• Circuit 1 has 9 temporary logical-AND gates: 9 × 4 = 36.
• Circuit 2 has 4 temporary logical-AND gates and 5 Toffoli gates: 

4 × 4 + 5 × 7 = 51.
• Circuit 3 has 5 temporary logical-AND gates and 3 Toffoli gates: 

5 × 4 + 3 × 7 = 41.

In terms of T-depth:

• Circuit 1 computes sequentially 5 temporary logical-AND gates: 5 × 2 = 10.

(a) (b)

Fig. 13  (a) Circuit 2 mapped into the IBM Q Tokyo architecture. The numbers used correspond to the 
order of the qubits shown in Figure 8, starting from the top. SWAP operations are only required to move 
node 7 ( b

2
 in Figure 8). (b) The connection between qubits in Circuit 2 is graphically shown for the sake 

of clarity
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• Circuit 2 computes sequentially 1 temporary logical-AND gate and 3 Toffoli 
gates: 1 × 2 + 3 × 3 = 11 . Figure 8 shows that the first temporary logical-AND 
gates are computed in parallel to the first Toffoli gate. The Toffoli gate is slower, 
so it is the gate that sets the speed (the T-depth in this case) in this first part.

• Circuit 3 computes sequentially 1 temporary logical-AND gate and 3 Toffoli 
gates: 1 × 2 + 3 × 3 = 11.

In order to compare the proposed circuits with those available in the literature, we 
have mainly relied on two sources. The first source is an exhaustive review of quan-
tum adders [13], which makes different comparisons between the various types of 
adders. One of these comparisons is devoted precisely to carry lookahead adders. 
The second source we have used is the paper by Thapliyal et  al. [30], which pre-
sents four carry lookahead adders and also makes a complete comparison between 
adders in this category. Between the two papers, they analyse a very large number 
of adders. In order not to extend the comparison in this section too much by includ-
ing information already collected in these papers, the comparison shown below only 
includes the best circuits collected in such sources.

Table 1 summarizes a comparison in terms of T-count, T-depth, and ancilla qubits 
between the best adders in the state-of-the-art and our three circuits. In terms of 
T-count and T-depth, the best options are the Out-FT-QCLA1 circuit and Circuit 1. 
Both circuits have the same T-count, 36, and the same T-depth, 10. However, Circuit 
1 has one less ancilla input. The next best circuit in these terms is Circuit 3 with 41, 
but it involves only 6 ancilla qubits, that is 3 fewer qubits than Circuit 1 and 4 with 
respect to the Out-FT-QCLA1 circuit. However, it also increases the T-depth by 1 
compared to both circuits. On the other hand, the best circuits in terms of ancilla 
qubits are the In-FT-QCLA1 circuit and Circuit 2, with only 5 ancilla qubits. Nev-
ertheless, the circuit of [30] has a T-count and a T-depth of 76 and 22, respectively, 
whereas ours has values that outperform it greatly: 51 and 11, respectively.

The methodology used to build the proposed circuit can be applied to build larger 
adders. In such sizes, the adders proposed by Thapliyal et  al. [30] would be the 
most efficient in terms of T-count, T-depth, and ancilla inputs. It is due to the fact 
that intermediate carry calculations are increasingly omitted to compute the values 

Table 1  Depth and cost comparisons between the most optimized 4-digit adders in terms of T gates

Adder T-count T-depth Ancilla qubits

Drapper et al. [41] 70 18 6
Lisa et al. [42] 60 40 8
Thapliyal et al. (Out-FT-QCLA1) [30] 36 10 10
Thapliyal et al. (Out-FT-QCLA2) [30] 48 13 6
Thapliyal et al. (In-FT-QCLA1) [30] 56 20 13
Thapliyal et al. (In-FT-QCLA2) [30] 76 22 5
Circuit 1 36 10 9
Circuit 2 51 11 5
Circuit 3 41 11 6
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indicated by Eq. 4. These uncomputed carries will have to be calculated using Eq. 5, 
causing an extra cost that does not occur in adders that use the classical methodol-
ogy. This analysis focuses, as indicated, on the 4-digit size. For this size, our contri-
butions are the most efficient in terms of T-count, T-depth, and ancilla qubits, as can 
be observed in Table 1.

7  Conclusions

We have presented three versions of a 4-digit carry lookahead adder optimized in 
terms of T-count, T-depth, and number of ancilla qubits. These adders use an alter-
native methodology that allows a fast calculation of the carries using operations 
with a lower associated T-count. Firstly, the design of the three adders, which have 
been based exclusively on Clifford+T gates, has been described in detail, showing 
the necessary steps, gates and qubits to build them. It has also been explained how 
the adders benefit from the temporary-logical AND and its capacity of optimizing 
resources in contrast to Toffoli gates to build the blocks defined in [38], adding sev-
eral modifications to adapt it to a quantum environment. Secondly, it has been indi-
cated the proper way to construct the circuits in a real quantum computer in order 
to avoid increases in their delay that make them more vulnerable to noise. We have 
also shown how this process does not lead in any case to an increase of the T-count 
or T-depth. Finally, we have carried out a comparison in terms of T-depth, T-count, 
and number of ancilla qubits between our circuits and the best adders available in 
the literature. From this comparison, it can be observed that the proposed adders 
outperform the state-of-the-art circuits in terms of T-depth, T-count, and number of 
ancilla qubits.

As future work, it is intended to study the implementation of this methodology 
for larger sizes. The extra operations necessary to calculate the carries and the sums 
that are not included in the CLST block increase as the size of the numbers A and B 
increases their size. But if a sufficiently efficient implementation is found for them, 
the T-count and T-depth values could be reduced with respect to the circuits studied 
in Table 1 for such sizes.
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