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Abstract

Let pn, n ∈ N, be the nth orthonormal polynomial on R, whose zeros are λ
(n)
j ,

j = 1, . . . , n. Then for each j = 1, . . . , n,

~Ψ2
j

def
=
(
Ψ2

1j , . . . , Ψ
2
nj

)

with

Ψ2
ij = p2

i−1(λ
(n)
j )

(
n−1∑

k=0

p2
k(λ

(n)
j )

)
−1

, i = 1, . . . , n,

defines a discrete probability distribution. The Shannon entropy of the sequence {pn} is
consequently defined as

Sn,j
def
= −

n∑

i=1

Ψ2
ij log

(
Ψ2

ij

)
.

In the case of Chebyshev polynomials of the first and second kinds an explicit and closed
formula for Sn,j is obtained, revealing interesting connections with the number theory.
Besides, several results of numerical computations exemplifying the behavior of Sn,j for
other families are also presented.

AMS MOS Classification: 33C45, 41A58, 42C05, 94A17

Keywords: orthogonal polynomials, Shannon entropy, Chebyshev polynomials, Euler-Maclaurin
formula

1 Introduction

Given a probability Borel measure µ supported on the real line R with infinite number of
points of increase, we can build a sequence of orthonormal polynomials pn(λ) = κn λn +
lower degree terms, n = 0, 1, 2, . . . , uniquely determined if all κn > 0, such that

∫
pn(λ)pm(λ) dµ(λ) = δnm , m, n = 0, 1, 2, . . .

∗Corresponding author.

1

http://arXiv.org/abs/0710.2134v1


Beside their importance in approximation theory and multiple branches of applied and pure
mathematics, orthogonal polynomials constitute a noteworthy object from the point of view
of the information theory. This interest originated in the framework of the modern den-
sity functional theory [14, 15, 19], that states that the physical and chemical properties of
fermionic systems (atoms, molecules, nuclei, solids) may be completely described by means of
the single-particle probability density. For instance, if the solution of the time-independent
Schrödinger equation in a D-dimensional position space for an single particle system,

HΨ(~r) = EΨ(~r) , ~r = (x1, . . . , xD) ,

is the wave function Ψ(~r), then the position density of the system is ρ(~r) = |Ψ(~r)|2. Analo-
gously, the wave function in momentum space Ψ̂(~p), which is the Fourier transform of Ψ(~r),
gives the momentum density γ(~p) = |Ψ̂(~p)|2.

Information measures of these densities are closely related to fundamental and experimen-
tally measurable physical quantities, which makes them useful in the study of the structure
and dynamics of atomic and molecular systems. For instance, the Boltzmann-Gibbs-Shannon
(position-space) entropy

B(ρ) = −
∫

ρ(~r) log ρ(~r) d~r (1)

measures the uncertainty in the localization of the particle in space. Lower entropy corre-
sponds to a more concentrated wave function, with smaller uncertainty, and hence, higher
accuracy in predicting the localization of the particle. The well known inequality [5, 8, 9]

B(ρ) + B(γ) ≥ D(1 + log π) (2)

is an expression of the position-momentum uncertainty principle, much stronger than the
renowned Heisenberg relation, that plays a major role in quantum mechanics (see [22]).

The study of the information measures of orthogonal polynomials is motivated by the
fact that the densities of many quantum mechanical systems with shape-invariant potentials
(e.g., the harmonic oscillator and the hydrogenic systems) typically contain terms of the form
p2

n µ′. Explicit formulas, numerical algorithms and asymptotic behavior have been studied
both for the Boltzmann-Gibbs-Shannon (or differential) entropy

Bn = −
∫

p2
n(λ) log

(
p2

n(λ)µ′(λ)
)

dµ(λ)

and for the the relative entropy (or the Kullback-Leibler information)

Kn = −
∫

p2
n(λ) log

(
p2

n(λ)
)

dµ(λ) ;

see e.g.[3, 4, 7, 10, 11, 12, 13, 20] and the references therein. In particular, it has been shown
that for Chebyshev orthonormal polynomials of the first kind the relative entropy Kn does
not depend on n,

Kn = log(2) − 1 ,

and that this value is asymptotically maximal among all orthogonality measures on [−1, 1]
(see [7]), giving a formal explanation to the intuitive notion that these polynomials are the
most “uniformly” distributed ones.
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However, there are several discrete measures naturally associated with a sequence of
orthogonal polynomials. The analysis of such measures requires the use of the “genuine”
entropy studied by Shannon. In order to stress the discrete character of this entropy, hereafter
we refer to it as Shannon entropy and denote it by the letter S. The evaluation of Shannon
entropy for discrete distributions is a basic question of information theory (see e.g. [17,
18]); unlike for Bn and Kn, there are no known results for the Shannon entropy of the
orthogonal polynomials related distributions, due in part to the technical difficulties of the
explicit evaluation of sums.

It is well known that the orthonormal polynomials pn satisfy a three-term recurrence
relation of the form

λ pi(λ) = bi+1 pi+1(λ) + ai+1 pi(λ) + bi pi−1(λ) , i = 0, 1, . . . , n− 2 , p−1 = 0, p0 = 1 . (3)

Using its coefficients we can define the n × n Jacobi matrix (n ∈ N),

Ln =





a1 b1

b1 a2 b1

. . .
. . .

. . .

bn−2 an−1 bn−1

bn−1 an




, (4)

which determines a self-adjoint linear operator (discrete Schrödinger operator) Ln : R
n → R

n

by
L~ei = bi~ei+1 + ai~ei + bi−1~ei−1 , i = 1, . . . , n ,

where ~e1, . . . ~en is the canonical basis in R
n, and we agree that ~e0 = ~en+1 = ~0. Moreover, up to

a constant factor, pn(λ) = det(Ln −λI), which shows that the eigenvalues λ
(n)
k , k = 1, . . . , n,

are the zeros of pn, and

~Pk =
(
p0, p1(λ

(n)
k ), . . . , pn−1(λ

(n)
k )
)T

,

are eigenvectors corresponding to different eigenvalues.
Let 〈·, ·〉 denote the standard (euclidean) inner product in R

n, and

ℓn(λ)
def
=

(
n−1∑

k=0

p2
k(λ)

)−1

=
1

〈~Pk, ~Pk〉
(5)

the n-th Christoffel function.
If we normalize

~Ψk =

√
ℓn(λ

(n)
k ) ~Pk ,

then a consequence of the well known Christoffel-Darboux formula is that

〈~Ψi, ~Ψj〉 = δij , i, j = 1, . . . , n . (6)

In other words, the n × n matrix

Ψ =

(√
ℓn(λ

(n)
j ) pi−1(λ

(n)
j )

)n

i,j=1

,
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made of columns ~Ψj, j = 1, . . . , n, is orthogonal, so that the squares of the components of

each (column) vector ~Ψj, j = 1, . . . , n, give a discrete probability distribution, and these
distributions are mutually orthogonal in the sense of (6).

Recall that given a probability measure µ = (µ1, µ2, . . . , µn) on a system of n points, e.
g.
∑n

j=1 µj = 1, the standard Shannon entropy reads S(µ) = −∑n
j=1 µj log µj . By Jensen’s

inequality,
0 ≤ S(µ) ≤ log(n) , (7)

and the maximum of corresponds to a uniform probability distribution. In this sense, it is
quite natural to think of the Shannon entropy as a measure of uncertainty.

Remark 1 We can give the following geometric interpretation to the Shannon entropy.
Given in R

n an orthonormal basis {~ei}, any vector ~v ∈ R
n has a unique representation

~v =
n∑

i=1

〈~v,~ei〉~ei .

Assume that ~v ∈ Sn−1, that is, ‖~v‖ = 1, where ‖ · ‖ means the Euclidean norm. A natural
way of measuring a relative distance of ~v from the basis {~ei} is by means of the Shannon
entropy

Sn
def
= −

n∑

i=1

pi log(pi) , pi
def
= 〈~ei, ~v〉2 , i = 1, . . . , n . (8)

Indeed, if ~v = ~ek for a certain k, then pj = δjk, and Sn = 0. On the contrary, if ~v is
“equidistant” from all vectors ~ej ’s, then all pj = 1/n, and Sn attains its maximum, Sn =
log(n).

Motivated by the discussion above, we introduce the discrete entropy of orthonormal
polynomials pn, defined as the Shannon entropy of the probability distribution given by each
column of Ψ:

Sn,j
def
= −

n∑

i=1

Ψ2
ij log

(
Ψ2

ij

)

= −ℓn(λ
(n)
j )

n∑

i=1

p2
i−1(λ

(n)
j ) log

(
ℓn(λ

(n)
j ) p2

i−1(λ
(n)
j )
)

= − log
(
ℓn(λ

(n)
j )
)
− ℓn(λ

(n)
j )

n∑

i=1

p2
i−1(λ

(n)
j ) log

(
p2

i−1(λ
(n)
j )
)

, j = 1, . . . , n ,

(9)

which can be generalized as

Sn(λ)
def
= − log (ℓn(λ)) − ℓn(λ)

n∑

i=1

p2
i−1(λ) log

(
p2

i−1(λ)
)

, (10)

so that Sn,j = Sn(λ
(n)
j ).

Unlike the Boltzmann-Gibbs-Shannon entropy, Sn does not depend on the weight func-
tion µ′, and is suitable both for discrete and continuous orthogonality (cf. some numerical
experiments in Section 5).
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Remark 2 Since Ψ is an orthogonal matrix, its rows

(√
ℓn(λ

(n)
1 ) pi−1(λ

(n)
1 ), . . . ,

√
ℓn(λ

(n)
n ) pi−1(λ

(n)
n )

)

are also orthogonal vectors of R
n:

δij =
n∑

k=1

ℓn(λ
(n)
k ) pi−1(λ

(n)
k ) pj−1(λ

(n)
k ) =

∫
pi−1(λ)pj−1(λ) dµn(λ) ,

where µn is the normalized counting measure of zeros of pn:

µn =
n∑

k=1

ℓn(λ
(n)
k )δ

λ
(n)
k

.

Hence, we may define the dual discrete entropy, corresponding to rows of Ψ:

Si
n

def
= −

n∑

j=1

ℓn(λ
(n)
j ) p2

i−1(λ
(n)
j ) log

(
ℓn(λ

(n)
j ) p2

i−1(λ
(n)
j )
)

, j = 1, . . . , n .

A basic question of information theory is the evaluation of the Shannon entropy. In this
paper we compute explicitly the discrete entropy Sn,j corresponding to Chebyshev orthonor-
mal polynomials of the first and second kinds. A straightforward interpretation of (9) as
Riemann sums allows to find the first two terms of the asymptotic expansion of Sn,j for fixed
j and large n; these terms do not depend on j. However, numerical experiments reveal the
existence of certain picks, pointing downwards, whose position was not clear a priori (see
Figure 2). The formulas presented below give a complete explanation of this phenomenon
and exhibit nice connections with relevant objects from the number theory.

In order to state our results we need to introduce an auxiliary function

R(x)
def
= x (Ψ (1 − x) + 2γ + Ψ (1 + x)) , x ∈ [0, 1) , (11)

where γ is the Euler constant, and Ψ(x) = Γ′(x)/Γ(x) is the digamma function. Alternatively,
R can be given by its Taylor series expansion, absolutely convergent for |x| < 1 (cf. formula
(6.3.14) in [1]),

R(x) = −2
∞∑

k=1

ζ(2k + 1)x2k+1 , (12)

where ζ(·) is the Riemann zeta function.
Recall that Chebyshev polynomials of the first kind are given by the explicit formula

pm(λ) = Tm(λ) =

{
1, if m = 0 ,√

2 cos(mθ), otherwise,
λ = cos θ . (13)

They are orthonormal with respect to the weight

w(λ) =
1

π

1√
1 − λ2

on [−1, 1] .
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Theorem 1 Let n ∈ N, j ∈ {1, 2, . . . , n}. For orthonormal Chebyshev polynomials of the
first kind, the discrete entropy has the following expression:

Sn,j = log n + log 2 − 1 +
log 2

n
+ R

(
d

2n

)
, d = GCD(2j − 1, n) .

Hereafter GCD stands for the greatest common divisor.

Remark 3 Observe that coefficients in the series expansion (12) are all positive, so that
R(x) < 0 and is strictly decreasing for x ∈ (0, 1) (see Figure 1). Since 1 ≤ d ≤ n, we see that

0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Figure 1: Function R(x), for x ∈ [0, 1/2].

max
j∈{1,2,...,n}

Sn,j = log n + log 2 − 1 +
log 2

n
− 2

∞∑

k=1

ζ(2k + 1)

(
1

2n

)2k+1

,

attained when GCD(2j − 1, n) = 1. Furthermore, if n is odd, then Sn,j attains its minimum

min
j∈{1,2,...,n}

Sn,j = log n − log 2 +
log 2

n
,

at a single value j = (n + 1)/2. It is the only local minimum of Sn,j if n ≥ 3 is prime.
The reader can compare these observations with the results of numerical experiments

shown in Figure 2.
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0 20 40 60 80 100 120 140 160
4.25

4.3

4.35

4.4

4.45

4.5

4.55
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0 20 40 60 80 100 120 140 160
4.7209

4.721

4.7211

4.7212

4.7213

4.7214

4.7215

4.7216

4.7217
n=152

Figure 2: Chebyshev polynomials of the first kind: entropy Sn,j for n = 150, 151 and 152.

The Chebyshev polynomials of the second kind are

pm(λ) = Um(λ) =
sin [(m + 1) arccos(λ)]√

1 − λ2
=

sin [(m + 1)θ]

sin(θ)
, λ = cos θ , m ≥ 0 . (14)

They are orthonormal with respect to the weight

w(λ) =
2

π

√
1 − λ2 on [−1, 1].

Theorem 2 Let n ∈ N, j ∈ {1, 2, . . . , n}. For orthonormal Chebyshev polynomials of the
second kind, the discrete entropy has the following expression:

Sn,j = log(n + 1) + log 2 − 1 + R
(

d

n + 1

)
, d = GCD(j, n + 1) .
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Remark 4 Since 1 ≤ d ≤ n, we see that

max
j∈{1,2,...,n}

Sn,j = log(n + 1) + log 2 − 1 + R
(

1

n + 1

)
,

attained when GCD(j, n + 1) = 1. Furthermore, if n is odd, Sn,j attains its minimum

min
j∈{1,2,...,n}

Sn,j = log

(
n + 1

2

)
,

at a single value j = (n + 1)/2. It is the only local minimum of Sn,j if n ≥ 3 is prime.

Remark 5 The leading term log n in both cases shows that the values p2
0, p2

1(λ
(n)
k ), . . . ,

p2
n−1(λ

(n)
k ), normalized by an appropriate factor, are approximately equidistributed. Com-

paring formulas from Theorem 1 and 2 we see that unlike for the Boltzmann entropy, the
discrete entropy of the Chebyshev polynomials of the first kind is generally smaller.

The rest of the article is organized as follows. In the next section (that might have
an independent interest) we discuss some piece-wise linear endomorphisms of R and their
connection with permutations. This allows to reduce the analysis of the general discrete
entropy Sn,j to some specific values of the index j. A modification of the Euler-Maclaurin
summation formula is the key to the proof of Theorem 1 in Section 3. The close connection
between polynomials of the first and second kinds allows us to avoid similar cumbersome
computations in the proof of Theorem 2 in Section 4. Finally, we discuss some numerical result
obtained for the discrete entropy for other important families of orthogonal polynomials.

2 Piece-wise linear endomorphism of R and permutations

The key role is played by the following auxiliary function:

Definition 3 For each pair of values n, j ∈ N, let ϕ
(n)
j (x) denote the linear spline on R with

nodes at {mn/j}m∈Z interpolating the values
{(

mn

j
, n

1 − (−1)m

2

)}

m∈Z

.

Functions ϕ
(n)
j can be explicitly described by

x ∈
[
2k − 1

j
n,

2k + 1

j
n

]
for k ∈ Z ⇒ ϕ

(n)
j (x) = |jx − 2kn| (15)

(see Figure 3).

In order to summarize necessary properties of functions ϕ
(n)
j we need to introduce some

notation. We denote by a ≡ b mod (c) the standard arithmetic congruence of a and b
modulo c, GCD(a, b) stands for the greatest common divisor of integer numbers a and b, and

N0
def
= N ∪ {0}. We define also the remainder function D : N0 × N → Z, by

D(p, q) = r if and only if − q/2 ≤ r < q/2 and p ≡ r mod (q)

(note that this definition is shifted with respect to a standard concept of remainder; thus,
D(p, q) takes also negative values).

Main Lemma Let n, j ∈ N, with GCD(j, n) = d.

8



(i) We have

ϕ
(n)
j

(
x +

n

d

)
=

{
n − ϕ

(n)
j (x) , if j/d is odd,

ϕ
(n)
j (x) , if j/d is even,

x ∈ R , (16)

and for k ∈ Z,

ϕ
(n)
j (k) = d · ϕ(n/d)

j/d (k) . (17)

(ii) If d = n, then ϕ
(n)
j (Z) ⊂ {0, n}.

(iii) If GCD(j, 2n) = d < n, then

ϕ
(n)
j ({1, . . . , n − 1}) \ {0, n} =

{
dm : m = 1, . . . ,

n

d
− 1
}

, (18)

and for any m ∈
{
1, . . . , n

d − 1
}
,

card{k ∈ {1, . . . , n − 1} : ϕ
(n)
j (k) = dm} = d . (19)

(iv) If GCD(j, 2n) = 2d and d < n, then

ϕ
(n)
j ({1, . . . , n − 1}) \ {0, n} =

{
2dm : m = 1, . . . ,

n − d

2d

}
, (20)

and for any m ∈
{
1, . . . , n−d

2d

}
,

card{k ∈ {1, . . . , n − 1} : ϕ
(n)
j (k) = 2dm} = 2d . (21)

We prove this lemma establishing a number of intermediate auxiliary results.

Proposition 4 Let n, j ∈ N. Function ϕ
(n)
j : R → [0, n] satisfies:

(i) ϕ
(n)
j is even: ϕ

(n)
j (−x) = ϕ

(n)
j (x), x ∈ R.

(ii) Symmetry:

ϕ
(n)
j

(
x +

n

j

)
= n − ϕ

(n)
j (x) , x ∈ R . (22)

In particular, ϕ
(n)
j is periodic with period 2n/j.

(iii) For every x ∈ R, either

ϕ
(n)
j (x) − jx

2n
∈ Z or

ϕ
(n)
j (x) + jx

2n
∈ Z . (23)

(iv) For k ∈ Z,

ϕ
(n)
j (k) = |D(jk, 2n)| , k ∈ Z . (24)

9
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Figure 3: Functions ϕ
(6)
j (x), x ∈ [0, 6], for j = 1, . . . , 6.

Proof. Property (i) is obvious from construction. By (15), if x ∈
[
2k − 1

j
n,

2k + 1

j
n

]
for

k ∈ Z, then

ϕ
(n)
j (x) =






2kn − jx, if x ∈
[
2k − 1

j
n,

2k

j
n

]
,

jx − 2kn, if x ∈
[
2k

j
n,

2k + 1

j
n

]
.

In particular, if x ∈
[
2k − 1

j
n,

2k

j
n

]
, then x + n/j ∈

[
2k

j
n,

2k + 1

j
n

]
. Thus,

ϕ
(n)
j (x + n/j) = j

(
x +

n

j

)
− 2kn , ϕ

(n)
j (x) = 2kn − jx ,

and (22) follows. The case x ∈
[
2k

j
n,

2k + 1

j
n

]
is analyzed analogously.

Identity (23) is a straightforward consequence of the explicit formula (15).
Assume that k ∈ Z and D(jk, 2n) = r; it means that there exists t ∈ Z such that

r = jk − 2nt ∈ [−n, n). Thus, |D(jk, 2n)| = |jk − 2nt|. Furthermore, from the inequalities
−n ≤ r < r it follows that

2t − 1

j
n ≤ k <

2t − 1

j
n .

Comparing it with the definition of ϕ
(n)
j in (15), we establish (24).
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Although function ϕ
(n)
j is well defined on whole R, we will be mainly interested in its values

on the interval [0, n]. In particular, we need to study how ϕ
(n)
j acts on integers 1, 2, . . . n− 1:

Proposition 5 Let n, j ∈ N with GCD(j, n) = 1.

(i) For any j ∈ N, ϕ
(1)
j (Z) ⊂ {0, 1}.

(ii) If n > 1 and j is odd, then

ϕ
(n)
j : {1, . . . , n − 1} → {1, . . . , n − 1}

is a bijection. In other words, ϕ
(n)
j acts as a permutation on the set {1, . . . , n − 1}.

(iii) If n > 1 and j is even (and thus n is odd), then

ϕ
(n)
j :

{
1, . . . ,

n − 1

2

}
→
{

2m : m = 1, . . . ,
n − 1

2

}

and

ϕ
(n)
j :

{
n + 1

2
, . . . , n − 1

}
→
{

2m : m = 1, . . . ,
n − 1

2

}

are bijections.

Proof. By construction, ϕ
(n)
j (k) ∈ {0, n} if and only if k = mn/j, with m ∈ Z. Since

GCD(j, n) = 1, mn/j ∈ Z only if m is a multiple of j. Hence, ϕ
(n)
j (k) ∈ {0, n} if and only if

k ∈ {mn : m ∈ Z}. With n = 1 this yields (i). Furthermore, if n > 1, then

ϕ
(n)
j ({1, . . . , n − 1}) ⊂ {1, . . . , n − 1} .

Hence, in order to prove (ii) it is sufficient to show that ϕ
(n)
j is injective on {1, . . . , n − 1}.

Indeed, by (24), ϕ
(n)
j (x) = r if |D(jx, 2n)| = r, that is, if there exists u ∈ Z such that

jx ± r = 2nu ,

with an appropriate choice of the sign. Thus, if ϕ
(n)
j (x) = ϕ

(n)
j (y), then there exists u ∈ Z

such that
j(x ± y) = 2nu ,

again with an appropriate choice of the sign. However, since j is odd and GCD(j, n) = 1,
we conclude that GCD(j, 2n) = 1. This means that x ± y must be divisible by 2n. But
|x ± y| < 2n, so this identity is possible only if x = y.

If j is even, then a similar analysis shows that k → |D(jk/2, n)| is injective both on

{
1, . . . ,

n − 1

2

}
and

{
n + 1

2
, . . . , n − 1

}
.

It remains to use that by (24), ϕ
(n)
j (k) = 2 |D(jk/2, n)|, k ∈ Z. This establishes (iii).
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Proposition 6 Let m,n ∈ N, and GCD(m,n) = d. Then

GCD(m, 2n) = d ⇔ m/d is odd,

and
GCD(m, 2n) = 2d ⇔ m/d is even, and n/d is odd.

Proof. Assume that d = 1. It is obvious that GCD(m, 2n) = 1 only if m is odd, and
viceversa, if m is odd and GCD (m,n) = 1, then necessarily GCD(m, 2n) = 1.

Analogously, if GCD(m, 2n) = 2, it means that m is even, and since m and n are coprime,
n must be odd. The reciprocal is also trivially true: if m is even and GCD(m,n) = 1, then
also GCD(m/2, n) = 1, and

GCD(m, 2n) = 2 · GCD(m/2, n) = 2 .

The general case is reduced to d = 1 by observing that

GCD(m,n) = d ⇔ GCD
(m

d
,
n

d

)
= 1 .

Now we are ready to prove the main result of this section.

Proof of the Main Lemma. Formula (17) is a straightforward consequence of (24). Since

ϕ
(n)
j

(
x +

n

d

)
= ϕ

(n)
j

(
x +

n

j

j

d

)
,

formula (16) follows from (22).
Since

GCD(j, n) = d ⇒ GCD

(
j

d
,
n

d

)
= 1 ,

we can apply Proposition 5 to function ϕ
(n/d)
j/d . In fact, statement (ii) is a straightforward

consequence of (i) of Proposition 5 and formula (17).
Assume that GCD(j, n) = GCD(j, 2n) = d < n; by Proposition 6, j/d is odd. By (ii) of

Proposition 5,

ϕ
(n/d)
j/d : {1, . . . , n/d − 1} → {1, . . . , n/d − 1}

is a bijection, and by formula (17), this is valid also for

ϕ
(n)
j : {1, . . . , n/d − 1} → {dm : m = 1, . . . , n/d − 1} .

Furthermore, any k ∈ {1, . . . , n − 1} can be represented as

k = r + m
n

d
, m ∈ {0, 1, . . . , d − 1} , r ∈ {0, 1, . . . , n/d − 1} .

By (16),

ϕ
(n)
j (k) = ϕ

(n)
j

(
r + m

n

d

)
=

{
n − ϕ

(n)
j (r) , if m is odd,

ϕ
(n)
j (r) , if m is even.

12



In consequence, for every m ∈ {0, 1, . . . , d − 1},

ϕ
(n)
j :

{
1 + m

n

d
, 2 + m

n

d
, . . . , (m + 1)

n

d
− 1
}
→ {dm : m = 1, . . . , n/d − 1}

is a bijection. This proves (18)–(19).
On the other hand, if GCD(j, 2n) = 2d < 2n, then by Proposition 6, j/d is even and n/d

is odd, and by (iii) of Proposition 5,

ϕ
(n/d)
j/d :

{
1, . . . ,

n/d − 1

2

}
→
{

2m : m = 1, . . . ,
n/d − 1

2

}

and

ϕ
(n/d)
j/d :

{
n/d + 1

2
, . . . , n/d − 1

}
→
{

2m : m = 1, . . . ,
n/d − 1

2

}

are bijections, so that by formula (17), this is valid also for

ϕ
(n)
j :

{
1, . . . ,

n/d − 1

2

}
→
{

2dm : m = 1, . . . ,
n/d − 1

2

}

and

ϕ
(n)
j :

{
n/d + 1

2
, . . . , n/d − 1

}
→
{

2dm : m = 1, . . . ,
n/d − 1

2

}
.

Again, if k ∈ {1, . . . , n − 1}, and

k = r + m
n

d
, m ∈ {0, 1, . . . , d − 1} , r ∈ {0, 1, . . . , n/d − 1} ,

we have by (16),

ϕ
(n)
j (k) = ϕ

(n)
j

(
r + m

n

d

)
= ϕ

(n)
j (r) .

In consequence, for every m ∈ {0, 1, . . . , d − 1},

ϕ
(n)
j :

{
1 + m

n

d
, 2 + m

n

d
, . . . ,

n/d − 1

2
+ m

n

d

}
→
{

2dm : m = 1, . . . ,
n/d − 1

2

}

and

ϕ
(n)
j :

{
n/d + 1

2
+ m

n

d
, . . . ,

n

d
− 1 + m

n

d

}
→
{

2dm : m = 1, . . . ,
n/d − 1

2

}

are bijections. This proves (20)–(21).

3 Discrete entropy for Chebyshev polynomials of the first

kind

From the explicit formulas (13) for pn is easy to compute that in this case

ℓ−1
n (λ) = n − 1

2
+

1

2

sin(2n − 1)θ

sin θ
,

13



and for Sn(λ) defined in (10) we have

Sn(λ) = − log (ℓn(λ)) − ℓn(λ)

n−1∑

i=0

p2
i (λ) log

(
p2

i (λ)
)

= − log (ℓn(λ)) − ℓn(λ)

n−1∑

i=1

p2
i (λ) log

(
2 cos2(iθ)(λ)

)

= − log (ℓn(λ)) − ℓn(λ) log(2)

n−1∑

i=1

p2
i (λ) − ℓn(λ)

n−1∑

i=1

p2
i (λ) log

(
cos2(iθ)

)

= − log (ℓn(λ)) − ℓn(λ) log(2)
(
ℓ−1
n (λ) − 1

)
− 2ℓn(λ)

n−1∑

i=1

cos2(iθ) log
(
cos2(iθ)

)
,

so that

Sn(λ) = − log (ℓn(λ)) + log(2) (ℓn(λ) − 1) − 2ℓn(λ)
n−1∑

i=1

cos2(iθ) log
(
cos2(iθ)

)
. (25)

Since for Chebyshev polynomials of the first kind and degree n the zeros are

λ
(n)
j = cos

(
(2j − 1)π

2n

)
, j = 1, . . . , n ,

we see that ℓn(λj) = 1/n for j = 1, . . . , n. In particular, by (25), in this case

Sn,j = Sn

(
λ

(n)
j

)
= log

(n

2

)
+

log 2

n
− 2

n
Ŝn,j , (26)

where

Ŝn,j
def
=

n−1∑

i=1

cos2

(
(2j − 1)π

2n
i

)
log

(
cos2

(
(2j − 1)π

2n
i

))
. (27)

Formulas (26)–(27) reduce the computation of Sn,j to the analysis of the modified entropy

Ŝn,j. But first we express Ŝn,j in terms of the auxiliary functions ϕ
(n)
j defined by (15).

Proposition 7 For j ∈ N,

∣∣∣∣cos
(

(2j − 1)π

2n
x

)∣∣∣∣ =
∣∣∣cos

( π

2n
ϕ

(n)
2j−1(x)

)∣∣∣ , x ∈ R . (28)

In particular,

Ŝn,j =

n−1∑

k=1

cos2
( π

2n
ϕ

(n)
2j−1(k)

)
log
(
cos2

( π

2n
ϕ

(n)
2j−1(k)

))
. (29)

Proof. By (23), given x ∈ R, either

ϕ
(n)
2j−1(x) − (2j − 1)x

2n
∈ Z or

ϕ
(n)
2j−1(x) + (2j − 1)x

2n
∈ Z .

14



Hence, there exists m ∈ Z such that either

π

2n
ϕ

(n)
j (x) =

(2j − 1)π

2n
x + πm , or

π

2n
ϕ

(n)
j (x) = −(2j − 1)π

2n
x + πm ,

and (28) follows.

Using the arithmetic properties of ϕ
(n)
j established above, we can simplify the expression

for the modified entropy:

Proposition 8 Let n ∈ N and j ∈ {1, 2, . . . , n}. If GCD(2j − 1, n) = d then

Ŝn,j =






0 if j =
n + 1

2
,

d

(n/d)−1∑

k=1

cos2
(

πd

2n
k

)
log

(
cos2

(
πd

2n
k

))
, otherwise.

(30)

Furthermore,
Ŝn,j = Ŝn,n−j+1 . (31)

Proof. Observe that d ≤ n, and for j ∈ {1, 2, . . . , n} we have

d = n ⇔ j =
n + 1

2
.

Furthermore, any term with index k in the sum (29), for which ϕ
(n)
2j−1(k) ∈ {0, n}, vanishes.

Since GCD(2j − 1, n) = GCD(2j − 1, 2n), formula (30) follows in a straightforward way from
(29), (ii)–(iii) of the Main Lemma, and the commutativity of the sum.

Moreover,
GCD(2j − 1, n) = GCD(2(n − j + 1) − 1, n) . (32)

Indeed, let GCD(2j−1, n) = d, so that 2j−1 = ds, n = dt, where s, t ∈ N and GCD(s, t) = 1.
By a well known characterization of coprime integers, there exists integers x, y such that
xs + yt = 1. We have 2(n − j + 1) − 1 = (2t − s)d, and

−x(2t − s) + (2x + y)t = xs + yt = 1 ⇒ GCD(2t − s, t) = 1 ,

so that GCD(2(n − j + 1) − 1, n) = d, which proves (32). In particular, Ŝn,j and Ŝn,n−j+1

share the same value d in (30), which proves (31).

Next we find a series representation for Ŝn,j:

Proposition 9 Let n ∈ N, j ∈ {1, 2, . . . , n}, and GCD(2j − 1, n) = d. Then

1

n
Ŝn,j =

1

2
(1 − 2 log 2) +

∞∑

s=1

ζ(2s + 1)

(
d

2n

)2s+1

, (33)

where ζ(·) is the Riemann zeta function.

Remark 6 Observe that d/2n ≤ 1/2, so that the series in the right hand side is convergent.
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Proof. In order to find the value of Ŝn,j we follow the strategy [3] of computing for 0 <
2 − ǫ < q < 2 + ǫ the lq norms

N(q;h)
def
=

n/d−1∑

j=0

cosq

(
πd

2n
j

)
=

π/(2h)−1∑

j=0

cosq (hj) , h
def
=

πd

2n
, (34)

and considering the partial derivative of N(q;h) with respect to q at q = 2:

Ŝn,j = 2d

π/(2h)−1∑

j=0

cos2 (hj) log cos (hj) = 2d
∂

∂q
N(q;h)

∣∣∣∣
q=2

. (35)

Observe that N(q;h) are related to the Riemann sums of an integral:

hN(q;h) ≃
∫ π/2

0
cosq(u)du =

∫ π/2

0

(
cos(u)
π
2 − u

)q (π

2
− u
)q

du . (36)

Consider cosq(x) and (cos(x)/(π/2 − x))q as analytic functions at x = 0 and x = π/2,
respectively, whose single valued branches in the corresponding neighborhoods are fixed by

cosq(x)
∣∣
x=0

=

(
cos(x)
π
2 − x

)q ∣∣∣∣
x=π/2

= 1.

Denote by

cosq(x) = 1 +

∞∑

s=1

αs(q)xs,

(
cos(x)
π
2 − x

)q

= 1 +

∞∑

s=1

βs(q)
(π

2
− x
)s

the Taylor expansions of these functions. Observe that αs(q) = βs(q) = 0 for odd indices s.
The Euler-Maclaurin summation formula for integrals with algebraic singularity at the end
points (see [23]) yields

hN(q;h) = h

π/(2h)−1∑

j=0

cosq(hj) = h +

∫ π/2

0
cosq(u)du+

+

∞∑

s=0

αs(q) ζ(−s)hs+1 +

∞∑

s=0

βs(q) ζ(−s − q)hs+q+1 ;

(37)

at this stage we understand this identity in standard terms of an asymptotic expansion. Since
ζ(0) = −1/2 and ζ(−2j) = 0 for j ∈ N, formula in (37) reduces to

N(q;h) =
1

2
+

1

h

∫ π/2

0
cosq(u)du +

∞∑

s=0

β2s(q) ζ(−2s − q)h2s+q . (38)

Paper [23] addresses also the case of the Euler-Maclaurin summation formula providing full
asymptotic expansion for integrands with logarithmic singularities at the end points. In fact,
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these results from [23] can be obtained by formal differentiation of (38) with respect to q.
Taking into account (35) we obtain:

Ŝn,j =2d
∂

∂q
N(q;h)

∣∣
q=2

=
2d

h

∫ π/2

0
cos2(u) log(cos(u))du − 2d

∞∑

s=0

β2s(2)ζ
′(−2(s + 1))h2(s+1) .

(39)

But ∫ π/2

0
cos2(u) log(cos(u))du =

π

8
(1 − log 4) ,

and
cos2(z)

(π
2 − z)2

=

∞∑

s=0

(−1)s22s+1

(2s + 2)!

(π

2
− z
)2s

,

so that

β2s(2) =
(−1)s22s+1

(2s + 2)!
.

Recalling the definition of h and gathering these formulas in (39), we obtain

Ŝn,j =
n

2
(1 − 2 log 2) + d

∞∑

s=1

(−1)s
π2sζ ′(−2s)

(2s)!

(
d

n

)2s

.

Identity

ζ ′(−2s) = (−1)sζ(2s + 1)
(2s)!

π2s

1

22s+1

yields now (33). It remains to observe that the series in the right hand side is convergent,
thus this is a bona fide series expansion of Ŝn,j.

Corollary 10 Let n ∈ N, j ∈ {1, 2, . . . , n}, and GCD(2j − 1, n) = d, then

2

n
Ŝn,j = 1 − 2 log 2 −R

(
d

2n

)
, (40)

with R defined in (11).

Proof. It is an immediate consequence of (33) and (12).

Remark 7 It is easy to check that R(1/2) = 1 − log(4), so that for d = n we have Ŝn,j = 0
(cf. formula (30)).

It remains to use (40) in (26) in order to complete the proof of Theorem 1.

17



4 Entropy of Chebyshev polynomials of the second kind

From the explicit formulas (14) it follows that the zeros of the Chebyshev polynomials of the
second kind of degree n are

λ
(n)
j = cos

(
jπ

n + 1

)
, j = 1, . . . , n ,

and

ℓ−1
n (λ) =

n−1∑

k=0

p2
k(λ) =

1

2

n sin(θ) − cos((n + 1)θ) sin(nθ)

sin3(θ)
, λ = cos θ . (41)

By (14), with λ = cos(θ),

n∑

k=1

p2
k−1 (λ) log

(
p2

k−1 (λ)
)

=
n∑

k=1

p2
k−1 (λ) log

(
sin2 (kθ)

)
− log

(
sin2(θ)

) n∑

k=1

p2
k−1 (λ)

= sin−2(θ)
n∑

k=1

sin2 (kθ) log
(
sin2 (kθ)

)
− log

(
sin2(θ)

)
ℓ−1
n (λ) .

Introducing the notation

Ŝn,j
def
=

n−1∑

k=1

sin2

(
kjπ

n

)
log

(
sin2

(
kjπ

n

))
, (42)

and using (9) we get

Sn,j = − log(ℓn(λ
(n)
j )) − ℓn(λ

(n)
j )

(
Ŝn+1,j

sin2(jπ/(n + 1))
− log

(
sin2(jπ/(n + 1))

)

ℓn(λj)

)

= − log(ℓn(λ
(n)
j )) + log

(
sin2(jπ/(n + 1))

)
−

ℓn(λ
(n)
j )

sin2(jπ/(n + 1))
Ŝn+1,j . (43)

Furthermore, by (41),

ℓ−1
n (λ

(n)
j ) =

n + 1

2 sin2
(

jπ
n+1

) , (44)

so that

Sn,j = Sn

(
λ

(n)
j

)
= log

(
n + 1

2

)
− 2

n + 1
Ŝn+1,j . (45)

Again, formula (45) reduces the computation of Sn,j to the analysis of the modified entropy

Ŝn,j. We express Ŝn,j in terms of the auxiliary functions ϕ
(n)
j defined by (15):

Proposition 11 For j ∈ N,
∣∣∣∣sin

(
jπ

n
x

)∣∣∣∣ =
∣∣∣sin

( π

2n
ϕ

(n)
2j (x)

)∣∣∣ , x ∈ R . (46)

In particular,

Ŝn,j =

n−1∑

k=1

sin2
( π

2n
ϕ

(n)
2j (k)

)
log
(
sin2

( π

2n
ϕ

(n)
2j (k)

))
. (47)
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Proof. By (23), for every x ∈ R either

ϕ
(n)
2j (x) − 2jx

2n
∈ Z or

ϕ
(n)
2j (x) + 2jx

2n
∈ Z .

Hence, given x ∈ R there exists m ∈ Z such that either

π

2n
ϕ

(n)
2j (x) =

jπ

n
x + πm , or

π

2n
ϕ

(n)
j (x) = −jπ

n
x + πm ,

which implies (46).

Proposition 12 Let n ∈ N and j ∈ {1, 2, . . . , n − 1}. Then

Ŝn,j =






0 if j = n/2 ,

D

n
D
−1∑

m=1

sin2

(
πd

n
m

)
log

(
sin2

(
πd

n
m

))
, otherwise,

(48)

where D = GCD(2j, n) and d = GCD(j, n).
Furthermore,

Ŝn,j = Ŝn,n−j . (49)

Proof. Observe that D ≤ n, and for j ∈ {1, 2, . . . , n − 1} we have

D = n ⇔ j =
n

2
.

It follows from (ii) of the Main Lemma (Section 2) that in this case ϕ
(n)
2j (Z) ∈ {0, n}, so that

we obtain formula (48) for j = n/2.
For j 6= n/2 we consider two cases. First, assume that D = 2d. Then,

GCD(2j, 2n) = 2 · GCD(j, n) = 2d = D = GCD(2j, n) .

Since D < n, by (18)–(19), ϕ
(n)
2j ({1, . . . , n − 1}) \ {0, n} =

{
Dm : m = 1, . . . , n

D − 1
}
, and

for any m ∈
{
1, . . . , n

D − 1
}
, card{k ∈ {1, . . . , n − 1} : ϕ

(n)
2j (k) = Dm} = D. Hence, (47) and

the commutativity of the sum yield

Ŝn,j = D

n
D
−1∑

m=1

sin2

(
πD

2n
m

)
log

(
sin2

(
πD

2n
m

))
,

which proves (48) in this case.
Assume next that D = d. Then,

GCD(2j, 2n) = 2 · GCD(j, n) = 2d = 2D = 2 · GCD(2j, n) .

Since D < n, by (20)–(21), ϕ
(n)
2j ({1, . . . , n − 1}) \ {0, n} =

{
2Dm : m = 1, . . . , n/D−1

2

}
, and

for any m ∈
{
1, . . . , n−D

2D

}
, card{k ∈ {1, . . . , n − 1} : ϕ

(n)
2j (k) = 2Dm} = 2D. Using (47) and

the commutativity of the sum, we conclude that

Ŝn,j = 2D

n/D−1
2∑

m=1

sin2

(
πD

n
m

)
log

(
sin2

(
πD

n
m

))
. (50)
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Furthermore,

sin2

(
πD

n
m

)
= sin2

(
π − πD

n
m

)
= sin2

(
πD

n

( n

D
− m

))
,

so that

Ŝn,j = 2D

n/D−1
2∑

m=1

sin2

(
πD

n

( n

D
− m

))
log

(
sin2

(
πD

n

( n

D
− m

)))
.

But
{

m = 1, . . . ,
n/D − 1

2

}
∪
{

n

D
− m : m = 1, . . . ,

n/D − 1

2

}
=
{

1, . . . ,
n

D
− 1
}

.

Thus,

Ŝn,j = D

n
D
−1∑

m=1

sin2

(
πD

n
m

)
log

(
sin2

(
πD

n
m

))
,

which concludes the proof of (48).
Finally, we have that j = ds, n = dt, where s, t ∈ N and GCD(s, t) = 1. Again by a

characterization of coprime integers, there exists integers x, y such that xs + yt = 1. But
n − j = (t − s)d, and

−x(t − s) + (x + y)t = xs + yt = 1 ⇒ GCD(t − s, t) = 1 ,

so that GCD(n − j, n) = d. Analogously, GCD(2j, n) = D = GCD(2(n − j), n). Now (49) is
a straightforward consequence of (48).

Next we find a series representation for Ŝn,j:

Proposition 13 Let n ∈ N, j ∈ {1, 2, . . . , n − 1}, and GCD(j, n) = d. Then

2

n
Ŝn,j = 1 − 2 log 2 −R

(
d

n

)
, (51)

where R(·) has been introduced in (11).

Proof. Observe first that

n−1∑

m=1

sin2
( π

2n
m
)

log
(
sin2

( π

2n
m
))

=

n−1∑

m=1

sin2
( π

2n
(n − m)

)
log
(
sin2

( π

2n
(n − m)

))

=

n−1∑

m=1

cos2
( π

2n
m
)

log
(
cos2

( π

2n
m
))

. (52)
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Let GCD(2j, n) = D; assume first that D = 2d. By (48) and (52),

Ŝn,j = D

n
D
−1∑

m=1

sin2

(
πd

n
m

)
log

(
sin2

(
πd

n
m

))

= D

n
D
−1∑

m=1

sin2

(
πD

2n
m

)
log

(
sin2

(
πD

2n
m

))

= D

n
D
−1∑

m=1

cos2

(
πD

2n
m

)
log

(
cos2

(
πD

2n
m

))

=
n

2

(
1 − 2 log 2 −R

(
D

2n

))
.

where for the last identity we have used (30) and (40). Since D = 2d, this proves (51) in this
case.

The remaining case is analyzed in a similar fashion.

Using (51) in (45) we complete the proof of Theorem 2.

5 Further numerical experiments

In this section we present some results of numerical evaluation of the entropy Sn,j for sev-
eral orthogonal polynomials. Computation has been carried out in Fortran 95, by complete
diagonalization of the corresponding Jacobi matrix Ln in (4), using the routine STEVD of
the LAPACK95 library [2, 6], which computes all the eigenvalues and eigenvectors of a given
matrix by means of a divide and conquer algorithm [21].

As a first illustration we present the entropies Sn,j, n = 150, 151, 152, for two values of

the parameters α, β of Jacobi polynomials P
(α,β)
n , given by the recurrence relation (3) with

bi =
2

2i + α + β

√
i(i + α)(i + β)(i + α + β)

(2i + α + β + 1)(2i + α + β − 1)
, ai =

α2 − β2

(2i + α + β)(2i + α + β − 2)
.

In Figure 4 we can also observe the “peaks” explained for the Chebyshev polynomials, but
unlike in the latter case, they are pointing both downwards and upwards. Furthermore, the
value distribution close the endpoints of the interval clearly differs from the behavior in the
bulk. The feature of the endpoint behavior is even more visible for the symmetric Pollaczek
polynomials pθ

n(·; a) (Figure 5), given by the recurrence relation (3) with

bi =
1

2

√
i(i + 2θ − 1)

(i + θ + a)(i + θ + a − 1)
, ai = 0 .

For a = 0 these polynomials reduce to the Jacobi (or more precisely, Gegenbauer) polynomials

P
(θ−1/2,θ−1/2)
n . If a > 0, the orthogonality weight for the Pollaczek polynomials does not

satisfy the Szegő condition due precisely to its exponentially fast decay at the end points of
the interval [−1, 1].
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Figure 4: Jacobi polynomials P
(1.2,8.9)
n (left) and P

(1.2,3.4)
n (right): entropy Sn,j for n = 150,

151 and 152.

A qualitatively different behavior is observed for the Meixner polynomials M
(β,c)
n , given

by the recurrence relation (3) with

bi =
(ic(i + β − 1))1/2

1 − c
, ai =

(i − 1)(1 + c) + cβ

1 − c
.

Recall that they are orthogonal with respect to the discrete measure (see e.g. [16, Chapter
6])

µ = (1 − c)β
∞∑

k=0

(β)kck

k!
δk .

From Figure 6 we observe that the value of the parameter c has greater impact on the behavior
of the entropy Sn,j in comparison with the parameter β.
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Figure 5: Pollazcek polynomials p1.2
n (x; 8.9) (left) and p1.2

n (x; 3.4) (right): entropy Sn,j for
n = 150, 151 and 152.

Finally, the evidence provided by all numerical experiments is sufficiently strong to con-
jecture that, after an appropriate rescaling and normalization, entropies Sn,j have a “semi-
classical” limit as n → ∞. The analysis of this asymptotic behavior is matter of a further
research.
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from Junta de Andalućıa, grant FQM-229. Additionally, JSD, AMF and RY were partially

23



0 50 100 150
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Meixner n=150

0 50 100 150
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Meixner n=150

0 50 100 150
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Meixner n=150

0 50 100 150
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
Meixner n=150

Figure 6: Entropy S150,j for Meixner polynomials M
(β,c)
n with β = 3.4, c = 0.2 (left top),

β = 8.9, c = 0.2 (right top), β = 3.4, c = 0.8 (left bottom), β = 8.9, c = 0.8 (right bottom).

supported by the excellence grants FQM-481, and P06-FQM-01738 from Junta de Andalućıa.
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