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Abstract

We consider the orthogonal polynomials on [−1, 1] with respect to the weight

wc (x) = h (x) (1− x)α (1 + x)β Ξc (x) , α, β > −1,

where h is real analytic and strictly positive on [−1, 1], and Ξc is a step-like function:
Ξc(x) = 1 for x ∈ [−1, 0) and Ξc(x) = c2, c > 0, for x ∈ [0, 1]. We obtain strong
uniform asymptotics of the monic orthogonal polynomials in C, as well as first terms of
the asymptotic expansion of the main parameters (leading coefficients of the orthonormal
polynomials and the recurrence coefficients) as n → ∞. In particular, we prove for
wc a conjecture of A. Magnus regarding the asymptotics of the recurrence coefficients.
The main focus is on the local analysis at the origin. We study the asymptotics of the
Christoffel-Darboux kernel in a neighborhood of the jump and show that the zeros of the
orthogonal polynomials no longer exhibit clock behavior.

For the asymptotic analysis we use the steepest descendent method of Deift and Zhou
applied to the non-commutative Riemann-Hilbert problems characterizing the orthogonal
polynomials. The local analysis at x = 0 is carried out in terms of confluent hypergeo-
metric functions. Incidentally, we establish some properties of these functions that may
have an independent interest.

1 Introduction and statement of results

1.1 Introduction

Szegő is the founder of the modern asymptotic theory of orthogonal polynomials on the unit
interval for weights w that satisfy the Szegő condition

� 1

−1

logw(x)√
1− x2

dx > −∞. (1)

For the classical Jacobi weights the asymptotic results both on and away from the interval of
orthogonality, as well as at its endpoints, can be derived using multiple identities that these
∗Corresponding author.
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orthogonal polynomials satisfy: the differential equation, the Rodrigues formula, integral
representation, etcetera. However, in a general situation the problem is much more difficult.
Starting from the 80’s, many new asymptotic results were found for various classes of weights,
and the breakthrough was partially motivated by the development of the tools from potential
theory and operator theory.

An important new technique for obtaining asymptotics for orthogonal polynomials in all
regions of the complex plane is based on the characterization of the orthogonal polynomials
by means of a Riemann–Hilbert problem for 2× 2 matrix valued functions due to Fokas, Its,
and Kitaev [10], combined with the steepest descent method of Deift and Zhou, introduced
in [7] and further developed in [2, 6, 9], to mention a few.

A crucial contribution to this method is [14], where the complete asymptotic expansion
for the orthogonal polynomials with respect to a Jacobi weight modified by a real analytic
and strictly positive function is obtained. However, not much is known in the case when the
weight has a jump discontinuity on the interval. So far, the only contribution is [13], where
the authors considered an exponential weight on R with a jump at the origin, although from
a different perspective of asymptotics of Hankel determinants.

Combining ideas from [13] and [14], we consider polynomials that are orthogonal on a
finite interval [−1, 1] with respect to a modified Jacobi weight with a jump, namely

wc(x) = (1− x)α(1 + x)βh(x) Ξc(x), x ∈ [−1, 1], (2)

where α, β > −1 and h(x) is real analytic and strictly positive on [−1, 1], and Ξc is a step-like
function, equal to 1 on [−1, 0) and c2 > 0 on [0, 1]. Observe that w1 is the weight considered
in [14]. The main asymptotic difference between the polynomials orthogonal with respect to
w1 and wc, (c 6= 1), lies in their behavior near the origin. While in both cases the analysis near
the endpoints of the interval typically involves Bessel functions, only for c 6= 1 do confluent
hypergeometric functions appear around the origin.

We use Pn(x) = Pn(x;wc) to denote the monic polynomial of degree n orthogonal with
respect to the weight wc on [−1, 1],

� 1

−1
Pn(x;wc)xkwc(x) dx = 0, for k = 0, 1, . . . , n− 1,

and pn(x) = pn(x;wc) to denote the corresponding orthonormal polynomials,

pn(x) = knPn(x),

where kn > 0 is the leading coefficient of pn.
The leading term of the asymptotics of polynomials pn and Pn(z) (as n→∞) for a weight

satisfying the Szegő condition (1) (and wc does) and z ∈ C \ [−1, 1] is well known, see [21].
It can be formulated in terms of two functions that will play a relevant role in what follows,
and that we introduce here. Namely,

ϕ (z) = z +
√
z2 − 1 (3)
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is the conformal map from C \ [−1, 1] onto the exterior of the unit circle, with the branch of√
z2 − 1 that is analytic in C \ [−1, 1] and behaves like z as z →∞. Furthermore, since the

weight wc on [−1, 1] satisfies (1), we can define the so-called Szegő function D(z) = D(z;wc)
associated with wc, given by

D(z) = exp

(√
z2 − 1
2π

� 1

−1

logwc(x)√
1− x2

dx

z − x

)
, for z ∈ C \ [−1, 1],

again with
√
z2 − 1 > 0 for z > 1 and

√
1− x2 > 0 on (−1, 1). The function D(z) is a

non-zero analytic function on C \ [−1, 1] such that

D+(x)D−(x) = wc(x), for a.e. x ∈ (−1, 1),

where D+(x) and D−(x) denote the limiting values of D(z) as z approaches x from above
and below, respectively. In particular, by (1), the limit

D∞ = lim
z→∞

D(z) = exp
(

1
2π

� 1

−1

logwc(x)√
1− x2

dx

)
exists and is a positive real number. From Szegő’s theory (see [21]) it follows that

2nPn(z)
ϕ(z)n

=
D∞

D(z;wc)
ϕ(z)1/2

√
2(z2 − 1)1/4

[1 + o(1)] , as n→∞, (4)

uniformly on compact subsets of C \ [−1, 1]. Using the multiplicative property of the Szegő
function, we conclude that in comparison with the case c = 1, for c 6= 1 there is an extra
factor, corresponding to the Szegő function of the pure jump Ξc.

In this paper, we give uniform and more precise asymptotic results for the special weights
(2). We obtain the first terms of the asymptotic expansions for kn, Pn, and pn, as well as for
the coefficients an and bn in the three-term recurrence relation

Pn+1(z) = (z − bn)Pn(z)− a2
nPn−1(z), (5)

satisfied by the monic orthogonal polynomials.
From our analysis we are also able to derive strong asymptotics for the orthogonal poly-

nomials in the open interval (−1, 1), near the endpoints ±1, and what is most interesting, in
a neighborhood of the origin where the jump of the weight takes place.

Since the behavior of the polynomials Pn away from the origin is very similar to the case
c = 1 treated in [14], we will not present all formulas here. However, all the ingredients
are contained in the results of the steepest descent analysis performed in Section 2, so that
an interested reader can effortlessly derive the omitted asymptotic formulas. In this paper
we concentrate on the features of the polynomials and their coefficients that stem from the
discontinuity of the weight at the origin.
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1.2 Asymptotics away from the interval of orthogonality

In order to formulate our results we need to introduce some notation. For h(x) real analytic
and strictly positive on [−1, 1], n ∈ N and c > 0 we define the following real-valued function
and real quantities:

~(x) def=
√

1− x2

2π

 1

−1

log h (t)√
1− t2

dt

t− x
, x ∈ (−1, 1), (6)

ηn = ηn(c) def=
log c
π

log(4n) +
nπ

2
+
β − α

4
π + ~(0), (7)

where
�

is the integral understood in terms of its principal value. In general, we assume
always

√
1− x2 > 0 for x ∈ (−1, 1), unless stated otherwise.

We also introduce what will play the role of the main phase shift in all asymptotic for-
mulas,

θn =

{
θn(c) def= 2

(
ηn − arg

(
Γ
(
i log c
π

)))
, if c 6= 1,

2
(
ηn + π

2

)
, if c = 1,

(8)

where Γ(·) is the Gamma function; for purely imaginary values of λ 6= 0, we take arg(Γ(λ)) ∈
(−π/2, π/2).

The simplest asymptotic result concerns the monic orthogonal polynomials Pn. Observe
that a full asymptotic expansion for the usual Jacobi polynomials (h ≡ 1, c = 1) can be
found in [21, Theorem 8.21.9], while for general real analytic and positive h (but with c = 1)
it was established in [14]. Here we find only the first two terms of the asymptotic expansion,
improving (4):

Theorem 1 We have that

2nPn(z)
ϕ(z)n

=
D∞

D(z;wc)
ϕ(z)1/2

√
2(z2 − 1)1/4

[
1 +
Hn(z)
n

+O
(

1
n2

)]
, as n→∞,

uniformly on compact subsets of C\ [−1, 1]. The function H(z) is analytic on C\ [−1, 1], and
given by

Hn (z) = − 4α2 − 1
8(ϕ(z)− 1)

+
4β2 − 1

8(ϕ(z) + 1)
− log(c)

2πzϕ(z)

(
cos(θn)ϕ(z) + sin(θn)− log(c)

π

)
, (9)

with θn defined in (8).

Remark 2 A more detailed analysis of the Szegő function D(·;wc) is carried out in Section
2.3. We can simplify notation in the formula above observing that

(z2 − 1)1/4

ϕ(z)1/2
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is the Szegő function for the weight
√

1− x2 on [−1, 1], and it takes the value 2−1/2 at infinity.
Hence,

D∞
D(z;wc)

ϕ(z)1/2

√
2(z2 − 1)1/4

=
D(∞; ŵc)
D(z; ŵc)

,

where ŵc(x) =
√

1− x2wc(x) is known as the trigonometric weight associated to wc.

The RH analysis performed below for z /∈ [−1, 1] allows also to establish a result for
some relevant parameters associated with the orthogonal polynomials. Recall that the monic
polynomials Pn satisfy the three term recurrence relation (5). The asymptotic behavior of
these recurrence coefficients (as n→∞) is given in the following theorem:

Theorem 3 As n→∞,

an =
1
2
− log c

2πn
sin(θn) +O

(
1
n2

)
, (10)

bn = − log c
πn

cos (θn) +O
(

1
n2

)
, (11)

with θn defined in (8).

Remark 4 In [17], A. Magnus studied weights of the form

(1− x)α (1 + x)β |x0 − x|γ ×

{
B, for x ∈ [−1, x0) ,
A, for x ∈ [x0, 1] ,

with A and B > 0 and α, β and γ > −1, and x0 ∈ (−1, 1). Formulas (10)–(11) show that
for γ = x0 = 0 the asymptotic behavior of the recurrence coefficients conjectured in [17] is
correct, with the possibility to replace o(1/n) by O(1/n2) in the error term. For more details
see Section 3.2 below; the proof of the conjecture in its full generality is contained in [11].

The leading coefficients kn of the orthonormal polynomials pn satisfy the following asymp-
totic relation:

Theorem 5 As n→∞,

kn =
2n√
πD∞

[
1−

(
2α2 + 2β2 − 1

8
+

log(c)
2π

(
log(c)
π

+ sin(θn+1)
))

1
n

+O
(

1
n2

)]
,

with θn defined in (8).
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1.3 Local asymptotics

Now we need to introduce further notation. Set

G (a; ζ) def= 1F1 (a; 1; ζ) e−ζ/2 = e−ζ/2
∞∑
k=0

(a)k
(k!)2

ζk, (12)

where 1F1 (a; b; ·) is the confluent hypergeometric function; G is an entire function of ζ for
any value of the parameter a ∈ C, and G(a; 0) = 1. Furthermore, for x ∈ (−δ, 0) ∪ (0, δ) let

ρ(x) def=
log c
π

log
∣∣∣∣arcsin(x)

2x

(
1 +

√
1− x2

)∣∣∣∣− α+ β

2
arcsin(x) + ~(x)− ~(0), (13)

completed to a continuous function on (−1, 1) by ρ(0) = 0.
Set also

Υ(c) def= sgn(log(c))

√
2c log c
c2 − 1

, c 6= 1, Υ(1) = 1, (14)

where we always take the positive value of the square root. The asymptotic behavior of Pn
on compact subsets of an interval (−δ, δ) ⊂ (−1, 1) is given by the following theorem:

Theorem 6 For δ ∈ (0, 1), locally uniformly on compact subsets of (−δ, δ) the following
asymptotic formula holds:

Pn(x) =
D∞

2n−1/2
√
cw1(x)

Υ(c)
(1− x2)1/4

× Re
[
ei(ρ(x)+

θn−π−arcsin(x)
2

)G (λ; 2in arcsin (x))
(

1 +
Rn(x)
n

+O
(

1
n2

))]
,

with

Rn (x) = − 4α2 − 1
8(ei arccos(x) − 1)

+
4β2 − 1

8(ei arccos(x) + 1)

− log(c)
2πxei arccos(x)

(
cos(θn)ei arccos(x) + sin(θn)− log(c)

π

)
+

i log c
2π arcsin(x)

(
log c
π

+ e−i (2ρ(x)+θn+arccos(x))

)
,

ρ(x) given in (13), θn in (8), and λ = i log(c)/π.

Remark 7 The Riemann-Hilbert analysis we perform next gives us an asymptotic expression
for Pn’s in a small disk of the complex plane centered at the origin, see formula (101) in Section
3.4.

6



Corollary 8 Locally uniformly for x ∈ (−δ, δ), δ ∈ (0, 1),

Pn

(πx
n

)
=

D∞Υ(c)
2n−1/2

√
c h(0)

Im
[
ei θn/2G (λ; 2πix)

(
1 +O

(
1
n

))]
, (15)

with θn given in (8) and λ = i log(c)/π.

See Figure 1 for a typical behavior of the function in the right hand side of (15) close to
the origin.

!4 !2 2 4

!2

!1

1

2

Figure 1: Typical graphics of the r.h.s. of (15) near the origin.

Recall that Pn has n simple zeros, all lying on (−1, 1). It is well known that they distribute
asymptotically in the weak-* sense according to the equilibrium measure of the interval. In
other words, the normalized zero counting measure for the sequence Pn weakly tends to the
absolutely continuous measure on [−1, 1] given by ω(x) dx, with

ω(x) def=
1
π

1√
1− x2

.

As it follows from several works of Deift and collaborators (and also from a recent series of
papers of Lubinsky and Levin and Lubinsky, see e.g. [15, 16]), a much stronger statement
holds: at any point of (−1, 0)∪ (0, 1) they distribute very precisely in accordance with ω(x),
complying with the so-called “clock behavior”, see e.g. [19]. If, following [19], we enumerate
the zeros x(n)

j of Pn as follows,

· · · < x
(n)
−k < · · · < · · · < x

(n)
−1 < 0 ≤ x(n)

0 < · · · < x
(n)
k < . . . (16)
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then “clock behavior” at the origin (where ω(0) = 1/π) means

lim
n→∞

n

π

(
x

(n)
j+1 − x

(n)
j

)
= 1, j ∈ Z. (17)

Proposition 9 If c > 1, then the sequence {nx(n)
0 /π} is dense in an interval of the form

[0, t], where t = t(c) < 1. Furthermore,

0 < lim inf
n

n

π

(
x

(n)
k − x

(n)
k−1

)
≤ lim sup

n

n

π

(
x

(n)
k − x

(n)
k−1

)
< 1, k ∈ N,

and
lim inf

n

n

π

(
x

(n)
k − x

(n)
k−1

)
> 1, −k ∈ N.

In particular, the clock behavior of the zeros of Pn at the origin does not hold.
If 0 < c < 1, the same inequalities hold inverting the roles of k and −k.

This result is not surprising, taking into account that x = 0 is not even a Lebesgue point for
the weight wc, that is, regardless of the meaning we give to wc(0),

lim
s→0+

1
s

� s

−s
|wc(x)− wc(0)| dx 6= 0.

However, to the best of our knowledge, wc with c 6= 1 provides the first instance of an explicit
orthogonality measure for which the clock behavior fails in the bulk (interior of its support).

Remark 10 A weaker condition than (17) is the quasi-clock behavior (see [19]), namely

lim
n→∞

x
(n)
j+1 − x

(n)
j

x
(n)
1 − x(n)

0

= 1, j ∈ Z.

This limit is violated in our situation too. However,

lim
j→±∞

lim inf
n→∞

n

π

(
x

(n)
j+1 − x

(n)
j

)
= lim

j→±∞
lim sup
n→∞

n

π

(
x

(n)
j+1 − x

(n)
j

)
= 1, (18)

which shows a smooth transition to the genuine clock behavior as we move away from the
jump of the weight.

Very much related with the clock behavior is the “universality problem” for the Christoffel-
Darboux (or CD) kernel

Kn (x, y) def=
n−1∑
k=0

pk (x) pk (y) , (19)

where pn are the orthonormal polynomials with respect to the weight wc. This problem
has its origin in the random matrix theory and has been attracting lately close attention of
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many researchers. A recent series of remarkable contributions of Lubinsky allowed to weaken
considerably the conditions on the weight to be able to assure universality: now we know
that for t within the support of the weight where it is continuous,

lim
n→∞

π

n
√

1− t2
Kn

(
t+

πx

n
√

1− t2
, t+

πy

n
√

1− t2

)
=

sin (π(x− y))
π(x− y)

. (20)

The right hand side is the well-known sine (or sinc) kernel; for our weight wc, this formula is
valid for t ∈ (−1, 0) ∪ (0, 1). It was observed in [16] that (20) implies (17).

We show that the jump discontinuity in the weight leads to a different kernel, constructed
in terms of the confluent hypergeometric function defined in (12):

Theorem 11 For c > 0, c 6= 1, locally uniformly for x and y on (−δ, δ), 0 < δ < 1,

lim
n→∞

π

n
Kn

(πx
n
,
πy

n

)
= K∞ (x, y) , (21)

with

K∞ (x, y)

=


1

h(0)πi
log c
c2 − 1

[
G (1 + λ; 2πix) ;G (λ; 2πiy)

]
x− y

, x 6= y,

2
h(0)

log c
c2 − 1

(G′ (1 + λ; 2πix)G (λ; 2πix)−G (1 + λ; 2πix)G′ (λ; 2πix)) , x = y,

(22)

where λ = i log(c)/π, G was introduced in (12), and as usual, [f(x); g(y)] = f(x)g(y) −
f(y)g(x).

Several remarks are in order.
Since G′ (1 + λ; 0) = λ + 1/2 and G (λ; 0) = 1, evaluating K∞(0, 0) in (22) we conclude

that

lim
n→∞

Kn

(
πx
n ,

πx
n

)
Kn (0, 0)

= G′ (1 + λ; 2πix)G (λ; 2πix)−G (1 + λ; 2πix)G′ (λ; 2πix) ,

locally uniformly in (−δ, δ). This shows that even the weak Lubinsky’s “wiggle condition”
(term coined by B. Simon, see e.g. [19, Theorem 3.6]) is not satisfied in a neighborhood of
the jump of the weight.

The kernel for x 6= y in (22) is written in the so-called integrable form. Taking into
account the properties of the functions in the right hand side, we can rewrite it alternatively
in a totally real form:

K∞(x, y) =
2

π(x− y)h(0)
log c
c2 − 1

Im (G (1 + λ; 2πix)G (λ; 2πiy)) , x 6= y. (23)

9



Since G(1, z) = exp(z/2), straightforward computations show that as c→ 1, K∞ reduces
to the sine kernel. Notice that combining ideas from [16] and [18] we can use (23) to arrive
at the same conclusions about the spacing of zeros of Pn’s as we did at the end of Subsection
3.4.

The confluent hypergeometric functions appeared in the scaling limit (as the number of
particles goes to infinity) of the correlation functions of the pseudo-Jacobi ensemble in [3].
This ensemble corresponds to a sequence of weights of the form

(1 + x2)−n−Re(s)e2 Im(s) arg(1+ix), x ∈ R, (24)

where n is the degree of the polynomial and s is a complex parameter. The connection between
both problems becomes apparent if we perform the inversion x 7→ 1/x in (24); this creates at
the origin an algebraic singularity with the exponent Re(s) and a jump depending on Im(s).
K∞ is a particular case of the reproducing kernel obtained by Borodin and Olshansky in
Theorem 2.1 of [3] when Re(s) = 0; for a general situation, see [11].

A recent paper of Lubinsky [15] revealed an interesting connection of K∞ with the theory
of entire functions. Namely, in accordance with Theorem 1.6 of [15], K∞ is a reproducing
kernel of a de Brange space, equivalent to a classical Paley-Wiener space. More precisely and
following the notation of [15], the Hermite-Biehler class HB is the set of entire functions
E with no zeros in the upper half plane C+ def= {Im z > 0} and such that |E(z)| ≥ |E(z)|
for z ∈ C+. The de Branges space H(E) corresponding to E ∈ HB is comprised of entire
functions g such that both g(z)/E(z) and g(z)/E(z) belong to the Hardy class H2(C+). A
reproducing kernel for H(E) is

K(x, y) =
i

2π
E(x)E(y)− E(x)E(y)

x− y
, x 6= y. (25)

Comparing this expression with K∞ in (22) we conclude that

K(x, y) = K∞(x, y),

with λ = i log(c)/π and

E(z) =
(

2
h(0)

log c
c2 − 1

)1/2

G(λ, 2πiz) ∈ HB

(see below). Lubinsky showed that reproducing kernels, different from the right hand side in
(20), can appear for sequences of measures (cf. [3]). To the best of our knowledge, this is the
first explicit example of a non-sine reproducing kernel of a de Brange space that arises as a
universality limit in the bulk of a fixed measure of orthogonality.

The proof of the asymptotic results stated in this paper (see Section 3) is based on the
steepest descent analysis of the Riemann-Hilbert problem that we carry out in Section 2.
A key step is the construction of the local representation at the origin, which is done in

10



Subsection 2.6. The study of the zeros of Pn’s at the origin, the analysis of the clock behavior
and the connection with the de Brange spaces requires some further properties of the confluent
hypergeometric function 1F1 (λ; 1; z), which we were unable to find in the literature and which
might have an independent interest. We summarize them in the next proposition; the proofs
are relegated to Section 4.

Proposition 12 Let a ∈ R \ {0}. Then

(i) functions
f1(z) = G(ia, iz) and f2(z) = G(1 + ia, iz)

(see (12)) belong to the Hermite-Biehler class HB;

(ii) for x ∈ R,
1F1 (ia; 1; ix) 6= 0 and 1F1 (1 + ia; 1; ix) 6= 0. (26)

In particular, all zeros of 1F1 (ia; 1; iz) lie in the lower half plane C− def= {Im z < 0},
while the zeros of 1F1 (1 + ia; 1; iz) lie in the upper half plane C+. Additionally,

|1F1 (1 + ia; 1; iz) | ≤ |1F1 (ia; 1; iz) |, Im z ≥ 0, (27)

and the equality holds only for z ∈ R.

(iii) if a > 0, the function

y(x) def= arg 1F1 (ia; 1; ix) , y(0) = 0,

is real-analytic and non-positive, strictly increasing on the negative and strictly decreas-
ing on the positive semiaxis. For a < 0 the same assertion is valid replacing y(x) by
−y(x). It is also the solution of the following initial value problem:

xy′ = a (cos (x− 2y)− 1) , y(0) = 0; (28)

(iv) for a ∈ R, the function

G(x) def= x− 2 arg (1F1 (ia; 1; ix)) = x− 2y(x), G(0) = 0, (29)

is strictly increasing in R.

Remark 13 The assertion in (i) does not imply that 1F1 (ia; 1; iz) ∈ HB, and in general,
this is not true.

Interestingly enough, the proof of (i) is based on some properties of the Christoffel-
Darboux kernel observed by Lubinsky in [15]. In this sense, the theory of the confluent
hypergeometric functions has benefited from the properties of the reproducing kernels. In
the opposite direction, the strict inequality in (27) implies that K∞(z, z) > 0 for z ∈ C \ R
and c 6= 1, see (113) below.
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2 The steepest descent analysis

2.1 The Riemann-Hilbert problem

Following Fokas, Its and Kitaev [10] we characterize both the orthogonal polynomials and the
CD kernel in terms of the unique solution Y of the following 2× 2 matrix valued Riemann-
Hilbert (RH) problem: for n ∈ N,

(Y1) Y is analytic in C \ [−1, 1].

(Y2) On (−1, 0) ∪ (0, 1), Y possesses continuous boundary values Y+ (from the upper half
plane) and Y− (from the lower half plane), and

Y+(x) = Y−(x)
(

1 wc(x)
0 1

)
.

(Y3) As z →∞,

Y(z) =
(

I +O
(

1
z

))(
zn 0
0 z−n

)
,

where I is the identity 2× 2 matrix.

(Y4) Y has the following asymptotic behavior at the end points of the interval: for ζ ∈
{−1, 1} set s = α if ζ = 1, and s = β if ζ = −1. Then for z → ζ, z ∈ C\ [−1, 1],

Y(z) =



O

(
1 |z − ζ|s

1 |z − ζ|s

)
, if s < 0;

O

(
1 log |z − ζ|
1 log |z − ζ|

)
, if s = 0;

O

(
1 1
1 1

)
, if s > 0.

Furthermore, at the origin Y has the following behavior: for z → 0, z ∈ C\ [−1, 1],

Y(z) = O
(

1 log |z|
1 log |z|

)
.

Standard arguments (see e.g. [14]) show that this RH problem has a unique solution given by

Y (z, n) =
(

Pn (z) C (Pnwc) (z)
−2πik2

n−1Pn−1 (z) −2πik2
n−1C (Pn−1wc) (z)

)
, (30)
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where Pn is the monic orthogonal polynomial of degree n with respect to wc; kn is the leading
coefficient of the orthonormal polynomial pn, and C (·) is the Cauchy transform on [−1, 1]
defined by

C (f) (z) =
1

2πi

� 1

−1

f (x)
x− z

dx .

Clearly, Y and other matrices introduced hereafter depend on n, fact that we indicate writing
Y(·, n). However, we omit the explicit reference to n from the notation whenever it cannot
lead us into confusion.

2.2 First transformations

We apply the Deift-Zhou method of steepest descent to the RH problem above; some of the
steps are standard and we occasionally omit those less relevant details that can be easily
found in literature (each time we try to provide a suitable reference though). As in (3),
ϕ denotes the conformal mapping from C \ [−1, 1] onto the exterior of the unit circle. Let

σ3 =
(

1 0
0 −1

)
be the third Pauli matrix; in what follows, for a ∈ C\{0} we use the notation

aσ3 def=
(
a 0
0 1/a

)
;

then for b ∈ C, abσ3 is understood as (ab)σ3 . Furthermore, if γ is an oriented Jordan arc, and
an analytic function f has boundary values at γ, we denote by f+ (resp., f−) its boundary
values on γ from the left (resp., from the right).

Set
T (z) def= 2nσ3Y (z)ϕ (z)−nσ3 . (31)

Then T is the unique solution of the following equivalent RH problem:

(T1) T is analytic in C \ [−1, 1].

(T2) On (−1, 0)∪ (0, 1), oriented from −1 to 1, T possesses continuous boundary values T+

and T−, and

T+(x) = T−(x)
(
ϕ−2n

+ (x) wc (x)
0 ϕ2n

− (x)

)
.

(T3) As z →∞,

T(z) = I +O
(

1
z

)
.

(T4) T has the same asymptotic behavior as Y at ±1 and 0 .

13



Next transformation is based upon the factorization of the jump matrix for T:(
ϕ−2n

+ wc
0 ϕ−2n

−

)
=
(

1 0
w−1
c ϕ−2n

− 1

) (
0 wc

−1/wc 0

) (
1 0

w−1
c ϕ−2n

+ 1

)
. (32)

In order to introduce a contour deformation we need to extend the definition of the weight
of orthogonality to a neighborhood of the interval [−1, 1].

By assumptions, h is a holomorphic function in a neighborhood U of [−1, 1], and positive
on this interval. We set

w(z) def= h(z) (1− z)α (1 + z)β (33)

holomorphic in U \ ((−∞,−1] ∪ [1,+∞)), and such that w(x) > 0 for x ∈ (−1, 1). In
particular, w(0) = h(0). We also extend the definition of the step function Ξc by

Ξc (z) =

{
1, if Re z < 0
c2, if Re z ≥ 0.

Then we set
wc(z)

def= w(z) Ξc(z), (34)

which is a holomorphic function in Ũ
def= U \ ((−∞,−1] ∪ [1,+∞) ∪ iR).

With this definition the left and rightmost matrices in (32) have an analytic extension to
the portion of Ũ in the lower and upper half plane, respectively, and we can define the next
step: lens opening or contour deformation. Namely, we build four new contours γi lying in

−1 10

γ1

γ2

γ3

γ4

inner lower dom.

inner upper dom.

outer dom.

Figure 2: First lens opening.

Ũ (except for their end points) such that γ1 and γ3 are in the upper half plane, and γ1 and
γ2 are in the left half plane, and oriented “from −1 to 1” (see Fig. 2). This construction
defines three domains: the inner upper domain, bounded by [−1, 1] and the curves γ1 and γ3;
the inner lower domain, bounded by [−1, 1] and the curves γ2 and γ4, and finally the outer
domain, bounded by curves γi and containing the infinity.
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Using the matrix T from (31) we define the new matrix S by

S (z) def=



T (z) , for z in the outer domain,

T(z)

(
1 0

− 1
wc(z)

ϕ−2n(z) 1

)
, for z in the inner upper domain,

T(z)

(
1 0

1
wc(z)

ϕ−2n(z) 1

)
, for z in the inner lower domain.

(35)

Then S is the unique solution of the following RH problem:

(S1) S is analytic in C\Σ, where Σ def= [−1, 1] ∪
⋃4
i=1 γi.

(S2) S satisfies the following jump relations:

S+(z) = S−(z)

(
1 0

1
wc(z)

ϕ (z)−2n 1

)
, for z ∈

(
4⋃
i=1

γi

)
\ {−1, 0, 1},

S+(x) = S−(x)
(

0 wc (x)
− 1
wc(x) 0

)
, for x ∈ (−1, 0) ∪ (0, 1).

(S3) As z →∞,

S(z) = I +O
(

1
z

)
.

(S4) S has the following asymptotic behavior at the end points of the interval: for ζ ∈ {−1, 1}
set s = α if ζ = 1, and s = β if ζ = −1. Then for z → ζ, z ∈ C \ Σ,

• for s < 0:

S (z) = O
(

1 |z − ζ|s
1 |z − ζ|s

)
, as z → ζ;

• for s = 0:

S (z) = O
(

log |z − ζ| log |z − ζ|
log |z − ζ| log |z − ζ|

)
, as z → ζ;

• for s > 0:

S(z) =


O

(
1 1
1 1

)
, as z → ζ from the outer domain;

O

(
|z − ζ|−s 1
|z − ζ|−s 1

)
, as z → ζ from the inner domains.
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(S5) S has the following behavior at the origin: as z → 0, z ∈ C\Σ,

S(z) =


O

(
1 log |z|
1 log |z|

)
, as z → 0 from the outer domain;

O

(
log |z| log |z|
log |z| log |z|

)
, as z → 0 from the inner domains.

2.3 The Szegő function for wc

In this section we analyze in detail the structure and properties of the Szegő function in-
troduced in Section 1.1. Recall that for a non-negative function h on (−1, 1) satisfying the
Szegő condition � 1

−1

log h(t)√
1− t2

dt > −∞,

we define in C \ [−1, 1] its Szegő function D(·, h) by

D(z, h) def= exp

(√
z2 − 1
2π

� 1

−1

log h(t)√
1− t2

dt

z − t

)
= exp

(√
1− z2 C

(
log h(t)√

1− t2

)
(z)
)
, (36)

with (
√

1− z2)+ > 0 for z ∈ (−1, 1) in the rightmost expression in (36).
Due to the multiplicative property of the Szegő function, we have that for wc defined in

(33),
D(z, wc) = D(z, w)D(z,Ξc) . (37)

Straightforward computation shows that

D(z, w) = D(z, h)
(z − 1)α/2 (z + 1)β/2

ϕ
α+β

2 (z)
, D(z,Ξc) = c exp

(
−λ log

(
1− i

√
z2 − 1
z

))
,

(38)
where D(·, h) is computed by formula (36), and

λ
def= i

log c
π

. (39)

We must clarify that in (38) we take the main branches of (z − 1)α/2, (z + 1)β/2 and
√
z2 − 1

that are positive for z > 1, as well as the main branch of the logarithm.
From (37) we obtain that

D∞
def= D(∞, wc) =

√
cD (∞, h) 2−(α+β)/2 > 0. (40)

Let us study the boundary behavior of the Szegő function on the interval. By (38),

lim
z→x∈(−1,1),

Im z>0

D(z, w) = eπiα/2 (1− x)α/2 (1 + x)β/2 ϕ
−α+β

2
+ (x) lim

z→x∈(−1,1),

Im z>0

D(z, h),
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where
ϕ+(x) = x+ i

√
1− x2 = ei arccos(x), (41)

with (1− x)α/2, (1 + x)β/2 and
√

1− x2 positive for x ∈ (−1, 1).
Analogously,

lim
z→x∈(−1,1),

Im z<0

D(z, w) = e−πiα/2 (1− x)α/2 (1 + x)β/2 ϕ
α+β

2
+ (x) lim

z→x∈(−1,1),

Im z<0

D(z, h).

We can be more specific about the limit values of D (z, h) on (−1, 1) if we use the
Sokhotskii-Plemelj formulas [12, Section 4.2]:

C±
(

log h(t)√
1− t2

)
(z) = ±1

2
log h (t)√

1− t2
+

1
2πi

 1

−1

log h (t)√
1− t2

dt

t− x
,

where
�

is the integral understood in terms of its principal value. So, if we define ~(x) as in
(6), then using (36) we get

lim
z→x∈(−1,1),

Im z>0

D (z, h) =
√
h(x) e−i~(x),

lim
z→x∈(−1,1),

Im z<0

D (z, h) =
√
h(x) ei~(x).

Observe that ~(x) is real-valued on (−1, 1), so that
∣∣e±i~(x)

∣∣ = 1. So, if we define on (−1, 1)
the real-valued function

Φ(x) def=
πα

2
− α+ β

2
arccos(x)− ~(x), (42)

then
lim

z→x∈(−1,1),

± Im z>0

D(z, w) =
√
w(x) exp (±iΦ(x)) .

On the other hand, it is easy to check that with the specified selection of the branch of
the square root,

z 7→ 1− i
√
z2 − 1
z

is a conformal mapping of C \ [−1, 1] onto the lower half plane, such that the lower shore of
(−1, 1) is mapped onto itself, while the upper boundary is mapped onto (−∞,−1) ∪ (1,∞).
In particular,

lim
z→x∈(0,1),

Im z 6=0

arg

(
1− i

√
z2 − 1
z

)
= 0, lim

z→x∈(−1,0),

Im z 6=0

arg

(
1− i

√
z2 − 1
z

)
= −π.
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Hence,

lim
z→x∈(0,1),

± Im z>0

D(z,Ξc) = c exp

(
−λ log

∣∣∣∣∣1±
√

1− x2

x

∣∣∣∣∣
)

= c exp

(
∓λ log

∣∣∣∣∣1 +
√

1− x2

x

∣∣∣∣∣
)
,

with
√

1− x2 > 0 on (−1, 1). Taking into account that e−λπi = c, we also get

lim
z→x∈(−1,0),

± Im z>0

D(z,Ξc) = exp

(
−λ log

∣∣∣∣∣1±
√

1− x2

x

∣∣∣∣∣
)

= exp

(
∓λ log

∣∣∣∣∣1 +
√

1− x2

x

∣∣∣∣∣
)
.

Both identities can be summarized by

lim
z→x∈(−1,0)∪(0,1),

± Im z>0

D(z,Ξc) =
√

Ξc(x) exp

(
∓i log c

π
log

∣∣∣∣∣1 +
√

1− x2

x

∣∣∣∣∣
)
.

In order to clarify the local behavior of D(z,Ξc) at the origin we observe that for z ∈
C\ (−∞, 1] function D(z,Ξc) coincides with

c exp
(
−λ log(1− i

√
z2 − 1) + λ log(z)

)
,

if we take there the main branch of log(z), so that

e−λ log(z)D (z,Ξc) = c exp
(
−λ log

(
1− i

√
z2 − 1

))
.

Since
lim
z→0,

Im z>0

log
(

1− i
√
z2 − 1

)
= log(2) ,

it yields
D (z,Ξc) = c1+ i

π
log(z/2) (1 + o (1)) , as z → 0, Im z > 0.

The case Im z < 0 can be deduced using the symmetry of D (·, wc) with respect to R.
We can summarize our findings in the following lemma:

Lemma 14 The Szegő function D(·, w) for the weight w defined in (33) exhibits the following
boundary behavior:

lim
z→x∈(−1,1),

± Im z>0

D(z, w) =
√
w(x) exp (±iΦ(x)) , (43)

with the notation introduced in (6) and (42).
Furthermore, for the step function Ξc,

lim
z→x∈(−1,0)∪(0,1),

± Im z>0

D(z,Ξc) =
√

Ξc(x) exp

(
∓i log c

π
log

∣∣∣∣∣1 +
√

1− x2

x

∣∣∣∣∣
)
,

and
D (z,Ξc) = c1± i

π
log(z/2) (1 + o (1)) , as z → 0, ± Im z > 0. (44)
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Obviously, the boundary behavior of the Szegő function D(·, wc) at (−1, 1) can be deduced
from this Lemma and (37).

2.4 Outer parametrix

Since |ϕ (z)| > 1 for z ∈ C\ [−1, 1], the matrix S introduced at the end of Subsection 2.2 has
jumps across each contour γi that are exponentially close to I, as long as we stay away from
the singularities ±1 and 0. So, we can expect S to behave similarly to the 2× 2 solution N
of the following RH problem in this region.

(N1) N is analytic in C\ [−1, 1];

(N2) N satisfies the following jump relations on (−1, 0) ∪ (0, 1):

N+(x) = N−(x)
(

0 wc (x)
−wc (x)−1 0

)
;

(N3) As z →∞,

N(z) = I +O
(

1
z

)
.

An explicit solution of this problem is well-known (see e.g. [8] and [14, Section 5]) and can
be built in terms of the Szegő function D(·, wc) and its value at infinity defined in (40):

N (z) def= Dσ3
∞A(z)D (z, wc)

−σ3 , (45)

where

A(z) def=
(
A11 A12

−A12 A11

)
=

(
a(z)+a−1(z)

2
a(z)−a−1(z)

2i
a(z)−a−1(z)
−2i

a(z)+a−1(z)
2

)
, a (z) def= (z−1)1/4

(z+1)1/4
, (46)

and we take the principal branches in such a way that a is analytic in C\ [−1, 1] with a (z)→ 1
as z → ∞. For future reference it is convenient to notice that an alternative expression for
the entries of A can be obtained using that

A11(z) =
a (z) + a−1 (z)

2
=

ϕ (z)1/2

√
2 (z2 − 1)1/4

,

A12(z) =
a (z)− a−1 (z)

2i
=

iϕ (z)−1/2

√
2 (z2 − 1)1/4

=
i

ϕ(z)
A11(z),

(47)

where we take again the main branches of the roots.
It is known (see [14]) that N does not match the behavior of S at the endpoints of the

interval [−1, 1], requiring a separate analysis there. Moreover, comparing the local condition
(S5) for S with the behavior of D(·, wc) at the origin (see (44)) we conclude that a local
analysis will be needed also at z = 0.
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2.5 Local parametrices at the endpoints of the interval

We fix a δ ∈ (0, 1/8) and for each ζ ∈ {−1, 1} we consider the neighborhood Uζ = {z ∈ C : |z − ζ| < δ}
such that Uζ lies entirely in the domain U of analyticity of h. We construct a 2× 2 matrix-
valued function Pζ in Uζ \ Σ that exhibits the same jumps on Σ ∩ Uζ and the same local
behavior at z = ζ as S, and that matches the matrix N on the boundary ∂Uζ . Namely,

(Pζ1) Pζ is holomorphic in Uζ\Σ and continuous up to the boundary.

(Pζ2) Pζ satisfies the following jump relations:

Pζ+(z) = Pζ−(z)

(
1 0

1
wc(z)

ϕ (z)−2n 1

)
, for z ∈ Uζ ∩

(
4⋃
i=1

γi

)
\ {ζ};

Pζ+(x) = Pζ−(x)
(

0 wc (x)
− 1
wc(x) 0

)
, for x ∈ Uζ ∩ ((−1, 1)) .

(Pζ3) As n→∞,

Pζ(z)N−1 (z) = I +O
(

1
n

)
uniformly for z ∈ ∂Uζ\Σ.

(Pζ4) Pζ has the following behavior as z → ζ, z ∈ Uζ\Σ: with s = α if ζ = 1 and s = β if
ζ = −1,

• for s < 0,

Pζ(z) = O
(

1 |z − ζ|s
1 |z − ζ|s

)
;

• for s = 0,

Pζ(z) = O
(

log |z − ζ| log |z − ζ|
log |z − ζ| log |z − ζ|

)
;

• for s > 0,

Pζ(z) =


O

(
1 1
1 1

)
, as z → ζ from the outer domain;

O

(
|z − ζ|−s 1
|z − ζ|−s 1

)
, as z → ζ from the inner domain.

We skip the details of construction of P±1, that can be found in [14].
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2.6 Local parametrix at the origin

We fix a δ ∈ (0, 1/8) and consider the neighborhood U0 = {z ∈ C : |z| < δ} such that U0 lies
entirely in the domain U of analyticity of h. We construct a 2× 2 matrix-valued function P0

in U0 \Σ that exhibits the same jumps on Σ∩U0 and the same local behavior at z = 0 as S,
and that matches the matrix N on the boundary ∂U0. Namely,

(P01) P0 is holomorphic in U0\Σ and continuous up to the boundary.

(P02) P0 satisfies the following jump relations:

P0+(z) = P0−(z)

(
1 0

1
wc(z)

ϕ (z)−2n 1

)
, for z ∈ U0 ∩

(
4⋃
i=1

γi

)
\ {0};

P0+(x) = P0−(x)
(

0 wc (x)
− 1
wc(x) 0

)
, for x ∈ U0 ∩ ((−1, 0) ∪ (0, 1)) .

(P03) As n→∞,

P0(z)N−1 (z) = I +O
(

1
n

)
uniformly for z ∈ ∂U0\Σ.

(P04) P0 has the following behavior as z → 0, z ∈ U0\Σ:

P0(z) =


O

(
1 log |z|
1 log |z|

)
, as z → 0 from the outer domain;

O

(
log |z| log |z|
log |z| log |z|

)
, as z → 0 from the inner domain.

We build the solution of this problem in two steps. First we obtain a matrix P(1) that
satisfies conditions (P01, P02, P04), and after that, using an additional freedom in the con-
struction, we take care of the matching condition (P03).

Let us define at this point an auxiliary functionW holomorphic in U\((−∞,−1] ∪ [1,+∞))
given by (see (33))

W (z) def=
√
cw(z) , such that W (x) > 0 for x ∈ (−1, 1). (48)

Then

W (x) =

{√
wc (x) c, −1 < x < 0;√
wc (x) c−1, 0 ≤ x < 1.

(49)

We construct the matrix function P0 in the following form:

P0 (z) = En (z) P(1) (z)W (z)−σ3 ϕ (z)−nσ3 , (50)
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where En is an analytic matrix-valued function in U0 (to be determined). Matrix P(1) is
analytic in U0 \ Σ; using the properties of W and ϕ it is easy to show that

P(1)
+ (x) = P(1)

− (x)



(
0 1/c
−c 0

)
, x ∈ (−δ, 0),(

0 c

−1/c 0

)
, x ∈ (0, δ),

(51)

and

P(1)
+ (z) = P(1)

− (z)



(
1 0
c 1

)
, z ∈ (γ1 ∪ γ2) ∩ U0 \ {0},(

1 0
1/c 1

)
, z ∈ (γ3 ∪ γ4) ∩ U0 \ {0}.

(52)

Taking into account that W (z) = O (1) and ϕ (z) = O (1) as z → 0, we conclude also from
(P04) that P(1) has the following behavior at the origin: as z → 0, z ∈ C\Σ,

P(1)(z) =


O

(
1 log |z|
1 log |z|

)
, from the outer domain,

O

(
log |z| log |z|
log |z| log |z|

)
, from the inner domain.

(53)

In order to construct P(1) we solve first an auxiliary RH problem on a set ΣΨ
def=
⋃6
j=1 Γj

of unbounded oriented straight lines converging at the origin, like in Fig. 3. More precisely,

Γ1 =
{
teiπ/2 : t > 0

}
, Γ2 =

{
te3iπ/4 : t > 0

}
, Γ3 =

{
te5iπ/4 : t > 0

}
,

Γ4 =
{
te3iπ/2 : t > 0

}
, Γ5 =

{
te−iπ/4 : t > 0

}
, Γ6 =

{
teiπ/4 : t > 0

}
.

These lines split the plane into 6 sectors, enumerated anti-clockwise from ¬ to ± as in Fig. 3.
We look for a 2× 2 matrix valued function Ψ (z), satisfying the following conditions:

(Ψ1) Ψ is analytic in C\ΣΨ.

(Ψ2) for k = 1, . . . , 6, Ψ satisfies the jump relation Ψ+(ζ) = Ψ−(ζ)Jk on Γk, with

J1 =
(

0 c
−1/c 0

)
, J2 = J6 =

(
1 0

1/c 1

)
, J3 = J5 =

(
1 0
c 1

)
, J4 =

(
0 1/c
−c 0

)
.

(54)
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Figure 3: Auxiliary contours Σψ.

(Ψ3) Ψ has the following behavior as ζ → 0:

Ψ(ζ) =


O

(
log |ζ| log |ζ|
log |ζ| log |ζ|

)
, for ζ ∈ ¬ ∪® ∪¯ ∪±;

O

(
1 log |ζ|
1 log |ζ|

)
, as ζ ∈  ∪°.

If we use the notation λ = i log(c)/π introduced in (39), then we readily see the connection
of the RH problem above with that studied recently in [13]. Following the approach of [13]
(with slight modifications), we construct Ψ explicitly in terms of the confluent hypergeometric
functions

φ (a, 1; ζ) def= 1F1 (a; 1; ζ) and ψ (a, 1; ζ) def= ζ−a 2F0 (a, a;−;−1/ζ) ,

that form a basis of solutions of the confluent hypergeometric equation ζw′′+(1− ζ)w′−aw =
0, see [1, formula (13.1.1)]. Namely, let

G (a; ζ) def= φ (a, 1; ζ) e−ζ/2, H (a; ζ) def= ψ (a, 1; ζ) e−ζ/2.

They are solutions of the confluent equation (see e.g. [1, formula (13.1.35)])

ζw′′ + w′ +
(

1
2
− ζ

4
− a
)
w = 0; (55)
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in fact, G(a; ·) is the only entire solution of (55) such that G(a; 0) = 1. Function H(a, ζ) is
multivalued, and we take its principal branch in −π

2 < arg (ζ) < 3π
2 . For these values of ζ we

define

Ψ̂ (ζ) def=

(
Γ (1− λ)G (λ; ζ) −H (λ; ζ)

Γ (1 + λ)G (1 + λ; ζ) Γ(1+λ)
Γ(−λ) H (1 + λ; ζ)

)
.

By (Ψ2), if we set

Ψ (ζ) def=



Ψ̂ (ζ) J6J1, for ζ ∈ ¬;
Ψ̂ (ζ) J6J1J2, for ζ ∈ ;
Ψ̂ (ζ) J6J1J2J

−1
3 , for ζ ∈ ®;

Ψ̂ (ζ) J5, for ζ ∈ ¯;
Ψ̂ (ζ) for ζ ∈ °;
Ψ̂ (ζ) J6, for ζ ∈ ±;

then Ψ has the jumps across ΣΨ specified in (Ψ2). Explicitly,

Ψ (ζ) =

(
c−1H (λ; ζ) −Γ(1−λ)

Γ(λ) H
(
1− λ; e−πiζ

)
−c−1 Γ(1+λ)

Γ(−λ) H (1 + λ; ζ) H
(
−λ; e−πiζ

) )
, ζ ∈ ¬, (56)

Ψ (ζ) =

(
Γ (1− λ)G (λ; ζ) −Γ(1−λ)

Γ(λ) H
(
1− λ; e−πiζ

)
Γ (1 + λ)G (1 + λ; ζ) H

(
−λ, 1; e−πiζ

) )
, ζ ∈ , (57)

Ψ (ζ) =

(
cH
(
λ; e−2πiζ

)
−Γ(1−λ)

Γ(λ) H
(
1− λ; e−πiζ

)
−cΓ(1+λ)

Γ(−λ) H
(
1 + λ; e−2πiζ

)
H
(
−λ; e−πiζ

) )
, ζ ∈ ®, (58)

Ψ (ζ) =

(
−cΓ(1−λ)

Γ(λ) H
(
1− λ; eπiζ

)
−H (λ; ζ)

cH
(
−λ; eπiζ

) Γ(1+λ)
Γ(−λ) H (1 + λ; ζ)

)
, ζ ∈ ¯, (59)

Ψ (ζ) =

(
Γ (1− λ)G (λ; ζ) −H (λ; ζ)

Γ (1 + λ)G (1 + λ; ζ) Γ(1+λ)
Γ(−λ) H (1 + λ; ζ)

)
, ζ ∈ °, (60)

Ψ (ζ) =

(
−c−1 Γ(1−λ)

Γ(λ) H
(
1− λ; e−πiζ

)
−H (λ; ζ)

c−1H
(
−λ; e−πiζ

) Γ(1+λ)
Γ(−λ) H (1 + λ; ζ)

)
, ζ ∈ ±. (61)

Direct verification shows that Ψ coincides, after an appropriate change of parameters and
a multiplication from the left by the constant matrix(

1/c 0
0 1

)
,

with the solution of the corresponding RH problem found in [13] (cf. formulas (7.26) and
(7.27) therein). In consequence, the matrix-valued function Ψ defined in (56)–(61) solves the
RH problem (Ψ1)–(Ψ3); moreover, det Ψ ≡ 1.
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In order to construct the analytic function En in (50) we need to study also the asymptotic
behavior of Ψ at infinity. Let us introduce the notation

τλ
def=

Γ(−λ)
Γ(λ)

.

Then for purely imaginary values of λ 6= 0,

τλ =
Γ(λ)
Γ(λ)

, |τλ| = 1, τ−λ = τλ.

This value is not defined for λ = 0; by continuity, we set τ0 = −1.

Lemma 15 As ζ →∞, ζ ∈ C \ ΣΨ, and with the notation λ = i log(c)/π, we have

Ψ (ζ) =
[
I +

λ

ζ

(
−λ −τλ
−1/τλ λ

)
+O

(
1
|ζ|2

)]
ζ−λσ3e−ζσ3/2

×


c−σ3 , if π

2 < arg ζ < 3π
2 ;(

0 −1
1 0

)
, if − π

2 < arg ζ < π
2 ,

(62)

where we use the main branch of ζ−λ = e−λ log ζ with the cut along iR−.

This result is a direct consequence of formulas (4.60)–(4.63) from [13], and can be obtained by
straightforward computation using the asymptotic properties of the confluent hypergeometric
functions (see e.g. [1, formulas (13.5.1–2)]). In fact, formulas in [1] give us the complete
expansion of Ψ.

Now we are ready to build P(1) as in (50). Recall that ϕ is a conformal mapping from
C \ [−1, 1] onto the exterior of the unit disk, so we can define in C \ R the analytic function

f (z) def=

{
πi− 2 logϕ (z) , for Im z > 0,
πi+ 2 logϕ (z) , for Im z < 0,

(63)

where we take the main branch of the logarithm. Using that ϕ+ (x)ϕ− (x) = 1 on (−1, 1) we
conclude that f+ (x) = f− (x) there, so that f is holomorphic in C \ ((−∞,−1] ∪ [1,+∞)).
For |z| < 1 we have

f (z) = 2iz +
1
3
iz3 +O

(
z5
)
, as z → 0. (64)

Hence, for δ > 0 sufficiently small, f is a conformal mapping of U0. Moreover, by (41),

f(x) = 2i arcsin(x), x ∈ (−1, 1), (65)

so that f maps the real interval (−1, 1) one-to-one onto the purely imaginary interval (−πi, πi).
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We can always deform our contours γi close to z = 0 in such a way that

f (γ1 ∩ U0) ⊂ Γ3, f (γ2 ∩ U0) ⊂ Γ5, f (γ3 ∩ U0) ⊂ Γ2, f (γ4 ∩ U0) ⊂ Γ6.

With this convention, set
P(1) (z) def= Ψ (nf (z)) , z ∈ U0. (66)

By (Ψ1)–(Ψ3) and (64), this matrix-valued function has the jumps and the local behavior at
z = 0 specified in (51)–(53). Taking into account the definition (63) we get that

enf(z) = enπi ϕ∓2n(z), for ± Im z > 0.

Hence, by Lemma 15,

Ψ (nf (z)) =
[
I +

λ

nf(z)

(
−λ −τλ
−1/τλ λ

)
+O

(
1
n2

)]
(nf(z))−λσ3i−nσ3

×


c−σ3ϕnσ3(z), if Im z > 0;(

0 −1
1 0

)
ϕnσ3(z), if Im z < 0,

(67)

where the main branch of [nf (z)]λ is taken with the cut along (−∞, 0]. Since

[f (z)]λ = |f (z)|λ exp
(
− log c

π
arg (f (z))

)
,

straightforward computations show that

[f (x)]λ± =

{
|f (x)|λ c−1/2, for 0 < x < 1,
|f (x)|λ c−1/2∓1, for − 1 < x < 0,

(68)

where we assume the natural orientation of the interval.
Now we will build the analytic matrix En in (50). In order to comply with condition

(P03) above, we need

En (z) ∼ N (z)ϕ (z)nσ3 W (z)σ3

[
P(1) (z)

]−1

uniformly for z ∈ ∂Uδ\Σ. Taking into account (67), we define

En (z) def= N (z)W (z)σ3 ×


inσ3 (nf (z))λσ3 cσ3 , if Im z > 0;

i−nσ3 (nf (z))−λσ3

(
0 1
−1 0

)
, if Im z < 0.

(69)
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By construction, En is analytic in U0\R. Furthermore, by (N2) and (49), for x ∈ (−δ, 0) ∪
(0, δ),

W (x)−σ3 N−1
− (x)N+(x)W (x)σ3 =

(
0 wc (x) /W 2(x)

−W 2(x)/wc (x) 0

)
=
(

0 c±1

−c∓1 0

)
, for ± Rex > 0.

From (68) and (69) it follows that

E−1
n− (x) En+ (x) = I, for x ∈ (−δ, 0) ∪ (0, δ).

So, the origin is the only possible isolated singularity of En in U0.

Proposition 16

lim
z→0

En(z) =
√

2
2
Dσ3
∞

(
1 1
−1 1

)
eiηnσ3 ,

with ηn introduced in (7). In particular, En is analytic in U0.

Proof. Since En is analytic in a neighborhood of 0 with an at most algebraic singularity
there, it is sufficient to analyze its limit as z → 0 from the upper half plane. By (44) and
(64),

lim
z→0

Im z>0

D (z,Ξc) f (z)−λ = lim
z→0

Im z>0

c1+ i
π

log(z/2)− i
π

log(f(z)) = c3/24−λ.

On the other hand, by (43) and (48) ,

lim
z→0

Im z>0

D (z, w)W (z)−1 = c−1/2eiΦ(0) = c−1/2 exp
(
i
α− β

4
π − i~(0)

)
,

with Φ given by (42) and ~ defined in (6).
Summarizing,

lim
z→0

Im z>0

D (z, wc)
−1W (z) f (z)λ =

4λ

c
e−iΦ(0).

By (45) and (69), if Im z > 0,

En(z) = Dσ3
∞ A(z)mn(z)σ3 , (70)

with

mn(z) def=
W (z) f (z)λ

D (z, wc)
innλc. (71)
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Gathering the limits computed above, and using that

lim
z→0

Im z>0

a(z) = eπi/4

and the definition of ηn, the statement follows.

Therefore, by construction the matrix-valued function P0 given by (50) satisfies conditions
(P01)–(P04). Moreover, it is easy to check that

det P0 (z) = 1 for every z ∈ U0\Σ.

2.7 Final transformation

Recall that matrices N and Pζ , ζ ∈ {−1, 0, 1} have det = 1 in their domains of definition.
We may define

R (z) def=

{
S (z) N−1 (z) , z ∈ C\ {Σ ∪ U−1 ∪ U0 ∪ U1} ;
S (z) P−1

ζ (z) , z ∈ Uζ \ Σ, ζ ∈ {−1, 0, 1}.
(72)

R is analytic in C\ {Σ ∪ ∂U−1 ∪ ∂U0 ∪ ∂U1}. In fact, since N matches the jump of S on
(−1, 1), and Pζ matches the jumps of S within Uζ , ζ ∈ {−1, 0, 1}, we conclude that R is
analytic in the complement to the contours ΣR depicted in Fig. 4, with additional possible
singularities at {−1, 0, 1}. But taking into account (S5) and the local behavior of Pζ at these
points (see (Pζ4)), we conclude that these singularities are removable.

−1 10

Figure 4: Contours ΣR.

Now we compute the jumps of R. For the sake of brevity, we denote

Σout
R

def= ΣR \ (∂U−1 ∪ ∂U0 ∪ ∂U1) .

Then by (S2) and (72), for z ∈ Σout
R ,

R+ (z) = R− (z) N (z)
(

1 0
wc (z)−1 ϕ (z)−2n 1

)
N−1 (z) . (73)
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On the other hand, for ∂Uj (j ∈ {−1, 0, 1}) oriented clockwise, we have that R+ (z) =
S+ (z) N−1 (z) and R− (z) = S− (z) P−1

j (z). Hence,

R+ (z) = R− (z) Pj (z) N−1 (z) , z ∈ ∂Uj , j ∈ {−1, 0, 1}. (74)

Summarizing, R defined in (72) is analytic in C\ΣR, satisfies the jump relations (73)–(74)
on ΣR, and has the following behavior as z →∞:

R(z) = I +O
(

1
z

)
.

By (74) and (P03), as n→∞,

R+(z) = R− (z)
(

I +O
(

1
n

))
uniformly on ∂U−1 ∪ ∂U0 ∪ ∂U1. (75)

On the other hand, there exists a constant 0 < q < 1 such that |ϕ (z)|−1 ≤ q < 1 uniformly
on Σout

R . Since N does not depend on n, we conclude from (73) that as n→∞,

R+(z) = R− (z)
(
I +O

(
q2n
))

uniformly on Σout
R . (76)

Motivated by (73) –(76) we define

∆ (s) def=

N (s)

(
1 0

wc (s)−1 ϕ (s)−2n 1

)
N−1 (s)− I, for s ∈ Σout

R ;

Pζ (s) N−1 (s)− I, for s ∈ ∂Uζ , j ∈ {−1, 0, 1},

so that R+(z) = R−(z)(I + ∆(z)), z ∈ ΣR. Following [14, Section 8] we can show that ∆
has an asymptotic expansion in powers of 1/n of the form

∆ (s) ∼
∞∑
k=1

∆k (s, n)
nk

, as n→∞, uniformly for s ∈ ΣR. (77)

By (76), for k ∈ N,
∆k (s) = 0, for s ∈ Σout

R . (78)

Furthermore, by [14, formulas (8.5)–(8.6)],

∆k(s) =
(α, k − 1)

2k[logϕ (s)]k
N(s)

[
e±

iπα
2 c

1
2W (s)

]σ3

(
(−1)k

k (α2 + 1
2k −

1
4) −(k − 1

2)i

(−1)k(k − 1
2)i 1

k (α2 + 1
2k −

1
4)

)

×
[
e±

iπα
2 c

1
2W (s)

]−σ3

N−1(s), for ± Im s > 0 and s ∈ ∂U1,
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and

∆k(s) =
(β, k − 1)

2k[log (−ϕ (s))]k
N(s)

[
e∓

iπβ
2 c−

1
2W (s)

]σ3

(
(−1)k

k (β2 + 1
2k −

1
4) (k − 1

2)i

(−1)k+1(k − 1
2)i 1

k (α2 + 1
2k −

1
4)

)

×
[
e∓

iπβ
2 c−

1
2W (s)

]−σ3

N−1(s), for ± Im s > 0 and s ∈ ∂U−1,

where (α, 0) def= 1,

(α, k) def=
(4α2 − 1)(4α2 − 9) · · · (4α2 − (2k − 1)2)

22kk!
.

Each ∆k on the small contours encircling ±1 is independent of n and possesses a meromorphic
continuation to U−1 and U1 with the only pole at ±1 of order at most [(k + 1)/2]. However,
unlike in the case analyzed in [14], the existence of a jump in the weight is revealed through
the contribution of the local parametrix P0, and hence, each ∆k is in general not independent
on n, although uniformly bounded in n.

So, it remains to determine ∆k on ∂U0. Here we calculate explicitly only the first term,
∆1.

Using (45), (48), (50), (63), (67) and (69), we obtain

∆ (s) = En(s)
[

λ

nf(s)

(
−λ −τλ
−1/τλ λ

)
+O

(
1
n2

)]
E−1
n (s), s ∈ ∂U0, n→∞.

Let us define

∆1 (s) def=
λ

f(s)
En(s)

(
−λ −τλ
−1/τλ λ

)
E−1
n (s), s ∈ ∂U0. (79)

Using that by (69),

En(s) = F(s)
(
innλ

)σ3

= F(s)
(
inc

i
π

logn
)σ3

,

where

F (s) def=


N (s)W (s)σ3 cσ3f (s)λσ3 , if Im s > 0;

N (s)W (s)σ3

(
0 1
−1 0

)
f (s)λσ3 , if Im s < 0,

we conclude that for s ∈ ∂U0,

∆1 (s, n) =
λ

f(s)
F(s)

(
−λ (−1)n+1n2λτλ

(−1)n+1n−2λ/τλ λ

)
F−1(s), (80)

which is uniformly bounded in n, so that ∆1 in (79)–(80) is genuinely the first coefficient in
the expansion (77).
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Similar analysis can be performed for ∆k (·, n), k ≥ 2, taking higher order terms in the
expansion of Ψ in (62).

The explicit expression (80) and the local behavior of f show that ∆1 (s, n) has an analytic
continuation to U0 except for the origin, where it has a simple pole. Again, a similar conclusion
is valid for other ∆k (s, n), except that now the pole is of order k.

As in [5, Theorem 7.10] we obtain from (77) that

R (z) ∼ I +
∞∑
j=1

R(j) (z, n)
nj

, as n→∞, (81)

uniformly for z ∈ C\ {∂U−1 ∪ ∂U0 ∪ ∂U1} where each R(j) (z) is analytic, uniformly bounded
in n, and

R(j) (z, n) = O
(

1
z

)
as z →∞.

This is a bona fide asymptotic expansion near infinity, since

∀l ∈ N ∃C > 0 : |z| ≥ 2⇒

∥∥∥∥∥∥R (z)− I−
l∑

j=1

R(j) (z, n)
nj

∥∥∥∥∥∥ ≤ C

|z|nl+1
,

for any matrix norm ‖·‖. The proof is based on the integral representation for R,

R(z) = I +
1

2πi

�
ΣR

R−(s)∆(s, n)
s− z

ds, z ∈ C \ ΣR

(see [5]); although in our case the coefficients ∆k and Rk in (77) and (81) depend on n,
their uniform boundedness allows to follow the steps of the proof of Lemma 8.3 in [14]. In
particular, expanding the jump relation R+ = R− (I + ∆) up to order 1/n we find that

R(1)
+ (s, n)−R(1)

− (s, n) = ∆1 (s, n) , for s ∈ ∂U−1 ∪ ∂U0 ∪ ∂U1.

Since R(1) is analytic in the complement of ∂U−1 ∪ ∂U0 ∪ ∂U1 (see (78)) and vanishes at
infinity, by the Sokhotskii-Plemelj formulas,

R(1) (z, n) =
1

2πi

�
∂U−1∪∂U0∪∂U1

∆1 (s, n)
s− z

ds.

Recall that ∆1 can be extended analytically inside Uj ’s with simple poles at ±1 and 0; let us
denote by A(1) (n), B(1) (n) and C(1) (n) the residue of ∆1(·, n) at 1, −1 and 0, respectively.
Then residue calculus gives

R(1) (z, n) =


A(1) (n)
z − 1

+
B(1) (n)
z + 1

+
C(1) (n)

z
, for z ∈ C\ {U−1 ∪ U0 ∪ U1} ;

A(1) (n)
z − 1

+
B(1) (n)
z + 1

+
C(1) (n)

z
−∆1 (z, n) , for z ∈ U−1 ∪ U0 ∪ U1.

(82)
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Residues A(1) (n) and B(1) (n) are in fact independent of n; they have been determined in
[14, Section 8]:

A(1) (n) = A(1) =
4α2 − 1

16
Dσ3
∞

(
−1 i
i 1

)
D−σ3
∞ ,

B(1) (n) = B(1) =
4β2 − 1

16
Dσ3
∞

(
1 i
i −1

)
D−σ3
∞

(83)

(notice however an extra factor
√
c in the constant D∞ with respect to [14]). The value of

the remaining residue C(1) (n) is given in the following

Proposition 17 Coefficient C(1) (n) in (82) is given by

C(1) (n) =
log c
2π

Dσ3
∞

(
− cos θn λ− i sin θn
λ+ i sin θn cos θn

)
D−σ3
∞ ,

where θn is defined in (8).

Proof. Taking into account (64) and (79) we conclude that

C(1) (n) =
λ

2i
En(0)

(
−λ −τλ
−1/τλ λ

)
E−1
n (0).

By Proposition 16,

C(1) (n) =
λ

4i
Dσ3
∞

(
1 1
−1 1

)(
4λe−iΦ(0) innλ

)σ3
(
−λ −τλ
−1/τλ λ

)
×
(

4λe−iΦ(0) innλ
)−σ3

(
1 −1
1 1

)
D−σ3
∞ .

With the notation (7) and choosing ς ∈ R such that eiς = τλ, we get(
1 1
−1 1

)
eiηnσ3

(
−λ −eiς
−e−iς λ

)
e−iηnσ3

(
1 −1
1 1

)
= 2

(
− cos(2ηn + ς) λ− i sin(2ηn + ς)
λ+ i sin(2ηn + ς) cos(2ηn + ς)

)
.

It remains to observe that 2ηn + ς = θn, and this settles the proof.

3 Asymptotic analysis. Proof of Theorems

Unraveling the transformations Y → T → S → R we can obtain an expression for Y. We
specify the following domains (see Fig. 5):

• De is the unbounded component of C\ΣR;
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• D±i correspond to the portion of the inner domain exterior to Uζ , ζ ∈ {−1, 0, 1}, lying
in the upper (resp., lower) half-plane;

• D±ζ,e is the subset of Uζ in the outer domain and upper (resp., lower) half plane;

• D±ζ,i is the subset of Uζ in the inner domain and upper (resp., lower) half plane.

From (31), (35), and (72),

Y (z, n) =



2−nσ3RNϕnσ3 (z) , z ∈ De;

2−nσ3RN

(
1 0

± 1
wc
ϕ−2n 1

)
ϕ (z)nσ3 , z ∈ Di;

2−nσ3RPζϕ (z)nσ3 , z ∈ D±ζ,e;

2−nσ3RPζ

(
1 0

± 1
wc
ϕ−2n 1

)
ϕ (z)nσ3 , z ∈ D±ζ,i;

(84)

with ζ ∈ {−1, 0, 1}.

−1 1

De

D+
i

D−i

D+
i

D−i

D+
0,e

D−0,e

D+
0,i

D−0,i

Figure 5: Domains for Y

Next, using the asymptotic expression for R derived above, we obtain information about
the behavior of Y in different domains of the plane.

3.1 Asymptotics for the monic orthogonal polynomials on C\[−1, 1]. Proof
of Theorem 1.

If K is a compact subset of De, then by (81) and (84),

Y(z, n) = 2−nσ3R(z)N(z)ϕnσ3 (z) , z ∈ K. (85)

Since Pn (z) = Y11 (z, n), we get by (45)–(47) that

2nPn (z)
ϕ (z)n

=
D∞

D (z, wc)
A11(z)R(z),
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with
R(z) def= R11(z)− i

D2
∞ϕ(z)

R12 (z) . (86)

By (47) and (81), uniformly on K,

2nPn (z)
ϕ (z)n

=
D∞

D (z, wc)
ϕ (z)1/2

√
2 (z2 − 1)1/4

[
1 +
Rn (z)
n

+O
(

1
n2

)]
, as n→∞,

with
Rn (z) def=

(
R(1)

)
11

(z)− i

D2
∞ϕ(z)

(
R(1)

)
12

(z) . (87)

Taking into account the expression for R(1) in (82), as well as (83) and Proposition 17, we
get that

R(1)
11 (z) =

1− 4α2

16(z − 1)
+

4β2 − 1
16(z + 1)

− log(c) cos(θn)
2πz

,

R(1)
12 (z) = iD2

∞

(
4α2 − 1

16(z − 1)
+

4β2 − 1
16(z + 1)

+
log(c)

2π
log(c)/π − sin(θn)

z

)
.

(88)

The trivial identity ϕ2(z) + 1 = 2z ϕ(z) yields

1
z ± 1

(
1± 1

ϕ(z)

)
=

2
ϕ(z)± 1

, (89)

and we conclude that in K ⊂ De, Rn (z) = Hn (z), with Hn defined in (9).

3.2 Asymptotics of the recurrence coefficients

Recall that monic polynomials Pn satisfy the recurrence relation

Pn+1(x) = (x− bn)Pn(x)− a2
nPn−1(x), n = 0, 1, . . . ,

with P−1 (x) = 0 and an > 0. From [10] (see also [8]) it follows that the coefficients can be
found directly in terms of the matrix Y in (85):

a2
n = lim

z→∞
z2Y12 (z, n) Y21 (z, n)

= lim
z→∞

(
−D

2
∞

2i
+ zR12 (z, n)

)(
zR21 (z, n) +

1
2iD2

∞

)
, (90)

bn = lim
z→∞

(z −Y11 (z, n+ 1) Y22 (z, n)) = lim
z→∞

z (1−R11 (z, n+ 1) R22 (z, n)) . (91)
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We may take limits in the asymptotic expansion (81); additionally to (88) we have that

R(1)
21 (z) =

i

D2
∞

(
4α2 − 1

16(z − 1)
+

4β2 − 1
16(z + 1)

+
log(c)

2π
log(c)/π + sin(θn)

z

)
,

R(1)
22 (z) =

4α2 − 1
16(z − 1)

− 4β2 − 1
16(z + 1)

+
log(c) cos(θn)

2πz
.

(92)

Thus,

a2
n =

1
4
− log c

2πn
sin(θn) +O

(
1
n2

)
, n→∞,

which proves (10). Analogously,

bn =
log c
2π

cos(θn+1)− cos(θn)
n

+O
(

1
n2

)
, n→∞.

By (7) and (8),

θn+1 − θn = π + 2
log c
π

log
(

1 +
1
n

)
,

so that

bn = − log c
2π

cos(θn + 2 log c
π log(n+1

n )) + cos(θn)
n

+O
(

1
n2

)
= − log c

2πn

[
2 cos (θn) +O

(
1
n

)]
+O

(
1
n2

)
,

which proves (11).
In [17] A. Magnus conjectured that for the weight

w (x) = (1− x)α (1 + x)β |x0 − x|γ ×

{
B, for x ∈ [−1, x0) ,
A, for x ∈ [x0, 1] ,

with A and B > 0 and α, β and γ > −1, and x0 ∈ (−1, 1), the recurrence coefficients of the
corresponding orthogonal polynomials exhibit the following behavior n→∞:

an =
1
2
− M

n
cos
(

2nt0 − 2µ log (4n sin t0)− Φ̃
)

+ o (1/n) , (93)

bn = −2M
n

cos
(

(2n+ 1) t0 − 2µ log (4n sin t0)− Φ̃
)

+ o (1/n) , (94)

where

x0 = cos(t0), 0 < t0 < π, µ =
1

2π
log

B

A
, M =

1
2

√
γ2

4
+ µ2 sin t0,

Φ̃ =
(
α+

γ

2

)
π − (α+ β + γ) t0 − 2 arg Γ

(γ
2

+ iµ
)
− arg

(γ
2

+ iµ
)
.
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Taking B = 1, A = c2, γ = 0, and x0 = 0 (t0 = π/2), we get µ = − log c
π = iλ, M =

| log c|/(2π), and

Φ̃ =
(α− β)π

2
− 2 arg Γ (−λ)− arg (−λ)

=
(α− β)π

2
+ 2 arg Γ (λ) +

π

2
sgn(log(c)).

Replacing these expressions in (93) and using the definition in (7) we obtain

an =
1
2
− | log c|

2πn
cos
(
θn −

π

2
sgn(log(c))

)
+ o (1/n)

=
1
2
− log c

2πn
sin (θn) + o (1/n) , (95)

and

bn = −| log c|
πn

sin
(
θn −

π

2
sgn(log(c))

)
+ o (1/n)

= − log c
πn

cos (θn) + o (1/n) . (96)

Comparing these expressions with (10)–(11) we see that Magnus’ conjecture is valid for γ = 0;
moreover, we have shown that in this situation we can replace the error term o(1/n) by a
more precise O(1/n2).

3.3 Asymptotics for the the leading coefficient kn

By (30),

k2
n = − 1

2πi
lim
z→∞

z−nY21 (z, n+ 1) ,

and with (84),

k2
n = − 1

2πi
lim
z→∞

[(
2ϕ (z)
z

)n+1

(zR21 (z, n+ 1) N11 (z) + zR22 (z, n+ 1) N21 (z))

]
.

Taking into account (N3), (47) and (92), we see that

lim
z→∞

zR21 (z, n+ 1) =
i

nD2
∞

(
2α2 + 2β2 − 1

8
+

log(c)
2π

(
log(c)
π

+ sin(θn+1)
))

+O
(

1
n2

)
,

lim
z→∞

zN21 (z) = − i

2D2
∞
,

and

k2
n =

4n

πD2
∞

[
1−

(
2α2 + 2β2 − 1

4
+

log(c)
π

(
log(c)
π

+ sin(θn+1)
))

1
n

+O
(

1
n2

)]
,

and this proves Theorem 5.
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3.4 Asymptotics for the monic orthogonal polynomials in U0 and on (−δ, δ) .

By analyticity of Pn’s, it is sufficient to consider z ∈ D+
0,i and Re z > 0. Using formulas (50),

(66) and (84) we get

Y (z, n) = 2−nσ3R (z) En (z) Ψ (nf (z))W (z)−σ3 ϕ (z)−nσ3

(
1 0

1
wc
ϕ−2n 1

)
ϕ (z)nσ3 . (97)

We are interested in the first column of Y, which is obtained multiplying the r.h.s. of (97)
from the right by the column vector (1, 0)T . Observe that

W (z)−σ3 ϕ (z)−nσ3

(
1 0

1
wc(z)

ϕ(z)−2n 1

)
ϕ (z)nσ3

(
1
0

)
=
(

1/W (z)
W (z)/wc(z)

)
=

1
W (z)

(
1

1/c

)
,

where we have taken into account the definition of W in D+
0,i. Thus,

W (z)Y (z, n)
(

1
0

)
= 2−nσ3R (z) En (z) Ψ (nf (z))

(
1

1/c

)
. (98)

Notice that D+
0,i is mapped by f onto the sector denoted by ¬ in Figure 3, and vector (1, 1/c)T

corresponds to the first column of the jump matrix J2 in (54). Taking into account (Ψ2) we
conclude that the product of the last two matrices in the right hand side of (98) is equal to
the first column of Ψ in (57):

Ψ (nf (z))
(

1
1/c

)
=
(

Γ (1− λ)G (λ;nf (z))
Γ (1 + λ)G (1 + λ;nf (z))

)
. (99)

By (70),

W (z)Y (z, n)
(

1
0

)
= 2−nσ3R (z)Dσ3

∞A(z)mn(z)σ3

(
Γ (1− λ)G (λ;nf (z))

Γ (1 + λ)G (1 + λ;nf (z))

)
, (100)

with A and mn defined in (46) and (71), respectively. Taking into account formulas (47), we
conclude that

2nW (z)Pn(z) = D∞
ϕ (z)1/2

√
2 (z2 − 1)1/4

×
{

R(z)mn(z)Γ (1− λ)G (λ;nf (z)) + R̃(z)mn(z)−1Γ (1 + λ)G (1 + λ;nf (z))
}
,

where we have used notation (86) and

R̃(z) def= R11(z)
i

ϕ(z)
+

1
D2
∞

R12(z).
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Inserting again (81) we obtain the asymptotic expansion valid uniformly on compact
subsets of U0. Using the function Rn defined in (87) and introducing

R̃n (z) def=
(
R(1)

)
11

(z)− iϕ(z)
D2
∞

(
R(1)

)
12

(z)

we rewrite this identity for Pn as

2nPn(z)W (z) =D∞A11(z)
[(

1 +
1
n
Rn(z) +O

(
1
n2

))
mn(z)Γ (1− λ)G (λ;nf (z))

+
i

ϕ(z)

(
1 +

1
n
R̃n(z) +O

(
1
n2

))
Γ (1 + λ)G (1 + λ;nf (z))

mn(z)

]
.

(101)

Let us simplify this expression for the case when z is on the real line. Taking the limit
z → x ∈ (−δ, δ) from the upper half plane, we get by (7), (65), (68) and Lemma 14,

mn(x) = ei (ρ(x)+ηn), for x ∈ (−δ, δ),

with ρ(x) given in (13), so that on (−δ, δ),

mn(x) = mn(x)−1.

Additionally, we have λ = −λ and for x ∈ R, on account of formulas (6.1.23) and (13.1.27)
from [1], respectively,

Γ (1 + λ) = Γ (1− λ), and G (1 + λ; ix) = 1F1 (−λ; 1;−ix) eix/2 = G (λ; ix). (102)

Finally, on (−δ, δ),

(A11(x))+ =
ϕ+(x)1/2

√
2(x2 − 1)1/4

+

=

(
iϕ+(x)−1/2

√
2(x2 − 1)1/4

+

)
= (A12(x))+ =

e−i arcsin(x)/2

√
2(1− x2)1/4

and by (80), (82), (83) and Proposition 17,(
R(1)

)
11

(x) =
(
R(1) (x)

)
11
,
(
R(1)

)
12

(x) = −
(
R(1) (x)

)
12
.

Gathering all this information in (101) we conclude that locally uniformly on (−δ, δ), as
n→∞,

2nPn(x)W (x) =
√

2D∞
(1− x2)1/4

× Re
[(

1 +
Rn(x)
n

+O
(

1
n2

))
e−i arcsin(x)/2mn(x)Γ (1− λ)G (λ;nf (x))

]
,
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with Rn defined in (87). Observe however that now the explicit expression for Rn differs
from Hn defined in (9): by (82), in D+

0,i,

Rn(z) = Hn −
(

(∆1 (z, n))11 −
i

D2
∞ϕ (z)

(∆1 (z, n))12

)
,

with ∆1 (z, n) given in (79). Using (47), (70), and (71), we get

(∆1 (z, n))11 =
λ

f (z)
ϕ (z)2

ϕ (z)2 − 1

(
−λ
(

1 +
1

ϕ (z)2

)
− i

ϕ (z)

(
τλmn (z)2 +

1
τλmn (z)2

))
,

(∆1 (z, n))12 =
λ

f (z)
ϕ (z)2

ϕ (z)2 − 1
D2
∞

(
2i

λ

ϕ (z)
− τλmn (z)2 − 1

τλmn (z)2 ϕ (z)2

)
.

Hence, by (89) we have that

Rn (z) = Hn (z) +
λ

f (z)

(
λ+

i

ϕ (z)
τλm

−2
n

)
.

For further simplification of our formula we may take into account that by [1, formula
(6.1.29)], for c 6= 1,

Γ (1− λ) = Γ (1 + λ) = λΓ (λ) = −i log c
π
|Γ (λ)| e−i arg Γ(λ)

= −i log c√
log c sinh (log c)

e−i arg Γ(λ) = −iΥ(c)e−i arg Γ(λ),

with Υ(c) given in (14), and we obtain that for x ∈ (−δ, δ),

Γ (1− λ)mn(x) = −iΥ(c)e−i arg Γ(λ)ei (ρ(x)+ηn) = −iΥ(c)ei (ρ(x)+θn/2).

Analogously,
τλmn(x)−2 = e−2i (ρ(x)+θn/2), x ∈ (−δ, δ),

so that for x ∈ (−δ, δ),(
λ

f (z)

(
λ+

i

ϕ (z)
τλm

−2
n

))
+

=
i log c

2π arcsin(x)

(
log c
π

+ e−i (2ρ(x)+θn+arccos(x))

)
.

Summarizing,

2nPn(x)W (x) =
√

2D∞Υ(c)
(1− x2)1/4

× Re
[(

1 +
Rn(x)
n

+O
(

1
n2

))
(−i)e−i arcsin(x)/2ei (ρ(x)+θn/2)G (λ;nf (x))

]
,
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which proves Theorem 6.
Furthermore, with the appropriate rescaling and taking into account the local behavior

of the terms in the right hand side of the asymptotic expression for Pn we easily get the
assertion of Corollary 8.

In order to prove Proposition 9 we rewrite (15) as

Pn

(πx
n

)
=

D∞Υ(c)
2n−1/2

√
c h(0)

|1F1 (λ; 1; 2πix)| Im
[
e
i
2

(θn−G(2πx))

(
1 +O

(
1
n

))]
, (103)

where G is the function introduced in (iii) of Proposition 12, corresponding to a = log(c)/π.
Let us consider here only the case c > 1 (the other case can be easily reduced to c > 1 by a
change of variables x 7→ −x). Then G is strictly increasing in R. If we denote by

· · · < ζ
(n)
−k < · · · < ζ

(n)
−1 < 0 ≤ ζ(n)

0 < · · · < ζ
(n)
k < . . . (104)

the solutions of
1

2π
G(2πx) ≡ θn

2π
mod (Z),

then by (103),
lim
n

(n
π
x

(n)
k − ζ

(n)
k

)
= 0, k ∈ Z, (105)

where we have used notation (16). Since G(0) = 0, we have that ζ(n)
0 is given by

1
2π

G(2πx) =
{
θn
2π

}
,

where {·} is the fractional part of the number, which by strict monotonicity of G shows that

1
2π

G
(

2πζ(n)
k

)
=
{
θn
2π

}
+ k, k ∈ Z. (106)

In particular,

[k, k + 1) 3 1
2π

G
(

2πζ(n)
k

)
=

1
2π

(
2πζ(n)

k − 2 arg
(

1F1

(
λ; 1; 2πiζ(n)

k

)))
≥ ζ(n)

k ,

where we have used (ii) of Proposition 12. Hence,

0 ≤ ζ(n)
0 < 1 and ζ

(n)
k−1 < ζ

(n)
k < k + 1, k ∈ Z.

By compactness and diagonal argument, we can always select a subsequence Λ ⊂ N such that
the following limits exist:

lim
n∈Λ

ζ
(n)
k = ζk, k ∈ Z.
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By (106),
1

2π
G
(

2πζ(n)
k

)
− 1

2π
G
(

2πζ(n)
k−1

)
= 1,

and taking limits we conclude that

ζk − ζk−1 = 1 +
1
π

(
arg (1F1 (λ; 1; 2πiζk))− arg (1F1 (λ; 1; 2πiζk−1))

)
. (107)

Let k ∈ N; since arg (1F1 (λ; 1; 2πiζk)) is strictly decreasing in [0,+∞), the second term in
the right hand side of (107) is < 0, so that we conclude that

0 < ζk − ζk−1 < 1, k ∈ N.

By (105), we obtain that

0 < lim inf
n

n

π

(
x

(n)
k − x

(n)
k−1

)
≤ lim sup

n

n

π

(
x

(n)
k − x

(n)
k−1

)
< 1, k ∈ N.

In the same vein, since arg (1F1 (λ; 1; 2πiζk)) is strictly increasing in (−∞, 0), by (107),

ζk − ζk−1 > 1, −k ∈ N,

so that
lim inf

n

n

π

(
x

(n)
k − x

(n)
k−1

)
> 1, −k ∈ N.

Furthermore, observe that for c 6= 1, the accumulation points of the sequence ζ(n)
0 is dense

in the interval G−1([0, 2π]). Indeed, by (7) and (8),

θn
2π

=
n

2
+

log c
π2

log n+ υ, υ
def=

log c
π2

log 4 +
β − α

4
+

~(0)
π
− 1
π

arg Γ(λ).

Since c 6= 1, we can always take b ∈ {2, 3} such that (log c)(log b)/π2 /∈ Q (indeed, otherwise
we would have that log 3/ log 2 is rational, which is obviously impossible). For such a b, with
n = 2 bm, m ∈ N, equation (106) is rewritten as

1
2π

G
(

2πζ(n)
0

)
=
{
m

log c
π2

log b+ υ +
log c
π2

log 2
}
.

By Kronecker-Weyl theorem (see, e.g. [4, Chapter III]), the sequence{
m

log c
π2

log 2 + υ +
log c
π2

log 2
}

is dense in (0, 1), and it remains to use the strict monotonicity of G. This finishes the proof
of Proposition 9.
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Remark 18 Obviously, if c = 1, λ = 0, 1F1 (λ; 1; 2πiy) ≡ 1, and we obtain the clock behavior
via (105) and (107).

Regarding Remark 10, it is easy to check numerically that in general

ζk − ζk−1 6= ζk+1 − ζk, k ∈ Z,

which shows that the quasi-clock behavior fails too. Nevertheless, for function y(x) introduced
in Proposition 12 we obtain applying (28) that y′(x) = O(1/|x|), |x| → ∞, from where the
“clock behavior in the limit” (18) follows by (107).

3.5 Christoffel-Darboux Kernel

Using the Christoffel-Darboux formula [21, Section 3.2], we can write the kernel (19) as

Kn (x, y) =
kn−1

kn

pn (x) pn−1 (y)− pn (y) pn−1 (x)
x− y

= k2
n−1

Pn (x)Pn−1 (y)− Pn (y)Pn−1 (x)
x− y

, x 6= y;

using (30) and the fact that det Y ≡ 1, we obtain

Kn (x, y) =
−1
2πi

Y11 (x, n) Y21 (y, n)−Y11 (y, n) Y21 (x, n)
x− y

=
1

2πi
1

x− y
(
0, 1

)
Y−1 (y, n) Y (x, n)

(
1
0

)
. (108)

By analyticity, it is obviously sufficient to compute Kn when x, y ∈ (0, δ). From (100),

W (x)Y+ (x, n)
(

1
0

)
= 2−nσ3R (x)Dσ3

∞A+(x)mn(x)σ3

(
Γ (1− λ)G (λ;nf (x))

Γ (1 + λ)G (1 + λ;nf (x))

)
. (109)

On the other hand, since det Y = 1, we have by (97), (69), (45), (71),

Y (y, n)−1 = ϕ (y)−nσ3

(
1 0

− 1
wc
ϕ−2n 1

)
ϕ (y)nσ3 W (y)σ3 [Ψ (nf (y))]−1

×mn(y)−σ3A+(y)−1D−σ3
∞ R (y)−1 2nσ3 .

The matrix Ψ built in (56)–(61) also satisfies det Ψ = 1, so that considerations that lead us
to (100) show that(

0, 1
)
W (y)Y (y, n)−1 =

(
−Γ (1 + λ)G (1 + λ;nf (y)) ,Γ (1− λ)G (λ;nf (y))

)
×mn(y)−σ3A+(y)−1D−σ3

∞ R (y)−1 2nσ3 .
(110)
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Observe also that locally uniformly for z ∈ (−δ, δ), R(z) = I +O(1/n), which implies that

R (y)−1 R (x) = I +O(1/n), locally uniformly for x, y ∈ (−δ, δ).

Gathering (109) and (110) in (108) we conclude that for x 6= y,

lim
n→∞

π

n
W
(πx
n

)
W
(πy
n

)
Kn

(πx
n
,
πy

n

)
=

1
2πi

1
x− y

×
(
−Γ (1 + λ)G (1 + λ; 2πiy) ,Γ (1− λ)G (λ; 2πiy)

)( Γ (1− λ)G (λ; 2πix)
Γ (1 + λ)G (1 + λ; 2πix)

)
.

By formula (6.1.31) of [1] and the definition of λ in (39),

Γ (1 + λ) Γ (1− λ) =
log c

sinh (log c)
=

2c log c
c2 − 1

.

Since
lim
n→∞

W
(πx
n

)
=
√
c h(0),

we obtain (21)–(22). Taking into account (102) we can easily rewrite this formula in the form
(23).

Finally, the confluent form of the kernel in (22) is obtained from the expression for x 6= y
by taking limit y → x.

4 Properties of the confluent hypergeometric function

We prove finally the properties of 1F1 and related functions summarized in Proposition 12.
(i) Let Kn be the Christoffel-Darboux kernel defined in (19). Then for z ∈ C,

Kn(z, z) =
n−1∑
k=0

|pk (z) |2 > 0.

This property is obviously inherited in the limit (21), which implies that

K∞(z, z) ≥ 0, z ∈ C.

On the other hand, from formula (13.1.27) of [1] it follows that

1F1 (ia; 1; iz) = 1F1 (−ia; 1;−iz) = e−zi1F1 (ia+ 1; 1; iz) , (111)

G (ia; iz) = G (ia+ 1; iz) . (112)
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Thus, for z ∈ C \ R, λ = ia, a ∈ R \ {0},

K∞ (z, z) =
1

2π h(0)
log c
c2 − 1

G (λ; 2πiz)G (1 + λ; 2πiz)−G (1 + λ; 2πiz)G (λ; 2πiz)
Im z

=
1

2π h(0)
log c
c2 − 1

|G (λ; 2πiz) |2 − |G (λ; 2πiz) |2

Im z
≥ 0, (113)

which yields that
|G(λ; iz)| ≥ |G(λ; iz)|, Im z > 0. (114)

Assume that for ζ ∈ C+, G(λ; iζ) = 0; then by (112) and (114),

G(λ; iζ) = G (ia+ 1; iζ) = 0.

Hence,
1F1 (ia; 1; iζ) = 1F1 (1 + ia; 1; iζ) = 0.

By induction and recurrence relation (13.4.1) in [1] we conclude that every 1F1 (ia+ n; 1; iζ),
with n ∈ Z ∪ {0}, vanishes. But this is impossible, as follows from the addition formula

1F1 (λ; 1; z + ζ) =
(

ζ

z + ζ

)λ ∞∑
n=0

(λ)n zn

n! (z + ζ)n 1F1 (λ+ n; 1; ζ) (115)

(see [20, formula (2.3.4)]).
Thus, we conclude that f1(z) = G(λ, iz) ∈ HB. The assertion for f2 is obtained by means

of formula (111).
(ii) In order to prove (26) assume that a ∈ R \ {0} and x ∈ R. Then by (111),

1F1 (ia; 1; ix) = 1F1 (−ia; 1;−ix) = e−xi1F1 (ia+ 1; 1; ix) . (116)

Hence, an assumption that for x ∈ R, 1F1 (ia; 1; ix) = 0 implies that 1F1 (ia+ 1; 1; ix) also
vanishes, and we arrive at a contradiction reasoning as above and using the addition formula
(115).

Furthermore, the location of the zeros in the corresponding half planes and the inequality
(27) is a direct consequence of (i). In particular, function

h(z) = 1F1 (1 + ia; 1; iz)
1F1 (ia; 1; iz)

is holomorphic in C+, continuous in C+ = C+ ∪ R, and satisfies |h(z)| ≤ 1 for z ∈ C+ and
|h(z)| = 1 for z ∈ R. In consequence, by the maximum principle, |h(z)| < 1 for z ∈ C+,
which proves that the inequality in (27) for z in the upper half plane is strict.
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(iii) Due to (ii), y(x) is correctly defined and real-analytic on R, in particular, y′ can
vanish only at a discrete set of points that can accumulate only at infinity. Again by (13.1.27)
of [1],

1F1 (1 + ia; 1; ix)
1F1 (ia; 1; ix)

= eix
1F1 (−ia; 1;−ix)

1F1 (ia; 1; ix)
= ei(x−2y(x)) . (117)

With the straightforward identity (see (13.4.4) in [1])

1F1 (1 + ia; 1; ix)− 1F1 (ia; 1; ix) = (ix) 1F1 (1 + ia; 2; ix)

we rewrite (117) as

ei(x−2y(x)) = 1 + ix
1F1 (1 + ia; 2; ix)

1F1 (ia; 1; ix)
. (118)

Since the real part of the left hand side is ≤ 1, this implies that

Im
(

1F1 (1 + ia; 2; ix)
1F1 (ia; 1; ix)

){
≥ 0, for x > 0,
≤ 0, for x < 0.

(119)

On the other hand, by (13.4.8) of [1],

y′(x) = Im
(
d

dx
log
(

1F1 (ia; 1; ix)
))

= −a Im
(

1F1 (1 + ia; 2; ix)
1F1 (ia; 1; ix)

)
, (120)

and by inequality (119), the first part of the statement of (ii) follows. The differential equation
in (28) is obtained by taking the real part in (118) and using (120).

In order to prove (iv) we observe that G satisfies the following initial value problem:

xG′(x) = x+ 2a (1− cos G(x)) , G(0) = 0. (121)

For a = 0 the statement is trivial. Assume first that a > 0; then by (ii), we only need to
prove that G′(x) > 0 for x < 0.

Since G is also real analytic, expanding it at x = 0 we readily conclude from (121) that
G′(0) = 1. Hence, G is locally increasing at the origin. Differentiating (121) we obtain that

xG′′(x) = 1 + G′(x) (−1 + 2a sin G(x)) . (122)

If for x = ζ < 0, G′(ζ) = 0, then by (122),

ζ G′′(ζ) = 1. (123)

In particular, G′′(ζ) < 0, which shows that every critical point of G in the negative semi-axis
is a strict local maximum, which is incompatible with the behavior at the origin. Thus, G′ is
sign-invariant on (−∞, 0), and in consequence, G′(x) > 0 there.

Assume now a < 0; again by (ii), we only need to prove that G′(x) > 0 for x > 0.
Reasoning as above, if for ζ > 0 we have G′(ζ) = 0, then we get (123), which shows that
every critical point of G in the positive semi-axis is a strict local minimum, which is again
incompatible with the behavior at the origin.
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Remark 19 The proof of (i) presented here is an evolution of an idea of Doron Lubinsky
to look at the Christoffel-Darboux kernels Kn for each finite n ∈ N and then taking limits
as n → ∞; see also [15]. The argument that allows to conclude that 1F1 does not vanish,
based on the addition formula (115), and the identity (117) were suggested to us by Adri
Olde Daalhuis. We gratefully acknowledge these two contributions of our colleagues.
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[11] A. Foulquié Moreno, A. Mart́ınez-Finkelshtein, V.L. Sousa, On a Conjecture of A.
Magnus concerning the asymptotic behavior of the recurrence coefficients of the gen-
eralized Jacobi polynomials, Journal of Approximation Theory, in press. Also preprint
arXiv:0905.2753.

[12] F. D. Gakhov, Boundary value problems, Dover Publications Inc., New York, 1990,
translated from the Russian, Reprint of the 1966 translation.

[13] A. Its, I. Krasovsky, Hankel determinant and orthogonal polynomials for the gaussian
weight with a jump, Contemp. Math. 458 (2008) 215–247.

[14] A. B. J. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, M. Vanlessen, The Riemann-
Hilbert approach to strong asymptotics for orthogonal polynomials on [−1, 1], Adv.
Math. 188 (2) (2004) 337–398.

[15] D. S. Lubinsky, Universality limits for random matrices and de Branges spaces of entire
functions, Journal of Functional Analysis 256 (2009) 3688–3729.

[16] E. Levin, D. S. Lubinsky, Applications of universality limits to zeros and reproducing
kernels of orthogonal polynomials, Journal of Approximation Theory 150 (2008) 69–95.

[17] A. P. Magnus, Asymptotics for the simplest generalized Jacobi polynomials recurrence
coefficients from Freud’s equations: numerical explorations, Ann. Numer. Math. 2 (1995)
311–325.

[18] B. Simon, The Christoffel-Darboux kernel, in “Perspectives in PDE, Harmonic Analysis
and Applications,” a volume in honor of V.G. Maz’ya’s 70th birthday, Proceedings of
Symposia in Pure Mathematics 79 (2008) 295–335.

[19] B. Simon, Fine structure of the zeros of orthogonal polynomials: a progress report,
preprint (2009), to appear in “Recent Trends in Orthogonal Polynomials and Approxi-
mation Theory”, a volume in honor of G. López Lagomasino’s 60th birthday, Contem-
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