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Abstract 

The insufficiency of current energy sources, elevated costs and global climate worriment are distinctive 

factors making of renewable energy an issue of boosting consideration. In this concern, solar energy is 

viewed as being indefinitely environmental friendly, carbon-free, beneficial nature with appreciated cost 

potentials and is witnessing fast progressing. Following the Horizon 2020 climate and energy package, 

the volume of gases emitted by greenhouses has to be cut down by 20% by all the European Union (EU) 

member countries in order to enhance energy performance by 20% and raise the renewable energy rate 

to 20% by 2020. Solar energy on building roofs plays a crucial aspect in renewable and sustainable 

energy consumption of high-density human habitats. A merest energy should be allocated to provide hot 

water service from solar sources, as other European norms for new buildings by the Spanish Technical 

Building Code, similarly to other European regulation on achievement objectives. The climate zone and 

the overall demand of hot water in the building regulate this minimal amount needed. This manuscript 

use a new methodology for automatic detection of geometric patterns from aerial or space images using 

a Hierarchical Temporal Memory (HTM) algorithm. In this way, an automatic method for the 

identification of building roofs in order to assess the opportunities available to install solar thermal 

systems in small urban areas has been developed. As case of study: a village with 7,000 inhabitants was 

analyzed in the South of Spain. The maximum overall accuracy obtained among the different 

classifications made was 98.05%, avoiding problems related to the use of images with high spatial 

resolution, as in the salt-and-pepper noise effect. This approach contributes reducing the generated 

carbon and GHG emissions and open new perspectives for energy savings strategies to optimize the 

energy efficiency of buildings. In the case study, implementing the solar thermal systems would come 

out with a saving of 1.4 tons of CO2 per inhabitant. 
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Table of Acronyms   

Acronym Concept 

API Application Programming Interface  

beliefi Probability of similarity  

D Dimension of the vector 

DSM Digital Surface Model  

ED50 European Datum 1950 

HTM Hierarchical Temporal Memory  

It Increment  

LiDAR Light Detection and Ranging  

maxDist maxDistance 

OBIA Object-based Image Analysis  

outputElementCount Categories 

PV Solar Photovoltaic 

requestGroupCount Temporal groups 

ScaleCount Scale factor 

scaleRF Scale reference 

SD Standard Deviation  

spatialOverlap Spatial overlap 

spatialRF Spatial reference 

UAV Unmanned Aerial Vehicle 
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1. Introduction 

In the last decades, the raise in energy interest made energy employment a crucial affair on large scale 

implementation (Baños et al. 2011). In the same concern, various environmental complications have 

arisen from the use of fossil fuels and other conventional energy sources (Perea-Moreno et al., 2016). 

Alternative energy sources are the best focus solution to be explored due to the problems resulting from 

destructive substances released into the atmosphere resulting in climate change and global warming 

(Almeida et al., 2017). An explicit consequence of the EU strategy “20-20-20”, the sustainability of 

urban areas promises to produce energy from renewable sources and to announce an extensive legislation 

on energy efficacy (Cadez and Czerny, 2016). 

An assessment of the renewable energy potentials is required to define clear regional energy 

arrangements (e.g. national). In the recent years, a significant aspiration has been achieved towards this 

appreciation in various worldwide regions (Castellano et al., 2015).  

A considerable amount of energy is consumed by the building sector and major profits can be granted 

to approach zero or nearly zero energy building by handling renewable energy technologies (Manzano-

Agugliaro et al., 2015).  Whether ensured through solar thermals systems or solar photovoltaic (PV), 

solar energy is considered as an abundant, free and clean alternative energy source (Fernández-García 

et al. 2015).  

 

Sustainability is based on three pillars: economic, social and environmental, with an occasionally fragile 

and difficult balance among the pillars (Almeida et al., 2017). Due to the enormous number of entities 

to take into consideration (e.g, millions of buildings in a country), estimating the energy engendered by 

solar thermal systems in building is seen as the most complicated among the applicable technologies 

(AlFaris et al., 2016). Although complex, such information is treasured for the enlargement of efficient 

building energy codes. Similarly, to other European norms established on achievement objectives, the 

Code of Technical Building in Spain (MVIV, 2009) stands for assuring a minimum amount of energy 

for hot water service from solar sources which bets on the climate zone and the overall water demand in 

the building. For the case of Spain, 70% is the recorded percentage from the overall hot water demand 

except for the ultimate challenged zones. For optimization purposes of the vacant area, the remaining 

roof area can be invested for PV systems, for example, in order to upgrade once this requirement is 

satisfied. Upon this, it is relatively essential to estimate the possible roof-top areas in urban areas.  

 

Practically, estimation of the solar energy potential in urban setting can be applied differently from 

simple estimations to airborne LiDAR technologies (Szabó et al. 2016).  

Automatic scanning of the buildings is possible with the latter methods, with building a 3D model of the 

city as well.  
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For example, a solar 3D urban model of the Campus of the University of Lisbon was developed to 

evaluate the solar resource of buildings and integrate the potential of roofs with that of facades. To assess 

this potential, a digital surface model (DSM) of the urban region was built from LiDAR data (Redweik 

et al., 2013). 

Unless a convincing extent of manual work is done, the cited technologies do include some major error 

which becomes a disadvantage. Moreover, many decision makers do not accept to implement these 

technologies with practically elevated cost of software and equipments (Torres-Sánchez et al., 2015). 

Based on building typology, a substitute approach to determine roof-top areas of urban areas in described 

in this paper. 

For this purpose, information of important use can be analysed and extracted from the images through 

the employment of powerful and automatic software. In order the Object-based Image Analysis (OBIA) 

techniques are applied not only for a high level of adaptability but automation as well. These techniques 

overcome some constraints of pixel-based methodology by combining neighbouring pixels with a 

homogeneous spectral value after a partition process to use the conceived objects as the primary elements 

for analysis (Martínez-Rubio et al., 2016). Subsequently, OBIA merge spectral, topographic and 

contextual information for those items to perform more complex classifications. These techniques have 

been successfully applied to images obtained by UAVs in urban areas (Kohli et al., 2016). 

 

In recent years, the technology involved in remote sensing and object recognition has considerably 

advanced (Andreopoulos and Tsotsos, 2016; Li et al., 2015a), with diverse applications ranging from 

recognition and vehicle classification (Battiato et al., 2015) to the facial recognition of individuals 

(Siddiqi et al., 2015). Studies on detection and object recognition can be classified into two categories: 

keypoint-based object detection (Hare et al. 2012) and hierarchical and cascaded classifications (Li et 

al., 2013). Parallel to this development, a new technology applicable to the classification of digital 

pictures emerged: the Hierarchical Temporal Memory (HTM) learning algorithm. This classification 

technology is based on both neural networks and Bayesian networks but involves a particular algorithm 

based on a revolutionary model of human intelligence – the memory-prediction theory developed by Jeff 

Hawkins (Hawkins and Blakeslee, 2004). This assumption relies on the workings of the human cerebral 

cortex, which has architecture in the form of "layers" in which information flows bidirectionally from 

the senses to the brain. From this operating hierarchy, a hypothesis of how the human mind works is 

created. The key point of this algorithm is found in the duality of the information received. All 

information we perceive has a spatial component and a temporal one; information is received by the 

human brain not as an isolated pattern but as a succession of patterns. The cerebral cortex stores the 

patterns that we perceive and how they are ordered in time. In light of that concept, the memory-

prediction theory states that the cerebral cortex stores the new patterns and their evolution over time so 

that once these sequences stabilize the brain can make predictions (or inferences) enabling it, without 
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observing a full sequence, to know what pattern it is observing because it knows the sequence in which 

the patterns occur over time (Hawkins and Blakeslee, 2004). 

 

Thus, this new technology developed by Jeff Hawkins not only presents a new model of how human 

intelligence functions but also models a neural network system capable of emulating this theory. This 

classification technology is not specific to image analysis but is versatile for any type of information 

(from medical information to economic data), with a dual role: learning and pattern recognition in data 

flows and classifying unknown data according to the training received. Currently, we can find this 

technology integrated into the free software application NuPIC developed by NUMENTA®, which is 

used to classify data streams (Hawkins et al., 2011). These data can be of many types, ranging from sign 

language (Rozado et al., 2012) to eye retinal images for biomedical purposes (Boone et al., 2010). There 

are open areas of research using HTM as a classifier for land planning, which is where our work focuses. 

In a previous study, Perea et al. (2009) conducted an analysis of high-resolution images for classification 

and land planning in agricultural environments; starting from images from a UltracamD® photo sensor 

of a region of southern Spain, classification results were obtained that recognized the ground cover up 

to 90.4 %.  

 

Thus, given the positive results previously obtained in the classification of images, the aim of this paper 

is to propose a new methodology for automatic detection of geometric patterns (solar flat collector) in 

rooftops from aerial or space images in order to appraise the opportunities feasible to feat solar thermal 

systems in small urban areas.  

2. Material and Methods 

2.1. Study site 

The area of study comprises the city of Hinojosa del Duque (38º33’ and 38º23’ N; 5º16’ and 5º50’ W); 

it was located at Pedroches Valley at Cordoba Province in Spain (Figure 1). 

  

On 23 May 2006, the sensor of Vexcel UltracamD photogrammetric captures 64 frames with dimensions 

of 7 500 x 11 500 pixels with 8 bits encoding to carry out the study. Consisting of infrared, green and 

blue bands, the frames had a spatial resolution around 0.5m. Orthorectification was applied to these 

frames that make reference to ED50 (European Datum 1950). 
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Figure 1. Location map. 

 

2.2. Sensor Description 

On 15 April 2015, an Ultracamd® sensor of Vexcel has given the 7500 x 11500 pixels photogram that 

has been used as dataset for this research. Basically, red, green and blue form the band combination of 

this photogram and a 30 cm resolution is assigned to the digital aerial photographs. 

  

In order for the classifications to be validated, the training areas to be selected, the image to be 

orthorectified, digital terrain models were used next to digital vector maps and color orthophotos. Land 

uses were determined after a visit for the study area and the UTM system (ED-1950, UTM-Zone 30N) 

was used to project the data map.  

 

The development of this system resides in distinguishing between building roof with solar thermal 

system and building roof without solar thermal system (Figure 2). 
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Figure 2. Land covers used in this study: A) Global view, B) With Solar Thermal, C) Without 

Solar Thermal  

2.3. HTM methodology 

A space and time hierarchical structure defines all the objects in the world. This same concept is used 

by HTM to generate a series of interconnected nodes organized in a tree hierarchy (Numenta Inc., 2010). 

Thus, structure of the world is efficiently represented by a hierarchical HTM in space and time (Hawkins 

and George, 2007).  

 

If we analyze the full name of the algorithm (Hierarchical Temporal Memory), we can distinguish that 

the columns are the smaller elements that make up a pyramid shaped hierarchy levels to form a HTM 

network referred as “Hierarchical”. This network can be trained on temporal sequences data so it is 

called “Temporal”. Moreover, it has the capability to accumulate huge set of spatial patterns and 

temporal sequences efficiently so it is “Memory”. All these make the HTM model capable of predicting 

and inferring the received patterns adequately (Numenta Inc., 2010).  

 

The HTM learning algorithm implemented in the Nupic free Application Programming Interface (API) 

was used in this experiment. This API allows easy implementations of HTM learning algorithms using 

real world images. Although this software can be used in a mixture of contexts, in this paper we target 

only on visual recognition applications. Through Python scripts, building, configuration and writing of 

this API is made. Because the majority of the scripts have a distinct arrangement standardized for each 

of them, customization is required for each network. Designing and configuring the hierarchy of nodes 
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require from the researchers taking maximum advantage of their data. Each node encounters several 

input values based on which its algorithms will be customized. Seeking the improvement of accuracy, a 

double tweak of the node configuration values is needed due to the large amount of node parameters. 

 

Figure 3 presents the overall methodology for HTM design and implementation. There are five phases 

in this methodology, from the definition and configuration of the data and HTM network to the training 

and its evaluation. 

 

Figure 3. Overall methodology diagram. 

Once the data to be used have been defined, two steps were necessary to create this network: the creation 

of the architecture using the Python programming language and the formation of a set of training 

patterns. Based on the experience of the research group in previous work (Perea et al., 2009, 2012a, 

2012b), the HTM network was defined in three levels: the first two levels, having two sub-levels each 

(the level that analyses the spatial component and another level that analyses the temporal component), 

and a concluding classifier. This classifier is the ultimate element of the hierarchy and sorts the images 

into similar categories. The level 1 or input level is composed of 8x8 input nodes, each associated to a 

single pixel. Nodes from the first level go through the raw image and receive a characteristic of the 

training pattern image, creating an entry vector formed by digital levels of 8x8 pixels. Level 2 is 

composed of 16 nodes that receive the information from the previous level; therefore, each level 2 node 

has 4 primary child nodes (arranged in 2x2 region). And finally, level 3 or higher comprises a single 

node, and it has 16 child nodes (4x4 region) and a receptive field of 64 pixels. In Figure 4, the downward 
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connection of one node per level is shown. This system operates in two phases: the training phase and 

the inference phase. At the time of the training phase, the network is revealed to training patterns, and a 

model that classifies patterns into categories is built. Through the inference phase, new patterns are 

generated in these categories through the network distribution. All nodes (except the initial node) process 

information in the same manner and consist of two modules: temporal and spatial (George and Jaros, 

2007). Understanding an HTM node involves understanding the operation of these modules during the 

learning and training phases.  

 

Figure 4. Details of the HTM structure. Level 1 is composed of 64 nodes; level 2 is composed 

of 16 nodes and level 3 comprises a single node. 

2.3.1. Training phase 

During the training phase, the spatial module learns to classify input data based on the spatial 

coincidence of the elements that compose them. The input vector is compared with other vectors already 

stored. The exit of the spatial module (temporal module entrance) occurs in terms of their matches and 

can be noticed as a pre-processing stage for the temporal module, clarifying entry. The temporal module 

receives temporary groups that exist regularly as groups of coincidence (George and Jaros, 2007). 

2.3.1.1. Spatial module 

Raw data is received by the spatial modules of the input nodes from the sensor; the output data is received 

by the spatial modules of the upper nodes from their lower nodes. The concentration of the order is the 

input of the spatial module in the upper layer set by the output of the nodes below. A series of vectors 

represent its input, where building a matrix (match matrix) of input vectors that have recently occurred 

is the function of the spatial module. 
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Gaussian and Product algorithms are examples of existing spatial modules. For nodes in the input level, 

the Gaussian algorithm is used and the spatial module Product is used for the top nodes of the hierarchy 

use. 

The input vector is compared by the Gaussian algorithm without dealing with the existing matches in 

the match matrix. Whenever the distance between the input vector and the existing match, known as 

Euclidean distance, is sufficiently small, then the entry is considered as the same match, and the match 

count is increased and stored in memory. The distance between an input vector and previously stored 

vectors is  

                         (1) 

where D is the dimension of the vector (64 in the first level), xi is the ith element of the input vector and 

wj is the position i of the vector j in the match matrix W. The match threshold of an input vector to an 

existing match is the Maximum distance parameter. 

 

The product algorithm calculates the probability of similarity (beliefi) between an input in the inference 

and a vector that had been previously memorized by the spatial module: 

       

                        (2) 

where nchildren refers to the number of secondary nodes (previous level) that the parent node has, x is 

the input vector, yi are the vectors previously stored by the spatial module and [childj] is the part of a 

vector obtained from nchildren secondary nodes. 

2.3.1.2. Temporal module 

The temporal module forms groups of matches in time, called temporal groups. Subsequently, a temporal 

match matrix is built. After the training phase, the temporal module counts on this matrix to come out 

the temporal groups. This module uses the sum algorithm, which takes the best representations of all 

groups to classify new input patterns during inference. When a new input vector is presented during the 

training phase, the spatial module represents the input vector as one of the learned matches.  

Through the training phase, the new input vector is presented by a spatial modules as one of the learned 

matches. This process increases the elements (j, i) of the temporal match matrix and is controlled by the 

transitionMemory parameter. This increment (It) is calculated as follows: 

It = transitionMemory -t +1, where t is the Training the HTM time in seconds between the current match 

and the past match. 
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2.3.2. Inference phase 

After training a node, the network transitions to the inference mode. When the complete network is 

trained, all of the nodes are in the inference state, and the network is capable of performing inference 

with new input patterns. Initially, a probability distribution is generated for the categories that were used 

during training. 

2.3.2.1. Spatial module  

When an input pattern arrives to the spatial module, the network will generate a distribution of beliefs 

about the categories that have been created in the training phase. Both the Gaussian spatial module and 

the Product spatial module perform variously during the inference stage, but both come out with a belief 

vector from an input vector around the matches. 

 

In the Gaussian spatial module, the distance between an input vector x and each of the trained matches 

wj is calculated using equation (1).  

 

This distance becomes a probability vector considering x as a random sample drawn from a set of multi-

dimensional Gaussian probability distributions, all of them based in one of the trained matches. All of 

these distribution probabilities have the same constant variance in all dimensions, controlled by the 

Standard Deviation (SD) parameter, which is the square root of the variance. Each element i of the 

probability vector b, which represents the probability that the input vector x has the same cause as the 

match i, is calculated using the following equation: 

                     (3) 

where d2 is defined in equation (1) and wj is the match of the position j in the match matrix W. 

 

The algorithm of the Product spatial module divides the input vector at the outputs of each one of its 

subgroups. The algorithm uses the dot product with the same parts of the match and then calculates the 

products of these numbers, resulting in a probability vector element on matches in the match matrix.  

2.3.2.2. Temporal module  

During the inference phase, the temporal module receives a probability vector concerning the matches 

in the spatial module. Subsequently, the module calculates the probability distribution of the groups. A 

choice is made between two different algorithms in the temporal module during the inference: maxProp 

and sumProp, controlled by the PoolerAlgorithm time parameter. These algorithms are defined in detail 

in (George and Jaros, 2007). 

2

2
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2.4. HTM design and implementation 

As commented before, the HTM network used for this experiment was implemented using the HTM 

Nupic API, developed by Numenta®. Having Python API, it is a programming framework that can be 

used to set up custom experiments. Despite the long-time of execution, writing a training script is made 

easy for researchers through the automation API. Python must be used for writing these training scripts 

and after each level in the network; results can be saved by researchers to minimize the effect of the 

runtime failure.  

Configuration of the training process and handling of the information are done so the information flows 

in network built with defined architecture. The number of iterations performed with the training images 

is considered as key parameter here. In this case, 2000 iterations were performed at three levels. 

Experiments have demonstrated that increasing up to double the number of iterations (4000) does not 

result in a significant increase in the accuracy of the analysis (Perea et al., 2009, 2012a, 2012b). In Table 

1, the most relevant parameters of the network-training phase are presented, as are the starting values of 

the core network as recommended by (Numenta Inc., 2010). 

Table 1. Parameters used during training. 

Parameter Description Values 

maxDistance (maxDist) Minimum Euclidean distance for storing 

a pattern as a new category, in the lower 

level of the training phase. 

1 

Scale factor (ScaleCount) Number of scales of the same image that 

the sensor introduces into the network.  

1 

Spatial reference (spatialRF) Size of the information reception field 

with respect to the total. 

0.2 

Temporal groups 

(requestGroupCount ) 

Temporal groups that will be created: 

Sets the maximum number.  

24 

Spatial overlap (spatialOverlap) Overlap between nodes of the same level 

according to the information received 

from child nodes. 

0.5 

Scale reference (scaleRF) Number of scales of which the node 

receives information. 

2 

Categories (outputElementCount) Number of categories. 3 
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Information flows through an architecture that needs to be determined; the processing of the information 

and the training are only set once the network is built. Meanwhile the processing analysis is being carried 

out, user interface of NuPIC allows interaction with the network.  

 

Figure 5 shows the training of temporal module of level 1, sub-level 2. The information given by the 

spatial node of the first spatial module is presented just next to the training image. This first level uses a 

filter (Gabor filter) to help in recognizing input patterns and making a selection among a series of 

categories based on geometric and temporal similarities. Used in image processing for purposes of 

texture analysis and feature extraction, Gabor filters are known as bandpass filters whose impulse 

response is obtained through a multiplication of Gaussian envelope functions with a complex oscillation 

(Weldon et al., 1996). According to Gabor, space (time) uncertainty product are shown through these 

elementary function. Filters, selective for orientation, are possibly created through the extension of these 

functions to two dimensions. 

 

When the network is trained, the new data stream in this sub-layer will be compared to the memorized 

sequences performing an initial classification. 

 

Figure 5. Training stage of level 1, sub-level 2. 

2.6.3. Inference phase 

The inference stage starts only after stating the categories and training the network with the provided 

database. According with images learned and memorized from the previous stage, the interference stage 

implies the network to analyse unknown images. In Figure 6, it is presented the system working on the 

inference stage where the first sub-level of the node creates a representation depending to the known 
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patterns having very close shape and texture. Once the inference stage is completed, a confusion matrix 

is obtained. 

 

Figure 6. Example of inference stage. 

  

3. Results and discussion  

During the experiments, internal network parameters that affect the learning process were modified, with 

the main goal of obtaining an optimal methodology for the recognition of image patterns. To confirm 

the outcomes of this analysis, visual inspection results are compared with the ones obtained from the 

proposed method. 

 

As mentioned above, the maxDist parameter defined the Euclidean distance between a familar pattern 

and a new one, which is analytical in the recognition and classification of patterns. An optimal value is 

essential for the successful creation of temporal groups during the training phase. A high value of the 

maxDist parameter contributes to the formation of fewer temporal groups, which could seriously impact 

the total recognition accuracy. On the other hand, a low value of the maxDist parameter generates a high 

number of temporal groups, which on top of the large memory demand also results in poor recognition 

performance. To avoid these undesirable effects, it is very important to evaluate the optimal value for 

maxDist to achieve the best accuracy in the classifications.  

 

In the original configuration, the maxDist parameter has a starting value of 1, and the influence of this 

parameter on the overall accuracy values in the different classifications was studied. The maxDist values 

(Table 2) used in this experiment were defined based on the results of the initial studies performed (Perea 

et al., 2016, 2017). 
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Table 2. Percentage of overall accuracy and averages of coincidences and temporal groups of 

the 64 bottom nodes for various values of maxDist. 

maxDist 
Overall 

accuracy (%) 

Number of 

coincidences 
Number of temporal groups 

1 88.94 57.00 17.00 

3 96.35 46.00 12.00 

6 84.17 19.00 10.00 

9 78.87 13.00 3.00 

12 67.39 11.00 2.00 

 

Table 2 presents the maxDist parameter values with respect to the overall accuracy obtained for each of 

the test classifications. The maximum accuracy value was 96.89% and was obtained at an intermediate 

value for a maxDist of 3. After this value, there is nearly a linear drop in the overall accuracy of the 

classifications. This drop is due to the number of coincidences detected during the training phase and 

the temporal groups formed.  

 

For the previously mentioned optimal value of maxDist, the Urban class was the class that obtained the 

largest number of misclassified frames, as seen in Table 3, whereas the Grape class reached the highest 

accuracy of all of the classes during classification.  

Table 3. Solar thermal confusion matrix for the optimum value of maxDist. 

Building system Without  With  

Without  969 31 

With  42 958 

 

Looking at the second and third columns of Table 2, a large number of matches was not related to a 

greater overall accuracy of classification, as the number of matches in input patterns might be unrealistic, 

classifying new similar patterns in different categories. For example, if we set a low value for the 

parameter maxDist, it is forcing the creation of many different, but similar, groups. So, several categories 

may correspond to the same pattern. 

For the case with maxDist of 3, which can be considered optimal, the number of matches obtained was 

46. On the other hand, the effect of the value of the maxDist parameter on the creation of temporal groups 

during the training phase of the network can be seen in Table 2; the smaller the maxDist parameter, the 

greater the number of temporal groups was obtained, leading similar patterns to be classified in different 

classes. Conversely, increasing the value of the maxDist parameter reduces the formation of temporal 
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groups, an effect that is not conducive in any way to obtaining an optimal accuracy in the classification, 

as the images of wineries and images of forest areas are classified in the same category (Table 4). For 

the case with the optimal maxDist value of 3, the number of temporal groups obtained was 12. 

Table 4. Solar thermal confusion matrix for a maxDist value of 12. 

Building system Without  With  

Without  772 228 

With  427 573 

 

The effect of the SD parameter on the accuracy of the classification was verified. This parameter is 

calculated as the square root of the maxDist. This value is a justifiable starting value for SD because the 

distances between the matches are calculated as the square of the Euclidean distance instead of the 

normalized Euclidean distance.  

 

Figure 7 presents the overall accuracy values obtained for different SD values. Similar to the maxDist 

parameter, there is growth in the overall accuracy value until it reaches a maximum of 96.35% for an 

SD value of 1.73. Smaller SD parameter values cause high beliefs to be assigned only to matches that 

are very close to the inferred pattern. Conversely, when using lower SD values, between 1 and 1.73, all 

of the matches receive high belief values independent of their distance to the inferred pattern. Based on 

the optimal maxDist and SD values previously discussed, we studied the effect of the ScaleRF and 

ScaleOverlap parameters on the network training and overall accuracy obtained in the classification of 

the images. 

 

Figure 7. Overall accuracy for five setups of the SD parameter. 
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As mentioned above, the scaleRF and ScaleOverlap parameters are relevant to the scale or the resolution 

of the images that are conferred to the network; thus, by varying these parameters, we can change the 

number of distinct scales of the image that are presented to the nodes and the overlap among them.  

 

This change is sensitive because changes in the image resolutions allow the network to extract patterns 

of the same image in different levels to create invariant representations (or models of stored patterns) 

used to classify new images. Classification of new images by consistent representations created (or 

models of stored patterns) is allowed by the network extracting patterns of the same image sue to 

variations in image resolutions which make the change very sensitive. 

 

The elemental network starts from intermediate values of ScaleOverlap and ScaleRF (1 and 1, 

respectively). Figure 8 presents a bar chart in which the ScaleOverlap and the ScaleRF parameter are 

related to the overall accuracy for each case. The highest overall accuracy (98.05%) was obtained for a 

value of 4 for the scaleRF parameter and 1 for the scaleOverlap. The worst results were retrieved for a 

ScaleOverlap parameter value of 0; this value creates no spatial overlap among the input patterns, 

worsening the training stage in the temporal module and thereby reducing the number of temporal groups 

formed and their time sequence. 

 

 

Figure 8. Values of scaleRF and ScaleOverlap. 
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In general, it is observed in this study that a value of 4 for the ScaleRF parameter optimizes the capacity 

of the network to extract patterns from images at different resolutions. From a value of 5, the overall 

classification accuracy starts to fall again. 

 

We compared our results to those of other works. For example, Samsudin et al. (2016) used surface 

classifications and spectral indices in satellite multispectral remote sensing data to generate degradation 

status maps of concrete and metal roofing materials and obtained an overall accuracy of 94.17%;  

 

Estimation of geographical PV potentials for buildings in downtown San Francisco is the objective of 

the object oriented classification method and LiDAR data employed by Li et al. (2015b); however some 

boundary problems were faced by the research next to data accuracy of LiDAR in terms of both building 

footprint extraction and 3D modelling.  

 

In our performance, the maximum overall accuracy obtained among the different classifications made 

was 98.05%, avoiding problems related to the use of images with high spatial resolution, as in the salt-

and-pepper noise effect. This effect makes it difficult to obtain and cleanly classify images, resulting in 

different cases for a plot where there should only be a single case.  

 

In Table 5 the results of the Confusion matrix are presented. Only in 15 frames, the Building without 

solar thermal system class was classified as the Building with solar thermal system class, and in 24 

frames, it was classified as Building without solar thermal system class. The higher accuracy obtained 

guarantee the success of the methodology proposed. 

 

Therefore, the accuracy value obtained from the classification using the algorithm based on HTM is 

similar or superior to values obtained by other authors using object-oriented classification and neural 

networks, which demonstrates that the methodology is appropriate for the identification of building roofs 

in order to assess the opportunities available to install solar thermal systems in small urban areas.  

Table 5. Solar thermal confusion matrix of the best performing system. 

Building system Without  With  

Without  985 15 

With  24 976 

 

In Figure 9, 747 buildings in the study area, which represents about 92% of the total rooftops area, would 

be suitable for solar thermal systems.  
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Figure 9. Classification view. 

Although there are similar works to estimate the possibility of using solar energy roofs, these are pixel-

based approach (Li et al., 2015) and therefore are not as accurate as the method proposed here. 

 

Regarding the environmental aspects, burning fossil fuels to generate the energy to heat water will result 

harmful in gas emissions. The potential decrement in greenhouse gases by cause of the installation of 

solar thermal systems on these rooftops was also estimated based on experimental results. Considering 

that the type of housing in the area is residential building with 4 dwellings per floor and that in each 

dwelling there is an average saving in electricity of 1.25 MWh (US DOE, 2007) due to the 

implementation of the solar thermal systems, multiplied by the 747 buildings analyzed, a total saving of 

14940 MWh is obtained. As shown in Table 6, for a village of 7000 inhabitants, implementing the solar 

thermal systems in the case study (747 buildings without solar thermal systems) would produce 

decreases of 9830.52 tons of carbon dioxide (CO2), 0.114 tons of methane (CH4), and 0.141 tons of 

nitrous oxide (N2O) emissions annually. This means a saving of 1.4 tons of CO2 per inhabitant. 
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Regarding the economic aspects, the installation costs are around 600 €/m2 collector with a 

maintenance costs of 10 €/m2 collector/year (Izquierdo et al. 2011). Thus, the energy payback-time can 

be defined as the time necessary for a solar equipment to collect the energy (valued as primary) 

equivalent to that used to produce it. Solar flat collectors can last between 15 and 20 years. Ardenbte et 

al. (2005) show the great economical convenience of this technology because the energy payback-time 

resulted less than 2 years for a house with 3 persons, and this is considered very low. Of course, if the 

persons living in the same house are increased the pay-back time will be smaller. Nowadays it can be 

say that the use of the solar thermal energy is a mature and reliable technology, that the investments 

realized in general are amortizable without the necessity of subsidies, and that it is an alternative 

respectful with the environment (Juaidi et al., 2016). 

 

In Spain, regarding the social aspects, with the Code of Technical Building (MVIV, 2009), and as 

specified in its Basic Document HE (Energy Saving), all new buildings are required to install solar 

thermal energy systems. This law has supposed a definitive impulse to this technology, because the 

minimum of the total hot water demand must be 70% from solar thermal systems. In recent years, there 

has been a notable increase in solar thermal installations due, on the one hand, to the greater social and 

political sensitivity towards environmental issues and, on the other hand, to the continuous improvement 

and reduction of costs of solar thermal systems (Montoya et al., 2014) . 

 

 

Table 6. Annual environmental benefits from gases reductions. 

Gas Acronym Electricity saving  Emissions  Total emissions reduced  

  MWh kg/MWh Tons 

Nitrous Oxide  N2O 14900 0.00941 0.140 

Methane  CH4 14900 0.00762 0.114 

Carbon Dioxide  CO2 14900 658 9804.2 

 

4. Conclusions  

This work presents a novel procedure for determining roof surfaces suitable for the instalment of solar 

thermal systems in small urban areas. A novel technology of Hierarchical Temporal Memory Algorithm 

(HTM) is used to develop experimental analysis and classification of images of urban environments. 

After changing multiple parameters related to architecture and inner workings, analysis of sample images 
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are carried for several repetitions during the learning and analysis process. The maximum overall 

accuracy obtained among the different classifications made was 98.05%, avoiding problems related to 

the use of images with high spatial resolution, as in the salt-and-pepper noise effect. Lessons learned 

from the case of study which have applied the automatic detection of solar collector in roof tops may 

inform on how municipalities might energy saving. In this case of study, 9804.2 tons of carbon dioxide 

(CO2), 0.114 tons of methane (CH4), and 0.140 tons of nitrous oxide (N2O) emissions can be 

decremented annually through the implementation of solar thermal systems. Assessing the feasible 

opportunities for solar thermals systems installation is possible by generalizing the presented tested 

methodology to other urban areas. As main conclusion, the assessment of rooftop potential for solar flat 

plate collector is an essential component of research focusing on energy saving options for the cities. 

This potential is essential because it is the only supply resource which all cities possess in the face of 

looming environmental and economic risks. 
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