COMPARISON PRINCIPLE FOR ELLIPTIC EQUATIONS IN DIVERGENCE WITH SINGULAR LOWER ORDER TERMS HAVING NATURAL GROWTH

DAVID ARCOYA, JOSÉ CARMONA, AND PEDRO J. MARTÍNEZ-APARICIO

Abstract

In this paper we are concerned with the zero Dirichlet boundary value problem associated to the quasilinear elliptic equation $$
-\operatorname{div}(a(u) M(x) \nabla u)+H(x, u, \nabla u)=f(x), \quad x \in \Omega
$$ where Ω is an open and bounded set in $\mathbb{R}^{N}(N \geq 3), a$ is a continuously differentiable real function in $(0,+\infty), M(x)$ is an elliptic, bounded and symmetric matrix, $H(x, \cdot, \xi)$ is nonnegative and may be singular at zero and $f \in L^{1}(\Omega)$. We give sufficient conditions on H, M and a in order to have a comparison principle and, as a consequence, uniqueness of positive solutions being continuous up to the boundary.

1. Introduction

Let Ω be an open and bounded set in $\mathbb{R}^{N}(N \geq 3)$ and $f \in L^{1}(\Omega)$. We consider the following boundary value problem

$$
\begin{cases}-\operatorname{div}(a(u) M(x) \nabla u)+H(x, u, \nabla u)=f(x) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $M(x)$ is a symmetric matrix satisfying, for some $\alpha, \beta>0$, that

$$
\begin{equation*}
\alpha|\xi|^{2} \leq M(x) \xi \cdot \xi \leq \beta|\xi|^{2}, \forall \xi \in \mathbb{R}^{N} . \tag{1.2}
\end{equation*}
$$

The function $a:(0,+\infty) \rightarrow \mathbb{R}$ is continuously differentiable and positive and H : $\Omega \times(0,+\infty) \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a nonnegative Carathéodory function such that for a.e. $x \in \Omega, H(x, \cdot, \cdot)$ is continuously differentiable and

$$
\begin{equation*}
H(x, s, t \xi)=t^{2} H(x, s, \xi), \quad \forall s>0, \forall t \in \mathbb{R}, \forall \xi \in \mathbb{R}^{+} \tag{1.3}
\end{equation*}
$$

A comparison principle for general differential operators of the form

$$
-\operatorname{div}(a(x, u, \nabla u))+H(x, u, \nabla u)
$$

is established in $[6$, Theorem 1.2, Theorem 2.1 and Theorem 2.3 for the bounded case]. In the case $a(x, s, \xi)=\xi$, conditions imposed to H in [6] imply in particular that $\partial_{s} H \geq 0$. Moreover, as it was observed in Remark 2.5 of that paper, the maximum principle still holds in various situations even when $\partial_{s} H<0$ and it would be desirable to find convenient structure conditions on H including some particular cases where $\partial_{s} H<0$. A slightly improvement of these conditions can be found in [5] for f small enough and, once again, it is required that $\partial_{s} H \geq 0$.

[^0]A different kind of comparison principle is proved in [4] where $M(x)=I$, the identity matrix, and $H(x, u, \nabla u)=g(u)|\nabla u|^{2}$ for some nonnegative continuous function g in $(0,+\infty)$. In this case, the authors imposed the integrability of $\frac{g(s)}{a(s)}$ at zero. This result handles the case that g is singular at zero (which necessarily implies that $\partial_{s} H \nsupseteq 0$). However, their techniques require strongly that the function H and the differential operator do not depend on x.

Some further extension, dealing with uniqueness, was done in [2] in the case $a(s)=1, M(x)=I$ and $H(x, u, \nabla u)=-d(x) u-\mu(x)|\nabla u|^{2}-h(x)$ for some $d, h \in L^{p}(\Omega), p>N / 2, d \leq 0$ and $\mu \in L^{\infty}(\Omega)$ (see [3] for an slightly improvement with general $M(x)$ and more general function H non decreasing on the variable $s)$. It is once again imposed that $\partial_{s} H \geq 0$. Moreover, in some particular cases, with $\partial_{s} H<0(d(x)>0)$ they prove a multiplicity result (see Theorem 1.3 in [2]), that is, no uniqueness result is expected imposing only that $\partial_{s} H<0$.

More recently, in [1] it is proved a comparison principle for (1.1) in the case $a(s)=1$ and $M(x)=I$ for a particular class of functions $H(x, u, \nabla u)$ which are continuous at $u=0$ and that may be decreasing on u.

The aim of this paper is to improve the above comparison principles in some directions: general matices $M(x)$, dependence on x and singularity at $u=0$ on the gradient quadratic part.

Let us illustrate our main result in the case $H(x, s, \xi)=h(x, s)|\xi|^{2}$, although we give a more general structure condition for H in section 2. More precisely, consider the boundary value problem:

$$
\begin{cases}-\operatorname{div}(a(u) M(x) \nabla u)+h(x, u)|\nabla u|^{2}=f(x) & \text { in } \Omega \tag{1.4}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

for a differentiable Carathéodory function h defined in $\Omega \times(0,+\infty)$ (i.e., a Carathéodory function such that $h(x, \cdot)$ is derivable for a.e. $x \in \Omega)$.

We say that $u \in H_{0}^{1}(\Omega)$ with $u>0$ is a subsolution (respectively, a supersolution) of (1.4) if $a(u) M(x) \nabla u \in L^{2}(\Omega)^{N}, h(x, u)|\nabla u|^{2} \in L^{1}(\Omega)$ and

$$
\int_{\Omega} a(u) M(x) \nabla u \nabla \phi+\int_{\Omega} h(x, u)|\nabla u|^{2} \phi \leq \int_{\Omega} f \phi, \quad \forall \phi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)
$$

(respectively, if the reverse inequality holds). Thus, u is called a solution provided that it is both a subsolution and a super solution. We prove the following theorem.

Theorem 1.1. Assume (1.2) and that for every $\nu>0$ there exist $\theta \geq 0$ and a nonnegative function $g \in C^{1}((0,+\infty))$ with $a(s) e^{-\int_{1}^{s} \frac{g(t)}{a(t)} d t} \in L^{1}(0,1)$ such that for a.e. $x \in \Omega$ and for every $0<s<\nu$, the matrix

$$
\begin{array}{r}
\theta\left[a(s) \partial_{s}(h(x, s) I-g(s) M(x))+\left(g(s)-2 a^{\prime}(s)\right)(h(x, s) I-g(s) M(x))\right] \tag{1.5}\\
\left.-M^{-1}(x)\right)(h(x, s) I-g(s) M(x))^{2}
\end{array}
$$

is positive semidefinite. If $0<v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are respectively a sub and a supersolution for (1.4) then $v_{1} \leq v_{2}$. As a consequence, we have uniqueness of $C(\bar{\Omega})$ solutions of (1.4).

Observe that if we assume that $f \in L^{q}(\Omega)$ for some $q>N / 2, \inf a>0$ and $\partial \Omega$ is smooth enough, in the sense of condition (A) in $[7$, p. 6], we have (see [7, Theorems 6.1 and 7.1 of Chapter 2]) that any solution of (1.1) belongs to $C(\bar{\Omega})$.

Hence with this assumption on the smoothness of the boundary we would obtain from the above theorem uniqueness of solutions of (1.4).

We prove in Section 2 a more general result than the above theorem. In Section 3 some corollaries (see Corollary 3.1, 3.2 and 3.5) of Theorem 1.1 are obtained when the term $h(x, s)$ is not necessary increasing in s and either nonsingular or singular. In particular, special emphasis will be put in the singular case. Indeed, we show (Corollary 3.5), as an application of the theorem that if $a(s)=1, M(x)=I$ and $h(x, s)=\mu(x) / s^{\gamma}$ with $0<\mu_{1} \leq \mu(x) \leq \mu_{2}$ and $0<\gamma<1$, that the comparison principle holds. This improves [4] since dependence on x is allowed in $\mu(x)$. Even more, if $\mu(x)$ is a constant $m<1$, we also improve [4] since we can also handle (see Remark 3.4) the case $h(x, s)=m / s$ which was uncovered by [4].

2. Comparison principle

In this section we prove our main result. For the statement of our main result let us recall that $u \in H_{0}^{1}(\Omega)$ with $u>0$ is a subsolution (respectively, a supersolution) of (1.1) if $a(u) M(x) \nabla u \in L^{2}(\Omega)^{N}, H(x, u, \nabla u) \in L^{1}(\Omega)$ and

$$
\int_{\Omega} a(u) M(x) \nabla u \nabla \phi+\int_{\Omega} H(x, u, \nabla u) \phi \leq \int_{\Omega} f \phi, \quad \forall \phi \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)
$$

(respectively, if the reverse inequality holds). If u is a subsolution and a supersolution then it is called a solution.

Theorem 2.1. Assume (1.2), (1.3) and that for every $\nu>0$ there exist $\theta \geq 0$ and a nonnegative function $g \in C^{1}((0,+\infty))$, with $a(s) e^{-\int_{1}^{s} \frac{g(t)}{a(t)} d t} \in L^{1}(0,1)$, such that for almost everywhere $x \in \Omega$ and for every $0<s<\nu$ and $\xi \in \mathbb{R}^{N}$

$$
\begin{align*}
& a(s)\left(\partial_{s} H(x, s, \xi)-g^{\prime}(s) M(x) \xi \cdot \xi\right) \tag{2.1}\\
& \quad+\left(g(s)-2 a^{\prime}(s)\right)(H(x, s, \xi)-g(s) M(x) \xi \cdot \xi)-\frac{1}{\theta} \Theta(x, s, \xi) \geq 0
\end{align*}
$$

where

$$
\Theta(x, s, \xi):=\frac{1}{4} M^{-1}(x)\left(\partial_{\xi} H(x, s, \xi)-2 g(s) M(x) \xi\right) \cdot\left(\partial_{\xi} H(x, s, \xi)-2 g(s) M(x) \xi\right)
$$

If $0<v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are respectively a sub and a supersolution for (1.1), then $v_{1} \leq v_{2}$. As a consequence, we have uniqueness of $C(\bar{\Omega})$-solution v of (1.1).

Proof. For every $s \geq 0$, we use the following notation $\gamma(s)=\int_{1}^{s} \frac{g(t)}{a(t)} d t, \psi(s)=$ $\int_{0}^{s} a(t) e^{-\gamma(t)} d t$, and $G_{\varepsilon}(s)=(s-\varepsilon)^{+}(\varepsilon>0)$. If $v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are respectively a sub and a supersolution for (1.1), we define $w=\psi\left(v_{1}\right)-\psi\left(v_{2}\right)$.

We observe that, since $\psi \in C([0,+\infty))$ and v_{1}, v_{2} are continuous up to the boundary, the function $G_{\varepsilon}(w)$ has compact support $\Omega_{\varepsilon}:=\operatorname{supp} G_{\varepsilon}(w)$ in Ω, for every $\varepsilon>0$. Moreover, $e^{-\gamma\left(v_{i}\right)}, \gamma^{\prime}\left(v_{i}\right), \psi^{\prime}\left(v_{i}\right) \in L^{\infty}\left(\Omega_{\varepsilon}\right)$ for $i=1,2$ and, even $\operatorname{more}, G_{\varepsilon}(w) \in L^{\infty}(\Omega)$. Fix $\nu>\max \left\{\left\|v_{1}\right\|_{C(\Omega)},\left\|v_{2}\right\|_{C(\Omega)}\right\}$ and θ such that (2.1) is satisfied for every $0<s<\nu$. Thus, if n is the integer part of $\theta+1$, we can take $e^{-\gamma\left(v_{1}\right)} G_{\varepsilon}(w)^{n}$ as test function in the inequality satisfied by v_{1} and $e^{-\gamma\left(v_{2}\right)} G_{\varepsilon}(w)^{n}$
in the inequality satisfied by v_{2}. Substracting and taking into account (1.2) we have

$$
\begin{aligned}
0 \geq & \int_{\Omega}\left(-\gamma^{\prime}\left(v_{1}\right) \psi^{\prime}\left(v_{1}\right) M(x) \nabla v_{1} \cdot \nabla v_{1}+H\left(x, v_{1}, \nabla v_{1}\right) \frac{\psi^{\prime}\left(v_{1}\right)}{a\left(v_{1}\right)}\right) G_{\varepsilon}(w)^{n} \\
& -\int_{\Omega}\left(-\gamma^{\prime}\left(v_{2}\right) \psi^{\prime}\left(v_{2}\right) M(x) \nabla v_{2} \cdot \nabla v_{2}+H\left(x, v_{2}, \nabla v_{2}\right) \frac{\psi^{\prime}\left(v_{2}\right)}{a\left(v_{2}\right)}\right) G_{\varepsilon}(w)^{n} \\
& +n \int_{\Omega} G_{\varepsilon}(w)^{n-1} M(x)\left(\psi^{\prime}\left(v_{1}\right) \nabla v_{1}-\psi^{\prime}\left(v_{2}\right) \nabla v_{2}\right) \cdot \nabla w
\end{aligned}
$$

By the homogeneity condition (1.3), if $s=\psi^{-1}\left(t \psi\left(v_{1}\right)+(1-t) \psi\left(v_{2}\right)\right)$ and $\xi=$ $t \nabla \psi\left(v_{1}\right)+(1-t) \nabla \psi\left(v_{2}\right)$, this means that

$$
\begin{aligned}
0 \geq & \int_{\{w>\varepsilon\}} G_{\varepsilon}(w)^{n} \int_{0}^{1} \frac{d}{d t}\left(\frac{-\gamma^{\prime}(s)}{\psi^{\prime}(s)} M(x) \xi \cdot \xi+\frac{H(x, s, \xi)}{a(s) \psi^{\prime}(s)}\right) d t \\
& +n \int_{\{w>\varepsilon\}} G_{\varepsilon}(w)^{n-1} M(x) \nabla w \cdot \nabla w .
\end{aligned}
$$

After deriving we get

$$
\begin{aligned}
0 \geq & \int_{\{w>\varepsilon\}} w G_{\varepsilon}(w)^{n} \int_{0}^{1} \frac{-g^{\prime}(s) a(s)+2 g(s) a^{\prime}(s)-g(s)^{2}}{a(s)^{2} \psi^{\prime}(s)^{2}} M(x) \xi \cdot \xi d t \\
& +\int_{\{w>\varepsilon\}} w G_{\varepsilon}(w)^{n} \int_{0}^{1} \frac{\partial_{s} H(x, s, \xi) a(s)-H(x, s, \xi)\left(2 a^{\prime}(s)-g(s)\right)}{a(s)^{2} \psi^{\prime}(s)^{2}} d t \\
& +\int_{\{w>\varepsilon\}} G_{\varepsilon}(w)^{n} \int_{0}^{1}\left[\frac{-2 g(s) M(x) \xi+\partial_{\xi} H(x, s, \xi)}{a(s) \psi^{\prime}(s)}\right] \cdot \nabla w d t \\
& +n \int_{\{w>\varepsilon\}} G_{\varepsilon}(w)^{n-1} M(x) \nabla w \cdot \nabla w .
\end{aligned}
$$

Multiplying by $\frac{\theta}{n}$ and taking into account that, by Young's inequality,

$$
\begin{aligned}
& \frac{\theta}{n}\left|G_{\varepsilon}(w)^{n}\left[\frac{-2 g(s) M(x) \xi+\partial_{\xi} H(x, s, \xi)}{a(s) \psi^{\prime}(s)}\right] \cdot \nabla w\right| \\
& \leq \frac{\theta^{2}}{n} G_{\varepsilon}(w)^{n-1} M(x) \nabla w \cdot \nabla w+\frac{G_{\varepsilon}(w)^{n+1}}{n} \frac{\Theta(x, s, \xi)}{a(s)^{2} \psi^{\prime}(s)^{2}},
\end{aligned}
$$

it follows by (1.2) that

$$
\begin{aligned}
0 \geq & \alpha \theta\left(1-\frac{\theta}{n}\right) \int_{\{w>\varepsilon\}} G_{\varepsilon}(w)^{n-1}|\nabla w|^{2} \\
& +\int_{\{w>\varepsilon\}} \int_{0}^{1} \frac{w G_{\varepsilon}(w)^{n} \theta}{n a^{2}(s) \psi^{\prime}(s)^{2}}\left[\partial_{s} H(x, s, \xi) a(s)-H(x, s, \xi)\left(2 a^{\prime}(s)-g(s)\right)\right. \\
& \left.+\left(-g^{\prime}(s) a(s)+2 g(s) a^{\prime}(s)-g(s)^{2}\right) M(x) \xi \cdot \xi-\frac{G_{\varepsilon}(w)}{\theta w} \Theta(x, s, \xi)\right] d t
\end{aligned}
$$

Since $G_{\varepsilon}(w) / w \leq 1$, the integrand in the second integral is greater than zero by (2.1), and we deduce that the first integral is zero, which implies that $G_{\varepsilon}(w)=0$ for every $\varepsilon>0$, i.e., $w^{+}=0$, concluding the proof.
Remark 2.2. Since we consider the case of functions $H(x, \cdot, \xi)$ and $a(\cdot)$ that may be singular at zero, we have imposed the $C(\bar{\Omega})$-regularity of the subsolution v_{1} and the supersolution v_{2} in the previous theorem. This regularity is just used to
guarantee that the function $e^{-\gamma\left(v_{2}\right)}\left(G_{\varepsilon}\left(\left(\psi\left(v_{1}\right)-\psi\left(v_{2}\right)\right)^{+}\right)\right)^{n}$ has compact support (γ, ψ and n are introduced in the proof).

We observe that, when we only have that $v_{1} \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ and $v_{2} \in H_{0}^{1}(\Omega)$, the same proof works provided that the functions $e^{-\gamma\left(v_{i}\right)}\left(\left(\psi\left(v_{1}\right)-\psi\left(v_{2}\right)\right)^{+}\right)^{n}, \psi\left(v_{i}\right) \in$ $H_{0}^{1}(\Omega), i=1,2$. This is true, for example, if in (1.1) does not appear any singular term. Moreover, if $\frac{g(s)}{a(s)}$ and $a(s)$ are integrable at zero, a slightly modification can be performed in the proof by taking $e^{-\gamma\left(v_{i}+\varepsilon\right)}\left(\left(\psi\left(v_{1}\right)-\psi\left(v_{2}\right)\right)^{+}\right)^{n} \in H_{0}^{1}(\Omega)$ and passing to the limit as ε tends to zero to state the comparison principle for bounded sub and supersolutions.
Remark 2.3. As it has been observed just after Theorem 1.1, if $f \in L^{q}(\Omega)$ for some $q>N / 2, \inf a>0$ and $\partial \Omega$ is smooth then any solution of (1.1) belongs to $C(\bar{\Omega})$.

3. Consequences

In this section we use Theorem 2.1 to prove a comparison principle for some model problems in which $H(x, s, \xi)=h(x, s)|\xi|^{2}$.

In this case, as it has been mentioned in the Introduction, Theorem 1.1 correspond to rewrite Theorem 2.1 into this context. As a first particular case of Theorem 1.1, we study the case in which $h(x, s)$ does not depends on s, i.e., $H(x, s, \xi)=\mu(x)|\xi|^{2}$ with $0<\mu_{1} \leq \mu(x) \leq \mu_{2}$ (notice that $\partial_{s} H=0$ in this case).

Corollary 3.1. Assume (1.2) and that $0<\mu_{1} \leq \mu(x) \leq \mu_{2}$, a.e. $x \in \Omega$. Suppose also that there exist positive real numbers a_{1}, a_{2}, a_{3} such that

$$
\begin{equation*}
0<a_{1} \leq a(s), \quad-a_{3} \leq a^{\prime}(s) \leq a_{2}<\frac{\mu_{1}}{2 \beta}, \quad \forall s>0 \tag{3.1}
\end{equation*}
$$

If $0<v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are respectively a sub and a supersolution for

$$
\begin{cases}-\operatorname{div}(a(u) M(x) \nabla u)+\mu(x)|\nabla u|^{2}=f(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

then $v_{1} \leq v_{2}$.
Proof. This is a direct consequence of Theorem 1.1 with $g(s)=m>0$, for every $s>0$, where $2 a_{2}<m<\frac{\mu_{1}}{\beta}$. Indeed, observe that $a(s) e^{-\int_{1}^{s} \frac{g(t)}{a(t)} d t} \in L^{1}(0,1)$ by (3.1). In addition, from (1.2), there exists $\lambda>0$ such that,

$$
\begin{aligned}
M^{-1}(x)(\mu(x) I-m M(x))^{2} \xi \cdot \xi & \leq \beta\left|M^{-1}(x)(\mu(x) I-m M(x)) \xi\right|^{2} \\
& \leq \beta\left(\mu_{2}^{2}\left|M^{-1}(x)\right|^{2}+m^{2}+2 m \mu_{2}\left|M^{-1}(x)\right|\right)|\xi|^{2} \\
& \leq \beta\left(\mu_{2}^{2} \lambda^{2}+m^{2}+2 m \mu_{2} \lambda\right)|\xi|^{2}
\end{aligned}
$$

Moreover, it follows that $(\mu(x) I-m M(x)) \xi \cdot \xi \geq\left(\mu_{1}-m \beta\right)|\xi|^{2}$. We deduce that if

$$
\theta>\beta \frac{\mu_{2}^{2} \lambda^{2}+m^{2}+2 m \mu_{2} \lambda}{\left(m-2 a_{2}\right)\left(\mu_{1}-m \beta\right)}
$$

then

$$
\theta\left(m-2 a^{\prime}(s)\right)(\mu(x) I-m M(x)) \xi \cdot \xi \geq M^{-1}(x)(\mu(x) I-m M(x))^{2} \xi \cdot \xi, \quad \forall \xi \in \mathbb{R}^{N}
$$

which means that the matrix given by (1.5) is positive semidefinite in this case.

Similarly, we consider the case in which $h(x, s)$ depends only in s, that is, when $H(x, s, \xi)=h(s) \xi^{2}$.

Corollary 3.2. Let (1.2) be satisfied and assume that there exist positive functions $a, h \in C^{1}((0,+\infty))$ and $c>0$ such that $a(s) e^{-c \int_{1}^{s} \frac{h(t)}{a(t)} d t} \in L^{1}(0,1)$ and for some $\tau>0$

$$
\begin{equation*}
\left(\frac{h^{\prime}(s)}{h(s)^{2}} a(s)+c-\frac{2 a^{\prime}(s)}{h(s)}\right)(I-c M(x)) \xi \cdot \xi \geq \tau|\xi|^{2} \tag{3.2}
\end{equation*}
$$

for every $s>0, \xi \in \mathbb{R}^{N}$ and a.e. $x \in \Omega$. If $0<v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are respectively a sub and a supersolution for

$$
\begin{cases}-\operatorname{div}(a(u) M(x) \nabla u)+h(u)|\nabla u|^{2}=f(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

then $v_{1} \leq v_{2}$.
Proof. The result is a direct consequence of Theorem 1.1 with $g(s)=c h(s)$, observe that $a(s) e^{-c \int_{1}^{s} \frac{h(t)}{a(t)} d t} \in L^{1}(0,1)$. On the other hand, using (1.2), we deduce that there exists $\lambda>0$ with

$$
\begin{aligned}
M^{-1}(x)(I-c M(x))^{2} \xi \cdot \xi & \leq \beta\left|M^{-1}(x)(I-c M(x)) \xi\right|^{2} \\
& \leq \beta\left(\left|M^{-1}(x)\right|^{2}+c^{2}+2 c\left|M^{-1}(x)\right|\right)|\xi|^{2} \\
& \leq \beta\left(\lambda^{2}+c^{2}+2 c \lambda\right)|\xi|^{2}
\end{aligned}
$$

Thus, if

$$
\theta>\frac{\beta\left(\lambda^{2}+c^{2}+2 c \lambda\right)}{\tau}
$$

then by (3.2) we have

$$
\begin{equation*}
\theta\left(\frac{h^{\prime}(s)}{h(s)^{2}} a(s)+c-\frac{2 a^{\prime}(s)}{h(s)}\right)(I-c M(x)) \xi \cdot \xi-M^{-1}(x)(I-c M(x))^{2} \xi \cdot \xi \geq 0 \tag{3.3}
\end{equation*}
$$

which implies that, in this case, the matrix given by (1.5) is positive semidefinite and the proof is finished.

Remark 3.3. Observe that if $c<1 / \beta$, then $(I-c M(x)) \xi \cdot \xi \geq(1-c \beta)|\xi|^{2} \geq 0$, while if $c>\frac{1}{\alpha}$ we have $(I-c M(x)) \xi \cdot \xi \leq(1-c \alpha)|\xi|^{2} \leq 0$. Thus, condition (3.2) is satisfied provided that there exists a positive constant τ such that either

$$
\left(\frac{h^{\prime}(s)}{h(s)^{2}} a(s)+c-\frac{2 a^{\prime}(s)}{h(s)}\right)=-\left(\frac{a(s)^{2}}{h(s)}\right)^{\prime} \frac{1}{a(s)}+c \geq \tau, \text { if } c<\frac{1}{\beta}
$$

or

$$
\left(\frac{a(s)^{2}}{h(s)}\right)^{\prime} \frac{1}{a(s)}-c \geq \tau, \text { if } c>\frac{1}{\alpha}
$$

In particular, in the case $0<c<1 / \beta$, hypothesis (3.2) is satisfied if the function $\frac{a(s)^{2}}{h(s)}$ is non increasing.
Remark 3.4. Although (3.2) is not satisfied, we observe that (3.3) in the proof of Corollary 3.2 is clearly satisfied in the case $a(s)=1, M(x)=I$ with $c=1$. In particular we can deduce that, if $h \in C^{1}((0,+\infty))$ is a positive function such that
$e^{-\int_{1}^{s} h(t) d t} \in L^{1}(0,1)$ and $0<v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are respectively a sub and a supersolution for

$$
\begin{cases}-\Delta u+h(u)|\nabla u|^{2}=f(x) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

then $v_{1} \leq v_{2}$. For example, we deduce the same comparison principle obtained in [4] for the case $h(s)=\frac{m}{s \gamma}$ with $0<\gamma<1$ and $m>0$. Even more, we can also deal with $h(s)=\frac{m}{s}$ with $0<m<1$.

The case in which the singularity is depending also on the x variable is particularly interesting. We obtain several improvements with respect to the singular problem studied in [4] where the authors assume that the quadratic part in ∇u does not depend on s. Specifically, we take $a(s)=1, M(x)=I, H(x, s, \xi)=\mu(x) \frac{|\xi|^{2}}{s^{\gamma}}$ with $0<\gamma<1$, in order to study the problem

$$
\begin{cases}-\Delta u+\mu(x) \frac{|\nabla u|^{2}}{u^{\gamma}}=f(x) & \text { in } \Omega \tag{3.4}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Corollary 3.5. Assume that $0<\gamma<1,0<\mu(x) \in L^{\infty}(\Omega)$ and $0 \leq f \in L^{1}(\Omega)$. If $0 \leq v_{1}, v_{2} \in H_{0}^{1}(\Omega) \cap C(\bar{\Omega})$ are respectively a sub and a supersolution for (3.4), then $v_{1} \leq v_{2}$.

Proof. Choose $0<\gamma<d<1$ and $C>0$ such that

$$
\begin{equation*}
\|\mu\|_{\infty} \leq \min \left\{d C, C\left(\frac{d-\gamma}{1-\gamma}\right)^{1-\gamma}\right\} \tag{3.5}
\end{equation*}
$$

Consider the function g given by

$$
g(s)= \begin{cases}\frac{d C}{s^{\gamma}}, & s<\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} \\ \frac{d \gamma}{\gamma s+\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}(1-\gamma)}, & s \geq\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\end{cases}
$$

for every $s>0$. Notice that $g \in C^{1}(0,+\infty)$ with

$$
g^{\prime}(s)= \begin{cases}-\frac{\gamma d C}{s^{\gamma+1}}, & s<\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} \\ -\frac{d \gamma^{2}}{\left(\gamma s+\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}(1-\gamma)\right)^{2}}, & s \geq\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\end{cases}
$$

and $e^{-\int_{1}^{s} g(t) d t} \in L^{1}(0,1)$. Thus, in order to apply Theorem 1.1 with this choice of function g, we just have to prove that for every $\nu>0$ there exists $\theta>0$ for which the matrix given by (1.5) is positive semidefinite for every $0<s<\nu$ and a.e. $x \in \Omega$, or equivalently, that

$$
\begin{equation*}
s^{2 \gamma} g^{\prime}(s)+s^{2 \gamma} g(s)^{2}-s^{\gamma} \mu(x) g(s)+\gamma s^{\gamma-1} \mu(x)+\frac{1}{\theta}\left(\mu(x)-s^{\gamma} g(s)\right)^{2} \leq 0 \tag{3.6}
\end{equation*}
$$

for every $0<s<\nu$ and a.e. $x \in \Omega$.

To make it, we take for every fixed $\nu>0$,
$\theta>\max \left\{\frac{d C+\|\mu\|_{\infty}}{C(1-d)}, \frac{2 d\left(\|\mu\|_{\infty}^{2} \nu^{2(1-\gamma)}+\gamma^{2}\right)}{(1-d) \gamma^{2}}, \frac{2\|\mu\|_{\infty}^{2}\left(\frac{1-\gamma}{d-\gamma}\right)^{2(1-\gamma)}+2 d^{2} C^{2}}{d(1-d) C^{2}\left(1-\frac{\|\mu\|_{\infty}}{C}\left(\frac{1-\gamma}{d-\gamma}\right)^{1-\gamma}\right)}\right\}$
and we show that (3.6) is satisfied by dividing the verification in three cases for $s \in(0, \beta):$
i) If $s<\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}$, then

$$
\frac{\gamma}{s^{1-\gamma}}-d C+\frac{1}{\theta}(\mu(x)-d C) \geq C-d C+\frac{1}{\theta}(\mu(x)-d C)
$$

By (3.7), $\theta>\frac{d C-\mu(x)}{C-d C}$ and we deduce that

$$
\frac{\gamma}{s^{1-\gamma}}-d C+\frac{1}{\theta}(\mu(x)-d C)>0
$$

and, since $\|\mu\|_{\infty} \leq d C$ (by (3.5)), that

$$
(\mu(x)-d C)\left(\frac{\gamma}{s^{1-\gamma}}-d C+\frac{1}{\theta}(\mu(x)-d C)\right) \leq 0
$$

which is (3.6) for $s \in\left(0,\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)$.
ii) If $\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} \leq s \leq \frac{1-\gamma}{d-\gamma}\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}$, using that $(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} s^{-1}$ is decreasing in s and that $\|\mu\|_{\infty}<C\left(\frac{d-\gamma}{1-\gamma}\right)^{1-\gamma}$, we have

$$
\begin{aligned}
(d-1) d \gamma^{2}+\frac{\gamma \mu(x)}{s^{\gamma}}(\gamma s+(1-\gamma) & \left.\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)\left(\gamma-d+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} s^{-1}\right) \\
& \leq(d-1) d \gamma^{2}\left(1-\frac{\mu(x)}{C}\left(\frac{1-\gamma}{d-\gamma}\right)^{1-\gamma}\right)<0
\end{aligned}
$$

Thus, using (3.7), we also obtain, for $\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} \leq s \leq \frac{1-\gamma}{d-\gamma}\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}$ that

$$
\begin{aligned}
&(d-1) d \gamma^{2}+\frac{\gamma \mu(x)}{s^{\gamma}}\left(\gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)\left(\gamma-d+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}} s^{-1}\right) \\
&+\frac{1}{\theta}\left\{\frac{\mu(x)}{s^{\gamma}}\left[\gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right]-d \gamma\right\}^{2} \leq 0
\end{aligned}
$$

Hence, multiplying by $s^{2 \gamma}\left(\gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)^{-2}$, we get that (3.6) holds true in this case.
iii) If $\frac{1-\gamma}{d-\gamma}\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}<s<\nu$, then $d s \geq \gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}$ and

$$
\begin{equation*}
-\frac{d \gamma s^{\gamma} \mu(x)}{\gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}}+\gamma s^{\gamma-1} \mu(x) \leq 0 \tag{3.8}
\end{equation*}
$$

Furthermore, since $(d-1) d \gamma^{2}<0$ and

$$
\left|\frac{\mu(x)}{s^{\gamma}}\left[\gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right]\right| \leq\|\mu\|_{\infty} d \nu^{1-\gamma}
$$ for every $s \in\left(\frac{1-\gamma}{d-\gamma}\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}, \nu\right)$, we also obtain by (3.7) that

$$
(d-1) d \gamma^{2}+\frac{1}{\theta}\left\{\frac{\mu(x)}{s^{\gamma}}\left[\gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right]-d \gamma\right\}^{2} \leq 0
$$

and consequently, multiplying by $s^{2 \gamma}\left(\gamma s+(1-\gamma)\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}\right)^{-2}$, we get

$$
\frac{d(d-1) s^{2 \gamma}}{\left(s+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} C^{\frac{-1}{1-\gamma}}\right)^{2}}+\frac{1}{\theta}\left(\mu(x)-\frac{d s^{\gamma}}{s+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} C^{\frac{-1}{1-\gamma}}}\right)^{2} \leq 0
$$

This and (3.8) imply that

$$
\begin{aligned}
& \frac{d(d-1) s^{2 \gamma}}{\left(s+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} C^{\frac{-1}{1-\gamma}}\right)^{2}}-\frac{d s^{\gamma} \mu(x)}{s+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} C^{\frac{-1}{1-\gamma}}} \\
& \quad+\gamma s^{\gamma-1} \mu(x)+\frac{1}{\theta}\left(\mu(x)-\frac{d s^{\gamma}}{s+(1-\gamma) \gamma^{\frac{\gamma}{1-\gamma}} C^{\frac{-1}{1-\gamma}}}\right)^{2} \leq 0
\end{aligned}
$$

for every $s \in\left(\frac{1-\gamma}{d-\gamma}\left(\frac{\gamma}{C}\right)^{\frac{1}{1-\gamma}}, \nu\right)$, which means that (3.6) is satisfied in this case.

References

[1] D. Arcoya, J. Carmona and P. J. Martínez-Aparicio, Gelfand type quasilinear elliptic problems with quadratic gradient terms, Ann. Inst. H. Poincarè Anal. Non Linéaire., 31 (2014) no. 2, 249-265.
[2] D. Arcoya, C. de Coster, L. JeanJean and K. Tanaka, Continuum of solutions for an elliptic problem with critical growth in the gradient. J. Funct. Anal., 268 (2015) no. 8, 2298-2335.
[3] D. Arcoya, C. de Coster, L. JeanJean and K. Tanaka, Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions. J. Math. Anal. Appl., 420 (2014) no. 1, 772-780.
[4] D. Arcoya and S. Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term. ESAIM Control Optim. Calc. Var., 16 (2010) no. 2, 327-336.
[5] G. Barles, A. P. Blanc, C. Georgelin and M. Kobylanski, Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999) no. 3, 381-404.
[6] G. Barles and F. Murat, Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions. Arch. Rational Mech. Anal. 133 (1995) no. 1, 77-101.
[7] O. Ladyzenskaya and N. Ural'tseva, Linear and Quasilinear Elliptic Equations, translated by Scripta Technica, Academic Press, New York, 1968.
(D. Arcoya) Departamento de Análisis Matemático, Campus Fuentenueva S/N, Universidad de Granada 18071 - Granada, Spain. e-mail: darcoya@ugr.es
(J. Carmona) Departamento de Matemáticas, Universidad de Almería, Ctra. Sacramento s/n, La Cañada de San Urbano, 04120 - Almería, Spain. e-mail: jcarmona@ual.es
(P. J. Martínez-Aparicio) Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, 30202 - Murcia, Spain.
e-mail: Pedroj.martinez@upct.es

[^0]: Research supported by MEC-FEDER (Spain) MTM2012- 31799 and Junta de Andalucia FQM116 and FQM-194.

