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A B S T R A C T
In this article we propose a novel methodology for obtaining Schumann Resonances’ relevant parameters
from ELF transient register. Using this methodology, it is possible to extract a large amount of data and
characterize individual transient events and their more relevant features. To use this methodology a
new narrow band sensor is presented, centered in the 1st Schumann Resonance mode and specialized in
capturing with high precision the associated transient events. The new methodology based on Hilbert
transform and Heidler function is presented and used to segment and characterize each transient event.
This method is validated first with an automatic classifier algorithm and then an extensive statistical
analysis is performed. The validation process is shown as one of the possible applications of the
methodology. The introduced set of narrow band hardware and software tools represents an important
milestone for the study of transient events focused on a high amount of data.

1. Introduction3

Schumann Resonances (SRs) are electromagnetic waves4

formed in the natural Earth-ionosphere cavity located in the5

Extremely Low Frequency (ELF) band, from 1Hz to 100Hz6

(Schumann [1952]). Global lightning activity has been estab-7

lished as the principal contributor to the resonances’ electro-8

magnetic energy (Ogawa et al. [1969]), whose strokes induce9

a strong electromagnetic disturbance that propagates along10

the atmosphere (Nickolaenko [2014]). The geometry and11

electromagnetic composition of the cavity determine its reso-12

nant frequencies (Tran and Polk [1979]). Many studies have13

been proposed to study the conductivity profile of the upper14

boundary of the cavity, both from a theoretical point of view15

(Kudintseva et al. [2018], Perotoni [2018]) and with a simula-16

tion approach (Goncharov et al. [2019], Kwisanga and Fourie17

[2017]).18

Obtaining spectral information about SR and their as-19

sociated natural phenomena is the typical methodology to20

study them, the reason why it has been widely addressed and21

is still the mainstream method of analysis. In Galuk et al.22

[2020], the authors proposed a model treatment for exploring23

the relationship between earthquakes and the modification24

of the SR’s spectra, using a theoretical approach. The long-25

term variations are a popular subject of study (Koloskov et al.26

[2020], Bozóki et al. [2021]), where the goal is usually to27

experimentally prove the relationship between SRs and some28

natural phenomenon, relying on monitoring by two or more29

stations in different parts of the globe. Other authors are30

also interested in the frequency of regular variations either31

using one station (Anonymous et al. [2021]) or many (Tatsis32

et al. [2020]), without any particular focus on finding a con-33

nection with a specific event. Although spectral analysis is34

the most common approach for studying SR, a few studies35

rely on temporal registers to analyze the Earth-ionosphere36

signals (Anonymous et al. [2021]). Nonetheless, time-based37

methods are still in the minority.38

The footprint of the global lightning activity on the spec-39

trum is considered as the most critical phenomenon among40

ORCID(s):

ELF transient activity (Price [2016], Greenberg and Price41

[2007], Hobara et al. [2001]). For the most relevant events in42

ELF, a classification was proposed by Ogawa in 1966 (Ogawa43

et al. [1966]).44

• ELF-Flashes: High amplitude transients caused by the45

strong interaction with a close lightning discharge, rec-46

ognized by the receiver saturated response.47

• Q-bursts: Short transient events associated with a pow-48

erful lightning discharge that resonates several times49

around the globe (Nickolaenko [2014]), with an aver-50

age rate of one per minute.51

• ELF background noise: It is the ELF register’s base52

signal due to the continuous discharges all over the53

Earth.54

An example of a Q-burst and background noise can be55

seen in Fig. 1a. Q-bursts are identified based on the total56

contribution in Power Spectral Density (PSD); when the reg-57

ister is above an absolute value, it is classified as a Q-burst58

(Guha et al. [2017]). Guided by the value extracted from the59

previous reference, any event with a peak value higher than60

2 × 106 pT could be identified as a Q-burst. 29 events identi-61

fied as Q-burst were detected with the method developed by62

the previously mentioned research in the validation segment.63

Among the phenomena listed on this classification, Q-64

bursts are the only ones that can be considered transient65

events and, at the same time, generate data to be researched.66

This reason is why most ELF transient event studies are fo-67

cused on them. Boccippio et al. [1995] proposed a first step68

in the identification between Q-bursts and Transient Lumi-69

nous Events (TLE). This first approach is based on a few70

observations and the individual analysis of each transient71

event. The next milestone on this topic was published in72

Guha et al. [2017]. The authors explore the relation between73

Q-bursts and the TLEs known as Sprites. They used two74

long-distant ELF and a TLE optical sensors. This approach75

also focused on studying high peaks in the ELF register indi-76

vidually. The relation between TLE, always associated with77
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a Positive cloud-to-ground (CG+) discharge, and ELF events78

has been established (Inan et al. [2010], Pasko et al. [2012],79

Williams et al. [2007]). Specifically,There are three works80

that have been carried out on the potential association be-81

tween Sprites and strong Q-bursts (Fukunishi et al. [1996],82

Haldoupis et al. [2010], Surkov and Hayakawa [2020]). How-83

ever, some aspects of this relationship remain unexplained.84

On the other hand, little to no attention has been given85

to the individual contribution of standard lightning events86

to the ELF spectrum. It is a widely stated fact that SR radio87

signal is the aggregated effect of many individual pulses88

coming from global lightning activity (Nickolaenko [2014]).89

It is also acknowledged that powerful lightning discharges90

generate a specific pattern in the time domain; the previously91

mentioned Q-bursts. When putting both facts together, it92

seems logical being able to find a typical time domain pattern93

in SR transient events that is directly related with lightning94

events.95

Creating an automated methodology to identify and clas-96

sify the contribution of these individual pulses is the goal97

of this paper. With that purpose in mind, a Narrow-Band98

Extremely Low Frequency (NB-ELF) sensor has been devel-99

oped, featuring a band pass profile and centered in the first100

SR mode (7.8 Hz), which contains the most spectral informa-101

tion of the phenomenon. The previously mentioned studies102

about Q-bursts, performed using broadband sensors, show103

how these transient events are most present in this frequency104

band. This result leads to the assumption that by restricting105

the sensor band to the first mode, transient events should106

still be present and, since the rest of the frequencies are fil-107

tered, their presence should be more noticeable. A novel108

methodology for the segmentation and feature extraction of109

ELF transient register has been developed and presented here.110

It has been developed having in mind the new technologies111

for the treatment of a large amount of data, such as Deep112

Learning or Big Data since these can be successfully ap-113

plied to a long time SR register and find day-to-day patterns,114

seasonal differences or yearly changes. The automatization115

purpose is another reason to restrict the sensor’s frequency116

band to the first mode. Knowing the average frequency of117

the captured signal beforehand simplifies some steps of the118

automatic classification, such as envelope extraction.119

The paper is organized as follows. Section 2 gives a brief120

overview of the studies published about lightning activity and121

ELF transient events. The new narrowband ELF sensor and122

the methodology developed are presented in section 3 with123

the algorithm used to extract the ELF transient events. The124

validation process is shown in the Results section 5 with par-125

ticular emphasis on the relation between groups of transient126

events, followed by a discussion about the exposed result.127

Finally, conclusions are drawn in the final section.128

2. Electromagnetic Interaction: Lightning,129

Ionosphere and ELF Band130

The starting point for this methodology is the fact that131

most ELF transient events are created by lightning discharge.132

Therefore, the recorded waveform in the ELF register is the133

lightning discharge signal convoluted with the impulse re-134

sponse of the Earth-ionosphere waveguide (propagation ef-135

fect) and further convoluted with the impulse response of the136

sensor stage. This paper is based on the assumption that the137

Earth-ionosphere lightning response is proportional to the138

charge distribution of the lightning, albeit extended in time139

due to the propagation and absorption characteristics of the140

medium at its eigenfrequencies. This hypothesis is supported141

by the typical behavior of impulse-generated signals in any142

resonant system concerning fading times. Specifically, the143

transient events already analyzed in the literature. Powerful144

Q-bursts rise to their peak value almost instantly, and from145

there on, the signal amplitude decays exponentially, in the146

same fashion as lightning releases their charge.147

Nonetheless, the discrepancies between lightning dis-148

charge and electromagnetic resonance must be acknowledged;149

the anisotropy and variability of the resonant cavity will mod-150

ify the response accordingly. It has to be taken in considera-151

tion as well that the resonant waves travel over the poles and152

across the day-night termination. All these causes general153

effects that prevents the determination of a single frequency,154

like mode splitting Labendz [1998]. Regarding the capture of155

transient events specifically, it leads to a peak time depending156

on the distance to the lightning perturbation. However, assign157

the peak value to the lighting peak current or determine the158

distance to the source from the analysis’ results is outside the159

scope of this research.160

By following that train of thought, it can be stated that161

by understanding the characteristics of the natural source -162

lightning discharges - we can study its effects on the ELF163

register. The outlined relationship gives way to the hypothe-164

sis of every noticeable amplitude variation in the ELF signal165

being the consequence of a specific electromagnetic tran-166

sient event which, as stated before, is the goal of this paper.167

This relationship is in line with the literature, where papers168

can be found proving the relationship between ELF events169

and lightning activity Ramarao and Chandrasekaran [2020],170

Bermudez et al. [2007].171

Through the hypothesis exposed before, The relevant172

time parameters for ELF transients can be extracted from173

the behavior of individual lightning discharges. The most174

relevant parameters for lightning discharges are:175

• Rise time: Rise time is calculated as the time difference176

between the moment current reaches ten % and 90 %177

of its maximum discharge value. Experimental data178

shows average values ranging from 2 µs Wooi et al.179

[2019] to 5.6 µs (Visacro et al. [2004]).180

• Full Width at Half Maximum (FWHM): The time mea-181

sured between the points where the signal has a 50182

% of its maximum value, which happens first in the183

rising part of the discharge the other in the falling part.184

Average values has been established experimentally185

from 23.8 µs (Wooi et al. [2019]) to 53.5 µs (Visacro186

et al. [2004]).187

• Peak Current: There is considerable consensus about188
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(a)

(b) (c)
Figure 1: Sensor Characterization: a: Transient register with NB Sensor ELF background noise (Green Line) and Q-burst (Red
Line), b: Frequency Response of the Broad Band Sensor - gsen7NSEQR (Green Line) and NB-ELF Sensor - gsen8B0BGR2M
(Blue Line) and c: Physical implementation of the NB-ELF sensor.

peak current being modeled by log-normal distribu-189

tions, widely demonstrated in Slyunyaev et al. [2018].190

This distribution has been also obtained experimentally191

(Almeida et al. [2012]) with a 15 % peak probability192

for 50 kA. High current discharges are usually mod-193

eled by a separate log-normal distribution, with peak194

values of 100 kA at 7 % probability (Chen et al. [2008],195

Jerauld et al. [2005]). Among the different kinds of196

electric discharges, CG+ are by far more powerful and197

infrequent than Negative cloud-to-ground (CG-), with198

peak current, discharges over 250 kA.199

Another parameter that is relevant to define this relation-200

ship is the propagation effect of the Earth-ionosphere cavity.201

It has been studied using Sprites as a reference. Sprites are202

TLEs associated with strong discharges in the mesosphere.203

The majority of Sprites last few µs and the corresponding204

ELF perturbation last around 1 s (Soula et al. [2015]). So the205

propagation ELF event lasts 100000 times more than their206

corresponded generated lightning discharge.207

This behavior is directly inferred from the fact that sig-208

nificant electromagnetic disturbances (Q-bursts) propagate209

through the Earth-ionosphere cavity, which takes 1∕7.8 s210

around eight times before it fades. This fading effect leads to211

an average duration of 1 s. If this is considered the cavity’s212

impulse response, a similar response could be expected from213

isolated, non-Q-burst lightning events.214

3. Sensor Design215

The ELF band has been one of the fields of study for216

our research group in the last few years. Our group has217

done the design and implementation of a functional ELF218

observatory. This ELF observatory is able to record electro-219

magnetic signals from 1Hz to 100Hz for NS and EW220

orientations. A complete description of the functionality can221

be seen in [AnonimousRef]. This observatory was designed222

to obtain the maximum possible characteristics of the SRs up223

to the 6th mode, around 45Hz. However, specific transient224

events are hardly distinguishable in the time domain due to225

the broadband sensor response, a limitation experienced by226

all broadband sensors.227

Previous works were focused on obtaining the maximum228

spectral power information for the study of Schumann Reso-229

nances using a broadband sensor that can capture the maxi-230

mum number of SR modes. Due to its broadband character-231

istics, these sensors capture all modes of SR which is vital to232

study the signal as a whole. They also capture other signals233

in the same range such as power lines or trains interference234

(16.6Hz and 50Hz, respectively), usually filtered out by dig-235

ital means. That being said, to study SR transient events,236

this kind of strategy falls short. The interferences caused by237

other signals mask the effect transient events may have on the238

records, as well as the presence of the other modes. Digital239

filtering could be a solution, but it comes with a tradeoff in240

signal resolution, which is paramount for this study. We have241

studied and analyzed the data obtained by our broadband ELF242

observatory and reached the conclusion that the significant243

important part of the transient information is centered around244

the 1st SR mode. Following this line, we have developed a245

specific bandpass sensor with a narrow band profile and a246

central frequency of 7.8Hz (NB-ELF). The sensing coil’s247

features a Nylomag 77 core with a diameter of 45mm and248
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longitude of 2m. The coil’s longitude is 0.7m, with a total249

diameter of 230mm. A nylon bobbin supports the winding,250

and it is done using copper wire of 0.92mm including the251

insulating layer, with a total of 57000 turns distributed in 75252

layers. This sensor’s ELF records show amplitude variations253

that don’t feature in the ones produced by broad band sensors.254

These amplitude variations fit the expectations of finding255

additional transient events, and they are measured with a tiny256

part of noise in comparison with the broadband sensor. Con-257

cerning the band of interest for our purpose, around d7.8Hz,258

the peak magnetic induction of the sensor as a function of259

frequency is 20 µVpT−1.260

In other words, sensing the electromagnetic field with a261

sensor focused on the average central frequency of the first262

mode allows us to widen the system’s response to extract263

the transient events with the highest possible resolution. The264

frequency comparison between the NB-ELF sensor and the265

one installed in the observatory mentioned above can be266

observed in Fig. 1b.267

The preliminary tests with the NB-ELF sensor showed268

transient effects identifiable by a visual inspection. These269

had enough amplitude variation over time to be differentiated270

from ELF background noise but not enough to be considered271

a Q-burst.272

For this study, different measurements were taken with the273

described sensor and some portable acquisition equipment,274

collecting data from the EW axis of the magnetic field. The275

sensor was deployed on the selected location and supported276

on two stands, specifically designed for this purpose. Data277

was stored locally on a computer in fifteen minutes’ files. Due278

to wind presence affecting measurements, we have selected a279

register with the lowest disturbances. For this purpose, the280

measurement lengths 15 minutes and was performed in a281

completed isolated place without any possible human inter-282

ference in Location remove due to the anonymization process283

An image of the physical implementation of the sensor can284

be seen in Fig. 1c.285

4. Methodology286

The observations mentioned above contain some transient287

signal events of Q-bursts and ELF background noise, mea-288

surable in the frequency band of the first SR mode with our289

sensor. This research aims to design a methodology for the290

segmentation and feature extraction of ELF transient events,291

allowing us to study their most relevant features. As the292

literature characterization of the ELF, transient events are293

exclusive of the Q-burstas the only type of ELF events, we294

have studied this type of events in our registers to develop295

this tool. Then, the identification method will be applied to296

the rest of identified transient events under the assumption297

that they share lightning activity as their source. Lastly, the298

extracted parameters for each transient event will allow the299

validation through an automatic classification and a statistical300

comparison.301

The complete methodology used through this research can302

be seen in Fig. 2.303

In order to show an application of the proposed method-304

ology, we have applied it on a NB-ELF register, with a time305

duration of fifteen minutes.306

Stage 1: Hilbert Process307

The first step to study transient events in the time domain308

through this research is extracting the envelope from the origi-309

nal register (Fig. 3). The need for envelope detection is based310

on the assumption that the central frequency is not constant,311

so an instantaneous frequency must be estimated for each312

identified event. The one that yielded the best results was the313

envelope detection process based on the Hilbert transform314

Brandwood [2013]. This method has been widely used in315

different fields, such as mechanical vibration and power grids.316

Briefly, the process consists on applying the Hilbert trans-317

form (Eq.1) to the original signal xs(t) to obtain the analytical318

signal x̂s(t). Therefore, the amplitude is calculated using Eq.319

2, in which vs is the envelope signal. Lastly, the register is320

downsampled with a factor of two, and an optimal low pass321

filter with a cutoff frequency of 3Hz is applied. The process322

to extract the envelope can be seen in Fig. 3a. From the left323

column, it can be observed that all the information around324

7.8Hz (at baseband) is preserved along with the Hilbert trans-325

form. The spectral information can be observed in the right326

column. It shows that the Hilbert algorithm is able to pre-327

serve the majority of the information in the first resonant,328

moved to 0Hz due to the envelope detection process.329

x̂s(t) =
1
�t

∗ xs(t) =
1
� ∫

∞

−∞

xs(�)
t − �

d� (1)
330

v(s) =
√

|

|

x2s|| + |

|

x̂2s|| (2)
Stage 2: Segmentation331

At this stage, the process of identifying separate transient332

events is done by the fitting procedure. It focuses on finding333

signal peaks, considering it the most representative value of334

each ELF transient event. Obtaining the peak value is a pro-335

cessing algorithm that aggregates and weights the difference336

with previous and next peaks, peak prominence, the absolute337

value itself, and the separation between peaks. A transient338

event is narrowed down for each peak found by extracting its339

starting and ending points from local minima. Acquiring the340

boundary points of a transient event consists of evaluating341

all the relative minima within a specific range of the peak342

and choosing the most likely segmentation by using the dis-343

tance to the point and the prominence of the value itself. An344

example of this stage can be seen in Fig. 3b.345

Stage 3: Heidler Fit346

Up to this point, different segments are identified in the347

registers. Some of these segments can be classified as Q-348

bursts according to the definition in the literature Boccippio349

et al. [1995]. A process for modeling the envelope of the350

Q-burst ELF events has been applied, using fitting and cross-351

validation. In the last few years, the Heidler function has352

been used as an analytical interpretation of lightning dis-353

charges, being included in the IEC 62305 standard (Heidler354
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Figure 2: Methodology Flow diagram.

and Cvetić [2002]). Two parts compose the Heidler func-355

tion, each corresponding to a separate phase of the natural356

discharge.357

The Heidler function can be seen in Eq. 3, where x(t) is358

the rise equation (Eq. 4) and y(t) the fall equation (Eq. 5).359

i(t) =
Io
�
x(t)y(t) (3)

360

x(t) =
(t∕�1)nℎ

1 + (t∕�1)nℎ
(4)

361

y(t) = exp(− t
�2
) (5)

The variables take the following meaning:362

• Io: Current peak value.363

• �: Correction factor for the peak current.364

• �1: Model fit rise time.365

• �2: Model fit fall time.366

• nℎ: Current steepness factor.367

The graphical representation and its most representative368

parameters can be seen in Heidler and Cvetić [2002].369

Following the hypothesis at the start of the section, if370

Q-burst can be modeled as a Heidler function, it will accept-371

ably fit the rest of the ELF transient events, assuming that372

both have the same origin. Then, it is possible to extract373

valuable parameters from the model of both types of events.374

An example of segment fit can be observed in Fig. 3c.375

Stage 4: Select individual ELF Transient Events376

ELF transient events are hard to identify in some cases due377

to the nature of the phenomena. There is not just one isolated378

phenomenon in multiple cases, and it is not possible to simul-379

taneously identify a Heidler function with multiple transient380

events. For this reason, the next layer of the algorithm is to381

classify and reject segments that do not meet the criteria of the382

response to an isolated natural phenomenon. As mentioned383

before, to choose the criteria, information about lightning384

discharges has been considered. The specific thresholds for385

these criteria are related to the natural phenomenon studied,386

and to fine tune them, we have relied on visual inspection of387

the results through several iterations. In the end, they were388

set up in a conservative way to prevent false positives, even389

if the number of transient events captured is not as high as it390

can be. For example, the ratio between fall time and rise time391

can not be greater than 20, and rise time cannot be shorter392

than one signal period, due to the sensor’s sensitivity. The393

criteria used are based on the following aspects394

• Fitting error.395

• Ratio between FWHM and rise time.396

• Ratio between fall time and rise time.397

• Ratio between rise time and the period of the first res-398

onance 1
7.8 s .399

• Ratio between FWHM and the period of the first reso-400

nance 1
7.8 s .401

• Envelope instant frequency value.402

• Carrier instant frequency value.403

Stage 5: Power Spectral Density (PSD)404

Using the Heidler function fitting process, some character-405

istics of the transient events are extracted. Moreover, other406

interesting parameters can be obtained from the raw signal, so407

a signal analysis is performed directly to each ELF transient408

event’s raw signal. The sum of the PSD of the 1st SR and409

the sum of the PSD in the rest of the spectrum are obtained410

using an averaging process of the spectral information in411
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(a)

(b)

(c)
Figure 3: Process for extracting ELF transient events a: En-
velope detection algorithm in time domain (Left Column) and
Frequency domain (Right Column), b: Segmentation of ELF
transient events and c: Fit of ELF transient segment.

each segment. The parameters show the importance of the412

PSD around 7.8Hz when a relevant ELF transient event is413

captured.414

Stage 6: Hilbert - Huang transform415

The premise of the signal under study having no constant416

frequency can be confirmed by inspecting the frequency spec-417

trum of the signal (Fig. 4a), which is a broadband signal.418

To analyze the changes of the broadband signal, the419

Hilbert-Huang transform (Bowman and Lees [2013]) has420

been used. It decomposes the signal in its intrinsic mode421

functions and compares the instantaneous frequency of each422

decomposition with the segment peak value. The Huang423

algorithm addition to the Hilbert base allows the system to424

decompose the signal in the sum of different relevant signals425

known as intrinsic functions. The Hilbert algorithm can ex-426

tract the instantaneous frequency in each of these functions.427

The decomposition can be seen in Fig.4b and the instanta-428

neous frequency of the first intrinsic mode function of the429

same register in Fig.4c.430

(a)

(b) (c)
Figure 4: Process for extracting and classifying ELF transient
events, a: Frequency transform of an NB-ELF register, b:
Intrinsic mode functions, c: Instantaneous frequency of the
first intrinsic mode function.

Stage 7: ELF transient Parameters431

From this point on, the study is based on analyzing the indi-432

vidual registers obtained in the previous stage. This stage is433

focused on identifying and extracting the most useful param-434

eters. The utility of each parameter is based on the ability to435

characterize the ELF transient event, either about its power,436

duration, or frequency.437

Stage 7.a: Hilbert - Huang Parameters438

Two valuable parameters can be extracted based on the Hilbert439

- Huang transform mentioned in the previous stage. First, the440

instantaneous frequency, being the most relevant. It is typ-441

ically around 7.8Hz, although it commonly varies when a442

powerful ELF event starts. The second parameter is the en-443

velope frequency. It refers to the period of variation in the444

amplitude of each ELF event. This frequency contains valu-445

able information about the event’s magnitude in the time446

domain.447
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Stage 7.b: Heidler Fit Parameters448

As we can see in Eq. 3, Heidler function has 5 parameters.449

In order to characterize the ELF transient events, only two of450

these parameters are considered for this analysis: �1 and �2.451

This reduction of variable size is important to diminish the452

complexity of the methodology and understand the relation453

between variables, although all possible variables could be454

taken into account. Using these two parameters as a baseline,455

it is possible to calculate two more: FWHM and rise time.456

These two additional parameters provide a more practical de-457

scription of the ELF transient event behavior. �1, �2, FWHM,458

and rise time parameters are included in the following stages.459

It is relevant to note that the rise time variable differs from460

the �1 due to the latter is directly from the model fit (hence,461

model fit rise time), whereas the rise time is calculated based462

on the time between the signal is between the 10% and the463

90% during the rising part.464

Stage 7.c: Raw signal parameters465

Although an envelope detection process has been applied466

before the segmentation, some parameters provide more help-467

ful information without the signal processing method. The468

unprocessed signal absolute peak value and the PSD values469

around 7.8Hz and in the rest of the band have been selected.470

471

5. Results and Discussion472

We have applied the implemented methodology to a data473

register of the NB-ELF sensor with the aim of validating both474

the sensor and the methodology.475

The result of the methodology will be presented, follow-476

ing by a brief discussion about the main milestones reached.477

5.1. Results478

The validation process is split into two parts, automatic479

classification, and statistical comparison. As it was men-480

tioned before, the data is collected in segments of fifteen481

minutes, For this validation purpose, we have analyzed one482

segment in which we have isolated 553 Events.483

5.1.1. Automatic Classification484

The algorithm has extracted four parameters from the485

Heidler fit stage (two from the fit process and two calculated),486

three from the raw signal stage, and two related to the Hilbert487

- Huang transform stage. This process separates high-power488

ELF transients from the rest of ELF transients using the489

mentioned parameters.490

First, dimensionality reduction is made using the PCA491

algorithm (Husson et al. [2010]). This method is an orthog-492

onal linear transformation that transposes data into a new493

coordinate system that preserves the majority of the informa-494

tion. These new data dimensions are a linear combination495

of the original ones. In this methodology, dimensions are496

reduced from 9 (one for each parameter) to 2, thus finding497

the two-dimensional plane among the data space the data is498

most spread out.499

The last step of this layer uses an automatic classifica-500

tion algorithm to find the two categories with their means as501

close as possible (Lloyd [1982]). The technique employed502

is K-means, which is essentially a clustering approach re-503

lated to unsupervised learning, but it can also be adapted to504

handle classification problems Kim and Gil [2019], Stoean505

et al. [2019]. The results can be seen in Fig. 5. The groups506

created by the classification algorithm are separable into the507

two most relevant reduced dimensions, as shown in Fig. 5a.508

Furthermore, when the two selected variables are peak value509

and band power, both groups are seemingly differentiated as510

well (Fig. 5b).511
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Figure 5: Automatic classification, a: Adimensional view clas-
sification and b: Peak value-band power dimensional view
classification.

5.1.2. Statistical Comparison512

Statistical analysis will be applied to the variables of the513

extracted segments.514

Lightning Discharges Comparison515

There are a few statistical classifications of lightning activity516

in the literature. To further test the assumption of lightning517

activity being the source of the analyzed transient events,518

Akaike Information Criterion (AIC) was used to choose the519

distribution that best describes the histogram representation520

of the parameters of each segment. This result is helpful in521

order to study natural excitation.522

The most relevant parameters of a discharge are related to the523

current and the duration. In Fig. 6 one can see the distribution524

of related parameters in the ELF transient event.525

Under this method, it can be determined that Fig. 6a finds526

its best fit in a log-normal distribution with a mean value of527

0.6386 µT and a Standard Deviation (SD) of 0.34 µT.528

Rise time histogram can be seen in Fig. 6b, which is also529

best fitted by the log-normal distribution, with the parameters530

of the distribution are a mean of 0.2435 s and a SD of 0.125 s.531

The SR frequency spectrum is composed of the ELF tran-532

sient event, which has more power in the band of the 1st
533

SR (7.8Hz). In Fig. 6c the distribution of the accumulated534

power in the band is presented. The most likely theoretical535

distribution using AIC is once again log-normal, and its re-536

sulting parameters are a mean of 2.23 × 109 pT and an SD of537

0.3 × 109 pT.538

Correlation Comparison539

Fig. 7a shows the correlation between the peak value of540

the ELF transient event and their correspondent band power541

in the 1st SR band. The high correlation between the two542

can be observed with a strong dependency with y ∝ x2.543

Fitting with a quadratic function, the result shows a regression544
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Figure 6: Distribution of relevant parameters without high
peak samples. a: Peak value, b: Rise time and c: Band power
1st SR.

coefficient ofR2 = 0.95. On the other hand Fig. 7b correlates545

peak value with power over the rest of the band with an still546

high R2 = 0.88. A high correlation was to be expected547

in both cases, since the peak value of a transient event is548

directly related with its power. The point of this correlation549

is to show how, by considering only the first mode of the550

SR, the correlation improves and dispersion is reduced. In551

other words, it serves as further validation of the approach552

of studying these transient events by means of the first SR553

mode.554

It is noticeable that the difference in the lower values of555

the x-axis does not follow a clear tendency. In the same way,556

high peak values are more dispersed than the band power in557

the 1st SR.558

Distributions Comparison559

The critical parameters of each ELF transient event are com-560

pared against the peak value in Fig. 8. The peak value of a561

selected segment represents the amplitude of the transient562

event with high precision. In each graph, the red dots repre-563

sent ELF transient events classified as non Q-bursts, while564

blue dots are classified as Q-burst. In all figures, the x-axis565

is the peak value. In Fig. 8a it is selected the FWHM related566

to the duration of the whole event. It is possible to distin-567

guish that Q-bursts and non Q-bursts events are distributed568

similarly without any clear tendency. Rise time is present in569

Fig. 8b. We can see that Q-bursts are more likely distributed570

with rapid values of rise time, although non Q-burst are also571

present in the lower values of the time.572

The instantaneous frequency presented in section 4 is573

used to extract the period’s average frequency under analysis.574

The supposition is that transient events are determined to575

construct the complete SR spectrum, and the instantaneous576

frequency could identify a change in the frequency in short577

times as the duration of the event. The distribution of these578

parameters concerning the peak value can be seen in Fig.579

8c. It is clear that Q-burst events are less dispersed than580
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Figure 7: Relation between peak value and band power: a:
Band power in the band of the 1st SR resonance and b: Band
power in the rest of the spectrum.

non-Q-burst events. However, it is under the same range of581

values.582

Envelope frequency is a concept related to a broadband583

signal that is considered a frequency that determines the584

envelope shape. The envelope frequency is shown in Fig.585

8d. There is a clear tendency for Q-burst events to be highly586

situated in the lowest part of the frequency, while the non-Q-587

burst events are widely spread but with a slight focus on the588

lower values.589
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Figure 8: Distribution of key parameters for non Q-burst (red
dots) and Q-burst (blue dots). a: FWHM, b: Rise time, c:
Instantaneous Frequency and d: Envelope Frequency.

Quantile Comparison590

Through quantile comparison it is possible to observe if data591

density distribution is similar even when the scale is entirely592
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different. If the points are close to the y = x curve, the dis-593

tribution density between both parameters is similar. The594

classification applied to the tested segment identifies 19 seg-595

ments as Q-burst and 526 as non-Q-burst. Applying the596

techniques mentioned in the last part of the previous section,597

the differences and similarities between these two segment598

groups will be presented.599

In Fig. 9, a comparison between the percentile distribu-600

tion of the most critical parameters from each group of ELF601

transient events are shown. Statistical differences between602

the Q-burst and rest of the transient events can be seen in the603

case of band power (Fig. 9a) and Peak value (Fig. 9b). On the604

other hand, Envelope Frequency (Fig. 9c) and rise time (Fig.605

9d), are more concentrated in the case of Q-burst. However, it606

is considerably surprising that in the instantaneous frequency607

(Fig. 9e), and FWHMT (Fig. 9f), the distributions show a608

common behavior with values close to the y = x line. This609

points out how low powered transient events have a behavior610

which is similar to Q-bursts, but smaller in amplitude. This611

gives evidence to the hypothesis of other lightning (not only612

high discharges) leaving traces in the ELF spectrum.
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Figure 9: Comparison of the percentile distribution of the
key parameters between Q-burst and Normal transient events
though qq-plots.a: Band power in 1st SR, b: Peak value, c:
Envelope frequency, d: Rise time, e: Instantaneous frequency
and f: FWHM.

613

5.2. Discussion614

The previous results are consistent with the known facts615

of the SRs, and also support the hypotheses explained in the616

first sections of the article. They are good evidence of the617

methodology performance, making the segmentation process618

and parameters extraction a promising feature to the study of619

ELF transient events. In the scope of this paper, it is directly620

related to the identified transient events, but also the amount621

of generated data by the methodology gives way to study622

them further by using deep learning methods.623

The classification presents a substantial difference over624

the standard deviation method (Guha et al. [2017]) on ana-625

lyzed data using NB-ELF. When using the automatic classifi-626

cation after applying the segmentation and feature extraction627

methodology with the 15min of the NB-ELF register, the628

method identifies 19 transient events as Q-burst. On the629

contrary, the SD method identifies 29 Q-burst.630

The result using the technique proposed in this article631

1.27 Q−burst
min is more consistent with the accepted ratio of632

1 Q−burst
min than with the SD technique 1.93 Q−burst

min .633

An important marked observation to emerge from the634

data comparison was that the distribution of peak value from635

the regular transient events follows a log-normal distribution,636

which models the lightning peak current as well (Herrera-637

Murcia et al. [2017]). This result offers evidence in favor of638

the close relationship between the lightning discharge peak639

current and transient event peak value (Salut et al. [2013],640

Arshad et al. [2020]).641

Our experiments are in line with the previous findings642

in the literature about lightning discharges times (Wooi et al.643

[2019], Heidler and Paul [2020], Wu et al. [2020]). The light-644

ning discharge distribution shows a similar signal waveform645

as shown in Fig. 6b. The Lightning discharge duration is646

around 10000 times larger than the ELF transient events. This647

difference is manly due to the propagation characteristics of648

the ionosphere.649

The high correlation between the peak value and band650

power in the 1st SR mode is noteworthy because it shows651

evidence that the most significant contribution of the transient652

event belongs to this band. This fact is more so since the653

correlation using the rest of the spectrum shows lower values.654

Interestingly, it is noticeable for Q-bursts and evident for655

the rest of transient events. This correlation endorses the656

hypothesis that every ELF transient event contributes to some657

extent to the complete SR spectrum, as is indicated in other658

research (Pizzuti et al. [2021]).659

Considering the above, the distribution of the parameters660

shown in Fig. 8 is very similar between Q-burst and the rest661

of the transient events. The dispersion shown is wider in the662

rest of the ELF transient events than in the Q-burst. These663

differences can partly be explained by the aliasing caused664

by the overlap of various transient events of low peak value665

within the same register. Q-burst events are less susceptible666

to this phenomenon due to their high peak value, making it667

very difficult for overlapped transient events to be noticeable.668

This difference lends support to the hypothesis that Q-bursts669

and the rest of the ELF transient events proceed from the670

same natural phenomena, in line with the literature (Boldi671

et al. [2018], Prácser et al. [2019], Pracser et al. [2020]).672

In the direct comparison of the obtained parameters (Fig.673

9) between Q-burst and non-Q-burst ELF transient events, the674

following could be observed: As expected, the values of band675

power in the 1st SR mode and peak value are significantly re-676

duced in the case of non-Q-burst events. The explanation lies677

in the nature of the Q-burst, related to high power lightning678

discharge. On the other hand, Envelope Frequency and rise679

time show higher dispersion in non-Q-bursts than in Q-bursts.680

The nature of the register points to overlapping as the source681

of this dispersion, although it is hard to provide a conclusive682

explanation for these values given the limitations mentioned683

above. All the transient events contribute to form the 1st
684
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SR as it can be extracted from Fig. 8c. However, Q-burst685

events are more concentrated to the theoretical value 7.8Hz.686

It could be explained by the power of these ELF transient687

events, which can propagate entirely more times than other688

ELF transient events (Ogawa and Komatsu [2007]).689

FWHM is the only measurement that considers both the690

peak value and the duration of the ELF transient event, mak-691

ing this parameter the most relevant one. To stress the rele-692

vance of this parameter, Fig. 9f shows a strong high tendency693

between Q-bursts and non-Q-bursts. This result offers com-694

pelling evidence for ensuring that all the analyzed ELF tran-695

sient events contribute on their own to the SR signal. Hence,696

Q-burst events are just the most potent evidence of lightning697

discharges on the ELF register. Despite that, other lightning698

transient events exposed in section 2 are also measurable with699

an appropriate sensor such as the NB-ELF.700

All these results reinforce how this methodology, along701

with a narrow band sensor, can produce vast amounts of data,702

which can apply deep learning methods. In turn, this may703

allow finding common patterns with other phenomena or704

evaluating ELF transient events’ self-variability.705

6. Conclusions706

To sum up, this paper presents a novel methodology to707

identify transient events in the ELF time signals and to charac-708

terize each by extracting its most relevant features. Transient709

event identification is complemented with the design of a nar-710

row band sensor centered in the 1st mode of the Schumann711

Resonances, which enhances the signal-to-noise ratio capture712

of these events.713

Through these tools, medium-low amplitude transient714

events have been identified in the ELF records, which despite715

being theorized, to the best of our knowledge, were never716

analyzed in detail. These transient events have been compared717

with the most studied ELF transient events (Q-bursts). A few718

specifics must be highlighted.719

• The methodology successfully differentiates between720

Q-bursts and the other, more common transient events721

employing an automatic classification method.722

• Nonetheless, the existing resemblances between the723

low amplitude transient events and those identified724

as Q-bursts point out how lightning discharges also725

produce the former.726

• Furthermore, the number of identified transient events727

is consistent with the average estimate for lightning728

discharges per minute.729

• To characterize each transient event, several different730

parameters are extracted. A tentative analysis of the im-731

portance of each parameter has been performed, with732

full width at half maximum being the most representa-733

tive for the classification purpose.734

Using this methodology over an extensive period, it is pos-735

sible to obtain a large amount of data that can be processed736

using machine learning techniques or analysis. The segmen-737

tation and feature extraction methodology can be used for a738

variety of different applications, and mainly to understand the739

relation between ELF transient events and ionosphere param-740

eters, such as solar flux or virtual height of the ionosphere.741
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Graphical Abstract1

Segmentation and characteristic extraction for Schumann Resonance transient events2




