COMPARISON PRINCIPLE FOR ELLIPTIC EQUATIONS IN DIVERGENCE WITH SINGULAR LOWER ORDER TERMS HAVING NATURAL GROWTH

DAVID ARCOYA, JOSÉ CARMONA, AND PEDRO J. MARTÍNEZ-APARICIO

ABSTRACT. In this paper we are concerned with the zero Dirichlet boundary value problem associated to the quasilinear elliptic equation

$$-\operatorname{div}(a(u)M(x)\nabla u) + H(x, u, \nabla u) = f(x), \quad x \in \Omega,$$

where Ω is an open and bounded set in \mathbb{R}^N $(N \geq 3)$, a is a continuously differentiable real function in $(0, +\infty)$, M(x) is an elliptic, bounded and symmetric matrix, $H(x, \cdot, \xi)$ is nonnegative and may be singular at zero and $f \in L^1(\Omega)$. We give sufficient conditions on H, M and a in order to have a comparison principle and, as a consequence, uniqueness of positive solutions being continuous up to the boundary.

1. INTRODUCTION

Let Ω be an open and bounded set in \mathbb{R}^N $(N \ge 3)$ and $f \in L^1(\Omega)$. We consider the following boundary value problem

(1.1)
$$\begin{cases} -\operatorname{div}(a(u)M(x)\nabla u) + H(x,u,\nabla u) = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where M(x) is a symmetric matrix satisfying, for some $\alpha, \beta > 0$, that

(1.2)
$$\alpha |\xi|^2 \le M(x)\xi \cdot \xi \le \beta |\xi|^2, \forall \xi \in \mathbb{R}^N$$

The function $a: (0, +\infty) \to \mathbb{R}$ is continuously differentiable and positive and $H: \Omega \times (0, +\infty) \times \mathbb{R}^N \to \mathbb{R}$ is a nonnegative Carathéodory function such that for a.e. $x \in \Omega, H(x, \cdot, \cdot)$ is continuously differentiable and

(1.3)
$$H(x, s, t\xi) = t^2 H(x, s, \xi), \quad \forall s > 0, \forall t \in \mathbb{R}, \forall \xi \in \mathbb{R}^+$$

A comparison principle for general differential operators of the form

$$-\operatorname{div}(a(x, u, \nabla u)) + H(x, u, \nabla u)$$

is established in [6, Theorem 1.2, Theorem 2.1 and Theorem 2.3 for the bounded case]. In the case $a(x, s, \xi) = \xi$, conditions imposed to H in [6] imply in particular that $\partial_s H \geq 0$. Moreover, as it was observed in Remark 2.5 of that paper, the maximum principle still holds in various situations even when $\partial_s H < 0$ and it would be desirable to find convenient structure conditions on H including some particular cases where $\partial_s H < 0$. A slightly improvement of these conditions can be found in [5] for f small enough and, once again, it is required that $\partial_s H \geq 0$.

Research supported by MEC-FEDER (Spain) MTM2012- 31799 and Junta de Andalucia FQM-116 and FQM-194.

A different kind of comparison principle is proved in [4] where M(x) = I, the identity matrix, and $H(x, u, \nabla u) = g(u) |\nabla u|^2$ for some nonnegative continuous function g in $(0, +\infty)$. In this case, the authors imposed the integrability of $\frac{g(s)}{a(s)}$ at zero. This result handles the case that g is singular at zero (which necessarily implies that $\partial_s H \geq 0$). However, their techniques require strongly that the function H and the differential operator do not depend on x.

Some further extension, dealing with uniqueness, was done in [2] in the case a(s) = 1, M(x) = I and $H(x, u, \nabla u) = -d(x)u - \mu(x)|\nabla u|^2 - h(x)$ for some $d, h \in L^p(\Omega), p > N/2, d \leq 0$ and $\mu \in L^{\infty}(\Omega)$ (see [3] for an slightly improvement with general M(x) and more general function H non decreasing on the variable s). It is once again imposed that $\partial_s H \geq 0$. Moreover, in some particular cases, with $\partial_s H < 0$ (d(x) > 0) they prove a multiplicity result (see Theorem 1.3 in [2]), that is, no uniqueness result is expected imposing only that $\partial_s H < 0$.

More recently, in [1] it is proved a comparison principle for (1.1) in the case a(s) = 1 and M(x) = I for a particular class of functions $H(x, u, \nabla u)$ which are continuous at u = 0 and that may be decreasing on u.

The aim of this paper is to improve the above comparison principles in some directions: general matices M(x), dependence on x and singularity at u = 0 on the gradient quadratic part.

Let us illustrate our main result in the case $H(x, s, \xi) = h(x, s)|\xi|^2$, although we give a more general structure condition for H in section 2. More precisely, consider the boundary value problem:

(1.4)
$$\begin{cases} -\operatorname{div}(a(u)M(x)\nabla u) + h(x,u)|\nabla u|^2 = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

for a differentiable Carathéodory function h defined in $\Omega \times (0, +\infty)$ (i.e., a Carathéodory function such that $h(x, \cdot)$ is derivable for a.e. $x \in \Omega$).

We say that $u \in H_0^1(\Omega)$ with u > 0 is a subsolution (respectively, a supersolution) of (1.4) if $a(u)M(x)\nabla u \in L^2(\Omega)^N$, $h(x,u)|\nabla u|^2 \in L^1(\Omega)$ and

$$\int_{\Omega} a(u) M(x) \nabla u \nabla \phi + \int_{\Omega} h(x, u) |\nabla u|^2 \phi \leq \int_{\Omega} f \phi \,, \quad \forall \phi \in H^1_0(\Omega) \cap L^{\infty}(\Omega)$$

(respectively, if the reverse inequality holds). Thus, u is called a solution provided that it is both a subsolution and a super solution. We prove the following theorem.

Theorem 1.1. Assume (1.2) and that for every $\nu > 0$ there exist $\theta \ge 0$ and a nonnegative function $g \in C^1((0, +\infty))$ with $a(s)e^{-\int_1^s \frac{g(t)}{a(t)}dt} \in L^1(0, 1)$ such that for a.e. $x \in \Omega$ and for every $0 < s < \nu$, the matrix

(1.5)
$$\theta[a(s)\partial_s(h(x,s)I - g(s)M(x)) + (g(s) - 2a'(s))(h(x,s)I - g(s)M(x))] - M^{-1}(x))(h(x,s)I - g(s)M(x))^2$$

is positive semidefinite. If $0 < v_1, v_2 \in H^1_0(\Omega) \cap C(\overline{\Omega})$ are respectively a sub and a supersolution for (1.4) then $v_1 \leq v_2$. As a consequence, we have uniqueness of $C(\overline{\Omega})$ solutions of (1.4).

Observe that if we assume that $f \in L^q(\Omega)$ for some q > N/2, inf a > 0 and $\partial \Omega$ is smooth enough, in the sense of condition (A) in [7, p. 6], we have (see [7, Theorems 6.1 and 7.1 of Chapter 2]) that any solution of (1.1) belongs to $C(\overline{\Omega})$.

Hence with this assumption on the smoothness of the boundary we would obtain from the above theorem uniqueness of solutions of (1.4).

We prove in Section 2 a more general result than the above theorem. In Section 3 some corollaries (see Corollary 3.1, 3.2 and 3.5) of Theorem 1.1 are obtained when the term h(x, s) is not necessary increasing in s and either nonsingular or singular. In particular, special emphasis will be put in the singular case. Indeed, we show (Corollary 3.5), as an application of the theorem that if a(s) = 1, M(x) = I and $h(x, s) = \mu(x)/s^{\gamma}$ with $0 < \mu_1 \le \mu(x) \le \mu_2$ and $0 < \gamma < 1$, that the comparison principle holds. This improves [4] since dependence on x is allowed in $\mu(x)$. Even more, if $\mu(x)$ is a constant m < 1, we also improve [4] since we can also handle (see Remark 3.4) the case h(x, s) = m/s which was uncovered by [4].

2. Comparison principle

In this section we prove our main result. For the statement of our main result let us recall that $u \in H_0^1(\Omega)$ with u > 0 is a subsolution (respectively, a supersolution) of (1.1) if $a(u)M(x)\nabla u \in L^2(\Omega)^N$, $H(x, u, \nabla u) \in L^1(\Omega)$ and

$$\int_{\Omega} a(u)M(x)\nabla u\nabla \phi + \int_{\Omega} H(x, u, \nabla u)\phi \leq \int_{\Omega} f\phi, \quad \forall \phi \in H^{1}_{0}(\Omega) \cap L^{\infty}(\Omega)$$

(respectively, if the reverse inequality holds). If u is a subsolution and a supersolution then it is called a solution.

Theorem 2.1. Assume (1.2), (1.3) and that for every $\nu > 0$ there exist $\theta \ge 0$ and a nonnegative function $g \in C^1((0, +\infty))$, with $a(s)e^{-\int_1^s \frac{g(t)}{a(t)}dt} \in L^1(0, 1)$, such that for almost everywhere $x \in \Omega$ and for every $0 < s < \nu$ and $\xi \in \mathbb{R}^N$

(2.1)
$$a(s)(\partial_s H(x, s, \xi) - g'(s)M(x)\xi \cdot \xi)$$

 $+ (g(s) - 2a'(s))(H(x, s, \xi) - g(s)M(x)\xi \cdot \xi) - \frac{1}{\theta}\Theta(x, s, \xi) \ge 0$

where

$$\Theta(x,s,\xi) := \frac{1}{4}M^{-1}(x)(\partial_{\xi}H(x,s,\xi) - 2g(s)M(x)\xi) \cdot (\partial_{\xi}H(x,s,\xi) - 2g(s)M(x)\xi).$$

If $0 < v_1, v_2 \in H_0^1(\Omega) \cap C(\overline{\Omega})$ are respectively a sub and a supersolution for (1.1), then $v_1 \leq v_2$. As a consequence, we have uniqueness of $C(\overline{\Omega})$ -solution v of (1.1).

Proof. For every $s \ge 0$, we use the following notation $\gamma(s) = \int_1^s \frac{g(t)}{a(t)} dt$, $\psi(s) = \int_0^s a(t)e^{-\gamma(t)}dt$, and $G_{\varepsilon}(s) = (s - \varepsilon)^+$ ($\varepsilon > 0$). If $v_1, v_2 \in H_0^1(\Omega) \cap C(\overline{\Omega})$ are respectively a sub and a supersolution for (1.1), we define $w = \psi(v_1) - \psi(v_2)$.

We observe that, since $\psi \in C([0, +\infty))$ and v_1, v_2 are continuous up to the boundary, the function $G_{\varepsilon}(w)$ has compact support $\Omega_{\varepsilon} := \operatorname{supp} G_{\varepsilon}(w)$ in Ω , for every $\varepsilon > 0$. Moreover, $e^{-\gamma(v_i)}, \gamma'(v_i), \psi'(v_i) \in L^{\infty}(\Omega_{\varepsilon})$ for i = 1, 2 and, even more, $G_{\varepsilon}(w) \in L^{\infty}(\Omega)$. Fix $\nu > \max\{\|v_1\|_{C(\Omega)}, \|v_2\|_{C(\Omega)}\}$ and θ such that (2.1) is satisfied for every $0 < s < \nu$. Thus, if n is the integer part of $\theta + 1$, we can take $e^{-\gamma(v_1)}G_{\varepsilon}(w)^n$ as test function in the inequality satisfied by v_1 and $e^{-\gamma(v_2)}G_{\varepsilon}(w)^n$ in the inequality satisfied by v_2 . Substracting and taking into account (1.2) we have

$$\begin{split} 0 &\geq \int_{\Omega} \left(-\gamma'(v_1)\psi'(v_1)M(x)\nabla v_1 \cdot \nabla v_1 + H(x,v_1,\nabla v_1)\frac{\psi'(v_1)}{a(v_1)} \right) G_{\varepsilon}(w)^n \\ &\quad -\int_{\Omega} \left(-\gamma'(v_2)\psi'(v_2)M(x)\nabla v_2 \cdot \nabla v_2 + H(x,v_2,\nabla v_2)\frac{\psi'(v_2)}{a(v_2)} \right) G_{\varepsilon}(w)^n \\ &\quad + n\int_{\Omega} G_{\varepsilon}(w)^{n-1}M(x)(\psi'(v_1)\nabla v_1 - \psi'(v_2)\nabla v_2) \cdot \nabla w. \end{split}$$

By the homogeneity condition (1.3), if $s = \psi^{-1}(t\psi(v_1) + (1-t)\psi(v_2))$ and $\xi = t\nabla\psi(v_1) + (1-t)\nabla\psi(v_2)$, this means that

$$0 \ge \int_{\{w > \varepsilon\}} G_{\varepsilon}(w)^n \int_0^1 \frac{d}{dt} \left(\frac{-\gamma'(s)}{\psi'(s)} M(x) \xi \cdot \xi + \frac{H(x, s, \xi)}{a(s)\psi'(s)} \right) dt + n \int_{\{w > \varepsilon\}} G_{\varepsilon}(w)^{n-1} M(x) \nabla w \cdot \nabla w.$$

After deriving we get

$$\begin{split} 0 &\geq \int_{\{w>\varepsilon\}} wG_{\varepsilon}(w)^n \int_0^1 \frac{-g'(s)a(s) + 2g(s)a'(s) - g(s)^2}{a(s)^2 \psi'(s)^2} M(x)\xi \cdot \xi \, dt \\ &+ \int_{\{w>\varepsilon\}} wG_{\varepsilon}(w)^n \int_0^1 \frac{\partial_s H(x,s,\xi)a(s) - H(x,s,\xi) \left(2a'(s) - g(s)\right)}{a(s)^2 \psi'(s)^2} \, dt \\ &+ \int_{\{w>\varepsilon\}} G_{\varepsilon}(w)^n \int_0^1 \left[\frac{-2g(s)M(x)\xi + \partial_{\xi}H(x,s,\xi)}{a(s)\psi'(s)}\right] \cdot \nabla w dt \\ &+ n \int_{\{w>\varepsilon\}} G_{\varepsilon}(w)^{n-1} M(x) \nabla w \cdot \nabla w. \end{split}$$

Multiplying by $\frac{\theta}{n}$ and taking into account that, by Young's inequality,

$$\begin{split} \frac{\theta}{n} \left| G_{\varepsilon}(w)^{n} \left[\frac{-2g(s)M(x)\xi + \partial_{\xi}H(x,s,\xi)}{a(s)\psi'(s)} \right] \cdot \nabla w \right| \\ & \leq \frac{\theta^{2}}{n} G_{\varepsilon}(w)^{n-1}M(x)\nabla w \cdot \nabla w + \frac{G_{\varepsilon}(w)^{n+1}}{n} \frac{\Theta(x,s,\xi)}{a(s)^{2}\psi'(s)^{2}} \right] \end{split}$$

it follows by (1.2) that

$$\begin{split} 0 \geq &\alpha \theta \left(1 - \frac{\theta}{n}\right) \int_{\{w > \varepsilon\}} G_{\varepsilon}(w)^{n-1} |\nabla w|^2 \\ &+ \int_{\{w > \varepsilon\}} \int_0^1 \frac{w G_{\varepsilon}(w)^n \theta}{n a^2(s) \psi'(s)^2} \Big[\partial_s H(x, s, \xi) a(s) - H(x, s, \xi) (2a'(s) - g(s)) \\ &+ (-g'(s)a(s) + 2g(s)a'(s) - g(s)^2) M(x) \xi \cdot \xi - \frac{G_{\varepsilon}(w)}{\theta w} \Theta(x, s, \xi) \Big] dt. \end{split}$$

Since $G_{\varepsilon}(w)/w \leq 1$, the integrand in the second integral is greater than zero by (2.1), and we deduce that the first integral is zero, which implies that $G_{\varepsilon}(w) = 0$ for every $\varepsilon > 0$, i.e., $w^+ = 0$, concluding the proof.

Remark 2.2. Since we consider the case of functions $H(x, \cdot, \xi)$ and $a(\cdot)$ that may be singular at zero, we have imposed the $C(\overline{\Omega})$ -regularity of the subsolution v_1 and the supersolution v_2 in the previous theorem. This regularity is just used to guarantee that the function $e^{-\gamma(v_2)}(G_{\varepsilon}((\psi(v_1) - \psi(v_2))^+))^n$ has compact support $(\gamma, \psi \text{ and } n \text{ are introduced in the proof}).$

We observe that, when we only have that $v_1 \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$ and $v_2 \in H_0^1(\Omega)$, the same proof works provided that the functions $e^{-\gamma(v_i)}((\psi(v_1)-\psi(v_2))^+)^n, \psi(v_i) \in H_0^1(\Omega)$, i = 1, 2. This is true, for example, if in (1.1) does not appear any singular term. Moreover, if $\frac{g(s)}{a(s)}$ and a(s) are integrable at zero, a slightly modification can be performed in the proof by taking $e^{-\gamma(v_i+\varepsilon)}((\psi(v_1)-\psi(v_2))^+)^n \in H_0^1(\Omega)$ and passing to the limit as ε tends to zero to state the comparison principle for bounded sub and supersolutions.

Remark 2.3. As it has been observed just after Theorem 1.1, if $f \in L^q(\Omega)$ for some q > N/2, $\inf a > 0$ and $\partial \Omega$ is smooth then any solution of (1.1) belongs to $C(\overline{\Omega})$.

3. Consequences

In this section we use Theorem 2.1 to prove a comparison principle for some model problems in which $H(x, s, \xi) = h(x, s)|\xi|^2$.

In this case, as it has been mentioned in the Introduction, Theorem 1.1 correspond to rewrite Theorem 2.1 into this context. As a first particular case of Theorem 1.1, we study the case in which h(x,s) does not depends on s, i.e., $H(x,s,\xi) = \mu(x)|\xi|^2$ with $0 < \mu_1 \leq \mu(x) \leq \mu_2$ (notice that $\partial_s H = 0$ in this case).

Corollary 3.1. Assume (1.2) and that $0 < \mu_1 \le \mu(x) \le \mu_2$, a.e. $x \in \Omega$. Suppose also that there exist positive real numbers a_1, a_2, a_3 such that

(3.1)
$$0 < a_1 \le a(s), \quad -a_3 \le a'(s) \le a_2 < \frac{\mu_1}{2\beta}, \quad \forall s > 0.$$

If $0 < v_1, v_2 \in H^1_0(\Omega) \cap C(\overline{\Omega})$ are respectively a sub and a supersolution for

$$\begin{cases} -\operatorname{div}(a(u)M(x)\nabla u) + \mu(x)|\nabla u|^2 = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

then $v_1 \leq v_2$.

Proof. This is a direct consequence of Theorem 1.1 with g(s) = m > 0, for every s > 0, where $2a_2 < m < \frac{\mu_1}{\beta}$. Indeed, observe that $a(s)e^{-\int_1^s \frac{g(t)}{a(t)}dt} \in L^1(0,1)$ by (3.1). In addition, from (1.2), there exists $\lambda > 0$ such that,

$$\begin{split} M^{-1}(x)(\mu(x)I - mM(x))^2 \xi \cdot \xi &\leq \beta |M^{-1}(x)(\mu(x)I - mM(x))\xi|^2 \\ &\leq \beta (\mu_2^2 |M^{-1}(x)|^2 + m^2 + 2m\mu_2 |M^{-1}(x)|) |\xi|^2 \\ &\leq \beta (\mu_2^2 \lambda^2 + m^2 + 2m\mu_2 \lambda) |\xi|^2. \end{split}$$

Moreover, it follows that $(\mu(x)I - mM(x))\xi \cdot \xi \ge (\mu_1 - m\beta)|\xi|^2$. We deduce that if

$$\theta > \beta \frac{\mu_2^2 \lambda^2 + m^2 + 2m\mu_2 \lambda}{(m - 2a_2)(\mu_1 - m\beta)}$$

then

$$\theta(m-2a'(s))(\mu(x)I-mM(x))\xi \cdot \xi \ge M^{-1}(x)(\mu(x)I-mM(x))^2\xi \cdot \xi, \quad \forall \xi \in \mathbb{R}^N,$$

which means that the matrix given by (1.5) is positive semidefinite in this case. \Box

Similarly, we consider the case in which h(x, s) depends only in s, that is, when $H(x, s, \xi) = h(s)\xi^2$.

Corollary 3.2. Let (1.2) be satisfied and assume that there exist positive functions $a, h \in C^1((0, +\infty))$ and c > 0 such that $a(s)e^{-c\int_1^s \frac{h(t)}{a(t)}dt} \in L^1(0, 1)$ and for some $\tau > 0$

(3.2)
$$\left(\frac{h'(s)}{h(s)^2}a(s) + c - \frac{2a'(s)}{h(s)}\right)(I - cM(x))\xi \cdot \xi \ge \tau |\xi|^2,$$

for every s > 0, $\xi \in \mathbb{R}^N$ and a.e. $x \in \Omega$. If $0 < v_1, v_2 \in H_0^1(\Omega) \cap C(\overline{\Omega})$ are respectively a sub and a supersolution for

$$\begin{cases} -\operatorname{div}(a(u)M(x)\nabla u) + h(u)|\nabla u|^2 = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$

then $v_1 \leq v_2$.

Proof. The result is a direct consequence of Theorem 1.1 with g(s) = c h(s), observe that $a(s)e^{-c\int_1^s \frac{h(t)}{a(t)}dt} \in L^1(0,1)$. On the other hand, using (1.2), we deduce that there exists $\lambda > 0$ with

$$\begin{split} M^{-1}(x)(I-cM(x))^2 \xi \cdot \xi \leq & \beta |M^{-1}(x)(I-cM(x))\xi|^2 \\ \leq & \beta (|M^{-1}(x)|^2 + c^2 + 2c|M^{-1}(x)|)|\xi|^2 \\ \leq & \beta (\lambda^2 + c^2 + 2c\lambda)|\xi|^2. \end{split}$$

Thus, if

or

$$\theta > \frac{\beta(\lambda^2 + c^2 + 2c\lambda)}{\tau},$$

then by (3.2) we have

$$(3.3) \ \theta\left(\frac{h'(s)}{h(s)^2}a(s) + c - \frac{2a'(s)}{h(s)}\right)(I - cM(x))\xi \cdot \xi - M^{-1}(x)(I - cM(x))^2\xi \cdot \xi \ge 0,$$

which implies that, in this case, the matrix given by (1.5) is positive semidefinite and the proof is finished.

Remark 3.3. Observe that if $c < 1/\beta$, then $(I - cM(x))\xi \cdot \xi \ge (1 - c\beta)|\xi|^2 \ge 0$, while if $c > \frac{1}{\alpha}$ we have $(I - cM(x))\xi \cdot \xi \le (1 - c\alpha)|\xi|^2 \le 0$. Thus, condition (3.2) is satisfied provided that there exists a positive constant τ such that either

$$\left(\frac{h'(s)}{h(s)^2}a(s) + c - \frac{2a'(s)}{h(s)}\right) = -\left(\frac{a(s)^2}{h(s)}\right)'\frac{1}{a(s)} + c \ge \tau, \text{ if } c < \frac{1}{\beta},$$
$$\left(\frac{a(s)^2}{h(s)}\right)'\frac{1}{a(s)} - c \ge \tau, \text{ if } c > \frac{1}{\alpha}.$$

In particular, in the case $0 < c < 1/\beta$, hypothesis (3.2) is satisfied if the function $\frac{a(s)^2}{h(s)}$ is non increasing.

Remark 3.4. Although (3.2) is not satisfied, we observe that (3.3) in the proof of Corollary 3.2 is clearly satisfied in the case a(s) = 1, M(x) = I with c = 1. In particular we can deduce that, if $h \in C^1((0, +\infty))$ is a positive function such that

 $e^{-\int_1^s h(t)dt} \in L^1(0,1)$ and $0 < v_1, v_2 \in H^1_0(\Omega) \cap C(\overline{\Omega})$ are respectively a sub and a supersolution for

$$\begin{cases} -\Delta u + h(u) |\nabla u|^2 = f(x) & \text{ in } \Omega\\ u = 0 & \text{ on } \partial \Omega \end{cases}$$

then $v_1 \leq v_2$. For example, we deduce the same comparison principle obtained in [4] for the case $h(s) = \frac{m}{s^{\gamma}}$ with $0 < \gamma < 1$ and m > 0. Even more, we can also deal with $h(s) = \frac{m}{s}$ with 0 < m < 1.

The case in which the singularity is depending also on the x variable is particularly interesting. We obtain several improvements with respect to the singular problem studied in [4] where the authors assume that the quadratic part in ∇u does not depend on s. Specifically, we take a(s) = 1, M(x) = I, $H(x, s, \xi) = \mu(x) \frac{|\xi|^2}{s^{\gamma}}$ with $0 < \gamma < 1$, in order to study the problem

(3.4)
$$\begin{cases} -\Delta u + \mu(x) \frac{|\nabla u|^2}{u^{\gamma}} = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$

Corollary 3.5. Assume that $0 < \gamma < 1$, $0 < \mu(x) \in L^{\infty}(\Omega)$ and $0 \leq f \in L^{1}(\Omega)$. If $0 \leq v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\overline{\Omega})$ are respectively a sub and a supersolution for (3.4), then $v_{1} \leq v_{2}$.

Proof. Choose $0 < \gamma < d < 1$ and C > 0 such that

(3.5)
$$\|\mu\|_{\infty} \le \min\left\{dC, C\left(\frac{d-\gamma}{1-\gamma}\right)^{1-\gamma}\right\}.$$

Consider the function g given by

$$g(s) = \begin{cases} \frac{dC}{s^{\gamma}}, & s < \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\\ \frac{d\gamma}{\gamma s + \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} (1-\gamma)}, & s \ge \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}, \end{cases}$$

for every s > 0. Notice that $g \in C^1(0, +\infty)$ with

$$g'(s) = \begin{cases} -\frac{\gamma dC}{s^{\gamma+1}}, & s < \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} \\ -\frac{d\gamma^2}{(\gamma s + \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} (1-\gamma))^2}, & s \ge \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}, \end{cases}$$

and $e^{-\int_1^s g(t)dt} \in L^1(0,1)$. Thus, in order to apply Theorem 1.1 with this choice of function g, we just have to prove that for every $\nu > 0$ there exists $\theta > 0$ for which the matrix given by (1.5) is positive semidefinite for every $0 < s < \nu$ and a.e. $x \in \Omega$, or equivalently, that

(3.6)
$$s^{2\gamma}g'(s) + s^{2\gamma}g(s)^2 - s^{\gamma}\mu(x)g(s) + \gamma s^{\gamma-1}\mu(x) + \frac{1}{\theta}(\mu(x) - s^{\gamma}g(s))^2 \le 0,$$

for every $0 < s < \nu$ and a.e. $x \in \Omega$.

To make it, we take for every fixed $\nu > 0$, (3.7)

$$\theta > \max\left\{\frac{dC + \|\mu\|_{\infty}}{C(1-d)}, \frac{2d\left(\|\mu\|_{\infty}^{2}\nu^{2(1-\gamma)} + \gamma^{2}\right)}{(1-d)\gamma^{2}}, \frac{2\|\mu\|_{\infty}^{2}\left(\frac{1-\gamma}{d-\gamma}\right)^{2(1-\gamma)} + 2d^{2}C^{2}}{d(1-d)C^{2}\left(1 - \frac{\|\mu\|_{\infty}}{C}\left(\frac{1-\gamma}{d-\gamma}\right)^{1-\gamma}\right)}\right\}$$

and we show that (3.6) is satisfied by dividing the verification in three cases for $s \in (0, \beta)$:

$$\begin{split} i) \mbox{ If } s < \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}, \mbox{ then} \\ & \frac{\gamma}{s^{1-\gamma}} - dC + \frac{1}{\theta}(\mu(x) - dC) \ge C - dC + \frac{1}{\theta}(\mu(x) - dC). \\ \mbox{ By (3.7), } \theta > \frac{dC - \mu(x)}{C - dC} \mbox{ and we deduce that} \\ & \frac{\gamma}{s^{1-\gamma}} - dC + \frac{1}{\theta}(\mu(x) - dC) > 0. \end{split}$$

and, since $\|\mu\|_{\infty} \leq dC$ (by (3.5)), that

$$(\mu(x) - dC) \left(\frac{\gamma}{s^{1-\gamma}} - dC + \frac{1}{\theta}(\mu(x) - dC)\right) \le 0,$$

which is (3.6) for $s \in \left(0, \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)$. *ii*) If $\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} \leq s \leq \frac{1-\gamma}{d-\gamma} \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}$, using that $(1-\gamma) \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} s^{-1}$ is decreasing in s and that $\|\mu\|_{\infty} < C \left(\frac{d-\gamma}{1-\gamma}\right)^{1-\gamma}$, we have

$$(d-1)d\gamma^{2} + \frac{\gamma\mu(x)}{s^{\gamma}} \left(\gamma s + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right) \left(\gamma - d + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}s^{-1}\right)$$
$$\leq (d-1)d\gamma^{2} \left(1 - \frac{\mu(x)}{C}\left(\frac{1-\gamma}{d-\gamma}\right)^{1-\gamma}\right) < 0.$$

Thus, using (3.7), we also obtain, for $\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} \leq s \leq \frac{1-\gamma}{d-\gamma} \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}$ that

$$(d-1)d\gamma^{2} + \frac{\gamma\mu(x)}{s^{\gamma}} \left(\gamma s + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right) \left(\gamma - d + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}s^{-1}\right) + \frac{1}{\theta} \left\{\frac{\mu(x)}{s^{\gamma}} \left[\gamma s + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right] - d\gamma\right\}^{2} \le 0.$$

Hence, multiplying by $s^{2\gamma} \left(\gamma s + (1-\gamma) \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)^{-2}$, we get that (3.6) holds true in this case.

iii) If
$$\frac{1-\gamma}{d-\gamma} \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} < s < \nu$$
, then $ds \ge \gamma s + (1-\gamma) \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}$ and $d\gamma s^{\gamma} u(x)$

(3.8)
$$-\frac{d\gamma s^{\gamma}\mu(x)}{\gamma s + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}} + \gamma s^{\gamma-1}\mu(x) \le 0$$

Furthermore, since $(d-1)d\gamma^2 < 0$ and

$$\left|\frac{\mu(x)}{s^{\gamma}}\left[\gamma s + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right]\right| \le \|\mu\|_{\infty} d\nu^{1-\gamma},$$

for every
$$s \in \left(\frac{1-\gamma}{d-\gamma} \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}, \nu\right)$$
, we also obtain by (3.7) that
 $(d-1)d\gamma^2 + \frac{1}{\theta} \left\{\frac{\mu(x)}{s^{\gamma}} \left[\gamma s + (1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right] - d\gamma\right\}^2 \leq 0,$

and consequently, multiplying by $s^{2\gamma} \left(\gamma s + (1-\gamma) \left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)^{-2}$, we get

$$\frac{d(d-1)s^{2\gamma}}{\left(s+(1-\gamma)\gamma^{\frac{\gamma}{1-\gamma}}C^{\frac{-1}{1-\gamma}}\right)^2} + \frac{1}{\theta}\left(\mu(x) - \frac{ds^{\gamma}}{s+(1-\gamma)\gamma^{\frac{\gamma}{1-\gamma}}C^{\frac{-1}{1-\gamma}}}\right)^2 \le 0.$$

This and (3.8) imply that

$$\frac{d(d-1)s^{2\gamma}}{\left(s+(1-\gamma)\gamma^{\frac{\gamma}{1-\gamma}}C^{\frac{-1}{1-\gamma}}\right)^2} - \frac{ds^{\gamma}\mu(x)}{s+(1-\gamma)\gamma^{\frac{\gamma}{1-\gamma}}C^{\frac{-1}{1-\gamma}}} + \gamma s^{\gamma-1}\mu(x) + \frac{1}{\theta}\left(\mu(x) - \frac{ds^{\gamma}}{s+(1-\gamma)\gamma^{\frac{\gamma}{1-\gamma}}C^{\frac{-1}{1-\gamma}}}\right)^2 \le 0,$$
for every $s \in \left(\frac{1-\gamma}{d-\gamma}\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}, \nu\right)$, which means that (3.6) is satisfied in the

for every $s \in \left(\frac{1-\gamma}{d-\gamma} \left(\frac{\gamma}{C}\right)^{1-\gamma}, \nu\right)$, which means that (3.6) is satisfied in this case.

References

- D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Gelfand type quasilinear elliptic problems with quadratic gradient terms, Ann. Inst. H. Poincarè Anal. Non Linéaire., 31 (2014) no. 2, 249–265.
- [2] D. Arcoya, C. de Coster, L. JeanJean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient. J. Funct. Anal., 268 (2015) no. 8, 2298–2335.
- [3] D. Arcoya, C. de Coster, L. JeanJean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions. J. Math. Anal. Appl., 420 (2014) no. 1, 772–780.
- [4] D. Arcoya and S. Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term. ESAIM Control Optim. Calc. Var., 16 (2010) no. 2, 327–336.
- [5] G. Barles, A. P. Blanc, C. Georgelin and M. Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999) no. 3, 381–404.
- [6] G. Barles and F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Rational Mech. Anal. 133 (1995) no. 1, 77–101.
- [7] O. Ladyzenskaya and N. Ural'tseva, Linear and Quasilinear Elliptic Equations, translated by Scripta Technica, Academic Press, New York, 1968.

(D. Arcoya) Departamento de Análisis Matemático, Campus Fuentenueva S/N, Universidad de Granada 18071 - Granada, Spain. e-mail: darcoya@ugr.es

(J. Carmona) Departamento de Matemáticas, Universidad de Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 - Almería, Spain. e-mail: jcarmona@ual.es

(P. J. Martínez-Aparicio) Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, 30202 - Murcia, Spain. E-Mail: pedroj.martinez@upct.es