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Abstract
Influenced by the concept of a p-compact operator due to Sinha and Karn (Stud Math
150(1): 17–33, 2002), we introduce p-compact Bloch maps of the open unit diskD ⊆
C to a complex Banach space X , and obtain its most outstanding properties: surjective
Banach ideal property, Möbius invariance, linearisation on the Bloch-free Banach
space over D, inclusion properties, factorisation of their derivatives, and transposition
on the normalized Bloch space. We also present right p-nuclear Bloch maps of D to
X and study its relation with p-compact Bloch maps.

Keywords Vector-valued holomorphic function · Bloch function · p-Compact
operator · p-Compact Bloch function

Mathematics Subject Classification 47B07 · 30H30 · 47B10 · 46E15 · 46E40

Introduction

Grothendieck proved that a subset of a Banach space is relatively compact if and
only if it is included in the closed convex hull of a norm null sequence. Motivated by
this result, Sinha and Karn [18] introduced the property of p-compactness in Banach
spaces for p ∈ [0,∞]. Associated with the notion of p-compact set, they initiated the
study of p-compact operators between Banach spaces.

From then, p-compact sets and p-compact operators have been covered by various
authors as, for example, Choi andKim [5], Delgado et al. [7] andwithOja [6], Lassalle
and Turco [12] and with Galicer [9], and Pietsch [17], among many others.
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The extension of the theory of p-compact operators to the non-linear context was
developed by other authors, for instance, by Achour et al. [1] to the Lipschitz setting,
and by Aron et al. [3] and Aron et al. [4] to both polynomial and holomorphic frames.

Our aim in this note is to address this theory in the Bloch setting. Our approach is
also motivated by the introduction in [11] of the concept of compact Bloch map from
the open unit disk D ⊆ C into a complex Banach space X . A good reference for the
theory of Bloch functions is the book [19] by Zhu. Let ̂B(D, X) be the Banach space
of all Bloch maps f from D into X with f (0) = 0, under the Bloch norm ρB.

We have divided this paper into two sections. After reviewing in Sect. 1 some
notions on p-compact operators, Sect. 2 gathers the main properties of p-compact
Bloch maps. If ̂BKp (D, X) denotes the Banach space of all p-compact Bloch maps

from D into X for which f (0) = 0, equipped with a suitable norm kBp , we prove

that [̂BKp , k
B
p ] is a surjective Banach normalized Bloch ideal which becomes regular

whenever X is reflexive. Moreover, ̂BK∞(D, X) coincides with ̂BK(D, X) (the space
of all zero-preserving compact Bloch maps from D into X ) and its norm kB∞ is equal
to the Bloch norm ρB, and so we extend here some results stated in [11].

Another striking property is the invariance by Möbius transformations of D of the
p-compact Bloch maps from D into X . We refer to the paper [2] by Arazy, Fisher and
Peetre for a first introduction to Möbius-invariant function spaces.

If G(D) denotes the Bloch-free Banach space over D presented in [11], we prove
that a holomorphic map f : D → X with f (0) = 0 is p-compact Bloch if and only
if its linearisation S f : G(D) → X is a p-compact operator. This fact will allow us to
extend to the Bloch setting some similar results on p-compact operators. For instance,
we prove that the derivative of every map f ∈ ̂BKp (D, X) admits a factorization
f ′ = T ◦ g′, with g ∈ ̂B(D,Y ) and T ∈ Kp(Y , X) for some complex Banach space
Y . Furthermore, kBp ( f ) is equal to inf{kp(T )ρB(g)}, being the infimum taken over
all such representations of f ′ and, surprisingly, it is a maximum at the decomposition
S f ◦ � got in [11] (see Theorem 1.1 below).

In addition, we establish some inclusion relations of such spaces, factorize such
derivatives through a quotient space of �p∗ and characterize Bloch p-compact maps as
those Blochmaps whose Bloch transposes are quasi p-nuclear operators (respectively,
factor through a subspace of �p). We also introduce the term of right p-nuclear Bloch
map from D into X , establish its Banach ideal structure and analyse its relation with
p-compact Bloch maps.

1 Preliminaries

We first fix some notation and recall the basic concepts of the theory of p-compact
sets and p-compact operators.

From now on, X and Y will denote complex Banach spaces. As usual, we denote
the closed unit ball of X by BX , the dual space of X by X∗, and the Banach space
of all bounded linear operators from X into Y endowed with the operator canonical
norm by L(X ,Y ). The subspaces of L(X ,Y ) formed by all compact operators and
all finite-rank bounded operators from X into Y will be represented by K(X ,Y ) and
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F(X ,Y ), respectively. The canonical isometric linear embedding of X into X∗∗ is
denoted by κX . Given a set A ⊆ X , aco(A) stands for the norm-closed absolutely
convex hull of A.

Given p ∈ [1,∞), �p(X) denotes the Banach space of all absolutely p-summable
sequences (xn) in X , endowed with the norm

‖(xn)‖p =
( ∞

∑

n=1

‖xn‖p

) 1
p

,

and c0(X) is the Banach space of all norm null sequences in X , equipped with the
norm

‖(xn)‖∞ = sup {‖xn‖ : n ∈ N} .

In the case of complex-valued sequences, we will just write �p and c0, respectively.
For p ∈ (1,∞) and p∗ = p/(p−1), the p-convex hull of a sequence (xn) ∈ �p(X)

is defined by

p-conv(xn) =
{ ∞

∑

n=1

anxn : (an) ∈ B�p∗

}

.

Moreover, the 1-convex hull of (xn) ∈ �1(X) is given by

1-conv(xn) =
{ ∞

∑

n=1

anxn : (an) ∈ Bc0

}

,

and the ∞-convex hull of (xn) ∈ c0(X) by

∞-conv(xn) =
{ ∞

∑

n=1

anxn : (an) ∈ B�1

}

.

Note that ∞-conv(xn) = aco({xn : n ∈ N}) is compact by [13, Lemma 3.4.29].
Let p ∈ [1,∞] and let X be a Banach space. Following [18], a subset K of X is

said to be relatively p-compact if there is a sequence (xn) ∈ �p(X) ((xn) ∈ c0(X) if
p = ∞) such that K ⊆ p-conv(xn). Such a sequence is not unique but Lassalle and
Turco [12] (see also [7, p. 297]) defined the measure of the size of p-compactness of
K as

mp(K , X) =
{

inf{‖(xn)‖p : (xn) ∈ �p(X), K ⊆ p-conv(xn)} if 1 ≤ p < ∞,

inf{‖(xn)‖∞ : (xn) ∈ c0(X), K ⊆ p-conv(xn)} if p = ∞.

If there is no confusion, we will simply write mp(K ) instead of mp(K , X).
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An operator T ∈ L(X ,Y ) is said to be p-compact if T (BX ) is a relatively p-
compact set in Y . The space of all p-compact linear operators from X into Y is denoted
by Kp(X ,Y ) and it is a Banach operator ideal endowed with the norm kp(T ) =
mp(T (BX )).

A classical result of Grothendieck [10, Chap. I, p. 112] assures that a subset K of
X is relatively compact if and only for every ε > 0, there is a sequence (xn) ∈ c0(X)

with ‖(xn)‖∞ ≤ supx∈K ‖x‖+ε such that K ⊆ ∞-conv(xn). Hence, we can consider
compact sets as∞-compact sets. In this form,K∞ coincideswith the compact operator
ideal K and k∞ is the usual operator norm.

We now recall some notions and results on Bloch spaces that we will need later. If
H(D, X) stands for the space of all holomorphic maps from D into X , the normalized
Bloch space ̂B(D, X) is the Banach space of all maps f ∈ H(D, X) with f (0) = 0
so that

ρB( f ) = sup
{

(1 − |z|2) ∥

∥ f ′(z)
∥

∥ : z ∈ D

}

< ∞,

equipped with the norm ρB. When X = C, we will put ̂B(D) in place of ̂B(D,C). We
denote by ̂H(D,D) the set of all holomorphic functions h from D into itself such that
h(0) = 0.

The Bloch-free Banach space over D is the space

G(D) := span ({γz : z ∈ D}) ⊆ ̂B(D)∗,

where γz( f ) = f ′(z) for all f ∈ ̂B(D).
We next collect the basic results on G(D).

Theorem 1.1 [11]

1. The map � : D → G(D), given by �(z) = γz for all z ∈ D, is holomorphic and
‖γz‖ = 1/(1 − |z|2).

2. The map� : ̂B(D) → G(D)∗, defined by�( f )(γ ) = ∑n
k=1 λk f ′(zk) if f ∈ ̂B(D)

and γ = ∑n
k=1 λkγzk ∈ span(�(D)), is a linear isometry of ̂B(D) onto G(D)∗.

3. BG(D) = aco(MB(D)) ⊆ ̂B(D)∗, where MB(D) := {(1 − |z|2)γz : z ∈ D}.
4. Given h ∈ ̂H(D,D), the map Ch : f ∈ ̂B(D) �→ f ◦ h ∈ ̂B(D) is a nonexpansive

linear operator.
5. For each h ∈ ̂H(D,D), there is a unique ̂h ∈ L(G(D),G(D)) satisfying ̂h ◦ � =

h′ · (� ◦ h). Further,
(

̂h
)∗ = Ch.

6. For eachmap f ∈ ̂B(D, X), there is a unique S f ∈ L(G(D), X) satisfying S f ◦� =
f ′. Further, ||S f || = ρB( f ).

7. The map f �→ S f is a linear isometry of ̂B(D, X) onto L(G(D), X).
8. Given f ∈ ̂B(D, X), the map f t : x∗ ∈ X∗ �→ x∗ ◦ f ∈ ̂B(D) is a bounded linear

operator and ‖ f t‖ = ρB( f ). Moreover, f t = �−1 ◦ (S f )
∗. �
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2 p-Compact Blochmaps and their properties

We present and analyse the Bloch analogue of a p-compact linear operator between
Banach spaces.

For any f ∈ H(D, X), denote

rangB( f ) :=
{

(1 − |z|2) f ′(z) ∈ X : z ∈ D

}

,

and notice that f is Bloch if rangB( f ) is bounded in X . According to [11, Definition
5.1], a map f ∈ H(D, X) is called compact Bloch if rangB( f ) is a relatively compact
set in X . If ̂BK(D, X) denotes the space of all compact Bloch maps f of D into X
for which f (0) = 0, then [̂BK, ρB] is a Banach normalized Bloch ideal (see [11,
Proposition 5.14]).

We may extend this concept as follows.

Definition 2.1 A map f ∈ H(D, X) is called p-compact Bloch with p ∈ [1,∞]
if rangB( f ) is a relatively p-compact set in X . We denote by BKp (D, X) the linear
space of all p-compact Blochmaps f : D → X , and by ̂BKp (D, X) its vector subspace
formed by all those f such that f (0) = 0. For each f ∈ BKp (D, X), we define

kBp ( f ) = mp(rangB( f )).

In view of the following fact, we will only focus on the case 1 ≤ p < ∞.

Proposition 2.2 BK∞(D, X) = BK(D, X) and kB∞( f ) = ρB( f ) if f ∈ BK∞(D, X).

Proof Let f in BK∞(D, X) and let (xn) be in c0(X) such that rangB( f ) ⊆
∞-conv(xn). Since ∞-conv(xn) is compact, f ∈ BK(D, X). Moreover, for each
z ∈ D, there is a sequence (a(z)

n ) ∈ B�1 such that (1− |z|2) f ′(z) = ∑∞
n=1 a

(z)
n xn , and

thus we have

(1 − |z|2) ∥

∥ f ′(z)
∥

∥ ≤ (1 − |z|2)
∞
∑

n=1

∣

∣

∣a(z)
n

∣

∣

∣ ‖xn‖ ≤ ‖(xn)‖∞ .

Taking supremum on all z ∈ D produces ρB( f ) ≤ ‖(xn)‖∞, and passing to the
infimum on all such sequences (xn), we obtain ρB( f ) ≤ kB∞( f ).

Conversely, let f inBK(D, X), that is, rangB( f ) is relatively compact in X . Hence,
for every ε > 0, we can find a (xn) ∈ c0(X) with ‖(xn)‖∞ ≤ ρB( f ) + ε so that
rangB( f ) ⊆ ∞-conv(xn). Thus f is in BK∞(D, X) and kB∞( f ) ≤ ρB( f ). �

2.1 Banach ideal property

Influenced by the concept of Banach operator ideal [16], the class of (Banach) normed
normalized Bloch ideals on D was presented in [11, Definition 5.11].

For the next result, we only need to introduce the property of regularity. A normed
ideal of normalized Bloch maps [I ̂B, ‖·‖I ̂B ] is called
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(R) regular if for every f ∈ ̂B(D, X), one has that f is in I ̂B(D, X) and ‖ f ‖I ̂B =
‖κX ◦ f ‖I ̂B whenever κX ◦ f is in I ̂B(D, X∗∗).

We now study the structure of ̂BKp as a normalized Bloch ideal.

Theorem 2.3 Let p ∈ [1,∞). Then [̂BKp , k
B
p ] is a Banach normalized Bloch ideal.

Moreover, the ideal [̂BKp , k
B
p ] is regular for the components ̂BKp (D, X) whenever X

is reflexive.

Proof We first will prove that (̂BKp (D, X), kBp ) satisfies the required properties when-
ever p ∈ (1,∞). The another case follows similarly.

(N1) Let f ∈ ̂BKp (D, X) and let (xn) be a sequence in �p(X) such that rangB( f ) ⊆
p-conv(xn). It is clear that (1 − |z|2) ∥

∥ f ′(z)
∥

∥ ≤ ‖(xn)‖p for all z ∈ D, and thus
f ∈ ̂B(D, X) with ρB( f ) ≤ ‖(xn)‖p. Taking infimum over all such sequences (xn),
we deduce that ρB( f ) ≤ kBp ( f ).

We now claim that (̂BKp (D, X), kBp ) is a normed space. Let f ∈ ̂BKp (D, X).

Clearly, kBp ( f ) ≥ 0. Suppose kBp ( f ) = 0. Since ρB( f ) ≤ kBp ( f ) and ρB is a norm on
̂B(D, X), it follows that f = 0.

Let λ ∈ C. It is clear that rangB(λ f ) ⊆ p-conv(λxn) and, therefore, λ f ∈
̂BKp (D, X) with kBp (λ f ) ≤ |λ|kBp ( f ). This implies that kBp (λ f ) = 0 = |λ| kBp ( f ) for

λ = 0. If λ �= 0, one has kBp ( f ) ≤ |λ|−1 kBp (λ f ), therefore |λ| kBp ( f ) ≤ kBp (λ f ), and

so kBp (λ f ) = |λ| kBp ( f ).

Let fi ∈ ̂BKp (D, X) for i = 1, 2. Taking Ki = rangB( fi ) with i = 1, 2 in [12,
Lemma 3.1], we deduce that the set

K =
{

(1 − |z|2) f ′
1(z) + (1 − |w|2) f ′

2(w) : z, w ∈ D

}

is relatively p-compact in X with mp(K ) ≤ mp(K1) + mp(K2). Since rangB( f1 +
f2) ⊆ K , it follows that f1 + f2 ∈ ̂BKp (D, X) with kBp ( f1 + f2) ≤ kBp ( f1)+ kBp ( f2).

To show that the norm kBp is complete on ̂BKp (D, X), we will prove that if ( fn)

is a sequence in ̂BKp (D, X) such that
∑

kBp ( fn) converges, then
∑

fn is conver-

gent in (̂BKp (D, X), kBp ). Since ρB( fn) ≤ kBp ( fn) if n ∈ N and (̂B(D, X), ρB) is

complete, we can find f ∈ ̂B(D, X) for which ρB(
∑n

k=1 fk − f ) converges to 0 if
n → ∞. We claim that f ∈ ̂BKp (D, X) and kBp ( f ) ≤ ∑∞

n=1 k
B
p ( fn). Indeed, since

the sequence (rangB( fn)) consists of relatively p-compact subsets of X such that
∑

mp(rangB( fn)) = ∑

kBp ( fn) converges, Lemma 3.1 in [12] assures that the series
∑

n≥1(1−|zn|2) fn(zm) is absolutely convergent for any choice of points zm ∈ Dwith
m ∈ N, and the set

K =
{ ∞

∑

n=1

(1 − |zm |2) f ′
n(zm) : zm ∈ D, m ∈ N

}

is relatively p-compact in X with mp(K ) ≤ ∑∞
n=1mp(rangB( fn)). Clearly,

rangB( f ) ⊆ K and this proves our claim. The previous proof can be applied to
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show that for every m ∈ N,
∑∞

n=m+1 fn ∈ ̂BKp (D, X) with kBp
(∑∞

n=m+1 fk
) ≤

∑∞
n=m+1 k

B
p ( fn). Hence,

kBp

(

f −
m

∑

n=1

fn

)

≤
∞
∑

n=m+1

kBp ( fn)

for every m ∈ N, and thus kBp ( f − ∑m
n=1 fn) → 0 as m → ∞.

(N2) Let g in ̂B(D) and x in X . Assume g �= 0 and x �= 0 (otherwise, there is
nothing to prove). Clearly, the sequence (xn), given by x1 = ρB(g)x and xn = 0 for
all n ≥ 2, is in �p(X) and rangB(g · x) ⊆ p-conv(xn). Therefore, g · x ∈ ̂BKp (D, X)

and kBp (g · x) ≤ ‖(xn)‖p = ρB(g) ‖x‖. The reverse inequality follows immediately
from (N1).

(N3) Let h ∈ ̂H(D,D), T ∈ L(X ,Y ) and f ∈ ̂BKp (D, X). Clearly, T ◦ f ◦ h ∈
H(D,Y ) and (T ◦ f ◦ h)′ = h′ · (T ◦ f ′ ◦ h). Let (xn) ∈ �p(X) be for which

rangB( f ) ⊆ p-conv(xn). For each z ∈ D, there is a sequence (a(z)
n ) ∈ B�p∗ such that

(1 − |z|2) f ′(z) = ∑∞
n=1 a

(z)
n xn , and thus we have

(1 − |z|2)(T ◦ f ◦ h)′(z) = (1 − |z|2)h′(z)
1 − |h(z)|2 T ((1 − |h(z)|2) f ′(h(z)))

= (1 − |z|2)h′(z)
1 − |h(z)|2 T

( ∞
∑

n=1

a(h(z))
n xn

)

=
∞
∑

n=1

b(z)
n T (xn),

where

b(z)
n = (1 − |z|2)h′(z)

1 − |h(z)|2 a(h(z))
n (n ∈ N).

By applying Pick–Schwarz Lemma, notice that

∥

∥

∥(b(z)
n )

∥

∥

∥

p∗ = (1 − |z|2)|h′(z)|
1 − |h(z)|2

∥

∥

∥(a(h(z))
n )

∥

∥

∥

p∗ ≤ 1.

Therefore, T ◦ f ◦ h ∈ ̂BKp (D,Y ) and kBp (T ◦ f ◦ h) ≤ ‖(T (xn))‖p ≤ ‖T ‖ ‖(xn)‖p.

Taking infimum over all such sequences (xn), we arrive at kBp (T ◦ f ◦h) ≤ ‖T ‖ kBp ( f ).
(R) Assume that X is reflexive and thus �p(X∗∗) = κX (�p(X)). Take f ∈

̂B(D, X) and assume that κX ◦ f ∈ ̂BKp (D, X∗∗). Let (xn) ∈ �p(X) be with
rangB(κX ◦ f ) ⊆ p-conv(κX (xn)). It is clear that rangB(κX ◦ f ) = κX (rangB( f )) and
p-conv(κX (xn)) = κX (p-conv(xn)). Hence κX (rangB( f )) ⊆ κX (p-conv(xn)) and
the injectivity of κX gives us that rangB( f ) ⊆ p-conv(xn). Hence, f ∈ ̂BKp (D, X)
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with kBp ( f ) ≤ ‖(xn)‖p = ‖(κX (xn))‖p, and so kBp ( f ) ≤ kBp (κX ◦ f ) by taking infi-
mum over all such sequences (κX (xn)). The converse inequality follows from (N3).

�
The surjectivity of the ideal [̂BKp , k

B
p ] will be addressed later.

2.2 Möbius invariance

Let Aut(D) be the Möbius group of D. Every ψ ∈ Aut(D) is of the form ψ = τψa

with τ ∈ T and a ∈ D, where ψa(z) = (a − z)/(1 − az) for all z ∈ D.
A vector space A(D, X) of Bloch maps of D to X , with a seminorm ρA, is called

invariant by Möbius transformations whenever:

(i) There is a constant c so that ρB( f ) ≤ cρA( f ) for any f ∈ A(D, X),
(ii) f ◦ψ ∈ A(D, X)withρA( f ◦ψ) = ρA( f ) for any f ∈ A(D, X) andψ ∈ Aut(D).

In the light of Theorem 2.3, BKp (D, X) satisfies the condition (i) above with c = 1

and ρA = kBp . In order to prove (ii), note first that if f ∈ H(D, X) and ψ ∈ Aut(D),
then h = f ◦ ψ holds that

(1 − |z|2)h′(z) = (1 − |ψ(z)|2) f ′(ψ(z))
ψ ′(z)
|ψ ′(z)| (z ∈ D).

Now, if f ∈ BKp (D, X), let (xn) be a sequence in �p(X) so that rangB( f ) ⊆
p-conv(xn). Hence, for each z ∈ D, we can find a sequence (a(z)

n ) in B�p∗ (in Bc0

if p = 1) for which (1 − |z|2) f ′(z) = ∑∞
n=1 a

(z)
n xn , and, consequently, one has

(1 − |z|2)h′(z) = ψ ′(z)
|ψ ′(z)|

∞
∑

n=1

a(ψ(z))
n xn =

∞
∑

n=1

b(z)
n xn,

where

b(z)
n = ψ ′(z)

|ψ ′(z)|a
(ψ(z))
n (n ∈ N).

Consequently, h ∈ BKp (D, X) and kBp (h) ≤ kBp ( f ). Since ψ−1 ∈ Aut(D), the pre-

vious proof yields the converse inequality kBp ( f ) ≤ kBp (h). In this way, we have the
following.

Theorem 2.4 BKp (D, X) is Möbius-invariant for any p ∈ [1,∞). �

2.3 Linearisation

Next result shows the good connection of the Bloch p-compactness of a map f in
̂B(D, X) and the p-compactness of its linearisation S f in L(G(D), X).
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Theorem 2.5 If p ∈ [1,∞) and f ∈ ̂B(D, X), then f is p-compact Bloch if and only
if S f : G(D) → X is p-compact, which leads to kBp ( f ) = kp(S f ). Further, the corre-

spondence f �→ S f is a linear isometry of (̂BKp (D, X), kBp ) onto (Kp(G(D), X), kp).

Proof If f ∈ ̂BKp (D, X), then S f ∈ Kp(G(D), X) and

kp(S f ) = mp(S f (BG(D))) ≤ mp(aco(rangB( f ))) = mp(rangB( f )) = kBp ( f ),

by applying the inclusion

S f (BG(D)) = S f (aco(MB(D))) ⊆ aco(S f (MB(D))) = aco(rangB( f ))

and that a set is p-compact in X if and only if its norm-closed absolutely convex hull
is p-compact with the same measure under mp (see [12, p. 1205]).

Conversely, if S f ∈ Kp(G(D), X), then f ∈ ̂BKp (D, X) and

kBp ( f ) = mp(rangB( f )) ≤ mp(S f (BG(D))) = kp(S f ),

in view of the inclusion

rangB( f ) = S f (MB(D)) ⊆ S f (BG(D)).

The final affirmation is obtained easily from Theorem 1.1. �

2.4 Factorization

We now prove that the derivatives of the members of the Bloch ideal ̂BKp can be
produced composing with the Banach operator ideal Kp.

Corollary 2.6 Let p ∈ [1,∞) and f ∈ ̂B(D, X). Then f is p-compact Bloch if and
only if there exist a complex Banach space Y , g ∈ ̂B(D,Y ) and T ∈ Kp(Y , X) such
that f ′ = T ◦ g′. In this case, kBp ( f ) = inf{kp(T )ρB(g) : f ′ = T ◦ g′}, and it is a
maximum for T = S f and g = �.

Proof If f ∈ ̂BKp (D, X), then f ′ = S f ◦ �, with S f ∈ Kp(G(D), X) and � ∈
H(D,G(D)) by applying Theorems 1.1 and 2.5. Also, the function h : D → G(D)

given by

h(z) =
∫

[0,z]
�(w) dw (z ∈ D) ,

is Bloch with h′(z) = �(z) for all z ∈ D, h(0) = 0 and ρB(h) = 1. Thus f ′ = S f ◦h′.
Further, inf

{

kp(T )ρB(g)
} ≤ kp(S f )ρB(h) = kBp ( f ).

Conversely, assume that f ′ = T ◦ g′ as in the statement. Since g′ = Sg ◦ � by
Theorem 1.1, we have f ′ = T ◦ Sg ◦ � and this gives S f = T ◦ Sg , and hence
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S f ∈ Kp(G(D), X) since [Kp, kp] is a ideal [18, Theorem 4.2]. By Theorem 2.5, we
get that f ∈ ̂BKp (D, X) and

kBp ( f ) = kp(S f ) ≤ kp(T )
∥

∥Sg
∥

∥ = kp(T )ρB(g).

Passing to the infimumover all decompositions of f ′ gives kBp ( f ) ≤ inf{kp(T )ρB(g)}.
�

From the factorization of p-compact operators established in [9, Proposition 2.9],
we next obtain that the derivative of a p-compact Bloch map can be represented as
a composition of three maps: the derivative of a compact Bloch map, a p-compact
operator from a quotient of �p∗ to a separable space and a compact operator on this
last space.

Corollary 2.7 Let p ∈ [1,∞) and f ∈ ̂B(D, X). Then f is p-compact Bloch if and
only if there exist a closed subspace M in �p∗ (c0 instead of �p∗ if p = 1), a separable
Banach space Z, an operator T in Kp(�p∗/M, Z), a map g in ̂BK(D, �p∗/M) and
an operator S ∈ K(Z , X) such that f ′ = S ◦ T ◦ g′, in whose case kBp ( f ) =
inf{‖S‖ kp(T )ρB(g)}, where the infimum is extended over all factorizations of f ′ as
above.

Proof Assume p ∈ (1,∞). For p = 1, the proof is similar.
Suppose that f is in ̂BKp (D, X). By Theorem 2.5, S f is in Kp(G(D), X) with

kp(S f ) = kBp ( f ). Applying [9, Proposition 2.9], for each ε > 0, there exist a
closed subspace M ⊆ �p∗ (c0 instead of �p∗ if p = 1), a separable Banach space
Z , an operator T ∈ Kp(�p∗/M, Z), an operator S ∈ K(Z , X) and an operator
R ∈ K(G(D), �p∗/M) such that S f = S ◦ T ◦ R with ‖S‖ kp(T ) ‖R‖ ≤ kp(S f ) + ε.
Moreover, there exists g ∈ ̂BK(D, �p∗/M) so that R = Sg with ρB(g) = ‖R‖ by
Theorem 2.5. Thus we obtain

f ′ = S f ◦ � = S ◦ T ◦ R ◦ � = S ◦ T ◦ Sg ◦ � = S ◦ T ◦ g′

with

‖S‖ kp(T )ρB(g) = ‖S‖ kp(T ) ‖R‖ ≤ kp(S f ) + ε = kBp ( f ) + ε.

Since ε was arbitrary, we deduce that ‖S‖ kp(T )ρB(g) ≤ kBp ( f ).
Conversely, suppose that f ′ = S ◦T ◦g′ is a factorization as in the statement. Since

S ◦ T ∈ Kp(�p∗/M, X), an application of Corollary 2.6 yields that f ∈ ̂BKp (D, X)

with

kBp ( f ) ≤ kp(S ◦ T )ρB(g) ≤ ‖S‖ kp(T )ρB(g),

and from this we infer that kBp ( f ) ≤ inf{‖S‖ kp(T )ρB(g)}. �
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2.5 Inclusion

Combining Theorem 2.5 with the fact that Kp ⊆ Kq whenever 1 ≤ p ≤ q < ∞
with kq(T ) ≤ kp(T ) for all T ∈ Kp (see [18, Proposition 4.3]), we get the following
inclusions.

Corollary 2.8 Let p, q ∈ [1,∞) with p ≤ q. Then ̂BKp (D, X) ⊆ ̂BKq (D, X) and

kBq ( f ) ≤ kBp ( f ) for all f ∈ ̂BKp (D, X). �
According to [11, Definition 5.2], a map f ∈ ̂B(D, X) has finite dimensional Bloch

rank if span(rangB( f )) is a finite dimensional subspace of X .We denote by ̂BF (D, X)

the set of all finite-rank Bloch maps f from D into X for which f (0) = 0. Notice that
̂BF (D, X) is a vector subspace of ̂BKp (D, X) (apply [11, Theorem 5.7], [18, Theorem
4.2] and Theorem 2.5). We can enlarge this subspace with the following class of Bloch
maps.

Definition 2.9 A map f ∈ ̂B(D, X) is called p-approximable with p ∈ [1,∞) if we
can find a ( fn) in ̂BF (D, X) for which kBp ( fn − f ) → 0 as n → ∞. Let ̂BF p

(D, X)

denote the space of all p-approximable Bloch maps of D into X for which f (0) = 0.

Corollary 2.10 ̂BF p
(D, X) ⊆ ̂BKp (D, X) for any p ∈ [1,∞).

Proof If f ∈ ̂BF p
(D, X), we have a ( fn) in ̂BF (D, X) for which kBp ( fn − f ) → 0.

As S fn ∈ F(G(D), X) by [11, Theorem 5.7], F(G(D), X) ⊆ Kp(G(D), X) by [18,
Theorem 4.2] and kp(S fn − S f ) = kBp ( fn − f ) if n ∈ N by Theorems 1.1 and 2.5,

one obtains that S f ∈ Kp(G(D), X) by [18, Theorem 4.2], thus f ∈ ̂BKp (D, X) from
Theorem 2.5. �

2.6 Transposition

We now characterize p-compact Bloch maps in terms of their Bloch transposes.
Towards this end, let us recall (see [15]) that given p ∈ [1,∞), a map T ∈ L(X ,Y )

is quasi p-nuclear if we can find a (x∗
n ) ∈ �p(X∗) for which

‖T (x)‖ ≤
( ∞

∑

n=1

∣

∣x∗
n (x)

∣

∣

p

) 1
p

(x ∈ X).

The linear space of such operators, denoted QN p(X ,Y ), is a Banach space with the
norm

νQp (T ) = inf

⎧

⎨

⎩

∥

∥(x∗
n )

∥

∥

p : ‖T (x)‖ ≤
( ∞

∑

n=1

∣

∣x∗
n (x)

∣

∣

p

) 1
p

, ∀x ∈ X

⎫

⎬

⎭

.

Moreover, the pair [QN p, ν
Q
p ] is an operator Banach ideal. In [7, Proposition 3.8],

it was stated that an operator T ∈ Kp(X ,Y ) if and only if its adjoint T ∗ ∈
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QN p(Y ∗, X∗). Moreover, kp(T ) = νQp (T ∗) by [9, Corollary 2.7]. The next result
presents the analogue in the Bloch setting.

Corollary 2.11 Let p ∈ [1,∞) and f ∈ ̂B(D, X). Then f : D → X is p-compact
Bloch if and only if f t : X∗ → ̂B(D) is quasi p-nuclear. In this case, kBp ( f ) = νQp ( f t ).

Proof Applying Theorem 2.5, [9, Corollary 2.7] and [15, p. 32], respectively, one has

f ∈ ̂BKp (D, X) ⇔ S f ∈ Kp(G(D), X)

⇔ (S f )
∗ ∈ QN p(X

∗,G(D)∗)
⇔ f t ∈ QN p(X

∗, ̂B(D)).

Moreover, kBp ( f ) = kp(S f ) = νQp ((S f )
∗) = νQp ( f t ). �

The Banach space of p-summing operators with 1 ≤ p < ∞, denoted by p and
equipped with a natural norm πp, appears involved in the following result. A complete
study of this Banach operator ideal may be found, for instance, in [16, 17.3].

Corollary 2.12 Let p ∈ [1,∞), f ∈ ̂B(D, X) and g ∈ ̂B(D, X∗). Assume that S f is
p-summing and g is compact Bloch. Then f t ◦g is p-compact Bloch with kBp ( f t ◦g) ≤
πp(S f )ρB(g).

Proof By Theorem 2.5, Sg ∈ K(G(D), X∗)with ||Sg|| = ρB(g). Consequently, by [7,

Proposition3.13], (S f )
∗◦Sg ∈ Kp(G(D),G(D)∗)with kp((S f )

∗◦Sg) ≤ πp(S f )||Sg||.
In viewof f t◦Sg = �−1◦(S f )

∗◦Sg , the ideal property of [Kp, kp] yields that f t◦Sg ∈
Kp(G(D), ̂B(D)) with kp( f t ◦ Sg) = kp((S f )

∗ ◦ Sg). From the equality f t ◦ Sg ◦� =
f t ◦ g′ = ( f t ◦ g)′, one infers S f t◦g = f t ◦ Sg by Theorem 1.1. So f t ◦ g ∈
̂BKp (D, ̂B(D)) with kBp ( f t ◦ g) = kp(S f t◦g) by Theorem 2.5. Furthermore,

kBp ( f t ◦ g) = kp(S f t◦g) = kp((S f )
∗ ◦ Sg) ≤ πp(S f )

∥

∥Sg
∥

∥ = πp(S f )ρB(g).

�
Theorem 3.2 in [18] assures that p-compact operators are exactly those for which

their adjoints factor through a subspace of �p. We now have a similar decomposition
for the Bloch transpose of a p-compact Bloch map (compare also to [7, Proposition
3.10]).

Corollary 2.13 Let p ∈ [1,∞) and f ∈ ̂B(D, X). Then f is p-compact Bloch if and
only if there exist a closed subspace M ⊆ �p and operators R ∈ QN p(X∗, M) and
S ∈ L(M, ̂B(D)) such that f t = S ◦ R.

Proof If f ∈ ̂BKp (D, X), we have S f ∈ Kp(G(D), X) by Theorem 2.5. By [7, Propo-
sition 3.10], there exist a closed subspace M ⊆ �p and operators R ∈ QN p(X∗, M)

and S0 ∈ L(M,G(D)∗) such that (S f )
∗ = S0◦R. Taking S = �−1◦S0 ∈ L(M, ̂B(D)),

we have f t = S ◦ R.
Conversely, assume f t = S ◦ R, being S and R as in the statement. It follows that

(S f )
∗ = � ◦ f t = � ◦ S ◦ R, and so S f ∈ Kp(G(D), X) by [7, Proposition 3.10].

Hence f ∈ ̂BKp (D, X) by Theorem 2.5 �
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2.7 Ideal surjectivity

This section deals with the surjectivity of the ideal [̂BKp , k
B
p ]. We will first prove that

this ideal is surjective.
In the setting of operator ideals, for Banach spaces X ,Y , Z , a normed operator

ideal [I, ‖·‖I ] is surjective if for every metric surjection Q ∈ L(Z , X) and every T ∈
L(X ,Y ), it follows from T ◦Q ∈ I(Z ,Y ) that T ∈ I(X ,Y )with ‖T ‖I = ‖T ◦ Q‖I .
Corollary 2.14 For p ∈ [1,∞), the Banach normalized Bloch ideal [̂BKp , k

B
p ] is

surjective.

Proof (S) Let f ∈ ̂B(D, X) and assume that f ◦π ∈ ̂BKp (D, X), where π ∈ ̂H(D,D)

and π̂ is ametric surjection fromG(D) into itself. By Theorem 1.1, π̂ ◦� = π ′ ·(�◦π).
As S f ◦ π̂ ∈ L(G(D), X) with

(S f ◦ π̂) ◦ � = S f ◦ [π ′ · (� ◦ π)] = π ′ · [(S f ◦ �) ◦ π ] = π ′ · ( f ′ ◦ π) = ( f ◦ π)′,

one has S f ◦π = S f ◦ π̂ by Theorem 1.1. Since S f ◦ π̂ = S f ◦π ∈ Kp(G(D), X) by
Theorem 2.5 and the operator ideal [Kp, kp] is surjective by [7, Proposition 3.11], one
has that S f ∈ Kp(G(D), X) and kp(S f ) = kp(S f ◦ π̂). Thus f ∈ ̂BKp (D, X) and

kBp ( f ) = kp(S f ) = kp(S f ◦ π̂) = kp(S f ◦π ) = kBp ( f ◦ π)

by Theorem 2.5. �
We will now try to give a description of the surjective normed normalized Bloch

ideal [̂BKp , k
B
p ].

Given a Banach space X and p ∈ [1,∞), �weakp (X) denotes the Banach space of
all weakly p-summable sequences (xn) in X , endowed with the norm

‖(xn)‖weakp = sup

⎧

⎨

⎩

( ∞
∑

n=1

| f (xn)|p
) 1

p

: f ∈ BX∗

⎫

⎬

⎭

.

For p ∈ [1,∞), T ∈ L(X ,Y ) is right p-nuclear if there are sequences (x∗
n ) ∈

�weakp∗ (X∗) and (yn) ∈ �p(Y ) such that T (x) = ∑∞
n=1 x

∗
n (x)yn for all x ∈ X , where

the series converges in L(X ,Y ) (see [14]). The right p-nuclear norm of T is defined
by

ν p(T ) = inf
{

∥

∥(x∗
n )

∥

∥

weak
p∗ ‖(yn)‖p

}

,

where the infimum extends over all representations of T as above. The set of such
operators, denoted N p(X ,Y ), is a Banach space with the right p-nuclear norm.

The Bloch analogue of this class of operators can be introduced as follows.
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Definition 2.15 Amap f ∈ ̂B(D, X) is called right p-nuclear Bloch with p ∈ [1,∞)

if there exist sequences (gn) in �weakp∗ (̂B(D)) and (xn) in �p(X) so that f = ∑∞
n=1 gn ·xn

in (̂B(D, X), ρB). We will say that
∑

n≥1 gn · xn is a right p-nuclear Bloch represen-
tation of f . Define

ν pB( f ) = inf
{

‖(gn)‖weakp∗ ‖(xn)‖p

}

,

with the infimum taken over all right p-nuclear Bloch representations of f . The set
of all right p-nuclear Bloch maps of D into X for which f (0) = 0 will be denoted by
̂BN p (D, X).

Theorem 2.16 [̂BN p , ν pB] is a Banach normalized Bloch ideal for any p ∈ [1,∞).

Proof (N1) Let f ∈ ̂BN p (D, X) and let
∑

n≥1 gn · xn be a right p-nuclear Bloch
representation of f . It is clear that f ′(z) = ∑∞

n=1 g
′
n(z)xn for all z ∈ D. For each z in

D, we have

(1 − |z|2)
m

∑

k=1

∥

∥g′
k(z)xk

∥

∥ ≤
(

m
∑

k=1

(1 − |z|2)p∗ ∣

∣g′
k(z)

∣

∣

p∗
) 1

p∗
(

m
∑

k=1

‖xk‖p

) 1
p

=
(

m
∑

k=1

∣

∣

∣(1 − |z|2)γz(gk)
∣

∣

∣

p∗
) 1

p∗
(

m
∑

k=1

‖xk‖p

) 1
p

≤ ‖(gn)‖weakp∗ ‖(xn)‖p

for all m ∈ N. Hence,

(1 − |z|2) ∥

∥ f ′(z)
∥

∥ ≤ (1 − |z|2)
∞
∑

n=1

∥

∥g′
n(z)xn

∥

∥ ≤ ‖(gn)‖weakp∗ ‖(xn)‖p

for all z ∈ D, which gives ρB( f ) ≤ ‖(gn)‖weakp∗ ‖(xn)‖p. Since the right p-nuclear

Bloch representation of f was arbitrary, we deduce that ρB( f ) ≤ ν pB( f ). Mimicking
the proof of Theorem5.25 in [8], we can prove that [̂BN p , ν pB] is a Banach normalized
Bloch ideal.

(N2) Take g in ̂B(D) and x in X . Clearly, g · x ∈ ̂BN p (D, X) with ν pB(g · x) ≤
ρB(g) ‖x‖. For the reverse inequality, apply that ρB ≤ ν pB on ̂BN p (D, X) by (N1),
and that [̂B, ρB] is a normed normalized Bloch ideal by [11, Proposition 5.13].

(N3) Let h ∈ ̂H(D,D), f ∈ ̂BN p (D, X) and T ∈ L(X ,Y ). Let
∑

n≥1 gn · xn be a
right p-nuclear Bloch representation of f . We have

(1 − |z|2)
∥

∥

∥

∥

∥

(

T ◦ f ◦ h −
n

∑

k=1

(gk ◦ h) · T (xk)

)′
(z)

∥

∥

∥

∥

∥

= (1 − |z|2) ∣

∣h′(z)
∣

∣

∥

∥

∥

∥

∥

T

(

f ′(h(z)) −
n

∑

k=1

g′
k(h(z))xk

)∥

∥

∥

∥

∥
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≤ (1 − |h(z)|2) ‖T ‖
∥

∥

∥

∥

∥

(

f −
n

∑

k=1

gk · xk
)′

(h(z))

∥

∥

∥

∥

∥

≤ ‖T ‖ ρB

(

f −
n

∑

k=1

gk · xk
)

for any z ∈ D and n ∈ N, by using Pick–Schwarz Lemma. Taking supremum over all
z ∈ D, we obtain

ρB

(

T ◦ f ◦ h −
n

∑

k=1

(gk ◦ h) · T (xk)

)

≤ ‖T ‖ ρB

(

f −
n

∑

k=1

gk · xk
)

for all n ∈ N. From this, T ◦ f ◦ h = ∑∞
n=1(gn ◦ h) · T (xn) in (̂B(D,Y ), ρB), where

(gn ◦ h) ∈ �weakp∗ (̂B(D)) with

‖(gn ◦ h)‖weakp∗ = sup
φ∈B

̂B(D)∗

( ∞
∑

n=1

|φ(gn ◦ h)|p∗
) 1

p∗

= sup
φ∈B

̂B(D)∗

( ∞
∑

n=1

|(φ ◦ Ch)(gn)|p∗
) 1

p∗
≤ ‖(gn)‖weakp∗ ,

and ‖(T (xn))‖p ≤ ‖T ‖ ‖(xn)‖p. Hence, T ◦ f ◦ h ∈ ̂BN p (D,Y ) with

ν pB(T ◦ f ◦ h) ≤ ‖(gn)‖weakp∗ ‖T ‖ ‖(xn)‖p ,

and so ν pB(T ◦ f ◦ h) ≤ ‖T ‖ ν pB( f ). �
A right p-nuclear Bloch map f of D into X with f (0) = 0 and its associate

linearisation S f from G(D) into X are related as follows.

Proposition 2.17 Let p ∈ [1,∞) and f ∈ ̂B(D, X). Then f : D → X is right
p-nuclear Bloch if and only if S f : G(D) → X is right p-nuclear, in whose case,
ν p(S f ) = ν pB( f ). Moreover, f �→ S f is a linear isometry from (̂BN p (D, X), ν pB)

onto (N p(G(D), X), ν p).

Proof Assume that f ∈ ̂BN p (D, X) and let
∑

n≥1 gn · xn be a right p-nuclear Bloch
representation of f . By Theorem 1.1, there is a unique S f ∈ L(G(D), X) for which
S f ◦ � = f ′. Analogously, for each n ∈ N, we have a functional Sgn ∈ G(D)∗ with
||Sgn || = ρB(gn) and Sgn ◦� = g′

n . Notice that
∑+∞

n=1 Sgn · xn ∈ L(G(D), X). Indeed,
given m ∈ N, the Hahn–Banach Theorem guarantees that for each k ∈ {1, . . . ,m},
there exists a functional φk ∈ B

̂B(D)∗ such that |φk(gk)| = ρB(gk) and, using the
Hölder inequality, we have
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m
∑

k=1

∥

∥Sgk · xk
∥

∥ =
m

∑

k=1

∥

∥Sgk
∥

∥ ‖xk‖ =
m

∑

k=1

ρB(gk) ‖xk‖

≤
(

m
∑

k=1

|φk(gk)|p∗
) 1

p∗
(

m
∑

k=1

‖xk‖p

) 1
p

≤ ‖(gn)‖weakp∗ ‖(xn)‖p .

We can write

f ′ =
∞
∑

n=1

g′
n · xn =

∞
∑

n=1

(Sgn ◦ �) · xn =
( ∞

∑

n=1

Sgn · xn
)

◦ �.

Hence, S f = ∑∞
n=1 Sgn · xn by Theorem 1.1, where (Sgn ) ∈ �weakp∗ (G(D)∗)

and also
∥

∥(Sgn )
∥

∥

weak
p∗ ≤ ‖(gn)‖weakp∗ . Thus S f ∈ N p(G(D), X) with ν p(S f ) ≤

‖(gn)‖weakp∗ ‖(xn)‖p. Passing to the infimum over all right p-nuclear Bloch repre-

sentation of f , we get that ν p(S f ) ≤ ν pB( f ).
Conversely, suppose that S f ∈ N p(G(D), X) and let

∑

n≥1 φn · xn be a right p-
nuclear representation of S f . By Theorem 1.1, for a natural n, we can take a gn ∈ ̂B(D)

for which �(gn) = φn with ρB(gn) = ||φn||. Therefore,

(1 − |z|2)
∥

∥

∥

∥

∥

(

f −
n

∑

k=1

gk · xk
)′

(z)

∥

∥

∥

∥

∥

= (1 − |z|2)
∥

∥

∥

∥

∥

f ′(z) −
n

∑

k=1

g′
k(z)xk

∥

∥

∥

∥

∥

= (1 − |z|2)
∥

∥

∥

∥

∥

S f (γz) −
n

∑

k=1

�(gk)(γz)xk

∥

∥

∥

∥

∥

= (1 − |z|2)
∥

∥

∥

∥

∥

(

S f −
n

∑

k=1

φk · xk
)

(γz)

∥

∥

∥

∥

∥

≤ (1 − |z|2)
∥

∥

∥

∥

∥

S f −
n

∑

k=1

φk · xk
∥

∥

∥

∥

∥

‖γz‖

=
∥

∥

∥

∥

∥

S f −
n

∑

k=1

φk · xk
∥

∥

∥

∥

∥

for all z ∈ D and n ∈ N. Taking supremum over all z ∈ D, we obtain

ρB

(

f −
n

∑

k=1

gk · xk
)

≤
∥

∥

∥

∥

∥

S f −
n

∑

k=1

φk · xk
∥

∥

∥

∥

∥

for all n ∈ N. Hence, f = ∑∞
n=1 gn · xn in (̂B(D, X), ρB), where (gn) ∈

�weakp∗ (̂B(D)) with ‖(gn)‖weakp∗ ≤ ‖(φn)‖weakp∗ . So f ∈ ̂BN p (D, X) with ν pB( f ) ≤
‖(φn)‖weakp∗ ‖(xn)‖p, and thus ν pB( f ) ≤ ν p(S f ).
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The last assertion in the statement follows easily from what was proved above and
from Theorem 1.1. �
Corollary 2.18 If p ∈ [1,∞)and f ∈ ̂BN p (D, X), then f ∈ ̂BKp (D, X)and kBp ( f ) ≤
ν pB( f ).

Proof From Proposition 2.17, one has S f ∈ N p(G(D), X) and ν p(S f ) = ν pB( f ).
Thus, S f ∈ Kp(G(D), X) and kp(S f ) ≤ ν p(S f ) (see [7, p. 295]). So f ∈ ̂BKp (D, X)

and kBp ( f ) ≤ ν pB( f ) by Theorem 2.5. �
Inspired by operator ideal theory (see [16, Section 4.7]), we introduce:

Definition 2.19 Given a normed normalized Bloch ideal I ̂B, its surjective hull is the
smallest surjective normednormalizedBloch idealwhich containsI ̂B , and it is denoted
by (I ̂B)sur.

We have seen above that the Banach normalized Bloch ideal (̂BKp , k
B
p ) is surjective

and contains ̂BN p . Therefore, (̂BN p )sur ⊆ ̂BKp . It would be interesting to know if
this inclusion becomes an equality as it occurs (see [7, Proposition 3.11]) in the linear
setting.
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