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Abstract. We deal with singular quasilinear elliptic equations, namely
−∆u = λu+ µ(x)

|∇u|q

uq−1
+ f(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded smooth domain of RN (N ≥ 3), λ ∈ R, 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω) and 0 ≤ f ∈ Lp(Ω)

for some p > N
2
. We completely describe the set of values of the parameter λ for which the problem admits

solution. Thus, we study existence, nonexistence and uniqueness of bounded weak solutions in both cases
f  0 and f ≡ 0.

1. Introduction

The present paper is devoted to the study of the following quasilinear elliptic problem:

(Pλ)


−∆u = λu+ µ(x)

|∇u|q

uq−1
+ f(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 3) with smooth boundary (say, of class C1,1), λ ∈ R, 0 ≤ µ ∈ L∞(Ω),
0 ≤ f ∈ Lp(Ω) with p > N

2 and 1 < q ≤ 2.

Problem (Pλ) is a particular case of the following general model

(1.1)


−∆u = λu+ µ(x)g(u)|∇u|q + f(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

for some nontrivial real function g. We first observe that, for µ ≡ 0, the equation above becomes linear. In
fact, it is an eigenvalue problem if f ≡ 0 which admits solution if and only if λ = Λ (the principal eigenvalue
of the Laplacian in Ω with zero Dirichlet boundary condition), while if f 6≡ 0, it is well known that there
exists a solution to (1.1) for any f if and only if λ < Λ (and in such a case, the solution is also unique).
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The picture changes drastically if µ 6≡ 0. Indeed, in such a case the equation becomes quasilinear and the
above results are no longer true. In fact, when the gradient term is considered, existence and/or uniqueness
of solutions may fail. For instance, the model problem, with µ ∈ L∞(Ω) and f ∈ Lp(Ω), p > N/2,

(1.2)


−∆u = λu+ µ(x)|∇u|2 + f(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

can be studied, for µ(x) ≡ µ ∈ R+, trough the Hopf-Cole transformation, and it is turned (v = eµu−1)
µ ) into

the following semilinear problem
−∆v = (µv + 1)

(
f(x) +

λ

µ
log(1 + µv)

)
in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Thus it is clear that the existence and (possibly) the uniqueness of a solution depends on the sizes of µ and
f . Furthermore the nature of the problem is essentially different from the one of the linear problem. Indeed,
it has been recently proved in [7] (see also [24]) that if problem (1.2) with µ(x) ≥ µ0 > 0 admits a solution
with λ = 0, then there exist at least two different solutions to (1.1) for 0 < λ < λ∗, for a suitable value
0 < λ∗ < Λ.

Our idea is that the threshold value λ∗ is associated, in some sense, to the principal eigenvalue of the
nonlinear differential operator that appears in the equation in (1.1) (with f(x) ≡ 0). Thus the lower order
term has necessarily to satisfy a 1-homogeneous condition, that leads to the choice of a singular term of the
form g(u) = 1/uq−1 in (1.1) (see (Pλ)).

The study of singular Dirichlet problems with gradient terms having quadratic growth (q = 2) has raised
considerable interest in recent years. Let us quote the main references [1, 2, 3, 4, 11, 15, 18, 19, 20], among
others, dealing with existence (and nonexistence) results for equations with singular lower order terms, while
we mention [5, 9, 14] for uniqueness results on this type of problems.

In contrast with the results of [7], when one considers a singular function as g(u) = 1/u in problem (1.1),
q = 2 and f  0, in [8] the authors prove the existence of solution for every λ < Λ

‖µ‖L∞(Ω)+1 . Moreover, if

µ(x) ≡ µ ∈ (0, 1), they prove that there exists a solution if and only if λ < Λ
µ+1 , and in such a case, the

solution is unique and Λ
µ+1 is a bifurcation point from infinity.

Surprisingly, this phenomenon, analogous to the one observed in the the linear case, is not only due to the
presence of a singularity at u = 0. Actually, the technique developed in [7] applies (with some small changes)
to problem (1.1) with µ(x) ≥ µ0 > 0, q = 2, g(s) = 1/sθ, θ ∈ (0, 1) and consequently if there exists a solution
with λ = 0, then multiplicity occurs for λ > 0 small enough (as in the nonsingular case g(s) ≡ 1).

In the present paper we aim to provide a general method to deal with problem (Pλ) in the general framework
1 < q ≤ 2, depending only on the quasilinear nature of the problem and allowing the complete description
of the set of values of the parameter λ such that (Pλ) admits a solution. Of course, the main difficulties
in order to study such a problem are due to the superlinearity of the lower order term and the singularity
as u approaches 0. In fact, we will notice that the key point is not (only) the singularity by itself, but the
homogeneity that the singularity gives to the lower order term which allows us to look at (Pλ) through the
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following eigenvalue problem

(Eλ)


−∆u = λu+ µ(x)

|∇u|q

uq−1
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

We provide this kind of eigenvalue existence result for problem (Eλ) making use of a precise characterization
of the principal eigenvalue:

(1.3) λ∗ = sup

{
λ ∈ R

∣∣∣∣ there exists a supersolution v to (Eλ)
such that v ≥ c in Ω for some c > 0

}
(the precise meaning of supersolution used in (1.3) is specified in Section 2 below). This characterization
has been inspired by the seminal paper [10] and allows us to study the (nonvariational) eigenvalue problem
(Eλ) since it requires only working with supersolutions, but does not involve any variational structure of the
problem.

However, the definition (1.3) will be useful only if we can compare subsolutions and supersolutions to
problem (Eλ) that are appropriately ordered on the boundary of the domain. Indeed, we will be able to
derive the required Comparison Principle (see Theorem 3.1 below) by adapting the ideas contained in [6].

Let us stress that, at least formally, the change of unknown v = − log(u) turns the solutions to (Eλ) into
solutions to

(Ẽλ)

{
−∆v + |∇v|2 + µ(x)|∇v|q + λ = 0 in Ω,

v = +∞ on ∂Ω.

Quasilinear problems whose solutions blow-up at the boundary of the domain (known in literature as large
solutions) have been widely studied (see for instance [26], [27], [29]). A particular feature of (Ẽλ) is that it
is invariant under transformations of the type v 7→ v + t for all t ∈ R. For problems of this class it has been
proved in [26] [27] that there is a unique value of the parameter λ (the so called ergodic constant) for which
the problem into consideration admits a (unique, up to additive constants) large solution.

We state now our first theorem about problem (Eλ), in which we show by an approximation and compact-
ness argument that, in fact, λ∗ is the principal eigenvalue to (Eλ).

Theorem 1.1. Assume that 1 < q ≤ 2 and 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2. Then λ∗ ∈ (0,Λ] and
problem (Eλ) admits a solution if and only if λ = λ∗. Moreover such a solution is unique up to multiplication
by positive constants.

As far as (Pλ) is concerned, some parts of the main result will require stronger hypotheses on the datum
f , that we list here:

(f0) ∀ω ⊂⊂ Ω ∃cω > 0 : f(x) ≥ cω a.e. x ∈ ω;

(f1) ∃γ ∈
(

1

2
, 1

)
, C1 > 0 : f ≥ C1ϕ

γ
1 in Ω;

(f2) ∃C1 > 0 : f ≥ C1ϕ
γ
1 in Ω, where γ =

1

1 + ‖µ‖L∞(Ω)
.

Now we state our main result.
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Theorem 1.2. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, and 0 � f ∈
Lp(Ω) with p > N

2 . Then (Pλ) has a unique solution if λ ≤ 0, has at least a solution if λ < λ∗, and has
no solution if λ > λ∗. If, in addition, f satisfies condition (f0), then (Pλ) has a unique solution for every
λ < λ∗. Finally, if f satisfies condition (f1) for 1 < q < 2 and (f2) for q = 2, then (Pλ) has no solution
for any λ ≥ λ∗ and moreover the set Σ := {(λ, uλ) : uλ is a solution to (Pλ)} is an unbounded continuum in
R× C(Ω) which bifurcates from infinity at λ∗ to the left.

We stress that the previous theorem improves the existence result contained in [8] for µ nonconstant and
q = 2. In fact, we determine that the set of λ ∈ R where problem (Pλ) admits a solution is either (−∞, λ∗)
or possibly its closure. Moreover, we consider the whole range 1 < q ≤ 2. The critical problem corresponding
to λ = λ∗, and also the uniqueness for λ > 0, exhibit some difficulties. Nonetheless, we overcome them by
imposing stronger hypothesis on f . Doing so, we prove that the interval (−∞, λ∗) is optimal for the existence
of solution, and we even prove uniqueness in this interval.

It is worth to stress that one of the main contribution of this paper is the comparison principle. In fact
it is not obvious, an indeed the literature on this topic is extremely poor, that a comparison principle holds
true when we deal with positive values of λ in (1.2).

The plan of the paper is the following: we devote Section 2 to introduce the definitions of solution,
supersolution and bifurcation point from infinity, and we also prove some regularity properties of the solutions;
in Section 3 we state and prove some comparison principles and a uniqueness result to problem (Pλ); section 4
is devoted to prove that λ∗ is well defined and positive, to give some alternative characterizations of it, and to
prove some nonexistence results; in Section 5 we introduce the approximate problems, we prove some a priori
estimates and a compactness result, and we give several existence and bifurcation results, and in Section 6
we collect the proofs of Theorem 1.1 and Theorem 1.2. Finally, in Appendix A we show that problem (Pλ)
possesses two equivalent formulations and we also prove the regularity of the solution.

2. Definitions and preliminary results

In this section we make precise some definitions and we prove some results that we will use in the rest of
the paper.

First of all we specify the meaning of solution to problem (Pλ), as well as the concept of supersolution used
in (1.3).

Definition 2.1. For every λ ∈ R, we say that u ∈ H1
0 (Ω) ∩ L∞(Ω) is a solution to (Pλ) if u > 0 a.e. in Ω,

|∇u|q
uq−1 ∈ L1

loc(Ω) and it holds

(2.1)
∫

Ω

∇u∇φ = λ

∫
Ω

uφ+

∫
Ω

µ(x)
|∇u|q

uq−1
φ+

∫
Ω

f(x)φ ∀φ ∈ H1
0 (Ω) ∩ L∞(Ω).

Similarly, we say that u ∈ H1(Ω) ∩ L∞(Ω) is a supersolution to (Pλ) if u > 0 a.e. in Ω, |∇u|
q

uq−1 ∈ L1
loc(Ω) and

the following inequality holds

(2.2)
∫

Ω

∇u∇φ ≥ λ
∫

Ω

uφ+

∫
Ω

µ(x)
|∇u|q

uq−1
φ+

∫
Ω

f(x)φ ∀φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ ≥ 0 .

Some remarks on about the formulation are in order.

Remark 2.2. Let us observe that since the lower order term it is only locally integrable in Ω, there is a term
above that, a priori, might not make sense. Actually, applying some density arguments we can show that, in
spite of the presence of a singular lower order term, the above formulations are equivalent to the ones in which
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the test functions belong to C1
c (Ω) both in (2.1) and (2.2). We collect the proof of such an equivalence in the

Appendix.

Remark 2.3. In the model case q = 2 and µ constant, it is clear that the condition µ < 1 is in fact necessary
for the existence of solutions to problem (Pλ) with λ > 0. Indeed we can use u as test function in (2.1),
so that we obtain

∫
Ω
|∇u|2 = λ

∫
Ω
u2 + µ

∫
Ω
|∇u|2 +

∫
Ω
f(x)u. Therefore, since λu2 > 0 in Ω, we have that

(1− µ)
∫

Ω
|∇u|2 > 0.

The following three lemmata provide some properties of the solutions to (Pλ) which will be useful later.

Lemma 2.4. Let 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, 0 � f ∈ Lp(Ω) with p > N
2 , and

let u be a solution to (Pλ) for some λ ∈ R. Then u ∈ C0,α(Ω) ∩W 1,2p
loc (Ω) for some α ∈ (0, 1).

The proof of the above lemma is given in its details in the Appendix. Anyway, we observe here that for the
interior regularity we exploit that the solutions are strictly positive, as a consequence of the Strong Maximum
Principle.

As far as the Hölder continuity up to the boundary is concerned, we need to strongly use the techniques
developed in [25]: let us observe that since the singularity has the order of 1/uq−1 with q < 2 (in the case
q = 2 it is also used that µ(x) is small), then it represents, in some sense, a “mild” singularity.

The Sobolev interior regularity is proved via an interpolation and bootstrap argument.

Remark 2.5. Notice that Lemma 2.4 provides as much information about the regularity of the solutions to
(Pλ) as the knowledge that one has about the regularity of the data. For instance, under the hypotheses of
Lemma 2.4, we have in particular that any solution u to (Eλ) satisfies that −∆u ∈ Lrloc(Ω) for any r < ∞.
Hence, u ∈ W 2,r

loc (Ω) for any r <∞. Even more, if µ ∈ W 1,∞
loc (Ω), we easily deduce that −∆u ∈ W 1,r

loc (Ω) for
any r <∞, and thus, u ∈W 3,r

loc (Ω) for any r <∞ (see [22, Theorem 9.19]). We may continue the bootstrap in
this way so that, if µ ∈ W k,∞

loc (Ω) for some k ≥ 1, then u ∈ W k+2,r
loc (Ω) for any r <∞. Thus, if µ ∈ C∞(Ω),

then u ∈ C∞(Ω).

Lemma 2.6. Let 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, 0 � f ∈ Lp(Ω) with p > N
2 , and

let u be a solution to (Pλ) for some λ ∈ R. Then uγ ∈ H1
0 (Ω) for every γ > γ0(q), given by

γ0(q) =


1

2
if 1 < q < 2,

1 + ‖µ‖L∞(Ω)

2
if q = 2.

Proof. We follow here the arguments of Theorem 3.1 in [8], which in turn come from the ideas of [3]. We
claim that

(2.3)
∫

Ω

|∇u|2

u1−β <∞, ∀β ∈ (β0(q), 1],

where

β0(q) =

{
0 if 1 < q < 2,

‖µ‖L∞(Ω) if q = 2.

Indeed, given β ∈ (β0(q), 1], observe that the function (u+ε)β−εβ ∈ H1
0 (Ω)∩L∞(Ω) for any ε ∈ (0, 1]. Using

it as test function in (Pλ) we obtain that

β

∫
Ω

|∇u|2

(u+ ε)1−β ≤ C + ‖µ‖L∞(Ω)

∫
Ω

|∇u|q

uq−1
((u+ ε)β − εβ)
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for some constant C > 0, independent of ε, whose value may vary from line to line. Next, in the case 1 < q < 2,
using Young’s inequality conveniently we easily derive that

β

2

∫
Ω

|∇u|2

(u+ ε)1−β ≤ C

(
1 +

∫
Ω

(
(u+ ε)

(1−β) q2
(u+ ε)β − εβ

uq−1

) 2
2−q
)
.

It is straightforward to check that the function (s, t) 7→ (s+ t)(1−β) q2
(s+t)β−tβ

sq−1 is continuous in [0, ‖u‖L∞(Ω)]×
[0, 1], which implies that

(2.4)
β

2

∫
Ω

|∇u|2

(u+ ε)1−β ≤ C.

On the other hand, if q = 2 and ‖µ‖L∞(Ω) < 1, we observe that

|∇u|q

uq−1
((u+ ε)β − εβ) =

|∇u|2

(u+ ε)1−β
(u+ ε)1−β((u+ ε)β − εβ)

u

=
|∇u|2

(u+ ε)1−β

(
1 + εβ

ε1−β − (u+ ε)1−β

u

)
≤ |∇u|2

(u+ ε)1−β

in Ω for any ε ∈ (0, 1]. Hence, we deduce that

(2.5) (β − ‖µ‖L∞(Ω))

∫
Ω

|∇u|2

(u+ ε)1−β ≤ C.

Finally, we apply Fatou’s Lemma with respect to ε in (2.4) and in (2.5) to obtain (2.3). The Lemma follows
by choosing γ = β+1

2 . �

Lemma 2.7. Let 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, 0 � f ∈ Lr(Ω) with r > N , and
let u be a solution to (Pλ) for some λ ∈ R. Then, if 1 < q < 2, it holds that

∀γ ∈
(

1

2
, 1

)
∃C > 0 : u ≤ Cϕγ1 in Ω.

Moreover, if q = 2, then

∃C > 0 : u ≤ Cϕγ1 in Ω, where γ =
1

1 + ‖µ‖L∞(Ω)
∈
(

1

2
, 1

)
.

Proof. Let γ ∈
(

1
2 , 1
)
. First of all observe that, if q < 2, we can use Young’s inequality in such a way that

(2.6) −∆u ≤
(

1

γ
− 1

)
|∇u|2

u
+ (Cγ + λ)u+ f(x)

for some Cγ > 0 large enough. If q = 2, we arrive to the same inequality directly with γ = 1
1+‖µ‖L∞(Ω)

and
Cγ = 0.

Let now g ≡ 1
γ ((Cγ + λ)u+ f). Clearly, 0 � g ∈ Lr(Ω), so there exists 0 < z ∈ H1

0 (Ω)∩L∞(Ω) a solution
to {

−∆z = g(x) in Ω,

z = 0 on ∂Ω.

Since r > N , it is well-known that z ∈ C1(Ω). This implies, by using Hopf’s Lemma, that there is a constant
C > 0 such that

z ≤ Cϕ1 in Ω.
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On the other hand, for every k > 0, the function v = (kz)γ ∈ H1
0 (Ω) ∩ L∞(Ω) satisfies

−∆v =

(
1

γ
− 1

)
|∇v|2

v
+

γkg(x)

(kz)1−γ .

If we choose k = ‖z‖
1
γ−1

L∞(Ω), then

(2.7) −∆v ≥
(

1

γ
− 1

)
|∇v|2

v
+ γg(x) =

(
1

γ
− 1

)
|∇v|2

v
+ (Cγ + λ)u+ f(x).

Therefore, by (2.6) and (2.7), we can use Theorem 3.2 (see next section) and conclude that

u ≤ v = (kz)γ ≤ Cϕγ1 .

�

We conclude this section by recalling the concept of bifurcation point from infinity.

Definition 2.8. A bifurcation point from infinity to problem (Pλ) is said to be a real number λ̄ for which
there exists a sequence {(λn, un)}n∈N contained in the set

Σ := {(λ, u) : u is a solution to (Pλ)},

such that λn → λ̄ and ‖un‖L∞(Ω) →∞ as n→∞.
We say that the bifurcation occurs to the left if there exist ε > 0 and M > 0 such that for any (λ, u) ∈ Σ

with λ ∈ (λ̄− ε, λ̄+ ε) and ‖u‖L∞(Ω) ≥M , it holds that λ < λ̄.

3. Comparison principles

In this section we prove a Comparison Principle which allows us to compare suitable subsolutions and
supersolutions to the equation

−∆u = λu+ g(x)
|∇u|q

uq−1
+ h(x) in Ω

that are well ordered on the boundary.

Theorem 3.1. Let 1 < q ≤ 2, λ ∈ R, g ∈ L∞(Ω), 0 ≤ h ∈ L1
loc(Ω) and assume that u, v ∈ C(Ω) ∩W 1,N

loc (Ω)
are such that u, v > 0 in Ω and they satisfy

(3.1) lim sup
x→x0

u(x)

v(x)
≤ 1 ∀x0 ∈ ∂Ω,

(3.2)
∫

Ω

∇u∇φ ≤ λ
∫

Ω

uφ+

∫
Ω

g(x)
|∇u|q

uq−1
φ+

∫
Ω

h(x)φ, ∀φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ ≥ 0, supp (φ) ⊂ Ω

and

(3.3)
∫

Ω

∇v∇φ ≥ λ
∫

Ω

vφ+

∫
Ω

g(x)
|∇v|q

vq−1
φ+

∫
Ω

h(x)φ, ∀φ ∈ H1
0 (Ω) ∩ L∞(Ω), φ ≥ 0, supp (φ) ⊂ Ω.

Then u ≤ v in Ω.

Proof. We follow the ideas contained in [6, Lemma 2.2] (see also the references therein). Let u1 = log(u),
v1 = log(v), and denote w = u1 − v1. Observe that, using (3.1), we have that for every k > 0, the function
(w − k)+ has compact support in Ω and, in consequence, it belongs to H1

0 (Ω) ∩ L∞(Ω). This fact, together
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with the continuity of u and v (which implies that u and v are locally bounded away from zero), allows us to
take (w−k)+

u as test function in (3.2) and (w−k)+

v in (3.3), obtaining

−
∫

Ω

|∇u|2

u2
(w − k)+ +

∫
Ω

∇u
u
∇(w − k)+ ≤λ

∫
Ω

(w − k)+(3.4)

+

∫
Ω

g(x)
|∇u|q

uq
(w − k)+ +

∫
Ω

h(x)

u
(w − k)+

and

−
∫

Ω

|∇v|2

v2
(w − k)+ +

∫
Ω

∇v
v
∇(w − k)+ ≥λ

∫
Ω

(w − k)+(3.5)

+

∫
Ω

g(x)
|∇v|q

vq
(w − k)+ +

∫
Ω

h(x)

v
(w − k)+.

Consider now the set

Ak = {x ∈ Ω : w(x) ≥ k} = {x ∈ Ω : u(x) ≥ ekv(x)}.

Notice that supp(w − k)+ ⊆ Ak and h
(

1

u
− 1

v

)
≤ 0 in Ak. Hence, subtracting (3.4) from (3.5) and using

the definition of u1, v1 we have that

(3.6)
∫

Ω

∇w∇(w − k)+ ≤
∫
Ak

(
g(x) (|∇u1|q − |∇v1|q) + |∇u1|2 − |∇v1|2

)
(w − k)+.

For every j ∈ R, let us denote Ωj = {x ∈ Ω : |w(x)| = j}, and consider also the set J = {j ∈ R : |Ωj | 6= 0}.
Since |Ω| < ∞, then J is at most countable, which implies that the set

⋃
j∈J Ωj is measurable, and we also

have that

∇w = 0 in
⋃
j∈J

Ωj =⇒ |∇u1| = |∇v1| in
⋃
j∈J

Ωj .

Hence, if we define the set Z = Ω \
⋃
j∈J Ωj and denote ξt = t∇u1 + (1 − t)∇v1, with 0 < t < 1, we deduce

from (3.6) that∫
Ω

∇w∇(w − k)+ ≤
∫
Ak∩Z

(
g(x) (|∇u1|q − |∇v1|q) + |∇u1|2 − |∇v1|2

)
(w − k)+

=

∫
Ak∩Z

(∫ 1

0

d

dt
(g(x)|ξt|q + |ξt|2)dt

)
(w − k)+.

(3.7)

Taking into account that u1, v1 ∈W 1,N
loc (Ω) and Ak ⊂⊂ Ω, we have that

|ξt| ≤ |∇u1|+ |∇v1|+ 1 ≡ η ∈ LN (Ak ∩ Z).

Hence, from (3.7) we derive that

(3.8)

‖(w − k)+‖2H1
0 (Ω) ≤

∫
Ak∩Z

(∫ 1

0

(g(x)q|ξt|q−2ξt + 2ξt)∇wdt
)

(w − k)+

≤
∫
Ak∩Z

(
‖g‖L∞(Ω)qη

q−1 + 2η
)
|∇w|(w − k)+ ≤ C

∫
Ak∩Z

η|∇(w − k)+|(w − k)+

≤ C‖η‖LN (Ak∩Z)‖(w − k)+‖H1
0 (Ω)‖(w − k)+‖L2∗ (Ω) ≤ C‖η‖LN (Ak∩Z)‖(w − k)+‖2H1

0 (Ω).
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Assume in order to achieve a contradiction that w+ 6≡ 0. For some k0 ∈ (0, ‖w+‖L∞(Ω)), let us define the
function F : [k0, ‖w+‖L∞(Ω)]→ R by

F (k) = ‖η‖LN (Ak∩Z) = ‖|∇u1|+ |∇v1|+ 1‖LN (Ak∩Z), ∀k ∈ [k0, ‖w+‖L∞(Ω)),

and F (‖w+‖L∞(Ω)) = 0. It is clear that F is nonincreasing and continuous in [0, ‖w+‖L∞(Ω)].
Thus, choosing k close enough to ‖w+‖L∞(Ω), we deduce from (3.8) that (w − k)+ ≡ 0. That is to say,

w ≤ k in Ω. But this is not possible since k < ‖w+‖L∞(Ω) = supΩ(w).
In conclusion, we have proved that w+ ≡ 0, i.e., w ≤ 0 in Ω. �

The previous comparison principle does not guarantee uniqueness of C(Ω) ∩ W 1,N
loc (Ω) solution to (Pλ)

unless it is assured that any pair of such solutions satisfy (3.1). However, stronger hypotheses on h and g
allow us to weaken (3.1) and derive another comparison result that provides uniqueness for (Pλ).

Theorem 3.2. Let 1 < q ≤ 2, λ ∈ R, 0 ≤ g ∈ L∞(Ω) and 0 ≤ h ∈ L1
loc(Ω). Assume that u, v ∈

C(Ω) ∩W 1,N
loc (Ω), with u, v > 0 in Ω, and satisfy (3.2) and (3.3) respectively. Suppose also that, for every

ε > 0, the following boundary condition holds:

(3.9) lim sup
x→x0

(
u(x)

v(x) + ε

)
≤ 1 ∀x0 ∈ ∂Ω.

Furthermore, if λ > 0, assume also that h satisfies condition (f0). Then, u ≤ v in Ω.

Proof. For every ε > 0, let us consider the function

wε = log

(
u

v + ε

)
.

We claim that w+
ε ≡ 0 for any ε > 0. Suppose by contradiction that there exists ε0 > 0 such that w+

ε0 6≡ 0.
Let us fix k0 ∈

(
0, ‖w+

ε0‖L∞(Ω)

)
and ε ∈ (0, ε0), the latter to be chosen small enough later. It is clear that

wε0 ≤ wε in Ω, so w+
ε 6≡ 0, too.

For k ∈ [k0, ‖w+
ε ‖L∞(Ω)], let us denote

Ak = {x ∈ Ω : wε(x) ≥ k} = {x ∈ Ω : u(x) ≥ ek(v(x) + ε)}.
Notice that supp(w − k)+ ⊂ Ak. By hypothesis, we also have that lim sup

x→x0

wε(x) ≤ 0 for all x0 ∈ ∂Ω, which

implies that Ak ⊂⊂ Ω. Then, the function (wε − k)+ has compact support, and in particular, (wε − k)+ ∈
H1

0 (Ω) ∩ L∞(Ω). Therefore, we may take (wε−k)+

u as test function in (3.2), and (wε−k)+

v+ε in (3.3), obtaining

(3.10)

∫
Ω

∇u
u
∇(wε − k)+ ≤

∫
Ω

|∇u|2

u2
(wε − k)+ + λ

∫
Ω

(wε − k)+

+

∫
Ω

g(x)
|∇u|q

uq
(wε − k)+ +

∫
Ω

h(x)

u
(wε − k)+

and, using that g ≥ 0,

(3.11)

∫
Ω

∇v
v + ε

∇(wε − k)+ ≥
∫

Ω

|∇v|2

(v + ε)2
(wε − k)+ + λ

∫
Ω

v

v + ε
(wε − k)+

+

∫
Ω

g(x)
|∇v|q

vq−1(v + ε)
(wε − k)+ +

∫
Ω

h(x)

v + ε
(wε − k)+

≥
∫

Ω

|∇v|2

(v + ε)2
(wε − k)+ + λ

∫
Ω

(wε − k)+ −
∫

Ω

λε

v + ε
(wε − k)+

+

∫
Ω

g(x)
|∇v|q

(v + ε)q
(wε − k)+ +

∫
Ω

h(x)

v + ε
(wε − k)+.
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Moreover, it is clear that

(3.12) h

(
1

u
− 1

v + ε

)
+

λε

v + ε
≤ 0 in Ak for every k ∈ [k0, ‖w+

ε ‖L∞(Ω)]

whenever λ ≤ 0. We claim that this is also true if λ > 0, h satisfies (f0) and ε is small enough.
Indeed, let ω ⊂⊂ Ω be an open set such that Ak0 ⊂ ω. Since Ak ⊂ Ak0 for all k ≥ k0, there exists cω > 0

such that h ≥ cω in Ak for all k ≥ k0. If we choose now

ε < min

{
ε0,

1− e−k0

λ
cω

}
,

we deduce easily that (3.12) holds.
Therefore, subtracting (3.10) and (3.11), and taking into account that u, v ∈W 1,N

loc (Ω) and also (3.12), we
may argue as in the proof of Theorem 3.1 and achieve a contradiction taking k close enough to ‖w+

ε ‖L∞(Ω).
In conclusion, necessarily w+

ε ≡ 0 for any ε > 0, i.e., u ≤ v + ε in Ω for any ε > 0. Letting ε→ 0 it follows
that u ≤ v in Ω. �

4. The principal eigenvalue and nonexistence results

We devote this section to give some properties of λ∗ defined by (1.3). In particular, we show that λ∗ is the
only possible value of the parameter λ for which (Eλ) admits a solution. This is a crucial fact on which are
based the proofs of our main results, that exploit the existence of the principal eigenvalue associated to the
nonlinear operator −∆u − µ(x) |∇u|

q

uq−1 (see Theorem 1.1). For the sake of clarity we collected such proofs in
the last section.

Let us recall that λ∗ = sup I∗, where

I∗ =

{
λ ∈ R

∣∣∣∣ there exists a supersolution v to (Eλ)
such that v ≥ c in Ω for some c > 0

}
.

Firstly we point out some useful characterizations of λ∗ as the supremum of the following sets:

I1 =

{
λ ∈ R

∣∣∣∣ there exists a supersolution v to (Eλ)
such that v − c ∈ H1

0 (Ω) for some c > 0

}
,

and

I2 =

{
λ ∈ R

∣∣∣∣ there exists a supersolution v to (Eλ)
such that vγ ∈ H1(Ω) ∀γ > γ0 for some γ0 < 1

}
.

Proposition 4.1. Assume that 1 < q ≤ 2 and 0 ≤ µ ∈ L∞(Ω). Then, the sets I∗, I1 and I2 are nonempty
intervals, unbounded from below and they satisfy

I∗ = I1,(4.1)
λ∗ = sup I2.(4.2)

Moreover, λ∗ > 0 and we have that λ∗ ≤ Λ ≡ inf
w∈H1

0 (Ω)\{0}

‖w‖2
H1

0 (Ω)

‖w‖2L2(Ω)

.

Proof. We first observe that the sets under consideration are intervals. Moreover, taking ϕ ≡ c for any
constant c > 0 in the definitions of I∗, I1 and I2, we deduce that (−∞, 0] ⊂ I∗ ∩ I1 ∩ I2.

We split the rest of the proof into several steps.
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Step 1. We first prove (4.1). In order to prove that I1 ⊆ I∗ we take λ ∈ I1 and assume, without loss of
generality, that λ > 0. Hence, there exist 0 < ϕ ∈ H1(Ω)∩L∞(Ω) and c > 0 with ϕ > 0 in Ω, ϕ− c ∈ H1

0 (Ω),
and

−∆(ϕ− c) = −∆ϕ ≥ λϕ+ µ(x)
|∇ϕ|q

ϕq−1
≥ 0 in Ω.

Therefore, the maximum principle yields to ϕ ≥ c in Ω, and so λ ∈ I∗, too.
Reciprocally, assume that 0 < λ ∈ I∗, and let ϕ ∈ H1(Ω) ∩ L∞(Ω) and c > 0 with ϕ ≥ c and −∆ϕ ≥

λϕ + µ(x) |∇ϕ|
q

ϕq−1 in Ω. Clearly, thanks to Remark 2.2 we have that ψ = ϕ − c ≥ 0 is an H1(Ω) ∩ L∞(Ω)

supersolution to the nonsingular problem

(4.3)

−∆ψ = λψ + µ(x)
|∇ψ|q

|ψ + c|q−1
+ λc in Ω,

ψ = 0 on ∂Ω.

On the other hand, ψ ≡ 0 is obviously a subsolution. Therefore, [13, Théorème 3.1] (see also [23]) implies that
there exists a solution ψ ∈ H1

0 (Ω) ∩ L∞(Ω) to (4.3) satisfying that 0 ≤ ψ ≤ ϕ − c in Ω. Thus, the function
ψ + c satisfies: (ψ + c) ∈ H1(Ω) ∩ L∞(Ω), ψ + c > 0 in Ω, (ψ + c)− c ∈ H1

0 (Ω) and

−∆(ψ + c) = λ(ψ + c) + µ(x)
|∇(ψ + c)|q

(ψ + c)q−1
in Ω.

This proves that λ ∈ I1.

Step 2. We deduce now (4.2). Let {λn}n∈N ⊆ I2 be an increasing sequence of real numbers such that
λn < sup I2 for any n, satisfying λn → sup I2. In particular, for every n there exists un ∈ H1(Ω) ∩ L∞(Ω)
and γ̃n ∈ (0, 1) satisfying

un > 0 in Ω, −∆un ≥ λnun + µ(x)
|∇un|q

uq−1
n

in Ω, uγn ∈ H1(Ω) ∀γ > γ̃n.

Let ϕ1 > 0 be the principal eigenfunction (normalized in L∞(Ω)) to the −∆ operator in Ω with zero Dirichlet
boundary conditions. Let us fix n > 1, and consider ε = εn > 0 (to be chosen small enough later) and
γ = γn ∈

(
max

{
1
2 , γ̃n,

λn−1

λn

}
, 1
)
. Since γ > 1

2 and γ > γ̃n, we have, using Lemma 2.6, that the function

ψn = ε(ϕγ1 + 1) + uγn ∈ H1(Ω) ∩ L∞(Ω)

and, clearly, ψn ≥ ε in Ω.
Let φ ∈ H1

0 (Ω) ∩ L∞(Ω) be such that φ ≥ 0 in Ω and has compact support. Observe that the function
γϕγ−1

1 φ ∈ H1
0 (Ω) ∩ L∞(Ω), so it may be chosen as test function in{

−∆ϕ1 = Λϕ1 in Ω,

ϕ1 = 0 on ∂Ω.

Similarly, γuγ−1
n φ ∈ H1

0 (Ω) ∩ L∞(Ω) and has compact support, so it may be taken as test function in the
inequality satisfied by un. Therefore, direct computations yield to

(4.4)
∫

Ω

∇ϕγ1∇φ = γ(1− γ)

∫
Ω

|∇ϕ1|2

ϕ2−γ
1

φ+ γΛ

∫
Ω

ϕγ1φ

and

(4.5)
∫

Ω

∇uγn∇φ ≥ γ(1− γ)

∫
Ω

|∇un|2

u2−γ
n

φ+ γλn

∫
Ω

uγnφ+ γ

∫
Ω

µ(x)
|∇un|q

uq−γn

φ.
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Recalling that ∫
Ω

∇ψn∇φ = ε

∫
Ω

∇ϕγ1∇φ+

∫
Ω

∇uγn∇φ ,

using both (4.4) and (4.5) we easily deduce that

(4.6)

∫
Ω

(
−∇ψn∇φ+ λn−1ψnφ+ µ(x)

|∇ψn|q

ψq−1
n

φ

)
≤ ε

∫
Ω

(
−γ(1− γ)

|∇ϕ1|2

ϕ2−γ
1

+ (λn−1 − γΛ)ϕγ1 + λn−1

)
φ+∫

Ω

(
−γ(1− γ)

|∇un|2

u2−γ
n

− (γλn − λn−1)uγn − γµ(x)
|∇un|q

uq−γn

+ µ(x)
|∇ψn|q

ψq−1
n

)
φ.

Since γ < 1 < q, there exists a constant C1 > 0 (that depends only on q and γ) such that

|∇ψn|q

ψq−1
n

≤ 1

ψq−1
n

(
C1|∇(εϕγ1)|q +

1

γq−1
|∇(uγn)|q

)
≤ C1

|∇(εϕγ1)|q

εq−1
+
|∇(uγn)|q

(γuγn)(q−1)
= C1ε

|∇ϕ1|q

ϕ
q(1−γ)
1

+ γ
|∇un|q

uq−γn

(4.7)

in Ω. Hence, combining (4.6) and (4.7) we deduce that

(4.8)

∫
Ω

(
−∇ψn∇φ+ λn−1ψnφ+ µ(x)

|∇ψn|q

ψq−1
n

φ

)
≤ −(γλn − λn−1)

∫
Ω

uγnφ+

ε

∫
Ω

(
−γ(1− γ)

|∇ϕ1|2

ϕ2−γ
1

+ (λn−1 − γΛ)ϕγ1 + λn−1 + ‖µ‖L∞(Ω)C1
|∇ϕ1|q

ϕ
q(1−γ)
1

)
φ.

Denoting d(x) = dist(x, ∂Ω), since ϕ1 ∈ C1(Ω), Hopf’s Lemma yields that there exist two constants δ0, C2 > 0
such that |∇ϕ1|2 ≥ C2 in the set Ωδ = {x ∈ Ω : d(x) ≤ δ} for every δ ∈ (0, δ0). Hence, using now that
ϕ1 ∈ C(Ω) and ϕ1 = 0 on ∂Ω, we have that, for every κ > 0, there exists δ ∈ (0, δ0) such that |∇ϕ1|2

ϕ2−γ
1

≥ κ in
Ωδ. Using also that γλn − λn−1 > 0 and q(1− γ) < 2− γ, we choose δ sufficiently small, but independent of
ε, such that

(4.9) ε

(
−γ(1− γ)

|∇ϕ1|2

ϕ2−γ
1

+ (λn−1 − γΛ)ϕγ1 + λn−1 + ‖µ‖L∞(Ω)C1
|∇ϕ1|q

ϕ
q(1−γ)
1

)
≤ 0 ≤ (γλn − λn−1)uγn

in Ωδ. Consequently, we take ε small enough in order to have

ε

(
−γ(1− γ)

|∇ϕ1|2

ϕ2−γ
1

+ (λn−1 − γΛ)ϕγ1 + λn−1 + ‖µ‖L∞(Ω)C1
|∇ϕ1|q

ϕ
q(1−γ)
1

)
(4.10)

≤ εC3 ≤ (γλn − λn−1) inf
Ω\Ωδ

(uγn) ≤ (γλn − λn−1)uγn

in Ω\Ωδ, where C3 > 0 is a constant independent of ε. Gathering (4.8), (4.9) and (4.10) together we conclude
that ∫

Ω

∇ψn∇φ ≥ λn−1

∫
Ω

ψnφ+

∫
Ω

µ(x)
|∇ψn|q

ψq−1
n

φ.

In short, we have proved that λn−1 ∈ I∗ for any n > 1, and thus, λn−1 ≤ λ∗ for any n > 1. Therefore, letting
n→∞ we get that sup I2 ≤ λ∗. Finally, the reverse inequality is trivial since I∗ ⊆ I2.
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Step 3. We show now that λ∗ > 0. Indeed, given the constants c, δ >, let us consider the problem

(4.11)

−∆u =
µ(x)

cq−1
|∇u|q + δ in Ω,

u = 0 on ∂Ω.

If q < 2, by using Young’s inequality, we obtain that
µ(x)

cq−1
|ξ|q + δ ≤ µ(x)|ξ|2 +

(
1− q

2

)(q
2

) q
2−q ‖µ‖L∞(Ω)

c
2(q−1)

2−q

+ δ

for a.e. x ∈ Ω and for every ξ ∈ RN . Then, taking c large enough and δ small enough, [17, Theorem 3.4]
implies that there exists a solution u ∈ H1

0 (Ω) ∩ L∞(Ω) to (4.11). If q = 2, then the same result provides a
solution u ∈ H1

0 (Ω) ∩ L∞(Ω) if δ is small enough. In both cases, by the Maximum Principle, u ≥ 0 in Ω.
Let v = u+ c ∈ H1(Ω) ∩ L∞(Ω). It is clear that v ≥ c in Ω and, for some λ > 0,

−∆v = −∆u =
µ(x)

cq−1
|∇u|q + δ ≥ µ(x)

|∇u|q

(u+ c)q−1
+ δ

= µ(x)
|∇v|q

vq−1
+ λv + (δ − λv) ≥ µ(x)

|∇v|q

vq−1
+ λv + (δ − λ‖v‖L∞(Ω)).

Taking now λ sufficiently small, we conclude that v is a supersolution to (Eλ). This means that 0 < λ ≤ λ∗,
as we wished to prove.

Step 4 We prove here that λ∗ ≤ Λ. Let 0 < λ ∈ I∗ = I1. We already know, from Step 1, that there exists a
solution ψ ≥ 0 to (4.3) for some c > 0. Then, taking ϕ1 as test function in (4.3) we have

Λ

∫
Ω

ϕ1ψ =

∫
Ω

∇ϕ1∇ψ = λ

∫
Ω

ψϕ1 +

∫
Ω

µ(x)
|∇ψ|q

(ψ + c)q−1
ϕ1 + λc

∫
Ω

ϕ1.

In particular

(Λ− λ)

∫
Ω

ψϕ1 =

∫
Ω

µ(x)
|∇ψ|q

(ψ + c)q−1
ϕ1 + cλ

∫
Ω

ϕ1 > 0.

Thus, necessarily λ < Λ, which implies that λ∗ ≤ Λ. �

Remark 4.2. We point out that in Step 1 of the previous proof it has been shown that one can equivalently
define I1 in terms of solutions instead of supersolutions. That is to say,

I1 =

{
λ ∈ R

∣∣∣∣ there exists a solution v to the equation in (Eλ)
such that v − c ∈ H1

0 (Ω) for some c > 0

}
.

In order to prove that λ∗ is the only possible eigenvalue to (Eλ) we need to use the comparison principle
proved in the previous section. Indeed, it allows us to prove nonexistence of solutions to (Eλ) when λ < λ∗.
On the other hand, we use the characterization of λ∗ given by (4.2) to prove nonexistence for λ > λ∗; this
latter nonexistence result is valid for (Pλ), even with f  0. Summarizing, we have the following result.

Proposition 4.3. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, and 0 � f ∈
Lp(Ω) with p > N

2 . Then, there is no solution to (Pλ) for any λ > λ∗. Moreover, there is no solution to (Eλ)
for any λ 6= λ∗.

Proof. Arguing by contradiction, assume that there exists a solution u to (Pλ) for some λ > λ∗. Then, it is
in particular a supersolution to (Eλ), and Lemma 2.6 implies that uγ ∈ H1(Ω) for every γ > γ0(q). Since
γ0(q) < 1, then this contradicts (4.2) in Proposition 4.1. In conclusion, there is no solution to (Pλ) for any
λ > λ∗. Observe that, in particular, we have nonexistence of solutions to (Eλ) for λ > λ∗.
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On the other hand, assume now that there exists a solution u to (Eλ) for some λ < λ∗. By virtue of
Proposition 4.1 we have that λ ∈ I1, so there exist c > 0 and ϕ ∈ H1(Ω)∩L∞(Ω) satisfying that ϕ−c ∈ H1

0 (Ω)

and (see also Remark 4.2) −∆ϕ = λϕ + µ(x) |∇ϕ|
q

ϕq−1 in Ω. Hence, arguing as in Lemma 2.4 we deduce that
ϕ ∈ C(Ω) ∩W 1,N

loc (Ω).
Observe also that tu is also a solution to (Eλ) for every t > 0. Then, Lemma 2.4 implies that tu ∈

C(Ω) ∩W 1,N
loc (Ω), and in particular,

lim sup
x→x0

tu(x)

ϕ(x)
= lim
x→x0

tu(x)

ϕ(x)
= 0 ≤ 1 ∀x0 ∈ ∂Ω, ∀t ≥ 0.

Consequently, using also that tu and ϕ satisfy respectively (3.2) and (3.3) with the choices g ≡ µ and h ≡ 0,
an application of Theorem 3.1 gives that tu ≤ ϕ in Ω. But this is impossible if t is taken large enough.
Therefore, there is no solution to (Eλ) for any λ < λ∗. �

5. Existence and bifurcation results

We turn now to the problem of finding sufficient conditions on λ for the existence of solutions to (Pλ).
The proofs of our results are based on an approximation procedure and make use of the main results of the
previous sections.

Consider for every n ∈ N the family of approximate problems

(Qn)

−∆un = λun + µ(x)
|∇un|q∣∣un + 1

n

∣∣q−1 + Tn(f(x)) in Ω,

un = 0 on ∂Ω,

where Tn(s) = min{n,max{−n, s}} for s ∈ R. The following result is devoted to show that, below λ∗, the
approximate problems (Qn) admit a positive solution for any n. We also prove that such a sequence of
solutions is locally bounded away from zero. Finally, we prove that an a priori bound in L∞(Ω) implies
compactness of the approximate sequence.

Lemma 5.1. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, and 0 � f ∈
Lp(Ω) with p > N

2 and let λ < λ∗. Then there exists a solution un ∈ H1
0 (Ω) ∩ L∞(Ω) to (Qn) for any n. In

addition, the following local lower bound, uniform with respect to n, holds:

(5.1) ∀ω ⊂⊂ Ω ∃cω > 0 : un ≥ cω in ω, ∀n.
Moreover, if the sequence {un}n∈N is bounded in L∞(Ω), there exists a function 0 < u ∈ H1

0 (Ω)∩L∞(Ω) such
that, passing to a subsequence, un ⇀ u weakly in H1

0 (Ω) and un → u uniformly in Ω.

Proof. Let us fix n ∈ N, and let λ̄ ∈ I∗ be such that λ < λ̄ < λ∗. Then, there exist a constant c > 0 and a
function ϕ ∈ H1(Ω) ∩ L∞(Ω) satisfying ϕ ≥ c in Ω and −∆ϕ ≥ λ̄ϕ + µ(x) |∇ϕ|

q

ϕq−1 in Ω. Taking M > 0 large
enough, the function ψ := Mϕ turns out to be an H1(Ω) ∩ L∞(Ω) supersolution for (Qn), since

∆ψ + λψ + µ(x)
|∇ψ|q

|ψ + 1
n |q−1

+ Tn(f(x)) ≤ n−Mc(λ̄− λ) < 0 in Ω .

Clearly, ψ ≡ 0 is a subsolution to (Qn) and ψ ≡ 0 ≤ ψ in Ω. Therefore, [13, Théorème 3.1] (see also [23])
implies that there exists a solution un to (Qn) such that 0 ≤ un ≤ ψ in Ω.

In order to prove (5.1), we use an argument by comparison. Indeed, we first observe that{
−∆un ≥ λun + T1(f) in Ω,

un = 0 on ∂Ω.
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Since λ < λ∗ ≤ Λ, then the operator −(∆ + λ) verifies the maximum principle, so that we compare un with
the solution ζ to the problem {

−∆ζ = λζ + T1(f) in Ω,

ζ = 0 on ∂Ω,

and thus, we obtain that un ≥ ζ in Ω. Now, since f  0 in Ω, the strong maximum principle (which holds
since Ω is connected and, again, because λ < Λ, see [22]) implies that ζ satisfies (5.1), and then, so does un.

In order to prove the compactness of the sequence {un}n∈N, we choose now un as test function in (Qn),
and using that Tn(f) ≤ f in Ω for any n together with the L∞(Ω) bound, we easily deduce that {un}n∈N is
bounded in H1

0 (Ω). This implies that there exists a function u ∈ H1
0 (Ω) such that, passing to a subsequence,

un ⇀ u weakly in H1
0 (Ω). Using that, in particular, un → u a.e. in Ω, we deduce that u > 0 and u ∈ L∞(Ω).

On the other hand, by Lemma A.8 we deduce that {un}n∈N is uniformly bounded in C0,α(Ω) for some
α ∈ (0, 1). Hence, the compact embedding C0,α(Ω) ↪→ C(Ω) yields that un → u uniformly in Ω. �

Using the compactness provided by the previous result, we prove now the existence of a solution to (Pλ)
for f  0 and for every λ < λ∗.

Proposition 5.2. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, and 0 � f ∈
Lp(Ω) with p > N

2 . Then, there exists a solution to (Pλ) for every λ < λ∗.

Proof. Consider the sequence {un}n∈N of solutions to (Qn) given by Lemma 5.1. We claim that {un}n∈N is
bounded in L∞(Ω). Indeed, arguing by contradiction, assume that it is unbounded in L∞(Ω), and take a
(not relabelled) subsequence such that ‖un‖L∞(Ω) → ∞. Then, we have that the function zn ≡ un

‖un‖L∞(Ω)
∈

H1
0 (Ω) ∩ L∞(Ω) satisfies, for every n, that

(5.2)


−∆zn = λzn + µ(x)

|∇zn|q(
zn + 1

n‖un‖L∞(Ω)

)q−1 +
Tn(f(x))

‖un‖L∞(Ω)
in Ω,

zn = 0 on ∂Ω.

Since ‖zn‖L∞(Ω) = 1 for any n, then {zn}n∈N is clearly bounded in L∞(Ω), so following the arguments
of the proof of Lemma 5.1 we deduce that there exists 0 ≤ z ∈ H1

0 (Ω) ∩ L∞(Ω) such that, passing to a
subsequence, zn ⇀ z weakly in H1

0 (Ω) and zn → z uniformly in Ω. However, we can not argue as in Lemma
5.1 to prove neither the local lower bound to the sequence {zn}n∈N, nor that the limit z > 0 in Ω, since
one does not have a lower bound for

{
Tn(f(x))
‖un‖L∞(Ω)

}
n∈N

independent of n. Hence, we need to use a different
argument.

Indeed, observe first that the uniform convergence implies that ‖z‖L∞(Ω) = 1, so z  0 in Ω. Fix now
0 ≤ φ ∈ H1

0 (Ω) ∩ L∞(Ω). We know by the weak H1
0 (Ω) convergence that

lim
n→+∞

∫
Ω

∇zn∇φ− λ
∫

Ω

znφ =

∫
Ω

∇z∇φ− λ
∫

Ω

zφ

and, since
∫

Ω

∇zn∇φ− λ
∫

Ω

znφ ≥ 0 for any n, we have that
∫

Ω

∇z∇φ− λ
∫

Ω

zφ ≥ 0 , too.

On the other hand, since λ < λ∗ ≤ Λ, the strong maximum principle holds for the operator −(∆ + λ).
Thus, since Ω is connected and z is not constant (the only constant in H1

0 (Ω) is the null function), the strong
maximum principle implies that, for every ω ⊂⊂ Ω, there exists a constant c̃ω > 0 such that z ≥ c̃ω in ω for
any n (in particular, z > 0 in Ω and |∇z|

q

zq−1 ∈ L1
loc(Ω)). Furthermore, the uniform convergence yields that zn
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satisfies zn ≥ cω > 0, ∀ω ⊂⊂ Ω, ∀n ∈ N. This implies that {−∆zn}n∈N is bounded in L1
loc(Ω), that combined

with the H1 bound implies that

∇zn → ∇z strongly in Lr(Ω)N for any r < 2

(see [12]). The local lower bound and the convergence of the gradients will allow us to pass to the limit in
(5.2).

Indeed, assume first that 1 < q < 2, and let φ ∈ C1
c (Ω). We know that there exists a function h ∈ L1(Ω)

such that, passing to a subsequence if necessary, |∇zn|q ≤ h(x) in Ω, and we also have that |∇zn|q → |∇z|q
a.e. in Ω. Therefore, choosing an open set ω ⊂⊂ Ω such that supp(φ) ⊂ ω, we have that

µ(x)|∇zn|qφ(
zn + 1

n‖un‖L∞(Ω)

)q−1 ≤
µ(x)h(x)φ

c̃ q−1
ω

in Ω,

where
µhφ

c̃ q−1
ω

∈ L1(Ω). On the other hand, we also have that

µ(x)|∇zn|qφ(
zn + 1

n‖un‖L∞(Ω)

)q−1 →
µ(x)|∇z|qφ

zq−1
a.e. in Ω as n→ +∞.

Hence, we may pass to the limit in the second term of the right hand side of the equation in (5.2). It is
straightforward to verify that the rest of the terms also converge, so that we conclude that z is a solution (see
Lemma A.5 in the Appendix below) to (Eλ), but this is a contradiction with Theorem 4.3 since λ < λ∗.

On the other hand, assume now that q = 2 and ‖µ‖L∞(Ω) < 1, and let φ ∈ C1
c (Ω). We may assume without

loss of generality that φ ≥ 0 in Ω. In this case we argue as in [3] (see also [8]). Thus, using that

zn → z a.e. in Ω, weakly in H1
0 (Ω), strongly in L2(Ω),

∇zn → ∇z a.e. in Ω,

we obtain, by virtue of Fatou’s Lemma, the inequality∫
Ω

∇z∇φ ≥ λ
∫

Ω

zφ+

∫
Ω

µ(x)
|∇z|2

z
φ.

In order to prove the reverse inequality, let us take
zn
z
φ ∈ H1

0 (Ω)∩L∞(Ω) as test function in (5.2). It follows
that∫

Ω

|∇zn|2φ
z

−
∫

Ω

znφ

z2
∇zn∇z +

∫
Ω

zn
z
∇zn∇φ =λ

∫
Ω

z2
nφ

z
+

∫
Ω

µ(x)|∇zn|2znφ(
zn + 1

n‖un‖L∞(Ω)

)
z

+

∫
Ω

Tn(f(x))znφ

‖un‖L∞(Ω)z
.

Since ‖µ‖L∞(Ω) < 1, we deduce that

|∇zn|2φ
z

− µ(x)|∇zn|2znφ(
zn + 1

n‖un‖L∞(Ω)

)
z
≥ 0 a.e. in Ω,

therefore, Fatou’s Lemma yields to∫
Ω

|∇z|2φ
z

−
∫

Ω

µ(x)|∇z|2φ
z

≤ lim inf
n→∞

(∫
Ω

znφ

z2
∇zn∇z −

∫
Ω

zn
z
∇zn∇φ +λ

∫
Ω

z2
nφ

z
+

∫
Ω

Tn(f(x))znφ

‖un‖L∞(Ω)z

)
.

Finally, using that zn ⇀ z weakly in H1
0 (Ω) and zn → z strongly in L2(Ω), we obtain∫

Ω

∇z∇φ ≤ λ
∫

Ω

zφ+

∫
Ω

µ(x)
|∇z|2

z
φ.
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In conclusion, z is a solution (see again Lemma A.5) to problem (Eλ), so that we get again a contradiction.

Thus, we have proved that the sequence {un}n∈N is bounded in L∞(Ω). We conclude the proof of the
result by applying Lemma 5.1 and passing to the limit in (Qn) as we did for {zn}n∈N, with the only difference
that this time the local lower bound for {un}n∈N is provided directly by (5.1) in Lemma 5.1. �

We are ready now to prove our bifurcation result.

Proposition 5.3. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2, and 0 � f ∈
Lp(Ω) with p > N

2 . Then, if λ̄ ∈ R is a bifurcation point from infinity of (Pλ), necessarily λ̄ = λ∗. Moreover,
if f satisfies condition (f0), then the set

Σ := {(λ, uλ) ∈ R× C(Ω) : uλ is a solution to (Pλ)}

is a continuum.
If in addition (Pλ) has no solution for λ = λ∗, then the continuum is unbounded and it bifurcates from

infinity at λ∗ to the left.

Proof. Assume that λ̄ ∈ R is a bifurcation point from infinity to (Pλ), i.e., there exists a sequence of real
numbers {λn}n∈N with λn → λ̄ such that there exists a solution un to (Pλn) for any n satisfying ‖un‖L∞(Ω) →
∞. Proceeding as in the proof of Proposition 5.2, we may pass to the limit in the equation satisfied by
zn ≡ un

‖un‖L∞(Ω)
, so that we obtain a solution z to problem (Eλ). Therefore, by virtue of Proposition 4.3, we

have necessarily that λ = λ∗.
Assume now that f satisfies (f0). We will prove that the set Σ is a continuum. In other words, we will

show that the function

(−∞, λ∗)→ C(Ω)

λ 7→ uλ

is continuous, where uλ denotes the unique solution to (Pλ) given by Proposition 5.2 (the uniqueness of
uλ ∈ C(Ω) follows from Lemma 2.4 and Theorem 3.2). Indeed, let us fix λ ∈ (−∞, λ∗), and choose a sequence
{λn}n∈N ⊂ (−∞, λ∗) such that λn → λ as n diverges. Arguing again as in the proof of Proposition 5.2, if one
assumes that {uλn}n∈N is unbounded in L∞(Ω), then a solution to problem (Eλ) can be found, but this is
impossible because λ < λ∗. Thus, necessarily {uλn}n∈N is bounded in L∞(Ω), so that we deduce as in Lemma
5.1 that uλn → uλ uniformly in Ω, i.e., in the space C(Ω).

To conclude we prove that the continuum is unbounded by showing that λ∗ is a bifurcation point from
infinity to the left of the axis λ = λ∗. Indeed, assuming that {uλn}n∈N is bounded in L∞(Ω) for some sequence
{λn}n∈N ⊂ (−∞, λ∗) with λn → λ∗ as n diverges, we can pass to the limit in (Pλn) and we find a solution to
(Pλ∗), but this is a contradiction.

In conclusion, λ∗ is a bifurcation point from infinity to the left of λ = λ∗. �

6. Proofs of the main results and final remarks

Proof of Theorem 1.2. We deduce from Proposition 5.2 the existence of at least one solution to (Pλ) if λ < λ∗.
Moreover, the nonexistence for λ > λ∗ in deduced by Proposition 4.3.

As far as uniqueness is concerned, we observe that if u, v are two solutions to (Pλ), then Lemma 2.4 implies
that u, v ∈ C(Ω) ∩W 1,N

loc (Ω). In particular, using the continuity up to the boundary of u, v and the fact that
u(x0) = 0 for any x0 ∈ ∂Ω, we have that u, v satisfy (3.9) for any ε > 0. Moreover, they obviously satisfy
(3.2) and (3.3) respectively. Therefore, Theorem 3.2 implies that u ≤ v in Ω. The reverse inequality follows
by interchanging the roles of u and v.
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We give now a proof for the nonexistence of solutions to (Pλ∗). Thus, assume by contradiction that there
exists a solution u to (Pλ∗). Then, we can find a solution v to

(6.1)


−∆v = λ∗v + µ(x)

|∇v|q

vq−1
+ Cϕγ1 in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

The proof of this fact follows basically the same steps as Proposition 5.2: the only difference is the way of
proving the L∞ estimate, which does not work in this case. However, since we are assuming that there is
a solution u to (Pλ∗), then, by comparison, any solution to the approximate problems (Qn) is smaller than
‖u‖L∞(Ω), which gives the a priori estimate.

Furthermore, using Lemma 2.7 we deduce that for ε > 0 small enough, the following holds:

C1ϕ
γ
1 − εv ≥ (C1 − εC))ϕγ1 ≥ 0.

Therefore,

−∆v = (λ∗ + ε)v + µ(x)
|∇v|q

vq−1
+ (C1ϕ

γ
1 − εv) ≥ (λ∗ + ε)v + µ(x)

|∇v|q

vq−1
.

That is to say, v is a supersolution to (Eλ∗+ε). Moreover, by Proposition 2.6, vη ∈ H1
0 (Ω) for every η ∈ (η0, 1)

for some η0 < 1. This is a contradiction with the characterization (4.2) in Proposition 4.1. So we have proved
the nonexistence result.

Finally, the claim about bifurcation follows from Proposition 5.3.
�

Proof of Theorem 1.1. We have shown in Proposition 4.1 that λ∗ ∈ (0,Λ]. Moreover, as a consequence of
Proposition 4.3, if (Eλ) admits a solution then λ = λ∗. Thus, for the first part of the theorem it only remains
to prove the existence of solution to (Eλ) for λ = λ∗. In order to do that, by virtue of Proposition 5.3, we
may choose λn → λ∗ such that ‖uλn‖L∞(Ω) → ∞, where uλn denotes, for any n, the unique solution to the
problem 

−∆u = λnu+ µ(x)
|∇u|q

uq−1
+ 1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Hence, arguing again as in Proposition 5.2, we may pass to the limit in the equation satisfied by zn ≡
uλn

‖uλn‖L∞(Ω)
using that ‖zn‖L∞(Ω) = 1 for any n, concluding that the limit z is a solution to (Eλ∗).

Regarding the uniqueness of the solution up to multiplicative constants, it follows by adapting the unique-
ness result proved in [26] to vi = log(ui), i = 1, 2, being u1 and u2 two solutions to (Eλ∗). �

We conclude the section with some remarks concerning the principal eigenvalue and some possible extensions
of our results.

Remark 6.1. Let us remark that the global behavior of the continuum in Proposition 5.3 corresponds to the
one obtained in [8] for q = 2. That is to say, λ∗ > 0 is the only possible bifurcation point from infinity.



SINGULAR AND HOMOGENEOUS ELLIPTIC PROBLEMS 19

However, as it was pointed out in the introduction, there are similar singular problems that exhibit a
completely different behavior. For instance, whenever bifurcation occurs for the problem

−∆u = λu+ µ
|∇u|2

uθ
+ f(x) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with θ ∈ [0, 1), it is possible to prove (see [7]) that λ = 0 is the only possible bifurcation point from infinity.
Hence the qualitative behavior of the continuum of solutions is different if the problem above possesses or not
a solution for λ = 0.

Remark 6.2. We show here that, in the case q = 2, there exists 0 ≤ µ ∈ L∞(Ω) with ‖µ‖L∞(Ω) < 1 such

that λ∗ >
Λ

‖µ‖L∞(Ω) + 1
. This proves that, if µ is not a constant, then the condition λ <

Λ

‖µ‖L∞(Ω) + 1
is

not necessary in general for the existence of solutions to (Pλ).

Indeed, by contradiction, assume that λ∗ =
Λ

‖µ‖L∞(Ω) + 1
for any 0 ≤ µ ∈ L∞(Ω) with ‖µ‖L∞(Ω) < 1.

Fix a point x0 ∈ Ω, and consider a sequence of balls {B 1
n

(x0)}n∈N ⊂ Ω. For any n, let us define in Ω the
functions

µn(x) =
1

2
χB 1

n
(x0)

Since ‖µn‖L∞(Ω) = 1/2 < 1 for any n, we may consider a solution un to
−∆un =

Λ

‖µn‖L∞(Ω) + 1
un + µn(x)

|∇un|2

un
in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.

Observe that
Λ

‖µn‖L∞(Ω) + 1
=

2Λ

3
for any n, and that µn → 0 a.e. in Ω.

If we choose un so that ‖un‖L∞(Ω) = 1 for any n, then, arguing as in the proof of Proposition 5.2, we may
pass to the limit and find a solution u to 

−∆u =
2Λ

3
u in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

But this is a contradiction since
2Λ

3
< Λ.

Remark 6.3. It is worth to highlight that we can prove the strict inequality λ∗ < Λ provided µ > 0 in Ω.
Indeed, let u be a solution to (Eλ∗). Then, taking ϕ1 as test function in (Eλ∗), we obtain

(Λ− λ∗)
∫

Ω

uϕ1 =

∫
Ω

µ(x)
|∇u|q

uq−1
ϕ1 > 0,

which clearly implies what we claimed.

Remark 6.4. We also point out that Theorem 1.1 yields to

I∗ = I1 = (−∞, λ∗) and I2 = (−∞, λ∗].
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Indeed, if u is a solution to (Eλ∗), then it follows trivially from Lemma 2.6 that λ∗ ∈ I2. On the other hand,
assume by contradiction that λ∗ ∈ I∗. Then, there exists a supersolution ϕ ∈ H1(Ω) ∩ L∞(Ω) to (Eλ∗) with
ϕ ≥ c in Ω for some c > 0. Hence, we may argue as in Proposition 4.3 to obtain that tu ≤ ϕ in Ω for every
t > 0, which is obviously impossible.

Remark 6.5. In the whole paper we have confined ourselves to the case q > 1 in order to deal with the
singular problems (Pλ) and (Eλ). Nevertheless, our results hold true also for q = 1 by following the same
approach (with some small difference in the proof of the positivity of λ∗).

Remark 6.6. The hypotheses made on the smoothness of ∂Ω deserve also some comments. For the sake of
clarity we have assumed in the whole paper that the boundary is of class C1,1. Actually, such a regularity
of the boundary is needed only in order to obtain C1(Ω) regularity of solutions to linear problems (which is
provided by Calderon-Zygmund regularity theory).

Apart from those results, it suffices to impose a weaker regularity assumption on ∂Ω in order to prove the
rest of our results. Indeed, one needs to suppose that Ω satisfies the following condition:

(6.2) Let Ω ⊂ R be an open set and suppose that there exist r0, θ0 > 0 such that if x ∈ ∂Ω and
0 < r < r0, then |Ωr| ≤ (1− θ0) |Br(x)|, for every connected component Ωr of Ω ∩Br(x).

Such a condition is specifically needed to prove C0,α(Ω) regularity (and also uniform estimates in this space)
of the solutions.

Appendix A

This section consists of five lemmata that prove that the formulation given in Definition 2.1 is totally
meaningful and actually can be changed into an equivalent one in which the test functions have compact
support.

Lemma A.1. Let φ ∈ H1
0 (Ω) ∩ L∞(Ω) be such that supp(φ) ⊂ Ω. Then, there exist an open set ω ⊂⊂ Ω

and a sequence {φn}n∈N ⊂ C1
c (Ω) such that it is bounded in L∞(Ω), supp(φn) ⊂ ω for any n, and φn → φ

strongly in H1
0 (Ω).

Proof. Take an open set ω such that supp(φ) ⊂ ω ⊂⊂ Ω. Then, φ ∈ H1
0 (ω) ∩ L∞(ω). Let ψn ∈ C1

c (ω) be
such that ψn → φ strongly in H1

0 (ω), then

ψn → φ a.e. in Ω, ∇ψn → ∇φ a.e. in Ω,

Consider now a function G : R→ R satisfying the following properties:
(i) G ∈ C1(R) ∩W 1,∞(R),
(ii) G(s) = s ∀s ∈

[
−‖φ‖L∞(ω), ‖φ‖L∞(ω)

]
.

Clearly, we have that {G(ψn)}n∈N ⊂ C1
c (ω), it is bounded in L∞(ω) and, in addition,

∇G(ψn) = G′(ψn)∇ψn → G′(φ)∇φ = ∇G(φ) = ∇φ a.e. in ω.

Moreover,

|∇G(ψn)−∇φ|2 ≤ |∇G(ψn)|2 + |∇φ|2 + 2|∇G(ψn)||∇φ|

and therefore, the Vitali’s Theorem yields that G(ψn)→ φ strongly in H1
0 (ω).

For any n, let us define the function φn in Ω by

φn =

{
G(ψn) in ω,

0 in Ω \ ω.
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Thus, we have that {φn}n∈N ⊂ C1
c (Ω), it is bounded in L∞(Ω), φn → φ strongly in H1

0 (Ω) and, in addition,
supp(φn) ⊂ ω for any n. �

Lemma A.2. Let φ ∈ H1
0 (Ω) be such that φ ≥ 0 a.e. in Ω, and let {φn}n∈N be a sequence in C1

c (Ω) such
that φn → φ strongly in H1

0 (Ω). Then, φ+
n → φ strongly in H1

0 (Ω).

Proof. We know, passing to a subsequence, that

φn → φ a.e. in Ω, and ∇φn → ∇φ a.e. in Ω.

Observe that ∫
Ω

|∇(φ+
n − φ)|2 =

∫
Ω

|∇(φn − φ)|2 + 2

∫
Ω

∇φ−n∇φ−
∫

Ω

|∇φ−n |2(A.1)

≤
∫

Ω

|∇(φn − φ)|2 + 2

∫
Ω

∇φ−n∇φ

for any n.
Now, by continuity we deduce that φ−n → φ− = 0 a.e. in Ω. Therefore, passing to a new subsequence,

we infer that {φ−n }n∈N weakly converges in H1
0 (Ω) to some limit ψ, and then φ−n → ψ a.e. in Ω. Hence,

necessarily ψ ≡ 0, that is to say, φ−n ⇀ 0 weakly in H1
0 (Ω).

Finally, from (A.1) we conclude that φ+
n → φ strongly in H1

0 (Ω), where {φn}n∈N is a subsequence of the
original sequence. Actually we have prove that any subsequence of {φn}n∈N admits a subsequence such that
φ+
n → φ strongly in H1

0 (Ω). Then we have necessarily that, indeed, the positive part of the original sequence
strongly converges to φ in H1

0 (Ω). �

Lemma A.3. Let φ ∈ H1
0 (Ω) be such that φ ≥ 0 a.e. in Ω. Then, there exists a sequence {φn}n∈N ⊂ H1

0 (Ω)
such that supp(φn) ⊂ Ω for any n, 0 ≤ φn ≤ φ a.e. in Ω for any n, and φn → φ strongly in H1

0 (Ω). In
particular, if φ ∈ L∞(Ω), then {φn}n∈N is bounded in L∞(Ω).

Proof. Let {ψn}n∈N ⊂ C1
c (Ω) be such that ψn → φ strongly in H1

0 (Ω). By virtue of Lemma A.2, we have
that ψ+

n → φ strongly in H1
0 (Ω). For any n, let us define now the function φn = φ+ (ψ+

n −φ)− in Ω. Clearly,
φn ∈ H1

0 (Ω) and 0 ≤ φn ≤ φ a.e. in Ω for any n. Observe also that, for any n, it holds that φn ≤ ψ+
n a.e. in

Ω and ψ+
n = 0 a.e. in Ω\supp(ψ+

n ), so φn = 0 a.e. in Ω\supp(ψ+
n ). Hence, by the definition of the essential

support of φn, we have that Ω\supp(ψ+
n ) ⊂ Ω\supp(φn), and thus, supp(φn) ⊂ supp(ψ+

n ) ⊂ Ω.
Finally, we have that ∫

Ω

|∇(φn − φ)|2 =

∫
Ω

|∇(ψ+
n − φ)−|2 ≤

∫
Ω

|∇(ψ+
n − φ)|2,

and therefore, φn → φ strongly in H1
0 (Ω). �

Lemma A.4. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), 0 ≤ f ∈ Lp(Ω) with p > N
2 and λ ∈ R. Let

u ∈ H1
0 (Ω) ∩ L∞(Ω) be such that u > 0 a.e. in Ω, |∇u|

q

uq−1 ∈ L1
loc(Ω) and satisfies∫

Ω

∇u∇φ = λ

∫
Ω

uφ+

∫
Ω

µ(x)
|∇u|q

uq−1
φ+

∫
Ω

f(x)φ

for any φ ∈ C1
c (Ω). Then, the same equality holds for every φ ∈ H1

0 (Ω) ∩ L∞(Ω) with compact support.

Proof. Let φ ∈ H1
0 (Ω) ∩ L∞(Ω) be such that supp(φ) ⊂ Ω, and let ω and {φn}n∈N be the open set and the

sequence given by Lemma A.1, respectively. This lemma gives also that

µ(x)
|∇u|q

uq−1
φn ≤ ‖µ‖L∞(Ω)

|∇u|q

uq−1
‖φn‖L∞(Ω) ≤ C

|∇u|q

uq−1
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a.e. in Ω, where C > 0 is a constant independent of n. Therefore, since |∇u|
q

uq−1 ∈ L1
loc(Ω), we can use the

Lebesgue’s Theorem to derive∫
Ω

µ(x)
|∇u|q

uq−1
φn =

∫
ω

µ(x)
|∇u|q

uq−1
φn →

∫
ω

µ(x)
|∇u|q

uq−1
φ =

∫
Ω

µ(x)
|∇u|q

uq−1
φ.

The conclusion of the lemma is now straightforward. �

Lemma A.5. Assume that 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), 0 ≤ f ∈ Lp(Ω) with p > N
2 and λ ∈ R. Let

u ∈ H1
0 (Ω) ∩ L∞(Ω) be such that u > 0 a.e. in Ω, |∇u|

q

uq−1 ∈ L1
loc(Ω) and satisfies∫

Ω

∇u∇φ = λ

∫
Ω

uφ+

∫
Ω

µ(x)
|∇u|q

uq−1
φ+

∫
Ω

f(x)φ

for any φ ∈ C1
c (Ω). Then, u is a solution to (Pλ) in the sense of Definition 2.1.

Similarly, if u ∈ H1(Ω) ∩ L∞(Ω) is such that u > 0 a.e. in Ω, |∇u|
q

uq−1 ∈ L1
loc(Ω) and satisfies∫

Ω

∇u∇φ ≥ λ
∫

Ω

uφ+

∫
Ω

µ(x)
|∇u|q

uq−1
φ+

∫
Ω

f(x)φ

for any 0 ≤ φ ∈ H1
0 (Ω) ∩ L∞(Ω) with compact support, then u is a supersolution to (Pλ) in the sense of

Definition 2.1.

Proof. Let φ ∈ H1
0 (Ω) ∩ L∞(Ω), and let {φn}n∈N be the sequence in H1

0 (Ω) ∩ L∞(Ω) given by Lemma A.3
such that φn → φ+ strongly in H1

0 (Ω). By virtue of Lemma A.4, we have that

(A.2)
∫

Ω

µ(x)
|∇u|q

uq−1
φn =

∫
Ω

∇u∇φn − λ
∫

Ω

uφn −
∫

Ω

f(x)φn ∀n ∈ N.

Hence, by Fatou’s Lemma and by the weak convergence φn ⇀ φ+ in H1
0 (Ω), we obtain that∫

Ω

µ(x)
|∇u|q

uq−1
φ+ ≤

∫
Ω

∇u∇φ+ − λ
∫

Ω

uφ+ −
∫

Ω

f(x)φ+.

That means that
|∇u|q

uq−1
φ+ ∈ L1(Ω). This fact allows us to pass to the limit in (A.2) by using the Lebesgue’s

Theorem for the left hand side (recall that φn ≤ φ+ for any n), and again the weak convergence for the right
hand side, so that we obtain∫

Ω

µ(x)
|∇u|q

uq−1
φ+ =

∫
Ω

∇u∇φ+ − λ
∫

Ω

uφ+ −
∫

Ω

f(x)φ+.

An analogous procedure provides us the same identity but replacing φ+ by φ−. The proof of the first part of
the lemma concludes by simply adding both identities.

The last part of the lemma about supersolutions can be proved in a similar way. �

Regularity of the solutions

Proof of Lemma 2.4: Hölder regularity.
Here we prove that any H1

0 (Ω) ∩ L∞(Ω) solution to (Pλ) actually belongs to C0,α(Ω) for some α ∈ (0, 1).
For this purpose, we make use of the regularity theory developed by Ladyzenskaya and Ural’tseva in [25].

We denote an open ball with radius ρ > 0 as Bρ, and for v : Ω→ R, k ∈ R, we also write

Ak,ρ(v) = {x ∈ Ω ∩Bρ : v(x) ≥ k}.
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Definition A.6 ([25], p. 90). Let Ω ⊂ RN be an open domain, and let M,γ, δ > 0, r ∈ (N,+∞], m > 1.
We say that a function u : Ω → R belongs to the class Bm

(
Ω,M, γ, δ, 1

r

)
if u ∈ W 1,m(Ω) ∩ L∞(Ω) with

‖u‖L∞(Ω) ≤M , and the following holds for v = u and also for v = −u:

(A.3)
∫
Ak,ρ−σρ(v)

|∇v|m ≤ γ

(
1

σmρm(1−Nr )
‖v − k‖mL∞(Ak,ρ(v)) + 1

)
|Ak,ρ(v)|1−mr ,

for any ρ > 0 and all Bρ such that Ω ∩ Bρ 6= ∅, for all σ ∈ (0, 1) and for all k ≥ kρ, where kρ =

max

{
sup

Ω∩Bρ
(v)− δ, sup

∂Ω∩Bρ
(v)

}
if ∂Ω ∩Bρ 6= ∅, while kρ = supBρ(v)− δ otherwise.

We will use the following result (see [25, Theorem 7.1, p. 91]).

Theorem A.7. Let Ω ⊂ RN be a C1,1 domain and let M,γ, δ > 0, r ∈ (N,+∞], m > 1, β ∈ (0, 1), L > 0.
Then, there exist α ∈ (0, 1) and K > 0 such that, if u ∈ Bm

(
Ω,M, γ, δ, 1

r

)
satisfies

(A.4) sup
∂Ω∩Bρ

(u)− inf
∂Ω∩Bρ

(u) ≤ Lρβ

for every Bρ centered at ∂Ω with 0 < ρ < a0, then u ∈ C0,α(Ω) and, moreover, ‖u‖C0,α(Ω) ≤ K.

Thus the core of our result is proving that any solution of (Pλ) belongs to Bm
(
Ω,M, γ, δ, 1

r

)
.

Lemma A.8. Let Ω ⊂ RN be a C1,1 domain, λ ∈ R, 1 < q ≤ 2, 0 ≤ µ ∈ L∞(Ω), with ‖µ‖L∞(Ω) < 1 if q = 2,
and 0 � f ∈ Lp(Ω) for p > N

2 . Then, for every M > 0, there exist α ∈ (0, 1) and K > 0 such that every
solution u to (Pλ) satisfying ‖u‖L∞(Ω) ≤M belongs to C0,α(Ω) with ‖u‖C0,α(Ω) ≤ K.

Remark A.9. The condition on the regularity of the boundary can be relaxed, assuming that ∂Ω satisfies
(6.2).

Proof of Lemma A.8. Let M > 0 and let u be a solution to (Pλ) such that ‖u‖L∞(Ω) ≤M . We will show that

u ∈ B2

(
Ω,M, γ,M, 1

2p

)
for some γ > 0.

Indeed, fix ρ > 0 and Bρ such that Ω ∩ Bρ 6= ∅, fix also σ ∈ (0, 1), and consider a function ζ ∈ C∞c (RN ),
compactly supported in Bρ, satisfying that 0 ≤ ζ ≤ 1 in Bρ, ζ ≡ 1 in the concentric ball Bρ−σρ, and |∇ζ| < a

σρ

in Bρ for some constant a > 0 independent of ρ, σ. We start by showing that inequality (A.3) is satisfied for
v = u.

Thus, let k ≥ kρ. If ∂Ω ∩ Bρ 6= ∅, then kρ = 0 (since v = 0 on ∂Ω), so (v − k)+ ∈ H1
0 (Ω) ∩ L∞(Ω),

and in particular ζ2(v − k)+ ∈ H1
0 (Ω) ∩ L∞(Ω). On the other hand, if Bρ ⊂ Ω, then ζ ∈ C∞c (Ω), so again

ζ2(v − k)+ ∈ H1
0 (Ω) ∩ L∞(Ω). In both cases, we can take ζ2(v − k)+ ∈ H1

0 (Ω) ∩ L∞(Ω) as test function in
the weak formulation of (Pλ), so that we obtain∫

Ak,ρ(v)

ζ2|∇v|2 ≤ 2

∫
Ak,ρ(v)

ζ(v − k)|∇ζ||∇v|+ |λ|
∫
Ak,ρ(v)

v(v − k)

+ ‖µ‖L∞(Ω)

∫
Ak,ρ(v)

ζ2|∇v|q v − k
|v|q−1

+

∫
Ak,ρ(v)

f(x)(v − k).(A.5)
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By the definition of kρ, it is clear that v − k ≤M in Ak,ρ(v). Using also that v ≤M , we deduce that∫
Ak,ρ(v)

ζ2|∇v|2 ≤ 2

∫
Ak,ρ(v)

ζ(v − k)|∇ζ||∇v|+ |λ|M2|Ak,ρ(v)|

+ ‖µ‖L∞(Ω)M
2−q

∫
Ak,ρ(v)

ζ2|∇v|q +M

∫
Ak,ρ(v)

f(x).

If q < 2 we use Young’s inequality conveniently in the first and the third terms of the right hand side of the
last inequality, so we derive

1

C

∫
Ak,ρ(v)

ζ2|∇v|2 ≤ (|λ|+ C)M2|Ak,ρ(v)|

+M‖f‖Lp(Ω)|Ak,ρ(v)|
1
p′ + C

∫
Ak,ρ(v)

(v − k)2|∇ζ|2,

for some C = C(q, µ) > 0 large enough. Similarly, if q = 2 and ‖µ‖L∞(Ω) < 1, we arrive at the same inequality
in a similar way, but Young’s inequality is not needed in the second term of the right hand side.

Noticing that

|Ak,ρ(v)| = |Ak,ρ(v)|
1
p′ |Ak,ρ(v)|

1
p ≤ |Ak,ρ(v)|

1
p′ C(N, p)ρ

N
p ,

and recalling the properties of ζ, we finally arrive at

(A.6)
∫
Ak,ρ−σρ(v)

|∇v|2 ≤ γ

(
1

σ2ρ2−Np
‖v − k‖2L∞(Ak,ρ(v)) + 1

)
|Ak,ρ(v)|

1
p′ ,

for some γ > 0 which depends on M but not on v, k, ρ, σ.
Let us now prove that (A.3) holds for v = −u. First of all, notice that v satisfies

(A.7)

{
−∆v ≤ λv in Ω,

v = 0 on ∂Ω.

Let k ≥ kρ; if, on the contrary, ∂Ω ∩Bρ 6= ∅, then kρ = 0, so Ak,ρ(v) = ∅ and (A.3) is trivially satisfied.
On the other hand, if Bρ ⊂ Ω, then ζ2(v − k)+ ∈ H1

0 (Ω) ∩ L∞(Ω), and it can be used as test function in
(A.7). In particular, (A.5) also holds, so the same computations above can be reproduced up to (A.6), and
the proof of our claim is done.

In conclusion, we have proved that u ∈ B2

(
Ω,M, γ,M, 1

2p

)
. Since (A.4) is satisfied being u = 0 on ∂Ω,

then Theorem A.7 implies that u ∈ C0,α(Ω) for some α ∈ (0, 1), and, in addition, ‖u‖C0,α(Ω) ≤ K, where K,α
are positive constants independent of u.

�

Proof of Lemma 2.4: Local Sobolev regularity. As far as the local Sobolev regularity is concerned, we use a
classical bootstrap argument (see [16] for more details). We first observe that since u > 0, by virtue of the
strong maximum principle we have that u ≥ infω(u) > 0 in ω for every smooth open set ω ⊂⊂ Ω. Hence, we
may apply [21, Chapter V, Proposition 2.1] to derive that u ∈ W 1,t0(ω) for some t0 > 2, and by standard
regularity theory we have that u ∈ W 2,

t0
2 (ω). Now, since u ∈ C0,α(ω) ∩W 2,

t0
2 (ω), then [28, Teorema IV]

implies that u ∈W 1,t1(ω), where t1 =
t0
2 (2−α)−α

1−α > t0.
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We may continue the bootstrap argument as in [6, Lemma 2.1] to obtain that u ∈ W 1,tn(ω) as long as
tn−1 < 2p, where

tn =
tn−1

2 (2− α)− α
1− α

∀n ∈ N.

Observe that the sequence {tn}n∈N is increasing. Assume by contradiction that tn < 2p for any n. Then the
sequence {tn}n∈N is convergent, and tn → 2. But this contradicts the fact that t0 > 2. Hence, necessarily
tn ≥ 2p for some n, and the proof is done. �
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