
Integrating and Querying
OpenStreetMap and Linked Geo

Open Data

Jesús M. Almendros-Jiménez, Antonio Becerra-Terón and
Manuel Torres

Dept. of Informatics. University of Almeŕıa. SPAIN.

Email: {jalmen,abecerra,mtorres}@ual.es

In recent years, Open Street Map (OSM) has evolved into a highly popular
geospatial system. The key of success of OSM is that OSM is open to absolutely
everyone. OSM is not dependent on any one government, company, university,
or international organization. OSM is based on crowdsourcing, in which users
collaborate to collect spatial data of urban and rural areas on the earth. With
the arising of Linked Open Data (LOD) initiative, and more concretely with
Linked Geo Open Data (LGOD), many Web resources have been made available
to everyone, providing geo-located datasets. In this paper a framework, called
XOSM (XQuery for OpenStreetMap), for integrating and querying OSM and
LGOD resources is presented. The framework is equipped with a Web tool and
a rich XQuery-based library, enabling the definition of queries combining OSM
layers and layers created from LGOD resources (KML, GeoJSON, CSV and RDF
(and also XML)). The framework also provides an API to execute XQuery queries

using the library.

Keywords: OpenStreetMap, Linked Open Data, XML, XQuery

Received 00 January 2009; revised 00 Month 2009

1. INTRODUCTION

Volunteered Geographic Information (VGI) is a term
introduced by Goodchild [1, 2, 3] to describe geographic
information systems based on crowdsourcing, and
OpenStreetMap (OSM) [4, 5, 6, 7] is one of the most
relevant VGI systems, with more than three millions of
registered users. OSM data can be visualized from the
OSM Web site1, and many applications2 have also been
built for the handling of maps.

With the arising of Linked Open Data (LOD)3[8,
9] and, more concretely, Linked Geo Open Data
(LGOD)4[10], many Web resources are available
providing geo-located datasets. OSM takes part of
the LGOD initiative. However, many other LGOD
Web resources are provided by several institutions,
organizations and public administrations. The
European Union5, ArcGIS Open Data6, and Open Data
Inception 7 are the most relevant sites collecting LGOD

1http://www.openstreetmap.org
2http://wiki.openstreetmap.org/wiki/Software
3http://linkeddata.org/
4http://linkedgeodata.org
5https://data.europa.eu
6http://opendata.arcgis.com/
7https://opendatainception.io/

data.

The integration of OSM data and other geo-located
datasets can be useful from many points of view. While
users contribute to OSM maps, these maps can be also
enriched by information provided by some other Web
resources, which can be also used to improve and refine
queries on OSM maps. The information provided by
other Web resources can complement (and also correct)
information provided by users. However, most of Web
resources provide information which is not in a suitable
format. CSV format is used extensively by institutions
to provide information, since the table-like format is
commonly used to store datasets. Some other cases
provide data in JSON format, mostly generated by
Web APIs, and particularly in GeoJSON when geo-
spatial information is included. In some other cases, the
influence of the well-stablished geo-spatial tool Google
maps has caused the use of KML format for storing geo-
spatial information. Finally, RDF, which is promoted
by Semantic Web initiatives, has been also adopted as
knowledge representation format, while this is still far
from the common use.

XQuery [11, 12] is a programming language proposed
by the W3C as standard for the handing of XML
documents. It is a functional language in which for-let-

The Computer Journal, Vol. ??, No. ??, ????

2 Almendros, Becerra and Torres

orderby-where-return (FLOWR) expressions are able
to traverse XML documents. It can express Boolean
conditions and provides format to output documents.
XQuery has a sublanguage, called XPath [13], whose
role is to address nodes on the XML tree. XPath
is properly a query language equipped with Boolean
conditions and many path-based operators. XQuery
adds expressivity to XPath by providing mechanisms
to join several XML documents.

XQuery is not just a query language, but a fully-
fledged programming language, equipped with a very
large library, able to define complex and recursive
procedures in hierarchical data. For instance, XQuery
can be used for defining transformations. These
transformations can be XML to XML, but also XML
to HTML, XML to SVG, XML to Text, etc. XSLT
is also considered a transformation language for XML,
but XSLT is too procedural and verbose, and too
hard to maintain, while XQuery is a more elegant and
high-level language providing, for instance, higher-order
functions which make easier the definitions of queries
and libraries. Additionally, XQuery is a database query
language and implementations are able to efficiently
handle large XML datasets.

A programming language able to query and transform
data is a great challenge in the era of multiple formats,
tools and Web data resources. XQuery is already able
to handle multiple XML spatial formats: for instance,
GML, KML and GeoJSON, as well as XML-based
Semantic Web languages: RDF and OWL. XML is
adopted in all of them as basis to represent spatial and
textual data. CSV is also handled by XQuery due to
XQuery libraries.

Thus, the best candidate for integrate multiple
spatial datasets is XQuery. In the context of
OSM, XQuery can play a key role, offering data
transformations from CSV, GeoJSON, KML and RDF
(and also XML) to the OSM model. Fortunately,
the key-value based representation of spatial data in
OSM makes easy the transformation from other formats
to OSM. Having multiple datasets in OSM format,
multiple layers of OSM can be handled, which can be
integrated and queried.

In this paper a framework, called XOSM (XQuery
for OpenStreetMap) (see Figure 1), for integrating and
querying OSM and LGOD resources is presented. The
framework is equipped with a Web tool (accessible
from our Website8) and a rich XQuery-based library,
enabling the definition of queries combining OSM
layers and layers created from LGOD resources (KML,
GeoJSON, CSV and RDF (and also XML)). The
framework also provides an API to execute XQuery
queries using the library.

The framework offers two main components: a
transformation library and a spatial/textual query
library. The transformation library provides functions

8http://xosm.ual.es/XOSM/

to transform KML, GeoJSON, CSV and RDF (and
also XML) formats into OSM format. The spatial
query library offers functions to query spatial data
with typical spatial operators (crossing, touching, etc),
as well as keyword search operators, adapted to the
OSM key-value structure, and aggregation operators
which take advantage of the higher-order mechanisms
of XQuery. While the spatial expressivity power
of XOSM can be considered similar to other spatial
query languages, for instance, the well-known spatial
SQL database management system PostGIS, XOSM
offers transformation functions which can be used in
combination with spatial functions. In such a way
that users can define queries involving on-the-fly (via
http requests) combinations of several OSM layers
representing existing LGOD web resources as well as
OSM data.

The LOD data initiative promotes the use of
SPARQL as query language, and, in the case LGOD,
spatial extensions of SPARQL have been proposed:
GeoSPARQL and stSPARQL [14, 15, 16, 17]. SPARQL
works with the RDF model, and some well-known
RDF datasets are available, for instance, DBpedia9

and YAGO10. OSM has been integrated in the RDF
area due to OSM Semantic Network11 in which OSM
map data are available in RDF format. However, when
other LGOD Web resources do not provide datasets in
RDF format, it imposes a barrier for integration and
querying.

Transformations in these languages are, in some
cases, implemented in external languages (C, Java,
etc.,) but the absence of on-the-fly transformations
limits the interoperability of the query language. On the
other hand, SPARQL is still a limited query language
in many of their implementations, lacking, for instance,
on appropriate nesting mechanisms of queries12, and
the function library is rather than limited.

XOSM handles the main LGOD formats: KML,
GeoJSON, CSV, RDF and also XML. Most popular
open data sites offer several data formats. For instance,
http://opendata.arcgis.com/ provides all the content in
GeoJSON format via an API service. The site https:

//opendatainception.io/ offers links to other open data sites,
and the availability of a given format depends on
the dataset provider. They do not provide statistics
about datasets format. The site https://catalog.data.

gov categorizes datasets by nature (spatial and non
spatial) and, as the Table 1 shows, the most used
format for spatial data is XML, together with CSV
and KML. In https://www.europeandataportal.eu and https:

//data.gov.uk, CSV is the most used structured format

9http://wiki.dbpedia.org/
10http://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/research/yago-naga/yago/
11http://wiki.openstreetmap.org/wiki/OSM Semantic Network
12SPARQL 1.1 proposes extensions for covering nesting,

recursion and aggregation [18, 19] but it is not still available in
most of implementations.

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 3

FIGURE 1. XOSM Web Interface

Country Site Subject KML GeoJSON CSV RDF XML

EU https://www.europeandataportal.eu Regions and Cites 1,277 1,252 3,448 45 744
EU https://www.europeandataportal.eu Transport 226 133 1,314 48 386
EU https://www.europeandataportal.eu Govern. and Public 402 358 8,802 514 1,336
EU https://www.europeandataportal.eu Environment 1,267 516 6,895 129 1,676
EEUU https://catalog.data.gov GeoSpatial 3,567 989 3,924 - 15,748
UK https://data.gov.uk Mapping 895 911 978 - -
UK https://data.gov.uk Towns and Cities 139 78 525 25 206
UK https://data.gov.uk Transport 20 32 216 22 61

TABLE 1. LGOD formats of most popular open data sites.

(see Table 1) including both spatial and non-spatial
datasets. For spatial information, KML and GeoJSON
are extensively used. Unfortunately, HTML, Microsoft
Word, and other non structured formats are frequently
used in https://www.europeandataportal.eu and https://data.

gov.uk. Thus, a challenge of the LGOD initiative
is to motivate the use of more suitable formats of
spatial information exchanging. In our approach,
the transformation library is used to convert spatial
datasets represented in KML, GeoJSON, CSV, RDF
and XML into OSM format. The advantage of these
spatial data formats is that they are XML-compliant
languages.

Obviously, other XML-compliant languages could
be considered in our approach (for instance, GML
and HTML). The definition of specific transformation
functions for these kinds of formats will be subject
of future development. In general terms, in order to
provide a transformation library from LGOD formats

to OSM, datasets should provide an uniform/standard
way to represent spatial objects and their location, that
is, points, lines, polygons, and their coordinates, as
well as an uniform/standard way to represent a list of
properties on each spatial object, in particular, a name
and key-value pairs of properties in order to be mapped
into OSM.

As an example of use of XOSM, let us suppose
a tourist office wants to offer transport information
to tourists. In particular, the taxi stations, close to
main monuments of the city. And let us suppose the
OSM map does not include information about taxis.
In this case, the tourist office staff looks for taxis
stations provided by the city government. This is,
for instance, the case of Paris, offering taxis stops
localization in the Web site https://opendata.paris.fr/explore/

dataset/paris taxis stations/export/ (see Figure 3). Now, the
JSON file of taxi stations can be used on the fly, and
the information of the file can be integrated using our

The Computer Journal, Vol. ??, No. ??, ????

4 Almendros, Becerra and Torres

FIGURE 2. XOSM Components

FIGURE 3. LGOD Resource of Paris Taxis

XOSM framework with the information of the OSM
map of Paris as follows:

let $taxis := xosm_open:json("https://opendata.paris.fr/
explore/dataset/paris_taxis_stations/download/?
format=geojson&timezone=Europe/Berlin",
"address","amenity","taxi","","")

let $building :=
xosm_rld:getElementByName(.,"Carrousel du Louvre")

return
fn:filter($taxis,xosm_sp:DWithIn($building,?,500))

in which taxi stations at distance of 500 meters
to the “Carrousel du Louvre” are requested. Thus
not only integration but spatial querying can be
carried out with XOSM. This is not the only case in
which XOSM can be more suitable than SPARQL and
PostGIS. Since XQuery is a fully-fledged programming
language, XOSM library can be used to program more
complex queries than SPARQL and PostGIS queries.
For instance, thanks to the recursive nature of the
XQuery language, a routing algorithm in OSM maps

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 5

can be programmed. We will show in the paper the
implementation of a routing algorithm using the XOSM
library and XQuery.

In summary, the presented approach can be seen as a
rich infrastructure enabling the definition of complex
queries, possibly making use of several LGOD Web
resources, and the visualization of results. XOSM
architecture (see Figure 2) can be summarized as
follows:

1. XOSM Web Tool: A Web tool has been
developed enabling (1) selection of a bounding box
of a OSM map, (2) editing and parsing of queries
and (3) running and visualization of the result.
When the result is text or numeric, this one is
shown in a pop-up window. Otherwise (i.e. OSM
spatial elements), ways of the result are highlighted
in a different color and nodes of the result are
marked with an icon.

2. XOSM API: The Web tool is not the only
mechanism to execute queries. XOSM provides a
service defined by an API restful which allows to
run XOSM queries getting results in text/numeric
and OSM format. The defined service requires the
coordinates of a bounding box of an OSM map.
These coordinates are passed as parameters of a
service call, simulating the mouse-based selection
from the Web tool.

3. XQuery Library: In order to handle OSM e-
lements in XOSM, two main XQuery functions
are provided: getLayerByName and getElements-
byKeyword. getLayerByName is a spatial function
in order to retrieve OSM elements at a certain dis-
tance w.r.t. a named element. getElementsbyKey-
word is a keyword search function in order to re-
trieve OSM elements labeled with a certain key-
word. Both can be used in isolation or in com-
bination to retrieve a set of OSM elements from
an OSM map. Once the elements are retrieved,
a set of Boolean spatial, keyword and aggrega-
tion operators can be used to query OSM maps.
Since getLayerByName and getElementsbyKeyword
use distance and keyword information to retrieve
elements, both ones need an index in order to
improve performance (see next Indexing item).
The implementation of the Boolean spatial oper-
ators by XOSM is based on the use of the Ba-
seX XQuery Geo Module13 available in the BaseX
XQuery library. This BaseX XQuery Module con-
tains functions that may be applied to geometry
data conforming to the Open Geospatial Consor-
tium (OGC) Simple Feature (SF) data model. It is
based on the EXPath Geo Module14 and uses the
Java Topology Suite (JTS) library. The implemen-
tation of the keyword and aggregation operators by
XOSM has been developed in XQuery. Finally, a

13http://docs.basex.org/wiki/Geo Module
14http://expath.org/spec/geo

set of LGOD functions are provided by the XQuery
library, enabling automatic conversion from CSV,
KML, GeoJSON and RDF (and also XML) to XML
OSM format. The implementation of LGOD func-
tions has been developed in XQuery.

4. Indexing: Two indexing mechanisms are handled:
RLD and PBD. RLD uses a Java implementation
of an R∗-tree for spatial data indexing, and
BaseX XQuery system for keyword indexing.
PBD uses the PostGIS system for both spatial
data and keyword indexing (i.e., R-Tree-over-
GiST and B-tree). In other words, previous
getLayerByName and getElementsbyKeyword have
both two implementations: one with Java and
BaseX, and other one with PostGIS. In order
to switch from an implementation of RLD/PBD
to another, two namespaces are provided in
XOSM, for instance, xosm rld:getLayerByName
and xosm pbd:getLayerByName.
The reasons for having two different implementa-
tions are the following. Firstly, RLD was firstly
developed, and served as system test, and PBD
was later integrated, enabling better performance
results with large datasets. They are both main-
tained in the current release of XOSM. Secondly,
RLD uses the OSM API15 in order to retrieve OSM
data. Therefore, RLD works with live data (i.e.
latest version of OSM data), where on-the-fly in-
dexing is carried out. In the case of PBD, it works
with backup data (i.e., the entire planet version
March 2017) indexed by PostGIS, and thus, it han-
dles an obsolete version of OSM data. Most of ex-
isting OSM querying tools, including spatial exten-
sions of SPARQL and PostGIS, work with backup
data (i.e., the entire planet), but in order to have a
better approximation to live data a periodic (con-
version and) updating is carried out.

In summary, XOSM combines XQuery, Java and
PostGIS code. XQuery is responsible for most of the
tasks including RLD keyword indexing, while Java is
used to implement the Java R∗-tree of the RLD spatial
indexing, and finally, PostGIS is used to implement the
PBD spatial and keyword indexing. Our benchmark
studies can be summarized as follows.

Live data performance: Firstly, we have analyzed
the response time of RLD indexing strategy, in order
to evaluate the Java R∗-tree spatial indexing as well as
the BaseX keyword indexing.

Live data versus Backup data: Secondly, we
propose to compare backup data with PostGIS indexing
(i.e., PBD) w.r.t. live data with Java R∗-tree/BaseX
indexing (i.e., RLD). While working with backup data
(and thus previously indexed data) is obviously better
than on-the-fly retrieval of data and indexing, our
intention is to evaluate the size of layers for which the
second option is still viable in terms of performance.

15http://wiki.openstreetmap.org/wiki/API v0.6

The Computer Journal, Vol. ??, No. ??, ????

6 Almendros, Becerra and Torres

On-the-fly retrieval of data has as advantage the
handling of updated data.

XOSM versus PostGIS: Finally, whether XOSM
with PBD is able to work at least with the same
performance measures than PostGIS, which can be
considered the benchmark to be reached. Existing
LGOD query language implementations (GeoSPARQL
and stSPARQL) are also built on top of PostGIS and
thus similar performance is assumed. Here, we have
compared a spatial query (i.e., streets crossing a given
street), and a keyword query (i.e., hotels with at least
two stars) in XOSM and PostGIS. Both systems share
the same indexing mechanism but the filter processing
(i.e., “crossing” and “at least two stars”) is carried out
by XOSM and PostGIS, respectively.

In summary, the experiments aim (1) to evaluate the
performance of live data indexing, (2) the improvements
of performance of backup data versus live data and (3)
comparison of XOSM and PostGIS both with backup
data. The case (3) shows in particular that XOSM
is competitive with PostGIS even though XOSM is
built on top of PostGIS and adds new processing after
PostGIS-based layer retrieval.

Let us remark that the current paper is a continuation
of previous works [20, 21, 22, 23] about OSM data query
processing with XQuery. In [21] (and the extended
version of [20]) the basis of OSM query processing with
XQuery was stablished; in particular, a preliminary
version of the XOSM XQuery library for the retrieval
of layers with Boolean spatial/keyword operators was
defined, together with a bath of query examples. In
[21, 20] a naive indexing technique was introduced. In
[23], distance based queries are handled with a extension
of the library proposed in [21, 20]. In [22] another
extension of the library has been introduced, included
aggregation operators. Here, the main contribution
falls on the handling of Linked Open Data and their
integration with OSM data. Additionally, here data
indexing is improved by proposing a more efficient
mechanism based on PostGIS indexing.

1.1. Structure of the Paper

The rest of this article is organized as follows. Section 2
will present the basic elements of OSM, will define the
query library. Section 3 will describe the transformation
library. Section 4 will show the XOSM tool. Section 5
will present benchmarks for several datasets. Section
6 will compare with related work and finally, Section 7
will conclude and present the future work.

2. XOSM QUERY LIBRARY

OpenStreetMap uses a topological data structure which
includes the following core elements: (1) Nodes which
are points with a geographic position, stored as
coordinates (pairs of a latitude and a longitude)
according to WGS84. They are used in ways, but also

to describe map features without a size like points of
interest and mountain peaks. (2) Ways are ordered
lists of nodes, representing a poly-line, or possibly a
polygon if they form a closed loop. They are used in
streets, rivers, etc., as well as areas: buildings, forests,
parks, etc., (3) Relations are ordered lists of nodes, ways
and relations. Relations are used for representing the
relationship of existing nodes and ways. (4) Tags are
key-value pairs (both arbitrary strings). They are used
to store metadata about the map objects such as their
type, their name and their physical properties. Tags are
attached to a node, a way, a relation, or to a member
of a relation.

As an example of OSM map, Figure 4 shows the
visualization of a piece of Almeŕıa (Spain) city map.
In order to represent a map, OSM uses XML labels:
node, relation and way, and each label can have several
attributes, for instance, node has lat and lon, among
others, for representing latitude and longitude of the
node. A node, representing a point of interest of
the city, can have tags for adding information about
the point, using attribute pairs key (k) and value (v)
with this end. For instance, the museum “Museo
Arqueologico” of Almeŕıa city is represented as shown
in Figure 5(a). OSM main element is way that
serves not only to represent streets but also buildings,
parkings, etc. Ways are described by a sequence of
node references, called nd, which link ways to nodes,
and tags (see Figure 5(b)). When the way is related to
a building, park, etc., specific tags are used inside the
way item (see Figure 5(c)). Finally, relations are used
to relate elements of the map; for instance, bus routes
(see Figure 5(d)). In spite of the simplicity of the XML
representation of OSM, many features in a OSM layer
can be described16.

2.1. Query Library

Now, we will describe the elements of the spatial/tex-
tual OSM library together with some examples of use.
A full list of operators together with formal definitions
is given in the Appendix. Firstly, we will given some
definitions.

Formally, given a set of label values V, an OSM map
m = (S,K) is a sequence S = {s1, . . . , sn}, where each
si is an OSM element (a node, a way or a relation),
together with a set of key functions K from S to V. We
assume that K contains at least the key function name
providing a name to each OSM element of an OSM
map. Relations are not considered in our approach
and thus, OSM elements are restricted to the case of
nodes and ways. A node n is a pair (p1, p2), where pi
is a real number, and a way w is a sequence of nodes
{n1, . . . , nn} defining a poly-line or a polygon. p1 of
a node n is called latitude denoted by lat(n), and p2

is called longitude denoted by lon(n). n1 of a way w
is denoted by first(w), and nn is denoted by last(w).

16http://wiki.openstreetmap.org/wiki/Map Features

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 7

FIGURE 4. (Spain) Almeŕıa City Map

<node id="1568048883"
lat="36.8386557"
lon="-2.4556049">
<tag k="name"

v="Museo Arqueologico"/>
<tag k="tourism" v="museum"/>

</node>

<way id="-3731">
<nd ref="-3625" />
<nd ref="-3623" />
<nd ref="-3621" />
<tag k="highway"

v="residential"/>
<tag k="name"

v="Calle Calzada de Castro"/>
<tag k="oneway" v="yes" />

</way>
(a) Point in OSM (b) Street in OSM

<way id="27161540">
<nd ref="298004115" />
<nd ref="298004116" />
<nd ref="298004119" />
<nd ref="298004128" />
<nd ref="298004115" />
<tag k="amenity" v="parking"/>

</way>

<relation id="147091">
<member type="way" ref="27197940"

role="3,11,12"/>
<member type="way" ref="27197939"

role="3,7,11,12"/>
<member type="way" ref="35031199"

role="3,11,12" />
<member type="way" ref="27197944"

role="7" />
<member type="way" ref="27197945"

role="7" />
<tag k="route" v="bus" />
<tag k="type" v="route" />
</relation>

(c) Parking in OSM (d) Bus route in OSM

FIGURE 5. XML representation of OSM data

We consider for each OSM element s, the minimum
bounding rectangle (MBR), denoted by mbr(s). We
denote by mindist(mbr,mbr′) the minimum distance
between the MBRs mbr and mbr′.

2.1.1. OpenStreetMap Index-based Functions
The following functions are used to retrieve elements
of OSM maps. getElementByName retrieves an OSM
element by name, that is, it returns, given an OSM
map m = (S,K), the OSM element s ∈ S such as
name(s) = n. getLayerByName(m,n,d) obtains given
the name n of an OSM element, the OSM elements

of the OSM map m = (S,K) at distance d of n.
The same can be said for getLayerByElement(m,e,d),
but here an OSM element e is passed as argument.
getElementsByKeyword(m,k) retrieves OSM elements of
the OSM map m = (S,K) by keyword k. The keyword
can be either the key function or the value. Finally,
getLayerByBB(m,mlat,Mlat,mlon,Mlon) retrieves the
OSM elements in a certain area of the OSM map m =
(S,K) given by a bounding box (mlat,Mlat,mlon,Mlon).

The indexing process is made following two strategies:
R∗-tree/BaseX on the fly indexing with live data (RLD)
and PostGIS indexing with backup data (PBD), and the

The Computer Journal, Vol. ??, No. ??, ????

8 Almendros, Becerra and Torres

implementation of previous functions is as follows:

• In RLD, a Java implementation of a R∗-tree is used,
and getLayerByName and getLayerByElement are
implemented in Java, returning the elements at
MBR distance d. getElementsByKeyword(m,k) is
implemented in RLD in XQuery, using the BaseX
index. Finally, getLayerByBB is implemented in
RLD with a call to the OSM API.

• In PBD, getLayerByName and getLayerByElement
are implemented in PostGIS and return the
elements from a given distance d. getElementsBy-
Keyword(m,k) and getLayerByBB are implemented
in PBD in PostGIS, using the PostGIS index.

Our proposed query language mainly uses getLayer-
ByName, i.e., queries have to be focused on a certain
area of interest, given by the name of a node (park,
pharmacy, etc.,), or by the name of a way (street, build-
ing, etc.,). Once the layer from the area of interest is
retrieved, the repertoire of OSM operators in combi-
nation with higher order functions can be applied to
produce complex queries. The answer of a query is an
OSM layer including OSM elements of the area of inter-
est. Nevertheless, getElementsByKeyword can be also
used to retrieve OSM elements by keyword in a certain
area. And also getLayerByBB can be used to retrieve
all the elements enclosed by an area defined by a bound-
ing box. In all the cases, the area is selected by the user
(manually with the mouse or using the search text field
in the Web tool).

2.1.2. OpenStreetMap Spatial Operators
We have considered two types of Spatial Operators:
Coordinate and Distance based OSM Operators and
Clementini based OSM Operators. Both kinds of spatial
operators are designed to cover most of spatial queries
involving nodes and ways. Our aim is to express queries
related to the distance from points/streets/buildings,
etc., and related to the localization of points/street-
s/buildings: north, points at east, etc.,; additionally,
the street where a given point is located; if two points
are located at the same street; the intersection point of
two streets; and typical Clementini’s spatial operators.
In order to illustrate the spatial operators library we
can consider the following query:

Example 1: Retrieve the streets in London intersecting
“Haymarket” street and touching “Trafalgar Square”.

let $layer :=
xosm_rld:getLayerByName(.,"Haymarket",0)

let $s :=
xosm_rld:getElementByName(.,"Haymarket")

let $ts :=
xosm_rld:getElementByName(.,"Trafalgar Square")

return
fn:filter(fn:filter($layer,
xosm_sp:intersecting(?,$s)),

xosm_sp:touching(?,$ts))

In this query, the XQuery higher order function
filter has been used twice in combination with the
spatial operators intersecting and touching. Firstly,
the streets next to “Haymarket” are retrieved by
getLayerByName (at distance 0 meters). Next,
the streets “Haymarket” and “Trafalgar Square” are
retrieved by getElementByName. Finally, those ones
intersecting “Haymarket” and touching “Trafalgar
Square” streets are filtered.

2.1.3. OpenStreetMap Keyword Operators
Now, in order to express keyword-based queries, a
repertoire of operators has been defined allowing to
manipulate pairs k and v in OSM elements. For in-
stance, searchKeyword(s,kv) checks the occurrence of a
certain keyword kv as key function or value in an OSM
element s. Analogously searchKeywordSet(s,(kv1, . . . ,
kvn)) for a set of kv’s. In order to illustrate the
keyword-based operators library we can consider the
following queries:

Example 2: Retrieve the restaurants in Rome further
north to “Picasso” hotel.

let $layer := xosm_rld:getLayerByBB(.)
let $hotel := xosm_rld:getElementByName(.,"Picasso")
return fn:filter(fn:filter($layer,

xosm_kw:searchKeyword(?,"restaurant")),
xosm_sp:furtherNorthPoints($hotel,?))

In this query, the layer selected by the Web tool is re-
trieved by getLayerByBB index-based function. Next,
“Picasso” hotel is retrieved by getElementByName.
Finally, the function filter is used twice to select restau-
rants further north than the hotel.

Example 3: Retrieve hotels of Vienna close to food
venues.

for $hotel in
xosm_rld:getElementsByKeyword(.,"hotel")

[@type="point" or @type="area"]
let $layer :=
xosm_rld:getLayerByElement(.,$hotel,200)
where
count(fn:filter($layer,
xosm_kw:searchKeywordSet(?,
("bar","restaurant"))))>=30

return $hotel

In this query, hotels close to food venues (i.e., bars
and restaurants) are retrieved. Firstly, all the city ho-
tels are selected by getElementsByKeyword and, next,
the layer for each hotel is obtained (at distance 200
meters). Finally, the number of restaurants and bars
occurring on each hotel layer are computed, and when-
ever this number is bigger than 30, the hotel is retrieved.

Example 4: Retrieve the hotels of Munich with the
greatest number of churches nearby.

let $hotel :=
xosm_rld:getElementsByKeyword(.,"hotel")

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 9

Example 1 Example 2

FIGURE 6. Results for OSM spatial operator based queries. Example 1: Retrieve the streets in London intersecting
“Haymarket” street and touching “Trafalgar Square”; Example 2: Retrieve the restaurants in Rome further north to “Picasso”
hotel.

let $f := function($hotel){
-(count(fn:filter(
xosm_rld:getLayerByElement(.,$hotel,100),
xosm_kw:searchKeyword(?,"church"))))}

return fn:sort($hotel,$f)[1]

Finally, in this query, hotels with the greatest number
of churches nearby are retrieved. With this aim, the
XQuery higher order function sort is used in order to
sort the hotels by the number of churches nearby (at
distance 100 meters). An anonymous function is used
in order to count churches in the layer of each retrieved
hotel (at distance 100 meters).

2.1.4. OpenStreetMap Aggregation Operators
The proposed aggregation operators are inspired by
the SOLAP operators. In [24], a taxonomy of
operators whose result is numeric is considered17.
They consider two levels of operators. The first level
includes numeric-spatial and numeric-multidimensional
operators. Numeric-spatial operators can be topological
(Boolean Clementini’s operators), and metric (area,
length and distance), while numeric-multidimensional
operators are max, min, sum, count and distinct
count, among others. A second level is defined as
combinations of operators of the first level. Numeric-
multidimensional operators can be classified into
Distributive, Algebraic or Holistic [25]. An aggregate
function is distributive if it can be computed in a
distributed manner, that is, the result derived by
applying the function to the n aggregate values is the
same as that derived by applying the function to the
entire data set (without partitioning). An aggregate

17In [24] they also consider spatial operators whose result is
spatial (ConvexHull, Envelope, Centroid, Boundary, Intersection,
Union, Difference and Buffer). They also consider navigation and
temporal operators.

function is algebraic if it can be computed by an
algebraic function with m arguments (where m is a
bounded positive integer), each of which are obtained
by applying a distributive aggregate function. Finally,
an aggregate function is holistic when there does not
exist an algebraic function with m arguments that
characterizes the computation.

For instance, the distributive operators met-
ricMin(sq,m) and metricMax(sq,m) return the objects
of sq having the minimum, resp. maximum, value of a
given metric operator m; and the distributive operator
metricSum(sq,m) returns the result of adding the val-
ues of a given metric operator m in a sequence sq. In
order to illustrate the aggregation operators library we
can consider the following queries:

Example 5. This query requests the size of park
areas close to “Karl-Liebknecht-Strasse” in Berlin. It
is expressed as follows:

let $layer :=
xosm_rld:getLayerByName(.,
"Karl-Liebknecht-Strasse",350)

let $parkAreas :=
fn:filter($layer,xosm_kw:searchKeyword(?,"park"))
return xosm_ag:metricSum($parkAreas,"area")

In this query, filter selects the “park”s from the
Karl-Liebknecht-Strasse layer (at 350 meters), and the
distributive operator metricSum computes the size of
park areas.

Example 6. Next query requests the top-star rating
biggest hotels close to “Via Dante” in Milan. This
query can be expressed as follows:

let $layer :=
xosm_rld:getLayerByName(.,"Via Dante",350)
let $hotels :=
fn:filter($layer,

The Computer Journal, Vol. ??, No. ??, ????

10 Almendros, Becerra and Torres

Example 3 Example 4

FIGURE 7. Results for OSM Keyword operator based queries. Example 3: Retrieve hotels of Vienna close to food venues;
Example 4: Retrieve the hotels of Munich with the greatest number of churches nearby.

Example 5 Example 6

FIGURE 8. Results from OSM Aggregation operator based queries. Example 5: Size of park areas close to “Karl-Liebknecht-
Strasse” in Berlin; Example 6: Top-star rating biggest hotels close to “Via Dante” in Milan.

xosm_kw:searchKeyword(?,"hotel"))
return xosm_ag:metricMax(
xosm_ag:metricMax($hotels,"stars"),"area")

In this case, filter is used to search the keyword “ho-
tel”, and next the distributive operator metricMax is
used twice in order to compute the top-star rating and
biggest hotels.

Let us remark that our proposal of aggregation
operators is richer than the proposed in [24]. In all
cases of metric operators, functions passed as arguments
can be one of area, length and distance, as well as any
function which computes numeric values from OSM
elements. This is the case of metricMin, metricMax,
metricSum, metricAvg, metricStdev, metricTopCount,
metricBottomCount, metricMedian, metricMode and

metricRank. Additionally, operators metricMin and
metricMax which return an unique value in [24], can
here return more than one value. There metricMin and
metricMax are used for area and length which rarely are
equal for more than one element. Here, metricMin and
metricMax can be applied to any operator returning a
numeric value, for instance, number of stars of hotels,
which can be the same for several hotels. Finally,
metricMode can be applied to any operator, not only
numeric.

Finally, let us remark that since we are working with
XQuery in order to list other data items (coordinates,
key-value pairs, etc.,) from OSM documents, XQuery
mechanisms can be used, in particular, using XPath on
a node n, n/@lat, n/@lon returns the coordinates of the
node. In the case of a way w, w/nd/@ref is the set of
nodes of a way. With regard to key-value pairs, they can

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 11

be retrieved by n/tag/@k and n/tag/@v or w/tag/@k
and w/tag/@v.

2.1.5. Some Implementation Details
The implementation of an OSM query library is away
to be a trivial task. The OSM initiative aims that any
user can edit maps. Unfortunately, due to contributions
of multiple users main tags are not always filled, and
sometimes query answers are further than the user
expects. The same happens with ways editing by users,
in which the lack of precision in geometries can lead to
wrong spatial objects. On the other hand, OSM handles
only two geometries (nodes and ways). Firstly, streets
are defined by segments in which street directions are
defined by the order of segment points. Thus, the
full geometry of a street is composed by several ways
and, the set of points is not necessarily in geographical
order. Secondly, buildings (and, in general, polygons)
are defined as closed ways: ways in which the end
point is equal to the start point. Thus, streets and
buildings have the same kind of representation. It
makes more sophisticated to detect spatial objects and
their relationships. Additionally, we have found that
allowing several layers, the definition of the library
becomes even more complex. In a unique OSM layer,
usually ways do not overlap. Except when areas, metro
lines, etc., are defined. When several layers involving
areas are considered, overlapping arises, and thus ways
can share nodes. We have followed a name-based
approach to handle OSM maps. We have decided to
adopt names as mechanism to identify spatial objects.
Thus, objects without name are ignored. Names, for
instance, are used to collect segments of streets in order
to build the full geometry.

We have defined functions in XQuery to transform
OSM geometries into GML geometries, which is
required by the EXPath/JTS library. This is a key
point of the implementation due to the following
reasons: (1) ways are used in OSM to represent both
LineStrings and Polygons; (2) streets are built from
segments, each one represented by a way; (3) buildings
(and other areas) are built as closed ways. Thus,
in order to transform from OSM geometries to GML
geometries, we have to: (1) distinguish cases in the form
of ways: closed ways and open ways; (2) collect ways
of the same street. This transformation enables, for
instance, to implement wayIn as follows:

declare function xosm_sp:wayIn($node as node(),
$way as node())

{
if ($node/way) then false()
else
let $p := xosm_gml:_osm2GmlPoint($node/node/@lat,

$node/node/@lon)
let $l := xosm_gml:_osm2GmlLine($way)
return geo:distance($l,$p)=0
};

EXPath/JTS library is also used to implement spatial
operators. For instance, crossing is defined as

follows using a higher order Boolean pattern query
booleanQuery:

declare function xosm_sp:crossing($e1 as node(),
$e2 as node())

{
xosm_sp:booleanQuery($e1,$e2,"geo:crosses")
};

XQuery is equipped with a rich query language
including some and every statements. It makes possible
to implement searchKeywordSet as follows:

declare function xosm_kw:searchKeywordSet(
$e as node(),$ks as xs:string*)

{
some $kw in $ks
satisfies xosm_kw:searchKeyword($e,$kw)
};

wherein searchKeyword is defined as follows:

declare function xosm_kw:searchKeyword(
$e as node(),$kw as xs:string)

{
let $item := $e//*[name(.)="tag"]
return
(some $att in $item/@v satisfies ($att = $kw)) or
(some $att in $item/@k satisfies ($att = $kw))
};

Higher order is also used in the implementation of
aggregation operators. For instance, topologicalCount
is implemented as follows:

declare function xosm_ag:topologicalCount(
$sq as node()*,$e as node(),$b as xs:string)

{
count(fn:filter($sq,function($eRef){

xosm_sp:booleanQuery($eRef,$e,$b)}))
};

using the higher order function filter, count as well
as booleanQuery. Finally, metricBottomCount has
been defined in terms of the higher order function
sort, the keyword operator getTagValue, the built-in
XQuery function subsequence, and an auxiliary function
metricList:

declare function xosm_ag:metricBottomCount(
$sq as node()*,$m as xs:string,$k as xs:integer)

{
let $list := xosm_ag:metricList($sq,$m)
return
fn:subsequence(fn:sort($list,function($w){

xosm_kw:getTagValue($w,$m)}),1,$k)
};

Now, we will define the transformation library of
XOSM together with some examples of use.

3. XOSM TRANSFORMATION LIBRARY

XOSM is also equipped with functions enabling the
retrieval and transformation of Linked Geo Open Data
(see Table 2). Linked Geo Open Data can have KML,
GeoJSON, CSV, RDF (and also XML).

The Computer Journal, Vol. ??, No. ??, ????

12 Almendros, Becerra and Torres

However, the conversion to OSM format is a non-
trivial task. Firstly, the main information provided
from spatial datasets is the spatial location of objects.
The way in which they represent the location of spatial
objects can vary from one format to another. For
instance, GeoJSON represents spatial objects by Point,
LineString and Polygon geometries as features. This is
not the case of OSM, in which a simpler representation
by nodes (and list of node references) is used. In
the case of KML, Placemark is used to store spatial
objects, and again Point, LineString and Polygon are
used to distinguish object geometry. Key-value pairs of
OSM data are extracted from GeoJSON from object
properties. In CSV, columns are transformed into
key-value pairs. To extract coordinates of points
from CSV, the transformation function requires to
pass as argument the name of the columns including
the point coordinates. The case of RDF is less
sophisticated requiring to extract geo:lat and geo:long
RDF properties to locate spatial objects.

In this context, the function json can be used to
transform GeoJSON data into OSM data. It transforms
GeoJSON geometries into OSM geometries, as well
as it adds GeoJSON textual data into OSM key-
value pairs. It has as parameters, the url of the
resource and the name of the label in the given
GeoJSON resource representing the name of the spatial
object. It serves to map GeoJSON names into OSM
names. Additionally, it has four parameters kp,vp,kw
and vw. The transformation from GeoJSON to OSM
assigns to points the key-values pairs (kp,vp) and to
ways the key-values pairs (kw,vw). It permits, for
instance, to map restaurants represented by GeoJSON
into OSM (“amenity”,“restaurant”), as well as to
map parkings represented by GeoJSON into OSM
(“amenity”,“parking”). The function kml has similar
behavior.

Function csv can be used to transform CSV data.
In this case, the parameters specify the column name
containing the name of the spatial object as well as
the column names where latitudes and longitudes are
specified. CSV only works for points. The rest of
columns are transformed into key-value pairs.

RDF data and, in particular, Wikipedia resources,
can be accessed and integrated to OSM data with
three functions: wiki element, wiki coordinates and
wiki name. The functions for Wikipedia work with
spatial coordinates. With this aim the service
Geonames18 is used. This service provides information
about places nearby to given coordinates, as well as the
corresponding DBpedia links for these places. Thus, the
previous function wiki coordinates has as parameters
the spatial coordinates, and it calls to Geonames service
in order to retrieve information of DBpedia from the
links. The information extracted from DBpedia is
transformed into key-value pairs of OSM. Function

18http://www.geonames.org/

wiki element is similar to wiki coordinates, but it has
as parameter an OSM element. Function wiki name is
similar but having as parameter an OSM layer and the
name of an element of the layer.

With regard to the XML format, Tixik API19 allows
to retrieve information about famous places around
the world in XML format. Given the spatial coordi-
nates, the API retrieves names, descriptions, images,
and links to Tixik.com of nearby places. In this case,
the XQuery functions tixik name, tixik coordinates and
tixik element transform these data provided by Tixik
into OSM data (coordinates and key-value pairs) simi-
larly to Wikipedia functions. In order to illustrate the
transformation library we can consider the following
queries:

Example 7: The following query requests taxi stops
close to “Carrousel du Louvre” in Paris. Taxi stops are
retrieved from the LOD service of Paris20, and DWithIn
is used in order to filter those ones at distance 500
meters.

let $taxis := xosm_open:json("https://opendata.paris.fr/
explore/dataset/paris_taxis_stations/download/?
format=geojson&timezone=Europe/Berlin",
"address","amenity","taxi","","")

let $building :=
xosm_rld:getElementByName(.,"Carrousel du Louvre")
return
fn:filter($taxis,xosm_sp:DWithIn($building,?,500))

Example 8: The following query retrieves free events
of Madrid. The events are retrieved from the LGOD
ARCGIS site21, and filtered by an anonymous function
selecting free events22.

let $events :=
xosm_open:json("http://data2.esrism.opendata.arcgis.
com/datasets/51900577e33a4ba4ab59a691247aeee9_0.
geojson","EVENTO","place","*","area","yes")

return fn:filter($events,function($p)
{not(empty($p/node/tag[@k="GRATUITO" and @v="Si"]))})

Example 9: The following query uses the function
wiki element to retrieve Wikipedia information about
places nearby to the intersection point of “Calle Mayor”
and “Calle de Esparteros” in Madrid.

let $x := xosm_rld:getElementByName(.,"Calle Mayor")
let $y :=
xosm_rld:getElementByName(.,"Calle de Esparteros")
return
for $i in xosm_sp:intersectionPoints($x,$y)
return xosm_open:wiki_element($i)

Example 10: Finally, the following query retrieves the
information provided by tixik.com around “Picadilly”
in London.

19http://www.tixik.com/info/api/
20http://opendata.paris.fr/
21http://opendata.arcgis.com/
22“GRATUITO” means free in spanish.

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 13

XQuery Function LOD format

json(url,name,kp,vp,kw,vw) GeoJSON
kml(url,name,kp,vp,kw,vw) KML
csv(url,name,lat,lon) CSV

wiki element(osm) RDF
wiki coordinates(lat,lon) RDF
wiki name(layer,name) RDF

tixik element(osm) XML
tixik coordinates(lat,lon) XML
tixik name(layer,name) XML

TABLE 2. XQuery Functions for Linked Open Data

Example 7 Example 8

Example 9 Example 10

FIGURE 9. Results from Linked Open Data based queries. Example 7: Taxi stops close to “Carrousel du Louvre” in Paris;
Example 8: Free events of Madrid; Example 9: Wikipedia information about places nearby to the intersection point of “Calle
Mayor and “Calle de Esparteros” in Madrid; Example 10: Information provided by tixik.com around “Picadilly” in London.

let $x := xosm_rld:getElementByName(.,"Piccadilly")
return xosm_open:tixik_element($x)

4. XOSM TOOL

In this section, XOSM (XQuery for OpenStreetMap)
Web tool developed by our group, hosted at the url http:

//xosm.ual.es/XOSM, is presented. The Web-based tool

permits to query OSM maps (and LGOD resources),
enabling the selection of an area of the OSM map,
and the execution of queries from the XQuery shell
(see Figure 4). Additionally, the tool is equipped with
a batch of pre-defined spatial, keyword, aggregation
and LGOD queries (among them, the included in this
paper). XOSM highlights the results of queries with
a different color and an icon for ways and nodes,

The Computer Journal, Vol. ??, No. ??, ????

14 Almendros, Becerra and Torres

respectively (see Figure 4). In the case of the result
is a value (text or numeric) XOSM visualizes the result
in a pop-up window.

4.1. XQuery API

The methods of the XQuery API for OSM are shown in
Table 3. The API is built on top of the PBD (for getting
short answer times), and enables to query OSM data by
the operators: getElementByName, getElementsByKey-
word, getLayerByName, getLayerByElement (here the
coordinates are specified) and getLayerByBB. XQuery
queries can be directly executed from the API, using the
method Query. The API permits to pass the bounding
box of the map to be queried. In the Web tool this
bounding box is replaced by the selected area.

For instance, the following API request, executes
the following query: Retrieve hotels at 50 meters of
“Trafalgar Square” in London:

http://xosm.ual.es/xosmapi/Query/minLon/-1.0135918/minLat/

51.0900174/maxLon/0.8389607/maxLat/51.8863973?query=

let $x := xosm pbd:getLayerByName(.,”Trafalgar Square”,

50) return filter($x,xosm kw:searchKeyword(?,”hotel”))

4.2. An Application with XOSM

Now, an example of application with the XOSM library
is shown. This application retrieves routes between
streets of a given city. The application shows that the
recursive capabilities of XQuery enable to implement
without effort a path recursive algorithm23 allowing to
retrieve the routes. A piece of the code in shown below,
and the depicted result in the Web tool can be seen in
Figure 11. The route of Figure 11 is computed from
Wollzeile to Lichtensteg streets of Vienna.

declare function xosm_sp:path(
$layer,$name1,$name2,$dlayer)

{
if ($name1=$name2) then
xosm_sp:print_already_here()

else
let $e1 :=
xosm_rld:getElementByName($layer,$name1)

let $e2 :=
xosm_rld:getElementByName($layer,$name2)

return
if (empty($e1)) then xosm_sp:print_out($name1)
else if (empty($e2)) then xosm_sp:print_out($name2)
else
let $layer1 :=
xosm_rld:getLayerByName($layer,$name1,

$dlayer)[@type="way"]
return
xosm_sp:write_path(

xosm_sp:path_aux($layer1,$e1,$e2,$e1))
};

declare function xosm_sp:path_aux(
$layer,$e1,$e2,$path)

{
if (empty($layer)) then ()
else
if (xosm_sp:getDistance($e1,$e2)=0)

then ($path,$e2)
else

23The algorithm recursively finds one of the paths between
streets, not necessarily the shortest path.

let $can :=
fn:filter($layer,xosm_sp:DWithIn(?,$e1))

return
xosm_sp:loop_path($can,$layer,$e2,$path)

};

declare function xosm_sp:loop_path(
$can,$layer,$e2,$path)

{
if (empty($can)) then ()
else
let $c := head($can)
let $p := xosm_sp:path_aux($layer

[every $name in data(($path,$c)/@name)
satisfies not($name=data(@name))],
$c,$e2,($path,$c))

return
if (empty($p))
then xosm_sp:loop_path(tail($can),

$layer,$e2,$path)
else $p

};

The route application uses the spatial operators
DWithIn, furtherNorthWays, furtherNorthEast, etc., It
returns a string in which the route is described in terms
of streets to be followed and directions to be taken (i.e.,
north, east, west, east).

5. BENCHMARKS

In this section, we show the benchmarks of the proposed
tool. We analyze the following cases:

(5.1) Live data performance: We analyze the
response time for the retrieval of layers using
distances and keywords (i.e., getLayerByName and
getElementsByKeyword) (Section 5.1).

(5.2) Live data versus Backup data. We compare
the response time for query answering of the
examples shown (Section 5.2).

(5.3) XOSM versus PostGIS. We compare the
response time on spatial and keyword queries
(Section 5.3).

For this benchmarking, we have used a HP Proliant
(one quad core and 12GB RAM Memory) with Ubuntu
Server (version 16.10). For the implementation, we have
used the BaseX XQuery processor (version 8.3) and the
PostGIS system over PostgreSQL (version 9.5).

5.1. Live data performance

The goal of these benchmarks is to show the response
time of RLD for the retrieval of layers by distances and
keywords. We have used the datasets of Figure 12. We
will consider the following benchmark measures:

(1) Spatial Indexing and Layer Retrieval (see
Figure 13); i.e., the time required to generate a
spatial index (R∗-tree structure) and to retrieve
a certain layer by name (i.e., getLayerByName).
Times are taken in seconds and they are computed
with distance values 0, 100 meters and 1 km for all
datasets. Figure 13 shows that getLayerByName in

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 15

FIGURE 10. XOSM: XQuery Shell

GetLayerByName
http://xosm.ual.es/xosmapi/getLayerByName/minLon/{minLon}/minLat/{minLat}
/maxLon/{maxLon}/maxLat/{maxLat}/name/{name}/distance/{distance}
GetLayerByElement
http://xosm.ual.es/xosmapi/getLayerByElement/minLon/{minLon}/minLat/{minLat}
/maxLon/{maxLon}/maxLat/{maxLat}/lon/{lon}/lat/{lat}/distance/{distance}
GetElementByName
http://xosm.ual.es/xosmapi/getElementByName/minLon/{minLon}/minLat/{minLat}
/maxLon/{maxLon}/maxLat/{maxLat}/name/{name}
GetElementsByKeyword
http://xosm.ual.es/xosmapi/getElementsByKeyword/minLon/{minLon}/minLat/
{minLat}/maxLon/{maxLon}/maxLat/{maxLat}/keyword/{keyword}
GetLayerByBB
http://xosm.ual.es/xosmapi/getLayerByBB/minLon/{minLon}/minLat/{minLat}
/maxLon/{maxLon}/maxLat/{maxLat}
Query
http://xosm.ual.es/xosmapi/Query/minLon/{minLon}/minLat/{minLat}/maxLon/
{maxLon}/maxLat/{maxLat}?query={query}

TABLE 3. XQuery API

FIGURE 11. Route from Wollzeile to Lichtensteg streets of Vienna.

RLD has a reasonable response time in small and
medium-size layers, and it gets worse (120 seconds

in the worst case (1km)), for a dataset of around
120 MB, with one million of OSM elements. RLD

The Computer Journal, Vol. ??, No. ??, ????

16 Almendros, Becerra and Torres

Almeŕıa (19,929 Objects: 2,698 Ways + 17,231 Nodes (1,6MB)),
Alexandria (Greece) (3,866 Objects: 5,495 Ways + 33,171 Nodes (4,1MB)),
Santa Barbara (USA) (49,287 Objects: 4,244 Ways + 45,583 Nodes (6MB)),
Alburquerque (USA) (102,620 Objects: 17,783 Ways + 88,837 Nodes (12MB)),
Cusco (Peru) (168,048 Objects: 7,019 Ways + 161,029 Nodes (16MB)),
Cork (Irland) (207,357 Objects: 21,258 Ways + 186,099 Nodes (20MB)),
Waterloo (Canada) (559,754 Objects: 61,929 Ways + 497,825 Nodes (63MB))
Brisbane (Australia) (1,034,520 Objects: 131,042 Ways + 903,477 Nodes (115MB))

FIGURE 12. Datasets for RLD-based retrieval of layers by distances and keywords

response time includes R∗-tree on the fly indexing,
and retrieval of the layer using the index. Let us
remark that with the same layer (i.e., one million
of OSM elements), the PBD strategy returns the
same result in 6,6 seconds.

(2) Textual Indexing and Keyword Retrieval
(see Figure 13); i.e., the time required to retrieve
the set of OSM elements annotated with a certain
keyword by using the BaseX textual indexing
(i.e., getElementsByKeyword). Times are taken in
seconds, and they are computed for two keywords:
hotel and park. Response times range from less
than one second to around 1.8 seconds for a dataset
of around 120 MB, with one million of OSM
elements. Response times for the keyword hotel
are better than for the keyword park, given that
the number of parks is (in all the cases) greater
than the number of hotels.

5.2. Live data versus Backup data

We have considered the following benchmark measures:

(1) Query answering time (see Figure 15) for the
given Example 1 to Example 10. Response
times are measured in milliseconds. We have used
the datasets of Figure 14. We have to take into
account the following considerations:
Here, the datasets have been selected to cover the
city center. Response times are in most of the cases
less than 2 seconds (for both PBD and RLD). The
only case exceeding this quantity is Example 2.
In Example 2, getLayerByBB is used. In the case
of RLD strategy, this function makes a call to the
OSM API, retrieving all the OSM elements inside
a bounding box. The answer time of this function
depends on the answer time of the OSM API, and
the number of elements to be retrieved. In the case
of PBD, getLayerByBB uses the spatial PostGIS
index, having a response time considerably better:
1,206.5 ms.

(2) Query answering time (see Figure 15) for
Example 1. We have used the following datasets:
London: (21,598 Objects : 2,261 Ways + 19,337
Nodes), (43,914 Objects : 5,193 Ways + 38,721
Nodes), (80,313 Objects : 5,937 Ways + 74,376
Nodes), (114,877 Objects : 10,241 Ways + 104,636

Nodes), (202,564 Objects : 20,304 Ways + 182,226
Nodes), 303,907 Objects : 36,877 Ways + 267,030
Nodes).
Here our intention is to measure how is better
PBD and RLD. As we can see for small and
medium-size areas, less than one hundred thousand
objects, PBD and RLD response times are similar.
However, for bigger areas PBD is better than RLD.

5.3. XOSM versus PostGIS

We have considered the following datasets: Almeŕıa
(Spain) (43,914 Objects: 5,193 Ways + 38,721 Nodes
(10MB)), Barcelona (Spain) (949,458 Objects: 33,459
Ways + 915,999 Nodes (190MB)), Zurich (Switzerland)
(2,438,759 Objects: 234,876 Ways + 2,203,883 Nodes
(435MB)) and London (UK) (4,041,926 Objects:
598,841 Ways + 3,443,085 Nodes (832MB)).

We have considered the following benchmark mea-
sures:

(1) Spatial query crossing for XOSM PBD
strategy and PostGIS (see Figure 16), i.e., time
for spatial indexing, and retrieval of OSM elements
holding a spatial relation (crossing) in a certain
area. Here our intention is to compare XOSM
and PostGIS for spatial operations. XOSM is
built in the PBD strategy on top of PostGIS,
but PostGIS is only used to retrieve layers (by
distance and keyword). In the PBD strategy, when
a query involves to filter the elements of the layer,
for instance, the retrieval of the streets crossing
another street, then XOSM (and XQuery) filters
the streets retrieved by PostGIS. Thus, we are
interested in analyzing whether the same query
(retrieval and filtering) in PostGIS and XOSM have
similar response time. We have analyzed two cases:
(1) the dataset is loaded by first time (i.e., non-
cached data); and (2) the dataset has been already
loaded (i.e., cached data). We can see that both
systems XOSM PBD and PostGIS have similar
behavior with response times in the worst case of
around 100 seconds for (1) and 3.5 seconds for (2)
with a dataset of 832 MB.

(2) Keyword query hotel for XOSM PBD
strategy and PostGIS (see Figure 16), i.e., time
for textual indexing, and retrieval of OSM elements

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 17

FIGURE 13. Java R∗-tree/BaseX indexing: getLayerByName Response Time (Layer Retrieval for 0 meters, 100 meters
and 1 km); getElementsByKeyword Response Time (keywords hotel and park).

Example 1 London (UK) (7,315 Objects : 860 Ways + 6,310 Nodes)
Example 2 Rome (Italy) (30,912 Objects: 5,993 Ways + 25,063 Nodes)
Example 3 Vienna (Austria) (11,805 Objects: 1,164 Ways + 10,431 Nodes)
Example 4 Munich (Germany) (8,124 Objects: 1,243 Ways + 6,708 Nodes)
Example 5 Berlin (Germany) (18,799 Objects : 2,362 Ways + 16,146 Nodes)
Example 6 Milan (Italy) (27,267 Objects : 3,857 Ways + 23,022 Nodes)
Example 7 Paris (France) (35,076 Objects : 3,766 Ways + 30,846 Nodes)
Example 8 Madrid (Spain) (14,073 Objects : 1,771 Ways + 12,025 Nodes)
Example 9 Madrid (Spain) (14,073 Objects : 1,771 Ways + 12,025 Nodes)
Example 10 London (UK) (12,276 Objects : 1,705 Ways + 10,453 Nodes)

FIGURE 14. Datasets for Query Answering Time

FIGURE 15. Live data versus Backup data: Examples 1 to 10 by RLD and PBD strategies; Example 1 in RLD and PBD
strategies increasing size of layers.

The Computer Journal, Vol. ??, No. ??, ????

18 Almendros, Becerra and Torres

annotated by a keyword (hotel) in a certain area.
Here our intention is to compare XOSM and
PostGIS for keyword retrieval. Similarly to the
previous case, when a query involves to filter
the elements of a layer by keyword, for instance,
“hotel with at least two stars” then in the PBD
strategy, XOSM (and XQuery) filters the elements
retrieved by PostGIS keyword indexing. Thus, we
are interested in analyzing whether the same query
(retrieval and filtering) in PostGIS and XOSM have
similar response time. As the previous case, we
have analyzed two cases: (1) Dataset loaded by
first time and (2) dataset already loaded. We can
see that both cases have similar behavior, obtaining
response times in the worst case of 90 seconds for
(1) and 0.5 seconds for (2) with a dataset of 832
MB.

As conclusion, we can make the following considera-
tions. While live data performance (i.e., XOSM RLD
strategy) can be considered reasonable with small and
medium-size layers, the response time of layer retrieval
for a dataset of around 120 MB, with one million of
OSM elements is 120 seconds for 1km, which can be con-
sidered too much. However layer retrieval from backup
data (i.e., XOSM PBD strategy) is considerably lower.
And it is even lower for cached results. The same layer
is retrieved by PBD in 6.6 seconds without catching.
In addition, such as shown in Figure 15, for less than
one hundred thousand objects PBD and RLD response
times of query processing are similar, getting worst re-
sults for instance in Example 1 from 80,313 objects
and beyond. However, RLD strategy has as advantage
to work with updated data, and when it is used for
small and medium-size layers, it has still a reasonable
response time.

On the other hand, XOSM is competitive with
PostGIS in both spatial and keyword queries. Let
us remark that XOSM has an advantage against
PostGIS. XOSM query results are given in OSM format
(downloadable from the Web site and returned by the
XOSM API), and thus enabling direct import of results
to other OSM tools. However, PostGIS offers results
in a table-like format, and external tools (for instance,
Osmosis24) are required to obtain data in OSM format.
It limits the interoperability of PostGIS with OSM
tools. Thus, XOSM main advantage (i.e., on-the-fly
integration of LGOD data) as well as the OSM format
of XOSM results can motivate the use of XOSM by the
OSM community.

6. RELATED WORK

6.1. XQuery and Spatial Data

GQuery [26] is an early proposal for adding spatial
operators to XQuery. Manipulation of XML trees
is carried out by XQuery, while spatial processing

24http://wiki.openstreetmap.org/wiki/Osmosis

is performed using geometric functions and JTS.
GeoXQuery approach [27] extends the Saxon XQuery
processor [28] with functions that provide spatial
operations. It is also based on JTS and a GML to SVG
transformation is defined in order to show query results.
GML Query [29] stores GML documents in a spatial
RDBMS. This approach performs a simplification of the
GML schema to be mapped to a relational schema. The
basic values of spatial objects are stored as values of the
tables. Once the document is stored, spatial queries can
be expressed using the XQuery language with spatial
functions. Queries are translated to their equivalent
in SQL which are executed by the spatial RDBMS.
Some modern XQuery implementations handle spatial
data in GML format. This is the case of eXist-db25,
BaseX 26 and MarkLogic27. MarkLogic has limited
spatial capabilities enabling point query –matches a
single point–, box query –any point within a rectangular
box–, radius query –any point within a specified
distance around a point–, polygon query –any point
within a specified n-sided polygon–, and some distance
based queries. BaseX, in which XOSM is built, handles
GML with the EXPath/JTS library28. eXist-db handles
a JTS-like spatial library on GML data. XOSM
is specifically designed for OSM, while the quoted
approaches are focused on GML. XOSM is also able
to handle Linked Geo Open Data in GeoJSON, KML,
CSV and RDF formats. XOSM is also equipped with
an API and a Web tool.

6.2. OSM APIs

Now, we summarize OSM based tools of the literature
(see Table 6.1). Most tools are able to query OSM
with simple commands: keyword and name searching.
This is the case of JOSM and Xapiviewer. The OSM
Extended API or XAPI is an extended API that offers
queries in OSM with XPath flavoring. The Overpass
API (or OSM3S)[30] is an extension of the API to select
parts of an OSM layer. OSM3S has a proper query
language which can be specified by an XML template.
OSM3S offers more sophisticated queries than XAPI,
but it is still a rather limited query language. OSM3S
is specifically designed for searching location, types of
objects, keywords, proximity or combinations of them.
Overpass API is equipped with the query languages
Overpass XML and Overpass QL. Both languages are
equivalent. They handle OSM objects ((a) standalone
queries) and set of OSM objects ((b) query composition
and filtering). With respect to (a), the query language
expresses queries for searching a particular object, and
it is equipped with forward or backward recursion to
retrieve links from an object (for instance, it allows
to retrieve the nodes of a way). With respect to

25http://www.exist-db.org/
26http://basex.org/
27http://www.marklogic.com/
28http://expath.org/spec/geo

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 19

FIGURE 16. XOSM versus PostGIS; Spatial query crossing and keyword query hotel with at least two stars for non-cached
data; Spatial query crossing and keyword query hotel with at least two stars for cached data.

Tool Description Url

OSM APIs

JOSM OSM Viewer https://josm.openstreetmap.de/

Xapiviewer OSM Viewer http://osm.dumoulin63.net/xapiviewer/

XAPI OSM API http://wiki.openstreetmap.org/wiki/Xapi

Overpass API OSM API http://overpass-api.de/

OSM Query Languages

GeoSPARQL SPARQL extension http://geosparql.org/

stSPARQL SPARQL extension http://www.strabon.di.uoa.gr/stSPARQL

Parliament GeoSPARQL impl. http://parliament.semwebcentral.org/

uSeekM GeoSPARQL impl. https://dev.opensahara.com/projects/useekm/

Virtuoso RDF engine http://virtuoso.openlinksw.com/

OWLIM RDF engine http://ontotext.com/products/ontotext-graphdb-owlim/

Allegrograph RDF engine http://franz.com/agraph/allegrograph/

NoSQL and Hadoop

GeoCouch NoSQL https://github.com/couchbase/geocouch/

MongoBD NoSQL https://docs.mongodb.org/manual/applications/geospatial-indexes/

Neo4j NoSQL https://github.com/neo4j-contrib/spatial

Spatial Hadoop MapReduce http://spatialhadoop.cs.umn.edu/

Hadoop-GIS MapReduce https://web.cci.emory.edu/confluence/display/hadoopgis

TAREEG Hadoop http://siwa-umh.cs.umn.edu/app/webroot/osme/

TABLE 4. Related Work

(b), the query language expresses queries using several
searching criteria. Among others, it can express: to
find all elements in a bounding box, to find all elements
near something else, to find all elements by keyword
(exact value, non-exact value and regular expressions),
negation, union, difference, intersection, and filtering,
with a rich set of selectors, and by polygon, by area
pivot, and so on. However, Overpass API facilities (i.e.,
query composition and filtering) cannot be combined
with Clementini’s spatial operators. In Overpass API,
only intersection is considered (proximity equal to
0 by using the across selector). For instance, the

query “Retrieve the streets crossing Calzada de Castro
street and touching Nuestra Señora de Montserrat
street” is not allowed in Overpass API, but allowed
in our approach. On the other hand, Overpass API
has a rich query language for keyword searching.
Aggregation operators are not covered by Overpass
API. The XOSM API is considerably more expressive
than previous approaches, allowing to execute XQuery
queries involving LGOD resources.

The Computer Journal, Vol. ??, No. ??, ????

20 Almendros, Becerra and Torres

6.3. OSM Query Languages

In the context of RDF and SPARQL, there are several
proposals of languages and tools for working with
spatial data. GeoSPARQL [14] (standard of the Open
Geospatial Consortium) and stSPARQL [15] are the
most relevant contributions to this area. Both are very
similar. Omitting aggregate functions and updates from
stSPARQL, stSPARQL is a subset of GeoSPARQL.
GeoSPARQL provides a vocabulary to express spatial
data in RDF, and defines an extension of SPARQL
for querying. stSPARQL uses SELECT, FILTER and
HAVING clauses of SPARQL in combination with
spatial predicates to query RDF spatial data. FILTER
can be combined with them to define spatial selections
and joins. These can be also used in the SELECT
and HAVING clauses. Aggregation is present in
stSPARQL in the form of union, intersection and extent
(i.e., minimum bounding box of a set of geometries).
stSPARQL uses a B-tree to index non spatial data,
while R-Tree-over-GiST is used is used for spatial
indexing (provided by PostGIS). StSPARQL is mapped
to SQL queries executed under PostGIS. Parliament
[16] is an implementation of the GeoSPARQL using
Jena as RDF SPARQL engine. uSeekM uses the RDF
engine Sesame as well as PostGIS, and implements
GeoSPARQL features. stSPARQL is supported by
Strabon [17], which extends the RDF engine Sesame
with spatial data stored in PostGIS. On the other hand,
Virtuoso, OWLIM and AllegroGraph are RDF-based
engines supporting geometries of points.

While the technologies are different (RDF/SPARQL
versus XML/XQuery) we found analogies with the
existing approaches. With regard to spatial operators,
our spatial library is built on top of EXPath/JTS and
thus, providing similar expressivity. Indexing is based
on PostGIS in RDF/SPARQL approaches, and the
same happens in our approach with the PBD strategy.
Additionally, R∗-tree indexing is adopted for live data
in our RLD strategy. With regard to expressivity of
the query language, RDF/SPARQL based languages
can be considered similar to our proposal, except for
aggregation operators. The only case of language
equipped with aggregation is stSPARQL, including
union, intersection and extent. Thus our XOSM library
provides a richer set of aggregation operators. We are
also equipped with higher order functions, enabling a
more concise specification of queries. Unfortunately,
SPARQL and its spatial dialects are not equipped with
higher order (although there exists some proposal [31]
for SPARQL).

6.4. NoSQL and Hadoop approaches

NoSQL databases [32] have been used to import and
query OSM data. This is the case of GeoCouch
enabling bounding box queries and filtering by keyword
and/or geometry, MongoDB expressing queries about
the inclusion/intersection in a polygon and nearest

points of a point, and Neo4j performing spatial
operations like searching for elements within specified
regions or within a specified distance of a point of
interest. Recently, MapReduce based systems [33, 34]
have risen as a scalable and cost effective solution
for massively parallel data processing. Hadoop, the
open source implementation of MapReduce, has been
applied to support big data analytics, in particular
in Hadoop-GIS [35], to support declarative spatial
queries, and in Spatial Hadoop [36] enabling spatial
operators, including range query, kNN, and spatial join.
In [37] Hadoop has been used to extract information
from OSM. The developed system, called TAREEG,
is an easy and efficient online Web service to extract
spatial data (road networks, lakes, buildings, rivers,
and parks) from OSM in CSV, KML, Esri shapefiles
and WKT format, and also to visualize them. R-tree
indexing is achieved over multiple machines as a means
for achieving scalability. TAREEG shares with our
proposal to handle OSM data as well as to provide
a Web service to extract OSM data. However, the
query language (a range query with an area and a
predicate filter for an spatial feature) is more limited
than our proposal. In any case, we believe that the use
of Hadoop in our approach, similarly to TAREEG, can
be considered as future work.

6.5. Aggregation of Spatial Data

Finally, several proposals of aggregation operators for
spatial data have been proposed in the literature
[24, 38, 39, 40, 41, 42]. They have been studied in
the context of Spatial Data Warehouses and OLAP.
The term SOLAP was coined in this framework,
and extensions to the well-known OLAP have been
proposed. Additionally, R-tree based structures have
been proposed to deal with spatial indexing and
aggregation [43, 44, 45]. Our proposal, even though
cannot be properly considered a SOLAP approach,
is inspired in this framework, providing a library to
express queries involving aggregation operators.

7. CONCLUSIONS AND FUTURE WORK

In this paper a framework called XOSM for integrating
and querying OSM and LGOD resources is presented.
The framework is equipped with a Web tool and a rich
XQuery-based library, enabling the definition of queries
combining OSM layers and layers created from Linked
Geo Open Data resources (KML, GeoJSON, CSV, RDF
and also XML). The framework also provides an API
to execute XQuery queries using the library. We have
shown a batch of examples of queries and benchmarks
for several datasets. The complete code of XOSM can
be found at https://github.com/ualabecerra/XOSM-Tool.

One of the contributions of the work is the definition
of an OSM spatial library for XQuery. An XQuery
programmer can find very useful to express queries

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 21

on OSM data using an XQuery library. While
XQuery is already equipped with a spatial library,
called EXPath Geo Module, and usually integrated
with XQuery implementations, the library is limited
to spatial operations on GML geometries: Points,
LineStrings, Polygons, etc. For handling OSM data, an
OSM to GML geometry transformation is required, and
OSM textual data have to be handled. Thus, a library
for OSM facilitates the definition of queries, hiding to
the programmer the details of the representation in
XML and conversion tasks of OSM.

While a specific OSM library for XQuery could be
considered too restrictive, we have shown that the
transformation library opens the application domain
of the library. Not only OSM data can be handled,
but also most commonly used geo-spatial data formats:
KML, GeoJSON, CSV, RDF and XML. This is the key
of success of our proposal, hiding all the implementation
details to the programmer.

Anyone can argue that the expressivity power of
the spatial library is similar to existing spatial query
languages, and it is right. Our main aim was to provide
an unified framework in which querying and integration
is possible without using external languages, and in
which on-the-fly integration is possible.

With regard to indexing, we are only concerned
to reach at least the same performance of existing
systems. For this reason, we have compared with
PostGIS for backup data, which is, the facto, the
commonly used spatial datastore and data management
for existing systems (among them, geo-spatial SPARQL
extensions). Additionally, our live data indexing makes
possible to work with updated data.

As future work, we would like to extend our work as
follows.

1. Relations on OSM: Our query language will be
extended to work with relations. The set of
OSM operators will be enriched with operators
for working with relations (bus routes, groups of
buildings, postal addresses, house numbers, etc).

2. Other Web resources: Some other Web APIs can
be considered in order to combine their datasets
with OSM data. This is the case, for instance, of
Twitter which provides geo-located tweets [46, 47].

3. OSM validation: The quality of OSM maps has
been recently studied for several authors [3, 48,
49, 50, 51, 52, 53, 54]. We have found in many
cases that OSM maps are of poor quality and
thus queries cannot find the expected results. The
validation of properties on OSM maps will be
subject of study.

4. Spatial Hadoop. We study how to build XOSM
on top of Spatial Hadoop using the XQuery-based
proposals of [55, 56].

ACKNOWLEDGEMENTS

This work was supported by the EU (FEDER)

and the Spanish MINECO Ministry (Ministerio de
Economı́a y Competitividad) under grant CAVI-
TEXTUAL TIN2013-44742-C4-4-R.

REFERENCES

[1] Goodchild, M. F. (2007) Citizens as Sensors: the World
of Volunteered Geography. GeoJournal, 69, 211–221.

[2] Goodchild, M. F. and Li, L. (2012) Assuring the
Quality of Volunteered Geographic information. Spatial
statistics, 1, 110–120.

[3] Ballatore, A. and Mooney, P. (2015) Conceptualising
the Geographic World: the Dimensions of Negotiation
in Crowdsourced Cartography. International Journal
of Geographical Information Science, 29, 2310–2327.

[4] Lin, W. (2016) Openstreetmap in giscience: experi-
ences, research and applications. International Journal
of Geographical Information Science, 30, 823–824.

[5] Bennett, J. (2010) OpenStreetMap: Be Your Own
Cartographer Community Experience Distilled. Packt
Publishing, Limited, Birmingham, UK.

[6] Ramm, F., Topf, J., and Chilton, S. (2011)
OpenStreetMap: Using and Enhancing the Free Map
of the World. UIT Cambridge, Cambridge, UK.

[7] Coast, S. (2011) How OpenStreetMap Is Changing the
World. In Tanaka, K., Fröhlich, P., and Kim, K.-
S. (eds.), Web and Wireless Geographical Information
Systems: 10th International Symposium, W2GIS 2011,
Kyoto, Japan, March 3-4, 2011. Proceedings. Springer
LNCS 6574, Berlin, Heidelberg.

[8] Bizer, C., Heath, T., and Berners-Lee, T. (2009) Linked
data-the story so far. Semantic Services, Interoper-
ability and Web Applications: Emerging Concepts, pp.
205–227. IGI-global, Hershey, Pennsylvania (USA).

[9] Yu, L. (2011) Linked Open Data. A Developer’s Guide
to the Semantic Web. Springer, Berlin, Heidelberg.

[10] Auer, S., Lehmann, J., and Hellmann, S. (2009)
Linkedgeodata: Adding a spatial dimension to the
web of data. Proceedings of the 8th International
Semantic Web Conference, ISWC ’09, Chantilly, VA,
USA, October, pp. 731–746. Springer, LNCS 5823.

[11] Robie, J., Chamberlin, D., Dyck, M., and Snelson,
J. (2014) XQuery 3.0: An XML Query Language.
Technical report. World Wide Web Consortium (W3C),
https://www.w3.org/TR/xquery-30/.

[12] Bamford, R., Borkar, V., Brantner, M., Fischer, P. M.,
Florescu, D., Graf, D., Kossmann, D., Kraska, T.,
Muresan, D., Nasoi, S., et al. (2009) XQuery Reloaded.
Proceedings of the VLDB Endowment, 2, 1342–1353.

[13] Berglund, A., Boag, S., Chamberlin, D., Fernández,
M. F., Kay, M., Robie, J., and Siméon, J.
(2010) XML Path Language (XPath) 2.0. Techni-
cal report. World Wide Web Consortium (W3C),
http://www.w3.org/TR/xpath20/.

[14] Battle, R. and Kolas, D. (2011) GeoSPARQL: Enabling
a Geospatial Semantic Web. Semantic Web Journal, 3,
355–370.

[15] Koubarakis, M. and Kyzirakos, K. (2010) Modeling and
Querying Metadata in the Semantic Sensor Web: The
Model stRDF and the Query Language stSPARQL.
The semantic web: research and applications, pp. 425–
439. Springer, Berlin, Heidelberg.

The Computer Journal, Vol. ??, No. ??, ????

22 Almendros, Becerra and Torres

[16] Battle, R. and Kolas, D. (2012) Enabling the Geospa-
tial Semantic Web with Parliament and GeoSPARQL.
Semantic Web, 3, 355–370.

[17] Kyzirakos, K., Karpathiotakis, M., and Koubarakis, M.
(2012) Strabon: a Semantic Geospatial DBMS. 11th
International Semantic Web Conference, ISWC 2012,
pp. 295–311. Springer, LNCS 7649, Boston, MA, USA.

[18] Kaminski, M., Kostylev, E. V., and Cuenca Grau, B.
(2016) Semantics and expressive power of subqueries
and aggregates in sparql 1.1. Proceedings of the 25th
International Conference on World Wide Web, WWW
’16, Republic and Canton of Geneva, Switzerland,
April, pp. 227–238. International World Wide Web
Conferences Steering Committee.

[19] Atzori, M. (2014) Computing recursive sparql queries.
2014 IEEE International Conference on Semantic
Computing, Newport Beach, CA, USA, June, pp. 258–
259. IEEE.

[20] Almendros-Jiménez, J. M. and Becerra-Terón, A.
(2016) Geographical Information Systems Theory,
Applications and Management: First International
Conference, GISTAM 2015, Barcelona, Spain, April 28-
30, 2015, Revised Selected Papers. Springer, Berlin,
Heidelberg.

[21] Almendros-Jiménez, J. M. and Becerra-Terón, A.
(2015) Querying Open Street Map with XQuery. GIS-
TAM 2015 - Proceedings of the 1st International Con-
ference on Geographical Information Systems Theory,
Applications and Management, Barcelona, Spain, April,
pp. 61–71. SciTePress.

[22] Almendros-Jiménez, J. M., Becerra-Terón, A., and
Torres, M. (2015) Aggregation Operators in Geospatial
Queries for Open Street Map. OTM 2015 Conferences,
ODBASE 2015, Proceedings, Rhodes, Greece, October,
pp. 501–518. Springer LNCS 9415.

[23] Almendros-Jiménez, J. M. and Becerra-Terón, A.
(2015) Distance Based Queries in Open Street Map.
Twenty-Sixth International Workshop on Database and
Expert System Applications, Proceedings, Valencia,
Spain, September, pp. 235–239. IEEE.

[24] Ruiz, C. V. and Times, V. C. (2009) A Taxonomy
of SOLAP Operators. XXIV Simpósio Brasileiro de
Banco de Dados, Fortaleza, Brasil, October, pp. 151–
165. Biblioteca Digital Brasileira de Computacao.

[25] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A.,
Reichart, D., Venkatrao, M., Pellow, F., and Pirahesh,
H. (1997) Data Cube: A Relational Aggregation
Operator Generalizing group-by, cross-tab, and sub-
totals. Data Mining and Knowledge Discovery, 1, 29–
53.

[26] Boucelma, O. and Colonna, F. (2004) GQuery: a Query
Language for GML. Proc. of the 24th Urban Data
Management Symposium, Chioggia, Italy, October, pp.
27–29. Citeseer.

[27] Huang, C.-H., Chuang, T.-R., Deng, D.-P., and Lee, H.-
M. (2009) Building GML-native web-based geographic
information systems. Computers & Geosciences, 35,
1802–1816.

[28] Kay, M. (2008) Ten Reasons Why Saxon XQuery is
Fast. IEEE Data Eng. Bull., 31, 65–74.

[29] Li, Y., Li, J., and Zhou, S. (2004) GML Storage: A
Spatial Database Approach. In et al. [57], pp. 55–66.

[30] Olbricht, R. M. (2015) Data Retrieval for Small
Spatial Regions in OpenStreetMap. OpenStreetMap in
GIScience, pp. 101–122. Springer, Berlin, Heidelberg.

[31] Atzori, M. (2014) Toward the Web of Functions:
Interoperable Higher-Order Functions in SPARQL.
13th International Semantic Web Conference, ISWC
2014, pp. 406–421. Springer LNCS 8797, Riva del
Garda, Italy.

[32] de Souza Baptista, C., Pires, C. E. S., Leite, D. F. B.,
and de Oliveiraa, M. G. (2014) NoSQL geographic
databases: an overview. Geographical Information
Systems: Trends and Technologies, 73.

[33] Dean, J. and Ghemawat, S. (2010) MapReduce: a
flexible data processing tool. Communications of the
ACM, 53, 72–77.

[34] Lin, J.-C., Leu, F.-Y., and Chen, Y.-p. (2016) Impacts
of Task Re-Execution Policy on MapReduce Jobs. The
Computer Journal, 59, 701.

[35] Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X.,
and Saltz, J. (2013) Hadoop GIS: a high performance
spatial data warehousing system over mapreduce.
Proceedings of the VLDB Endowment, 6, 1009–1020.

[36] Eldawy, A. and Mokbel, M. F. (2015) SpatialHadoop:
A MapReduce Framework for Spatial Data. 2015 IEEE
31st International Conference on Data Engineering,
Seoul, South Korea, April, pp. 1352–1363. IEEE.

[37] Alarabi, L., Eldawy, A., Alghamdi, R., and Mok-
bel, M. F. (2014) TAREEG: A MapReduce-based Sys-
tem for Extracting Spatial Data from OpenStreetMap.
Proceedings of the 22Nd ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Informa-
tion Systems, New York, NY, USA, November, pp. 83–
92. ACM.

[38] da Silva, J., de Oliveira, A. G., Fidalgo, R. N., Salgado,
A. C., and Times, V. C. (2010) Modelling and Querying
Geographical Data Warehouses. Information Systems,
35, 592–614.

[39] Gómez, L., Haesevoets, S., Kuijpers, B., and Vaisman,
A. A. (2009) Spatial Aggregation: Data Model and
Implementation. Information Systems, 34, 551–576.

[40] Bédard, Y., Rivest, S., and Proulx, M.-J. (2007)
Spatial. Online Analytical. Processing (SOLAP):
Concepts, Architectures, and Solutions. Data
Warehouses and OLAP: Concepts, Architectures, and
Solutions, Idea Group Inc, pp. 298–319. IGI global,
Hershey, Pennsylvania (USA).

[41] Bimonte, S., Bertolotto, M., Gensel, J., and Boussaid,
O. (2012) Spatial OLAP and Map Generalization:
Model and Algebra. International Journal of Data
Warehousing and Mining (IJDWM), 8, 24–51.

[42] Baltzer, O., Rau-Chaplin, A., and Zeh, N. (2013)
Building a Scalable Spatial OLAP System. Proceedings
of the 28th Annual ACM Symposium on Applied
Computing, Coimbra, Portugal, March, pp. 13–15.
ACM.

[43] Jurgens, M. and Lenz, H.-J. (1998) The R/sub a/*-
tree: an Improved R*-tree with Materialized Data for
Supporting Range Queries on OLAP-data. Database
and Expert Systems Applications, 1998. Proceedings.
Ninth International Workshop on, Vienna, Austria,
August, pp. 186–191. IEEE.

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 23

[44] Papadias, D., Kalnis, P., Zhang, J., and Tao, Y.
(2001) Efficient OLAP Operations in Spatial Data
Warehouses. Advances in spatial and temporal
databases, pp. 443–459. Springer, Berlin, Heidelberg.

[45] Rao, F., Zhang, L., Yu, X. L., Li, Y., and Chen,
Y. (2003) Spatial Hierarchy and OLAP-favored Search
in Spatial Data Warehouse. Proceedings of the 6th
ACM international workshop on Data warehousing and
OLAP, New Orleans, Louisiana, USA, November, pp.
48–55. ACM.

[46] Weiler, A., Grossniklaus, M., and Scholl, M. H. (2017)
Survey and Experimental Analysis of Event Detection
Techniques for Twitter. The Computer Journal, 60,
329.

[47] Ghahremanlou, L., Sherchan, W., and Thom, J. A.
(2015) Geotagging Twitter Messages in Crisis Manage-
ment. The Computer Journal, 58, 1937.

[48] Girres, J.-F. and Touya, G. (2010) Quality Assessment
of the French OpenStreetMap Dataset. Transactions
in GIS, 14, 435–459.

[49] Mooney, P., Corcoran, P., and Winstanley, A. C.
(2010) Towards Quality Metrics for OpenStreetMap.
Proceedings of the 18th SIGSPATIAL International
Conference on Advances in Geographic Information
Systems, San José, California, November, pp. 514–517.
ACM.

[50] Jilani, M., Corcoran, P., and Bertolotto, M. (2014) Au-
tomated Highway Tag Assessment of OpenStreetMap
Road Networks. Proceedings of the 22nd ACM
SIGSPATIAL International Conference on Advances
in Geographic Information Systems, Dallas, Texas,
November, pp. 449–452. ACM.

[51] Mondzech, J. and Sester, M. (2011) Quality Analysis
of OpenStreetMap Data based on Application Needs.
Cartographica: The International Journal for Geo-
graphic Information and Geovisualization, 46, 115–125.

[52] Mooney, P. and Corcoran, P. (2012) The Annotation
Process in OpenStreetMap. Transactions in GIS, 16,
561–579.

[53] Koukoletsos, T., Haklay, M., and Ellul, C. (2012)
Assessing Data Completeness of VGI through an
Automated Matching Procedure for Linear Data.
Transactions in GIS, 16, 477–498.

[54] Neis, P., Goetz, M., and Zipf, A. (2012) Towards
Automatic Vandalism Detection in OpenStreetMap.
ISPRS International Journal of Geo-Information, 1,
315–332.

[55] Carman, E. P., Westmann, T., Borkar, V. R., Carey,
M. J., and Tsotras, V. J. (2015) A scalable parallel
XQuery processor. Big Data, 2015 IEEE International
Conference on, Santa Clara, CA, USA, October-
November, pp. 164–173. IEEE.

[56] Khatchadourian, S., Consens, M., and Siméon, J.
(2011) Chuql: processing xml with XQuery using
Hadoop. Proceedings of the 2011 Conference of the
Center for Advanced Studies on Collaborative Research,
Toronto, Ontario, Canada, November, pp. 74–83. IBM
Corp.

[57] et al., S. W. (ed.) (2004) Conceptual Modeling for
Advanced Application Domains, ER 2004 Workshops
CoMoGIS, COMWIM, ECDM, CoMoA, DGOV, and
ECOMO, Shanghai, China, November 8-12, 2004,

Proceedings, Berlin, Heidelberg, November. Springer
LNCS 3289.

The Computer Journal, Vol. ??, No. ??, ????

24 Almendros, Becerra and Torres

Function Informal Definition

getElementByName(m,n) OSM representation of a given OSM
element n in OSM map m

getLayerByName(m,n,d) OSM elements of the OSM map m at
distance d of a given OSM element of name
n

getLayerByElement(m,s,d) OSM elements of the OSM map m at
distance d of a given OSM element s

getElementsByKeyword(m,k) OSM elements annotated with a keyword
k in OSM map m

getLayerByBB(m,mlat,Mlat,mlon,Mlon) OSM elements of a Bounding Box

TABLE 5. Index-based Functions

Function Formal Definition

getLayerByName(m,n,d) RLD : {s|s ∈ S ∧
getElementByName(m,n) = l ∧
mindist(mbr(s),mbr(l)) ≤ d}
PBD : {s|s ∈ S ∧
getElementByName(m,n) = l ∧ d(s, l) ≤
d}

getElementsByKeyword(m, k) {s|s ∈ S ∧ ((k ∈ K ∧ ∃v.k(s) = v) ∨ (∃f ∈
K.f(s) = k))}

getLayerByBB(m,mlat,Mlat,mlon,Mlon) {s|s ∈ S ∧ ∀n ∈ s.mlat ≤ lat(n) ≤
Mlat ∧mlon ≤ lon(n) ≤Mlon}

TABLE 6. Index-based Functions

Operator Informal Definition Spatial Operation

DWithIn(s1,s2,d) true whenever the short-
est distance between the el-
ements s1 and s2 is shorter
than d

Distance

furtherNorthNodes(n1,n2) true whenever the node n1

is further north than the
node n2.

Using latitudes and dis-
tinguishing cases in each
hemisphere.

furtherNorthWays(w1,w2) true whenever the way w1 is
further north than the way
w2.

Using furtherNorthN-
odes.

TABLE 7. Coordinate and Distance Based OSM Operators

Operator Formal Definition

DWithin(s1, s2, d) true iff dist(s1, s2) ≤ d

furtherNorthNodes(n1, n2)

true if lat(n2)− lat(n1) > 0
lat(n1) ≥ 0 , lat(n2) ≥ 0

true if (−lat(n2))− (−lat(n1)) < 0
lat(n1) ≤ 0 , lat(n2) ≤ 0

false if lat(n1) ≥ 0 , lat(n2) < 0
true if lat(n1) < 0 , lat(n2) ≥ 0

furtherNorthWays(w1, w2) true
iff ∀n1 ∈ w1.∀n2 ∈
w2.furtherNorthNodes(n1, n2)

TABLE 8. Coordinate and Distance Based OSM Operators

The Computer Journal, Vol. ??, No. ??, ????

Integrating and Querying OpenStreetMap and Linked Geo Open Data 25

Operator Informal Definition Clementini’s Opera-
tor

wayIn(n,w) true whenever n (node) belongs
to w (way)

Distance

waySame(n1,n2,m) true whenever n1 (node) and n2

(node) belongs to the same way
of the OSM map m

wayIn and Equals

intersectionPoints(w1,w2) the intersection points of w1

(way) and w2 (way)
crossing(w1,w2) true whenever w1 (way) crosses

w2 (way).
Crosses

nonCrossing(w1,w2) true whenever w1 does not
cross w2.

crossing Negation

TABLE 9. Clementini Based OSM Operators

Operator Formal Definition

wayIn(n,w) true iff distance(n,w)=0
waySame(n1, n2,m) true

iff ∃ ways w1, w2 ∈ S.wayIn(n1, w1) ∧
wayIn(n2, w2) ∧ equals(w1, w2)

intersectionPoints(w1, w2) {n|n ∈ w1 ∧ n ∈ w2}

TABLE 10. Clementini Based OSM Operators

Operator Informal Definition

searchKeyword(s,kv) true whenever the OSM element s has some key
function k or value v equal to kv

searchKeywordSet(s,(kv1, . . . , kvn)) true whenever the OSM element s has some key
function k or value v equal to some kvi

searchTag(s,k0,v0) true whenever the OSM element s has some
key function k and value v equal to k0 and v0,
respectively

getTagValue(s,k0) the value v in the OSM element s associated to
the key function k0

TABLE 11. Keyword Based OSM Operators

Operator Formal Definition

searchKeyword(s, kv) true iff (kv ∈ K ∧ ∃v.kv(s) = v) ∨
(∃f ∈ K.f(s) = kv)

searchKeywordSet(s, (kv1, . . . , kvn)) true iff
∃kvi.searchKeyword(s, kvi)

searchTag(s, (k, v)) true iff k ∈ K ∧ k(s) = v
getTagV alue(s, k) v iff k ∈ K ∧ k(s) = v

TABLE 12. Keyword Based OSM Operators

Type Operators

Distributive
topologicalCount(sq,e,b), metricMin(sq,m), metricMax(sq,m), metric-
Sum(sq,m), minDistance(sq,e) and maxDistance(sq,e)

Algebraic
metricAvg(sq,m), metricStdev(sq,m), avgDistance(sq,e), metricTop-
Count(sq,k,m), metricBottomCount(sq,k,m), topCountDistance(sq,k,e)
and bottomCountDistance(sq,k,e)

Holistic metricMedian(sq,m), metricMode(sq,m) and metricRank(sq,m,k)

TABLE 13. Aggreggation Based OSM Operators

The Computer Journal, Vol. ??, No. ??, ????

26 Almendros, Becerra and Torres

Type Formal Definition

topologicalCount(sq, e, b) #{s|s ∈ sq, b(e, s)}
metricMin(sq,m) {s1, . . . , sn} if there exist s1, . . . , sn ∈ sq such that

∀s′ ∈ sq, s′ 6= si,m(si) < m(s′)
metricSum(sq,m)

∑
s∈sq m(s)

minDistance(sq, e) s if s ∈ sq, dist(s, e) < dist(s′, e) ∀s′ ∈ sq.s′ 6= s

metricAvg(sq,m)
∑

s∈sq m(s)

#sq

avgDistance(sq, e)
∑

s∈sq dist(s,e)

#sq

metricStdev(sq,m)

√∑
s∈sq(m(s)−metricAvg(sq,m))2

#sq

metricTopCount(sq, k,m) {s1, . . . , sk} if there exist distinct s1, . . . , sk ∈ sq
such that ∀s′ ∈ sq, s′ 6= si,m(si) > m(s′)

metricMediam(sq,m) k whenever #sq = n and, if n mod 2 = 1
then k = mn div 2 and if n mod 2 = 0 then
k =

mn div 2+mn div 2+1

2
where {m1, . . . ,mn} is

an ordered permutation of {m(s)|s ∈ sq}
metricMode(sq,m) k if there exists S ⊆ sq such that m(s) = k ∀s ∈ S,

and there not exists S′ and k′ such that k′ 6= k,
#S′ ≥ #S and m(s′) = k′ ∀s′ ∈ S′

metricRank(sq,m, e) k if there exist S, S′ such that m(e) < m(s) ∀s ∈ S
and m(e) > m(s′) ∀s′ ∈ S′, #S = k − 1 and
sq = S ∪ {e} ∪ S′

TABLE 14. Aggreggation Based OSM Operators

The Computer Journal, Vol. ??, No. ??, ????

