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Strong asymptotics for Jacobi polynomials with varying

nonstandard parameters

A.B.J. Kuijlaars∗ A. Mart́ınez-Finkelshtein†

January 5, 2004

Abstract

Strong asymptotics on the whole complex plane of a sequence of monic Jacobi polynomials P
(αn,βn)
n

is studied, assuming that

lim
n→∞

αn

n
= A , lim

n→∞

βn

n
= B ,

with A and B satisfying A > −1, B > −1, A + B < −1. The asymptotic analysis is based on the
non-Hermitian orthogonality of these polynomials, and uses the Deift/Zhou steepest descent analysis
for matrix Riemann-Hilbert problems. As a corollary, asymptotic zero behavior is derived. We show
that in a generic case the zeros distribute on the set of critical trajectories Γ of a certain quadratic
differential according to the equilibrium measure on Γ in an external field. However, when either αn, βn

or αn + βn are geometrically close to Z, part of the zeros accumulate along a different trajectory of the
same quadratic differential.

1 Introduction

We consider Jacobi polynomials P
(An,Bn)
n with varying negative parameters An and Bn such that

−1 < A < 0, −1 < B < 0, −2 < A + B < −1. (1.1)

We will obtain strong asymptotics as n → ∞ of P
(An,Bn)
n (z) uniformly for z in any region of the complex

plane and uniformly for A and B in compact subsets of the set of parameter values satisfying (1.1). Since the
asymptotics is uniform in A and B, we also find the asymptotics for general sequences of Jacobi polynomials

P
(αn,βn)
n such that the limits

A = lim
n→∞

αn

n
and B = lim

n→∞

βn

n
(1.2)

exist, and satisfy (1.1). From the asymptotics of the polynomials we will also be able to describe the limiting
behavior of the zeros.

From the point of view of behavior of zeros, the Jacobi polynomials with varying parameters αn, βn

such that (1.2) and (1.1) hold are the most interesting general case. Indeed, Mart́ınez-Finkelshtein et al.
[25] distinguish five cases depending on the values of the limits (1.2) (cf. Fig. 1). The first case is the case
where A, B > 0, which corresponds to classical Jacobi polynomials with varying positive parameters. These
polynomials are orthogonal on the interval [−1, 1], and as a result all their zeros are simple and belong to
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the interval (−1, 1). The asymptotic behavior of Jacobi polynomials with varying positive parameters is
discussed in [4, 5, 10, 17, 23, 26]. We also consider the parameter combinations B > 0, A + B < −2 and
A > 0, A + B < −2 as classical. Indeed, the transformation formula

P (α,β)
n (x) =

(
1 − x

2

)n

P (−2n−α−β−1,β)
n

(
x + 3

x − 1

)
(1.3)

see [32, §4 .22], expresses a Jacobi polynomial with parameters α and β satisfying α + β < −2n and β > −1
directly in terms of a Jacobi polynomial with positive parameters. It follows that (1.3) reduces the study
of Jacobi polynomials with varying parameters αn and βn such that the limits (1.2) hold with B > 0 and
A + B < −2 to the study of Jacobi polynomials with varying positive parameters. The analogous formula

P (α,β)
n (x) =

(
1 + x

2

)n

P (α,−2n−α−β−1)
n

(
3 − x

x + 1

)
(1.4)

shows similarly how to reduce the case A > 0 and A + B < −2 to the classical case.
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Β = 0

Α = 0Α = −1

Β = −1
5

Α + Β = −1

Α + Β = −2

Figure 1: The five different cases in the classification of Jacobi polynomials with varying parameters according
to [25].

The second case in the classification of [25] corresponds to limits A and B in (1.2) satisfying one of the
three combinations A < −1, A + B > −1, or B < −1, A + B > −1, or A < −1, B < −1. In this case the
zeros accumulate along an open arc in the complex plane. Their asymptotic distribution was found in [25]
in terms of the equilibrium measure in an external field (cf. [29]). The approach followed there was based on
the non-hermitian orthogonality of the Jacobi polynomials with these parameters. See [20] for an overview
of non-hermitian orthogonality properties of Jacobi polynomials with general parameters.

The remaining cases correspond to combinations of A and B values such that one or more of the inequal-
ities −1 < A < 0, −1 < B < 0, and −2 < A + B < −1 are satisfied. In these cases, the zero behavior is
more involved due to the possible occurrence of multiple zeros (at ±1 only) or a zero at ∞ (which means a
degree reduction). To be precise, if α = −k is a negative integer with k ∈ {1, . . . , n}, then we have (see [32,
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formula (4.22.2)]),

P (−k,β)
n (z) =

Γ(n + β + 1)

Γ(n + β + 1 − k)

(n − k)!

n!

(
z − 1

2

)k

P
(k,β)
n−k (z) , (1.5)

so that P
(−k,β)
n has a zero at 1 of multiplicity k. Similarly, if β = −l with l ∈ {1, . . . , n} then P

(α,−l)
n has

a zero at −1 of multiplicity l. A degree reduction may occur when α + β is a negative integer, namely if
α + β = −n − k − 1 with k ∈ {0, . . . , n − 1}, then

P (α,β)
n (z) =

Γ(n + α + 1)

Γ(k + α + 1)

k!

n!
P

(α,β)
k (z) , (1.6)

see [32, Eq. (4.22.3)]; see §4.22 of [32] for a more detailed discussion. Now assume we have varying parameters
αn, βn such that the limits (1.2) exist. If −1 < A < 0, and if the αn are integers, then we have for each n

large enough, that P
(αn,βn)
n has a multiple zero at 1. In the weak limit of the zero counting measures this

corresponds to a point mass |A| at 1. Similarly, if −1 < B < 0, and if the βn are integers, then we have in
the limit a point mass |B| at −1. Finally, if −2 < A + B < −1 and αn + βn are integers, then we have in
the limit a point mass 2 + A + B at infinity.

The classification of the remaining cases in [25] depends on the number of inequalities −1 < A < 0,
−1 < B < 0, −2 < A + B < −1 that are satisfied. The third, fourth and fifth case correspond to
combination of parameters A and B such that exactly one, exactly two, or exactly three, respectively, of the
inequalities are satisfied (cf. Fig. 1). In these three cases the limiting behavior of zeros will be very sensitive
to the proximity of αn (if −1 < A < 0), βn (if −1 < B < 0) or αn + βn (if −2 < A + B < −1) to integer
values. For Laguerre polynomials the same phenomenon was analyzed recently in [21].

Since all three kinds of singular behavior can occur in the fifth case, this is the most interesting case and
that is the reason why we consider it here. The other cases can also be treated with our methods. Fig. 1
shows the behavior of zeros which is typical for case 5. From the figure it appears that the zeros accumulate
on a contour consisting of three analytic arcs. From our analysis below it follows that this is indeed the
case, provided that the parameters are not too close to integers. We identify the curves as trajectories of a
quadratic differential as well as the limiting density of the zeros on the curves, see Theorems 2.3 and 2.4 for
the exact statement. To be able to explain the remarkable zero behavior was the main motivation for the
present work.

We remark that the different possibilities within the cases 1, 2, 3, and 4 can be transformed to one
another using the transformation formulas (1.3), (1.4) for Jacobi polynomials. It is interesting to note that
case 5 is invariant under these transformations, see [25].

We also remark that the transitions between the five cases (i.e., A = 0, A = −1, or B = 0, B = −1,
A+ B = −1 or A +B = −2) will present additional difficulties. These are the non-general cases, in contrast
to what we call the general cases 1–5. The zero distribution in some of these cases has been studied by Driver,
Duren and collaborators (see also a recent survey [33] on the large parameter cases of the hypergeometric

function). In [11] the case P
(kn+1,−n−1)
n , k ∈ N, has been analyzed, corresponding to A = k ∈ N and

B = −1; this result was generalized in [15] using a saddle-point method to allow k to be any positive real

number. Case P
(n+b,−n−b)
n has been studied in [13]. In general, these works establish the accumulation

set of the zeros but not the limiting distribution. Trajectories of the zeros of the Gegenbauer polynomials

P
(−n−b,−n−b)
n with fixed n as b varies from −1/2 to −∞ have been described in [12].

The rest of the paper is organized as follows. The main results are stated in Section 2. We start defining
the basic configuration on the plane used in the description of the zero (Subsection 2.2) and strong (Subsec-
tions 2.3–2.4) asymptotics of the polynomials. In Section 3 we prove two technical lemmas. The cornerstone
of our approach is the matrix Riemann-Hilbert problem formulated in Section 4; the transformations of this
problem in the framework of the Deift-Zhou steepest descent analysis (Section 5) are used in Section 6 to
prove the main results of the paper.
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Figure 2: Zeros of P
(α,β)
100 for α = −70 + 10−5, β = −80 + 10−5, which corresponds to Case 5 in Fig. 1.

The Deift-Zhou steepest descent method for asymptotics of Riemann-Hilbert problems was introduced
in [9] and applied first to orthogonal polynomials in [7, 8], see also [6]. We use an adaptation of the
method to orthogonality on curves in the complex plane. The optimal curves are trajectories of a quadratic
differential and they were used for steepest descent analysis of Riemann-Hilbert problems first in [3] and
later in [2, 19, 21, 22, 24].

2 Statement of results

2.1 Geometry of the problem

We assume A and B satisfy the inequalities (1.1) and define

ζ± =
B2 − A2 ± 4i

√
(A + 1)(B + 1)(−A − B − 1)

(A + B + 2)2
. (2.1)

Because of the inequalities (1.1) we have that all factors in the square root in (2.1) are positive, so that
ζ+ ∈ C+ = {z ∈ C : Im z > 0} and ζ− is the complex conjugate of ζ+.

Regardless of the branch of the square root and of the path of integration we choose, the set

Γ = Γ(A,B) :=

{
z ∈ C : Re

∫ z

ζ−

((t − ζ+)(t − ζ−))1/2

t2 − 1
dt = 0

}
(2.2)

is well defined, and consists of the union of the critical trajectories of the quadratic differential (cf. [31])

− (z − ζ−)(z − ζ+)

(z2 − 1)2
dz2. (2.3)

Lemma 2.1 We have that Γ is the union of three analytic arcs, which we denote by ΓL, ΓC , and ΓR. All

three arcs connect the two points ζ± and intersect the real line in exactly one point, in such a way that each

of the intervals (−∞,−1), (−1, 1), (1,∞) is cut by one of the arcs.
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The contour Γ is oriented as indicated in Fig. 3. That is, ΓL and ΓC are oriented from ζ+ to ζ−, and ΓR

is oriented from ζ− to ζ+. The orientation of Γ induces a + and − side in a neighborhood of the contour,
where the + side is on the left while traversing Γ according to its orientation and the − side is on the right.
We say that a function f on C \Γ has a boundary value f+(t) for t ∈ Γ \ {ζ+, ζ−} if the non-tangential limit
of f(z) as z → t with z on the + side of Γ exists; similarly for f−(t).

−
+

ζ
+

ζ
−

+−

ξ
C

+
−

1−1

Γ
L

Γ
C

Γ
R

Ω∞ Ω
−1

Ω
1

Figure 3: Contour Γ = ΓL ∪ ΓC ∪ ΓR with the orientation chosen.

Also, we denote by Ω−1 and Ω1 the bounded components of C \Γ containing −1 and 1, respectively, and
by Ω∞ the unbounded component of C \ Γ (Fig. 3).

In what follows we write

R(z) = ((z − ζ+)(z − ζ−))1/2, z ∈ C \ ΓC , (2.4)

which is defined and analytic in the cut plane C \ ΓC , such that R(z) ∼ z as z → ∞.
We also need the critical orthogonal trajectories of the quadratic differential (2.3). These are defined by

Γ⊥ = Γ⊥+ ∪ Γ⊥−

where

Γ⊥− =

{
z ∈ C

− : Im

∫ z

ζ−

R(t)

t2 − 1
dt = 0

}

where the integration is along a path from ζ− to z in C
− \ ΓC , and

Γ⊥+ =

{
z ∈ C

+ : Im

∫ z

ζ+

R(t)

t2 − 1
dt = 0

}

where the integration is along a path from ζ+ to z in C+ \ ΓC .
The typical structure of the orthogonal trajectories Γ⊥ is shown in Fig. 4. Three orthogonal trajectories

emanate from both ζ+ and ζ−, ending at 1, −1 and ∞, respectively (see the dotted lines in Fig. 4). We
denote by γ+

1 , γ+
−1, γ+

∞ the arcs of Γ⊥ that connect ζ+ with the points 1, −1, and ∞, respectively; this is
also the part of Γ⊥ in the upper half plane. The corresponding arcs in the lower half plane are denoted by
γ−

1 , γ−

−1 and γ−
∞, so that γ−

s is the mirror image of γ1
s in the real axis, for s ∈ {1,−1,∞}.

2.2 Weak convergence of zeros

Then we define the absolutely continuous (a priori, complex) measure µ on Γ by

dµ(z) =
A + B + 2

2πi

R+(z)

z2 − 1
dz, z ∈ Γ, (2.5)
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ζ
+

ζ
−

1−1

Γ
L

Γ
C

Γ
R

γ
−1
+

γ
−1
−

γ
1
+

γ
1
−

γ
∞
−

γ
∞
+

Figure 4: Typical structure of the sets Γ (solid lines) and Γ⊥ (dotted lines).

where R+ denotes the boundary value of R on the +-side of Γ. (Only on ΓC there is a difference between
the + and − boundary values.) The line element dz is taken according to the orientation of Γ.

Lemma 2.2 The measure (2.5) is positive and

µ(ΓL) = 1 + A > 0, µ(ΓC) = −1 − A − B > 0, µ(ΓR) = 1 + B > 0. (2.6)

In particular we have that µ is a probability measure on Γ.

The importance of µ is shown in the following result.

Theorem 2.3 Let (αn) and (βn) be two sequences such that αn/n → A and βn/n → B where A and B
satisfy (1.1). Suppose that

lim
n→∞

[dist(αn, Z)]
1/n

= lim
n→∞

[dist(βn, Z)]
1/n

= lim
n→∞

[dist(αn + βn, Z)]
1/n

= 1. (2.7)

Then, as n → ∞, the zeros of the Jacobi polynomial P
(αn,βn)
n accumulate on Γ and µ is the weak∗ limit of

the sequence of normalized zero counting measures.

The conditions (2.7) imply that αn, βn, and αn +βn are not too close to the integers. That such a condition
is necessary is easily seen from the case when these numbers are in fact integers (cf. (1.5)).

To describe the general case, we need the function

φ(z) =
A + B + 2

2

∫ z

ζ−

R(t)

t2 − 1
dt, (2.8)

which is a multi-valued function. However, its real part is well-defined, and we see from the definition (2.2)
that Γ = {z : Re φ(z) = 0}. For every r we introduce the level set

Γr = {z ∈ C : Re φ(z) = r}. (2.9)
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We note that by the selection of the branch in (2.4), Re φ > 0 in the unbounded region Ω∞ and Re φ < 0 in
the two bounded regions Ω±1. For r > 0, we have that Γr is a simple closed contour in Ω∞, while for r < 0,
we have that Γr consists of two simple closed contours, one contained in Ω1 and the other in Ω−1. We define
for r < 0,

Γr,−1 = Γr ∩ Ω−1, Γr,+1 = Γr ∩ Ω1.

We choose the positive (=counterclockwise) orientation on each of the closed contours. All these contours
are trajectories of the quadratic differential (2.3). See Fig. 5 for the trajectories.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

ζ
+

ζ
−

1−1

Figure 5: Some trajectories of the quadratic differential (2.3), or equivalently, some level sets Γr, for the
values A = −0.7 and B = −0.8.

Finally, we introduce three numbers rα, rβ , and rα+β and we assume that

lim
n→∞

[dist(αn, Z)]1/n = e−rα , (2.10)

lim
n→∞

[dist(βn, Z)]
1/n

= e−rβ , (2.11)

lim
n→∞

[dist(αn + βn, Z)]
1/n

= e−rα+β . (2.12)

It is easily seen that these numbers are non-negative and that the case rα = rβ = rα+β = 0 corresponds to
Theorem 2.3. It is also easily seen that at least two of the numbers rα, rβ and rα+β should be equal, and
if the third one is different, it will be greater than the other two. So we distinguish four cases in the next
theorem.

Theorem 2.4 Let (αn) and (βn) be two sequences such that αn/n → A and βn/n → B where A and B
satisfy (1.1). Suppose that there exist three numbers rα, rβ, and rα+β such that the limits (2.10), (2.11), and

(2.12) exist. Then the following hold.

(a) If rα = rβ = rα+β, then the zeros of P
(αn,βn)
n accumulate on Γ as n → ∞, and µ is the weak∗ limit of

the normalized zero counting measures.
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(b) If rα = rβ < rα+β, then the zeros of P
(αn,βn)
n accumulate on ΓC ∪Γr where r = (rα+β − rα)/2 > 0 and

A + B + 2

2π

R+(z)

z2 − 1
dz, z ∈ ΓC ∪ Γr

is the weak∗ limit of the normalized zero counting measures.

(c) If rα = rα+β < rβ, then the zeros of P
(αn,βn)
n accumulate on ΓR ∪ Γr,−1 where r = (rα − rβ)/2 < 0,

and
A + B + 2

2πi

R(z)

z2 − 1
dz, z ∈ ΓR ∪ Γr,−1

is the weak∗ limit of the normalized zero counting measures.

(d) If rβ = rα+β < rα, then the zeros of P
(αn,βn)
n accumulate on ΓL ∪ Γr,+1 where r = (rβ − rα)/2 < 0,

and
A + B + 2

2πi

R(z)

z2 − 1
dz, z ∈ ΓL ∪ Γr,+1

is the weak∗ limit of the normalized zero counting measures.

Of course the statement of Theorem 2.3 is a special case of part (a) of Theorem 2.4. We choose to mention
Theorem 2.3 separately, since it represents the generic case. The statements of Theorem 2.4 are also valid
along subsequences of N, if we assume existence of the limits (2.10)–(2.12) as n → ∞ for n in a subsequence
Λ of N.

To illustrate the different phenomena that can happen we show some figures (Fig. 6 and Fig. 7).

1−1

Figure 6: Zeros of P
(α,β)
100 for α = −70 + 10−5, β = −80 + 10−5, together with the set Γ corresponding to

A = −0.7, B = −0.8.

Remark 2.5 A general approach to the limiting zero behavior of polynomials satisfying a non-hermitian
orthogonality property has been established in the works of Stahl [30] and Gonchar-Rakhmanov [18]. These
authors describe the limit distribution in terms of the equilibrium measure in an external field on a contour
satisfying a symmetry property in C. Our contour Γ possesses this property, but the theorems of [30] and
[18] are not applicable: an essential assumption in these papers is the connectedness of the complement to
the contour. Nevertheless, the measure µ from (2.5) is the above mentioned equilibrium measure on Γ in a
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1−1

1−1

Figure 7: Zeros of P
(α,β)
100 for α = −70 + 10−20, β = −80 + 10−30 (left), and α = −70 + 10−5 + 10−10,

β = −80 − 10−5 (right), together with the set Γ corresponding to A = −0.7, B = −0.8.

certain external field. Also the contours Γr have the symmetry property and the measures given in parts
(b)–(d) of Theorem 2.4 are the equilibrium measures in the external fields on these contours. So Theorem 2.4
shows that in a certain sense the results of Gonchar-Rakhmanov-Stahl are also valid for Jacobi polynomials
with varying negative parameters. It seems likely that similar results hold in more general situations.

2.3 Strong asymptotics away from ζ±

The weak convergence results of Theorems 2.3 and 2.4 follow from the strong asymptotic results that we

obtain for the Jacobi polynomials. We state the result here for the sequence P
(An,Bn)
n . We use P̂

(An,Bn)
n to

denote the corresponding monic Jacobi polynomial.
Note that Γ and Γ⊥ divide the complex plane into six domains, which we number from left to right by

I, II, III, IV, V, and VI, as shown in Fig. 8.
To state the asymptotic results we need to be specific about the branches of the functions that are

involved. We already defined φ in (2.8) as a multi-valued function. Now we specify that

φ(z) =
A + B + 2

2

∫ z

ζ−

R(t)

t2 − 1
dt, z ∈ C \ (ΓC ∪ γ+

1 ∪ γ+
−1 ∪ γ+

∞) (2.13)

where integration from ζ− to z is along a curve in C\(ΓC ∪γ+
1 ∪γ+

−1∪γ+
∞). Note that this definition prevents

the curve from going around the cut ΓC and also from going around one of the poles ±1.
Near infinity, φ behaves like

φ(z) =
A + B + 2

2
log z + c + O

(
1

z

)
(2.14)

for some constant c. This constant c will also appear in the asymptotic formulas below.
In our formulas we will also see fractional powers (z−1)−An/2 and (z +1)−Bn/2. We will choose these to

be defined and analytic in C \ (γ+
1 ∪ γ+

∞) and C \ (γ+
−1 ∪ γ+

∞), respectively, and to be positive for real z > 1.
Finally, we define

N11(z) =
1

2

((
z − ζ−
z − ζ+

)1/4

+

(
z − ζ+

z − ζ−

)1/4
)
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ζ
+

ζ
−

1−1I II III IV V VI

Figure 8: Domains defined by trajectories Γ ∪ Γ⊥.

and

N12(z) =
1

2i

((
z − ζ−
z − ζ+

)1/4

−
(

z − ζ+

z − ζ−

)1/4
)

which are defined and analytic in C \ ΓC . The fourth-roots are chosen so that they approach 1 as z → ∞.
We call these functions N11 and N12 since they will appear later as the corresponding entries of a matrix N .

Now we have all the ingredients to state our main theorem.

Theorem 2.6 Let A and B satisfy (1.1). Then the monic Jacobi polynomials P̂
(An,Bn)
n have the following

asymptotic behavior as n → ∞.

(a) For z in domains I and II,

P̂ (An,Bn)
n (z) = e−nc(z − 1)−An/2(z + 1)−Bn/2

(
enφ(z)N11(z)

(
1 + O

(
1

n

))
−e−Anπi sin(Bnπ)

sin((A + B)nπ)
e−nφ(z)N12(z)

(
1 + O

(
1

n

)))
(2.15)

(b) For z in domain III,

P̂ (An,Bn)
n (z) = e−nc(z − 1)−An/2(z + 1)−Bn/2

(
eBnπi sin(Anπ)

sin((A + B)nπ)
enφ(z)N11(z)

(
1 + O

(
1

n

))

−e−Anπi sin(Bnπ)

sin((A + B)nπ)
e−nφ(z)N12(z)

(
1 + O

(
1

n

)))
(2.16)

(c) For z in domain IV,

P̂ (An,Bn)
n (z) = e−nc(z − 1)−An/2(z + 1)−Bn/2

(
e−Anπi sin(Bnπ)

sin((A + B)nπ)
enφ(z)N11(z)

(
1 + O

(
1

n

))

+eBnπi sin(Anπ)

sin((A + B)nπ)
e−nφ(z)N12(z)

(
1 + O

(
1

n

)))
(2.17)
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(d) For z in domains V and VI,

P̂ (An,Bn)
n (z) = e−nc(z − 1)−An/2(z + 1)−Bn/2

(
enφ(z)N11(z)

(
1 + O

(
1

n

))
+eBnπi sin(Anπ)

sin((A + B)nπ)
e−nφ(z)N12(z)

(
1 + O

(
1

n

)))
(2.18)

These asymptotic formulas hold uniformly for z in the indicated domains away from the branch points,

uniformly for A and B in compact subsets of the region −1 < A < 0, −1 < B < 0, −2 < A + B < −1, and

for values of n such that (A + B)n is not an integer.

Remark 2.7 One can verify that the asymptotic formulas (2.15)–(2.18) agree on the boundaries of the
respective domains.

Remark 2.8 The fact that the formulas (2.15)–(2.18) hold uniformly for A and B in compact subsets of the
region given by (1.1) implies that we can allow varying values of A and B. In particular, we can consider two
sequences (αn) and (βn) such that the limits (1.2) exist and satisfy (1.1). We then have asymptotic formulas

for the Jacobi polynomials P̂
(αn,βn)
n as in (2.15)–(2.18) with A replaced by An = αn/n and B replaced by

βn/n. Then we also have to realize that φ, c, N11 and N12 are going to be n-dependent. Indeed, these
quantities are defined using A and B, which here we have to replace by An and Bn; we chose to state the
theorem for αn = An and βn = Bn for the sake of brevity of notation.

Remark 2.9 The expressions between brackets in the right hand-sides of (2.15)–(2.18) contain two terms
that correspond to the Liouville-Green approximation of two linearly independent solutions of the differential
equation satisfied by the corresponding Jacobi polynomials (cf. [27, Ch. VI]). In different regions of the plane
and depending on the parameters, these two terms are of comparable sizes (and then zeros of the polynomials
arise), or one of them is dominating the other. If we assume that An, Bn, and (A + B)n are not close to
integers, the expressions sin(Anπ)/ sin((A + B)nπ) and sin(Bnπ)/ sin((A + B)nπ) have moderate sizes (not
too small, not too big). In that case the dominant term is determined by Re φ. For z ∈ Ω∞, we have
Re φ(z) > 0, and then (2.15) and (2.18) both reduce to

P̂ (An,Bn)
n (z) = e−nc(z − 1)−An/2(z + 1)−Bn/2enφ(z)N11(z)

(
1 + O

(
1

n

))
(2.19)

for z in domains I and VI.
For z ∈ Ω1 ∪ Ω−1 we have Re φ(z) < 0, so that e−nφ(z) dominates enφ(z) for large n. Then (2.15)–(2.18)

reduce to

P̂ (An,Bn)
n (z) = −e−Anπi−nc sin(Bnπ)

sin((A + B)nπ)
(z − 1)−An/2(z + 1)−Bn/2e−nφ(z)N12(z)

(
1 + O

(
1

n

))
(2.20)

for z in domains II and III (that is, for z ∈ Ω−1), and to

P̂ (An,Bn)
n (z) = eBnπi−nc sin(Anπ)

sin((A + B)nπ)
(z − 1)−An/2(z + 1)−Bn/2e−nφ(z)N12(z)

(
1 + O

(
1

n

))
(2.21)

for z in domains IV and V (that is, for z ∈ Ω1).
We emphasize that (2.19), (2.20), and (2.21) only hold if An, Bn, and (A+B)n are not close to integers.

In general one has to use the compound asymptotic formulas (2.15)–(2.18).

Remark 2.10 If An is an integer, then (2.17) and (2.18) reduce to (2.19) for z in domains IV, V, and VI.
Then we see the multiple zero at z = 1, not only because of the factor (z − 1)−An/2, but also because

φ(z) = −A

2
log(z − 1) + O(1) as z → 1
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so that
enφ(z) = (z − 1)−An/2(1 + O(z − 1)) as z → 1. (2.22)

So we have a zero at z = 1 of multiplicity −An, as it should be.
Similar remarks apply if Bn is an integer. In that case we have a zero at z = −1 of multiplicity −Bn.

Remark 2.11 If An is not an integer, then P̂
(An,Bn)
n does not have a zero at z = 1. This is in agreement

with formulas (2.17) and (2.18) since the zero at z = 1 due to the factor (z−1)−An/2 is compensated exactly
by the singularity in e−nφ(z) at z = 1, see (2.22).

2.4 Strong asymptotics near ζ−.

The asymptotic formulas (2.15) and (2.18) are not valid near the branch points ζ− and ζ+. Near those points,
there is an asymptotic formula involving Airy functions. We need the following particular combination of
Airy functions, depending on A, B, and n,

A(s; A, B, n) = −eBnπi sin(Anπ)

sin((A + B)nπ)
ω Ai(ωs) + e−Anπi sin(Bnπ)

sin((A + B)nπ)
ω2 Ai(ω2s) (2.23)

=
1

2i

cos((A + B)nπ) − exp((B − A)nπi)

sin((A + B)nπ)
Ai(s) +

1

2i
Bi(s), (2.24)

where ω = e2πi/3 and Ai and Bi are the usual Airy functions [1]. Note that A(s; A, B, n) is defined for
combinations of A, B, and n that are such that (A + B)n is not an integer.

Theorem 2.12 Let A and B satisfy (1.1). Then there is a δ > 0 such that for every z with |z − ζ−| < δ,

the monic Jacobi polynomials P̂
(An,Bn)
n have the following asymptotic behavior as n → ∞:

P̂ (An,Bn)
n (z) =e−nc(z − 1)−An/2(z + 1)−Bn/2

√
πi

×
[
n1/6

(
z − ζ+

z − ζ−
f(z)

)1/4

A(n2/3f(z); A, B, n)

(
1 + O

(
1

n

))

+n−1/6

(
z − ζ+

z − ζ−
f(z)

)−1/4

A′(n2/3f(z); A, B, n)

(
1 + O

(
1

n

))]
(2.25)

with

f(z) =

[
3

2
φ(z)

]2/3

(2.26)

where the 2/3rd root chosen is real and positive on γ−
∞. The O-terms in (2.25) hold uniformly for |z−ζ−| < δ

and for A and B in compact subsets of the region −1 < A < 0, −1 < B < 0, −2 < A + B < −1, and for

values of n such that (A + B)n is not an integer.

There is a similar asymptotic formula for the behavior near ζ+.

Remark 2.13 From the uniform asymptotics in Theorem 2.12 it is possible to establish a more precise

behavior of the zeros of P
(An,Bn)
n close to the branch points ζ±. In fact, the zeros of the function A defined

in (2.23)–(2.24) model the behavior of these zeros of P
(An,Bn)
n . For instance, in the generic case (2.7) both

terms in (2.23) or (2.24) have approximately the same size, and A has its zeros aligned along three curves
emanating from 0 and forming the same angle. The situation is different in cases (b)–(d) of Theorem 2.4.
For instance, if rα+β > rα = rα, then the first term in (2.24) dominates the second term. But if rα 6= rα

then one of the two terms in (2.23) dominates the other. In these cases the zeros of A behave like zeros of
the dominating Airy function and are aligned along a single curve emanating from 0.
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3 Proof of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. The quadratic differential (2.3) has a simple zero at ζ± and a double pole at ±1
and at ∞. This determines the local structure of the trajectories as follows, see also [3], [28, Chapter 8] or
[31, Chapter III],

(1) Three trajectories emanate from ζ± at equal angles. These are the critical trajectories.

(2) Near ±1 the trajectories are simple closed contours. Here we use the fact that

− (z − ζ+)(z − ζ−)

(z2 − 1)2
=

c±1

(z ∓ 1)2
+ O

(
1

z ∓ 1

)
as z → ±1,

with c±1 < 0.

(3) The trajectories near ∞ are also simple closed contours. This follows from the fact that in the expansion

− (z − ζ+)(z − ζ−)

(z2 − 1)2
=

c∞
z2

+ O

(
1

z3

)
as z → ∞,

we have c∞ = −1 < 0.

In the lower half-plane C− there is only the simple zero at ζ−. The other points are regular points.
This means that the three critical trajectories that emanate from ζ− extend to the boundary of C−, cf. [28,
Lemma 8.4]. Because of (2) and (3) and the fact that trajectories do not intersect, the critical trajectories
do not tend to infinity, or come to ±1. So each critical trajectories exits the lower half-plane in a point from
R \ {−1, 1} and these points are mutually distinct, say ξL, ξC , and ξR, with ξL < ξC < ξR. Because of the
symmetry with respect to the real axis,

Re

∫ ζ+

ζ−

R(t)

t2 − 1
dt = 0.

Hence, the three trajectories extend into the upper half-plane as their mirror images in R, and so they
continue to ζ+. This proves the existence of three arcs ΓL, ΓC , and ΓR contained in Γ and connecting ζ±,
where ξs ∈ Γs for s ∈ {L, C, R}.

Next, we note that ΓL ∪ ΓC is a closed contour consisting of trajectories. It follows from [28, Lemma
8.3] that it has to surround a pole. Similarly ΓC ∪ ΓR has to surround a pole. This can only happen if
ξL < −1 < ξC < 1 < ξR.

To complete the proof of the lemma, we need to establish that Γ consists only of ΓL, ΓC , and ΓR and
nothing more. We use that the function

h(z) = Re

∫ z

ζ−

R(t)

t2 − 1
dt, z ∈ C \ (ΓC ∪ {−1, 1}), (3.1)

is single-valued and harmonic in C \ (ΓC ∪ {−1, 1}). The path of integration in (3.1) is in C \ ΓC . It is easy
to see that

lim
z→∞

h(z) = +∞.

Since h = 0 on ΓL ∪ ΓR = ∂Ω∞, it follows by the maximum principle for harmonic functions that h(z) > 0
for z ∈ Ω∞. Similarly, since

lim
z→∞

h(z) = −∞,

and h = 0 on ΓL∪ΓC = ∂Ω−1, and on ΓR∪ΓC = ∂Ω1, we have that h(z) < 0 for z ∈ Ω±. Since Γ = {h = 0},
we get that Γ consists exactly of ΓL, ΓC , and ΓR. This completes the proof of Lemma 2.1. 2
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Proof of Lemma 2.2. Recall that R(z) :=
√

(z − ζ+)(z − ζ−) denotes the single-valued branch in C \ ΓC

such that R(z) ∼ z as z → ∞. With this convention and taking into account (2.1) it is straightforward to
check that

R(−1) =
2B

A + B + 2
< 0, R(1) =

−2A

A + B + 2
> 0. (3.2)

From the definition of Γ it follows that dµ(z) is real-valued on Γ and does not change sign on each component
of Γ \ {ζ−, ζ+}.

Using the residue theorem, we have that

µ(ΓC ∪ ΓR) =

∫

ΓC∪ΓR

dµ(t) = (A + B + 2) res
z=1

(
R(z)

z2 − 1

)
= −A

where we have used (3.2). Analogously,

µ(ΓL ∪ ΓC) =

∫

ΓL∪ΓC

dµ(t) = (A + B + 2) res
z=−1

(
R(z)

z2 − 1

)
= −B.

Finally,

µ(ΓL ∪ ΓR) =

∫

ΓL∪ΓR

dµ(t) = (A + B + 2) res
z=∞

(
R(z)

z2 − 1

)
= A + B + 2.

Hence,

µ(Γ) =
1

2
(µ(ΓC ∪ ΓR) + µ(ΓL ∪ ΓC) + µ(ΓL ∪ ΓR)) = 1,

and

µ(ΓL) = 1 − µ(ΓC ∪ ΓR) = 1 + A,

µ(ΓR) = 1 − µ(ΓL ∪ ΓC) = 1 + B,

µ(ΓC) = 1 − µ(ΓL ∪ ΓR) = −1 − A − B,

which proves (2.6). Since each part has positive total µ-mass and µ does not change sign on each of the
parts, we find that µ is a positive measure. This completes the proof. 2

4 A Riemann-Hilbert problem for Jacobi polynomials

Consider a closed path Γu encircling the points +1 and −1 first in the positive direction and then in the
negative direction, as shown in Fig. 9. The point ξ ∈ (−1, 1) is the begin and endpoint of Γu.

Γ
u

1−1
ξ

Figure 9: The universal curve Γu.
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For α, β ∈ C, denote

w(z; α, β) := (1 − z)α(1 + z)β = exp[α log(1 − z) + β log(1 + z)].

This is a multi-valued function with branch points at ∞ and ±1. However, if we start with a value of
w(z; α, β) at a particular point of Γu, and extend the definition of w(z; α, β) continuously along Γu, then
we obtain a single-valued function w(z; α, β) on Γu if we view Γu as a contour on the Riemann surface for
the function w(z; α, β). For definiteness, we assume that the “starting point” is ξ ∈ (−1, 1), and that the
branch of w is such that w(ξ; α, β) > 0. We prefer to view Γu as a subset of the complex plane. Then Γu

has points of self-intersection, as shown in Fig. 9. At points of self-intersection the value of w(z; α, β) is not
well-defined.

In [20] it was shown that for k ∈ {0, 1, . . . , n}, we have

∫

Γu

tk P (α,β)
n (t)w(t; α, β) dt =

−π22n+α+β+3eπi(α+β)

Γ(2n + α + β + 2)Γ(−n − α)Γ(−n − β)
δkn. (4.1)

This shows that the Jacobi polynomials P
(α,β)
n are orthogonal on the universal curve Γu. The right-hand

side of (4.1) vanishes for k = n if and only if either −2n − α − β − 2, or n + α or n + β is a non-negative
integer. In some of these cases the zero comes from integrating a single-valued and analytic function along a
curve in the region of analyticity; other values of α and β correspond to the special cases mentioned before
when there is a zero at ±1. It is shown in [20] that the orthogonality conditions (4.1) characterize the Jacobi

polynomial P
(α,β)
n provided the parameters satisfy

−n − α − β /∈ N, and n + α /∈ N, and n + β /∈ N. (4.2)

Then P
(α,β)
n is of degree exactly n, and we will denote by P̂

(α,β)
n the corresponding monic Jacobi polynomial.

Based on the orthogonality (4.1) a Riemann-Hilbert problem is constructed in [20], whose solution is

given in terms of P̂
(α,β)
n with parameters satisfying (4.2).

Let Γu be a curve in C as described above with three points of self-intersection as in Fig. 9. We let Γo
u be

the curve without the points of self-intersection. Recall that the orientation of Γu (see also Fig. 9) induces
a + and − side in a neighborhood of Γu, where the + side is on the left while traversing Γu according to its
orientation and the − side is on the right. Again, we say that a function Y on C \ Γu has a boundary value
Y+(t) for t ∈ Γo

u if the limit of Y (z) as z → t with z on the + side of Γu exists; similarly for Y−(t).
The Riemann-Hilbert problem for Jacobi polynomials is then as follows. We look for a 2 × 2 matrix

valued function Y = Y (α,β) : C \ Γu → C2×2 such that the following four conditions are satisfied:

(a) Y is analytic on C \ Γu.

(b) Y has continuous boundary values on Γo
u, denoted by Y+ and Y−, such that

Y+(t) = Y−(t)

(
1 w(t; α, β)
0 1

)
for t ∈ Γo

u.

(c) As z → ∞,

Y (z) =

(
I + O

(
1

z

))(
zn 0
0 z−n

)
.

(d) Y (z) remains bounded as z → t ∈ Γu \ Γo
u.

This Riemann-Hilbert problem is similar to the Riemann-Hilbert problem for orthogonal polynomials
due to Fokas, Its, and Kitaev [16], see also [6]. Also the solution is similar.
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Proposition 4.1 ([20]) Assume that the parameters α, β satisfy (4.2). Then the above Riemann-Hilbert

problem for Y has a unique solution, which is given by

Y (z) =




P̂
(α,β)
n (z) 1

2πi

∫
Γu

P̂ (α,β)
n (t)w(t;α,β)

t−z dt

cn−1P
(α,β)
n−1 (z) cn−1

2πi

∫
Γu

P
(α,β)
n−1 (t)w(t;α,β)

t−z dt


 , z ∈ C \ Γu, (4.3)

for some non-zero constant cn−1.

The Riemann-Hilbert problem holds for any combination of parameters α and β such that (4.2) is
satisfied. Also the contour Γu is rather arbitrary. It could be modified to any curve that is homotopic to it
in C \ {−1, 1}.

5 Transformations of the Riemann-Hilbert problem

In this section we consider parameters A and B satisfying the inequalities (1.1). We also assume that n ∈ N

is such that An, Bn and (A + B)n are non-integers. Throughout this section A, B, and n remain fixed.

From Proposition 4.1 we know that the Jacobi polynomial P̂
(An,Bn)
n is characterized as the (1, 1) entry of

the solution of the Riemann-Hilbert problem for Y given in the previous section with α = An and β = Bn.
In this section we apply the steepest descent method of Deift and Zhou to this Riemann-Hilbert problem in
order to reduce it to a Riemann-Hilbert problem that is normalized at infinity and whose jump matrices are
close to the identity. In the next section we derive the asymptotic results from this analysis. The Deift/Zhou
steepest descent method proceeds through a number of transformations of the original Riemann-Hilbert
problem.

5.1 Choice of contour

In the first step of the analysis we have to pick the right contour. For A and B satisfying (1.1) we have
the contour Γ = Γ(A,B) defined in (2.2), which according to Lemma 2.1 consists of three analytic arcs
Γ = ΓL ∪ ΓC ∪ ΓR. We modify Γu to a contour that follows Γ in such a way that every part of Γ is covered
twice as shown in Fig. 10.

ξ

Γ

1−1

Figure 10: Tautening Γu on the set Γ.
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Passing from the Riemann-Hilbert problem on Γu to the Riemann-Hilbert problem on Γ, we have that
on each part of Γ two of the jumps are combined. The new jump matrices take the form

(
1 w(t1; An, Bn)
0 1

)(
1 −w(t2; An, Bn)
0 1

)
=

(
1 w(t1; An, Bn) − w(t2; An, Bn)
0 1

)
,

where t1 and t2 are points on the Riemann surface, both lying above t. The values of w(tj ; An, Bn), j = 1, 2,
differ from each other by a phase factor. To make this precise we specify a single-valued branch for the
weight

w(z; An, Bn) = (1 − z)An(1 + z)Bn

on Γ. Since Γ \ {ζ+} is simply connected, we can define a single valued branch on Γ \ {ζ+}, and we will do it
in such a way that w(ξ; An, Bn) > 0, where ξ = ξC is the intersection point of ΓC with the interval (−1, 1).

Then the jump on each of the contours ΓL, ΓC , and ΓR can be calculated. The result is the following
Riemann-Hilbert problem on Γ for a matrix valued function which we continue to call Y . The contour Γ has
the orientation shown in Fig. 3.

(a) Y is analytic on C \ Γ.

(b) Y has continuous boundary values on Γ \ {ζ−, ζ+}, denoted by Y+ and Y−, such that

Y+(t) = Y−(t)

(
1 dsw(t; An, Bn)
0 1

)
for t ∈ Γs \ {ζ±}, s ∈ {L, C, R}, (5.1)

with constants

dL = e2πBni
(
e2πAni − 1

)
, dC = 1 − e2π(A+B)ni, dR = 1 − e2πBni, (5.2)

and we follow the convention about the branch of w(t; An, Bn) on Γ mentioned above.

(c) As z → ∞,

Y (z) =

(
I + O

(
1

z

))(
zn 0
0 z−n

)
.

(d) Y (z) remains bounded as z → ζ±.

Of course the solution to the above Riemann-Hilbert problem is similar to the solution (4.3) to the earlier
Riemann-Hilbert problem. In particular we still have

Y11(z) = P̂ (An,Bn)
n (z) (5.3)

The constants dL, dC and dR from (5.2) will play an important role in what follows. These numbers are
non-zero, exactly because of our assumption that An, Bn, and (A + B)n are non-integers. Observe that

dL + dC = dR, (5.4)

which is a relation that will be used a number of times.

5.2 Auxiliary functions

In order to make the first transformation of the Riemann-Hilbert problem we need some auxiliary functions.
We already know from Lemma 2.2 that µ defined in (2.5) is a positive measure on Γ such that

µ(ΓL) = 1 + A > 0, µ(ΓC) = −1 − A − B > 0, µ(ΓR) = 1 + B > 0. (5.5)



ASYMPTOTICS FOR JACOBI POLYNOMIALS 18

Let g be the complex logarithmic potential of the measure µ,

g(z) =

∫
log(z − t)dµ(t).

This is a multivalued function; however its derivative is single valued:

g′(z) =

∫
dµ(t)

z − t
=






A + B + 2

2

R(z)

z2 − 1
− A/2

z − 1
− B/2

z + 1
, for z ∈ Ω∞,

−
A + B + 2

2

R(z)

z2 − 1
− A/2

z − 1
− B/2

z + 1
, for z ∈ Ω−1 ∪ Ω1.

We define

G(z) = exp

(∫ z

ζ−

g′(t) dt

)
, z ∈ C \ Γ,

where the path of integration lies entirely in C \ Γ except for the initial point ζ−. From the fact that µ is a
positive unit measure on Γ it follows that G is single-valued in each component of C \ Γ. Furthermore, G is
analytic, G(ζ−) = 1, and the following limit exists

κ := lim
z→∞

G(z)

z
= ζ− exp

(∫ ∞

ζ−

(g′(t) − 1/t) dt

)
. (5.6)

We calculate the jumps of G. We have

G+(z)G−(z) =
w(ζ−; A, B)

w(z; A, B)
, for z ∈ Γ, (5.7)

and
G+(z)

G−(z)
= exp(−2φ+(z)), for z ∈ Γ, (5.8)

where φ is defined by (2.13). It will be useful to introduce also the related function

φ̃(z) =
A + B + 2

2

∫ z

ζ+

R(t)

t2 − 1
dt = φ(z̄), for z ∈ C \ (ΓC ∪ γ−

−1 ∪ γ−

1 ∪ γ−

∞). (5.9)

To relate φ̃ with φ it is necessary to compute A+B+2
2

∫ ζ+

ζ−

R(t)
t2−1dt. This integral depends on the path from

ζ− to ζ+. We can distinguish four paths, namely ΓR, −ΓC,+, −ΓC,− and −ΓL. (Recall that ΓC and ΓL are
oriented from ζ+ to ζ−. So we put a minus sign to indicate that the path is from ζ− to ζ+.) We obtain

A + B + 2

2

∫ ζ+

ζ−

R(t)

t2 − 1
dt =






πiµ(ΓR) = πi(1 + B) integral over ΓR

−πiµ(ΓC) = πi(1 + A + B) integral over −ΓC,+

πiµ(ΓC) = −πi(1 + A + B) integral over −ΓC,−

−πiµ(ΓL) = −πi(1 + A) integral over −ΓL

where we have used (5.5). It follows that

φ+(z) = φ̃(z) + πi(1 + B)

φ−(z) = φ̃(z) − πi(1 + A)

}
for z on γ+

∞, (5.10)

φ+(z) = φ̃(z) − πi(1 + A + B)

φ−(z) = φ̃(z) − πi(1 + A)

}
for z on γ+

−1, (5.11)

φ+(z) = φ̃(z) + πi(1 + B)

φ−(z) = φ̃(z) + πi(1 + A + B)

}
for z on γ+

1 . (5.12)

Observe also that by construction both φ and φ̃ have negative real parts in the bounded components Ω−1

and Ω1 of C \ Γ (where defined) and positive real part in Ω∞ (with the appropriate cuts).
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5.3 First transformations Y 7→ U

Now we introduce a new matrix valued function U by

U(z) = κnσ3 w(ζ−; An, Bn)−σ3/2 Y (z)G(z)−nσ3 w(ζ−; An, Bn)σ3/2, (5.13)

where σ3 =

(
1 0
0 −1

)
is the Pauli matrix, and for any non-zero x, xσ3 =

(
x 0
0 1/x

)
. Here G is the function

introduced in (5.2), and κ is the limit defined in (5.6). Then U satisfies the Riemann-Hilbert problem

(a) U is analytic on C \ Γ.

(b) U has continuous boundary values on Γ \ {ζ±} such that

U+(z) = U−(z)

(
exp(2nφ+(z)) ds

0 exp(−2nφ+(z))

)
for z ∈ Γo

s, s ∈ {L, C, R}. (5.14)

(c) U(z) = I + O
(

1
z

)
as z → ∞.

(d) U(z) remains bounded as z → ζ±.

To obtain the jumps in (5.14) we used the relations (5.7) and (5.8). For the asymptotic behavior in (c)
we used the limit (5.6).

We use the following factorizations of the jump matrices in (5.14)

(
e2nφ+ dC

0 e−2nφ+

)
=

(
1 0

1
dC

e2nφ− 1

)(
0 dC

− 1
dC

0

)(
1 0

1
dC

e2nφ+ 1

)
(5.15)

and (
e2nφ ds

0 e−2nφ

)
=

(
1 0

1
ds

e−2nφ 1

)(
e2nφ ds

− 1
ds

0

)
, for s = L, R, (5.16)

in order to define the next transformation.

5.4 Second transformation U 7→ T

The trajectories Γ and the orthogonal trajectories Γ⊥ divide the complex plane into six domains, which we
number from left to right as domains I, II, III, IV, V and VI, see Fig. 8. We define T̃ in each of these six
domains separately. We put

T̃ = U

(
1 0

1
dL

e−2nφ 1

)
in domain I, (5.17)

T̃ = U

(
1 0

1
dR

e−2nφ 1

)
in domain VI, (5.18)

T̃ = U

(
1 0

− 1
dL

e2nφ 1

)(
0 −dL
1

dL
0

)
= U

(
0 −dL
1

dL
e2nφ

)
in domain II, (5.19)

T̃ = U

(
1 0

− 1
dR

e2nφ 1

)(
0 −dR
1

dR
0

)
= U

(
0 −dR
1

dR
e2nφ

)
in domain V, (5.20)

T̃ = U

(
1 0

1
dC

e2nφ 1

)(
0 −dL
1

dL
0

)
in domain III, (5.21)

T̃ = U

(
1 0

− 1
dC

e2nφ 1

)(
0 −dR
1

dR
0

)
in domain IV. (5.22)
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Since φ(z) behaves like A+B+2
2 log z as z → ∞, we have |e−2nφ(z)| ∼ |z|−(A+B+2)n, so that

(
1 0

1
ds

e−2nφ(z) 1

)
= I + O(1/z) as z → ∞.

Thus T̃ (z) = I + O(1/z) as z → ∞.
By definition, T̃ is analytic in C \ (Γ∪Γ⊥). However, we have arranged our transformation in a way that

the jumps on ΓL and ΓR disappear (due to the factorization (5.16) and the definition of T̃ ) so T̃ is analytic
in C \ (ΓC ∪ Γ⊥).

We compute the jumps on ΓC ∪ Γ⊥ with the convention that these curves are oriented as shown in Fig.
8. Straightforward computations then show that

T̃+ = T̃−

(
0 dLdR

dC

− dC

dLdR
0

)
on ΓC ,

T̃+ = T̃−

(
1 0

1
dR

e−2nφ+ − 1
dL

e−2nφ− 1

)
on γ+

∞ ∪ γ−

∞,

T̃+ = T̃−

(
1 −dLe2nφ− − d2

L

dC
e2nφ+

0 1

)
on γ+

−1 ∪ γ−

−1,

T̃+ = T̃−

(
1 − d2

R

dC
e2nφ− + dRe2nφ+

0 1

)
on γ+

1 ∪ γ−

1 .

Since φ is analytic across the curves γ−

j , the jumps on these curves simplify to (we also use (5.4))

T̃+ = T̃−

(
1 0

− dC

dLdR
e−2nφ 1

)
on γ−

∞,

T̃+ = T̃−

(
1 − dLdR

dC
e2nφ

0 1

)
on γ−

−1 ∪ γ−

1 .

If we now express the jumps on the contours γ+
j in terms of φ̃, see (5.10)–(5.12), they look as those on the

lower half plane, but with φ replaced by φ̃:

T̃+ = T̃−

(
1 0

− dC

dRdL
e−2nφ̃ 1

)
on γ+

∞,

T̃+ = T̃−

(
1 − dLdR

dC
e2nφ̃

0 1

)
on γ+

−1 ∪ γ+
1 .

Now with τ such that

τ2 =
dLdR

dC
(5.23)

we define T by

T =

(
τ−1 0
0 τ

)
T̃

(
τ 0
0 τ−1

)
. (5.24)

The effect on the jump matrices is that the (1, 2) entries are multiplied by τ−2 and the (2, 1) entries are
multiplied by τ2. So T satisfies the following Riemann-Hilbert problem:

(a) T is analytic on C \ (ΓC ∪ Γ⊥).
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(b) T has continuous boundary values on (ΓC ∪ Γ⊥) \ {ζ±} such that

T+ = T−

(
0 1
−1 0

)
on ΓC , (5.25)

T+ = T−

(
1 0

−e−2nφ 1

)
on γ−

∞, (5.26)

T+ = T−

(
1 −e2nφ

0 1

)
on γ−

−1 ∪ γ−

1 , (5.27)

T+ = T−

(
1 0

−e−2nφ̃ 1

)
on γ+

∞, (5.28)

T+ = T−

(
1 −e2nφ̃

0 1

)
on γ+

−1 ∪ γ+
1 . (5.29)

(c) T (z) = I + O
(

1
z

)
as z → ∞.

(d) T (z) remains bounded as z → ζ±.

The problem for T is by now relatively standard. However, compared with earlier works, the triangularity
of the jump matrices on the curves γ±

j is reversed. The inverse transposed matrix T−t satisfies the jumps

T−t
+ = T−t

−

(
0 1
−1 0

)
on ΓC ,

T−t
+ = T−t

−

(
1 e−2nφ

0 1

)
on γ−

∞,

T−t
+ = T−t

−

(
1 0

e2nφ 1

)
on γ−

−1 ∪ γ−

1 ,

T−t
+ = T−t

−

(
1 e−2nφ̃

0 1

)
on γ+

∞,

T−t
+ = T−t

−

(
1 0

e2nφ̃ 1

)
on γ+

−1 ∪ γ+
1 ,

which are exactly of the form considered for example in [8, 22].

5.5 Outside parametrix

The jump matrices in (5.26)–(5.29) are close to the identity matrix if n is large. Therefore we expect that the
main term in the asymptotic behavior of T is given by the solution N to the following model Riemann-Hilbert
problem:

(a) N is analytic in C \ ΓC ,

(b) N+ = N−

(
0 1
−1 0

)
on ΓC \ {ζ±},

(c) N(z) = I + O(1/z) as z → ∞.

In analogy with the condition (d) in the Riemann-Hilbert problem for T we would like to ask that N(z)
remains bounded as z → ζ±. However, this would lead to a Riemann-Hilbert problem with no solution.
Instead we allow for moderate singularities of N at ζ±:
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(d) N(z) = O(|z − ζ±|−1/4) as z → ζ±.

The solution to this problem is given by

N(z) =

(
a(z)+a(z)−1

2
a(z)−a(z)−1

2i

−a(z)−a(z)−1

2i
a(z)+a(z)−1

2

)
(5.30)

with

a(z) =
(z − ζ−)1/4

(z − ζ+)1/4
, z ∈ C \ ΓC ,

being analytic and single-valued in C \ ΓC , such that a(z) → 1 as z → ∞, see [6, 7, 8, 22]. In [22] also an
alternative expression for N has been established in terms of R(z) :=

√
(z − ζ+)(z − ζ−):

N(z) =




(
1+R′(z)

2

)1/2

−
(

1−R′(z)
2

)1/2

(
1−R′(z)

2

)1/2 (
1+R′(z)

2

)1/2


 . (5.31)

5.6 Local parametrices

Near the branch points ζ± we construct local parametrices in the same way as done by Deift et al [7, 8, 6],
see also [21, 22]. In a neighborhood Uδ = {z ∈ C : |z − ζ−| < δ} of ζ− we construct a 2 × 2 matrix
valued P that is analytic in Uδ \ (ΓC ∪ γ−

−1 ∪ γ−

1 ∪ γ−
∞), satisfies the same jump conditions as T does on

Uδ ∩ (ΓC ∪ γ−

−1 ∪ γ−

1 ∪ γ−
∞) and that matches with N on the boundary Cδ of Uδ up to order 1/n.

ζ
−

 f(z)

Uδ

Γ
C

γ
∞
−

γ
−1
−

γ
1
−

I−II I−II

V−VI

V−VI

IV

IV
III

III 0

Figure 11: Conformal mapping f .

We need the function

f(z) =

[
3

2
φ(z)

]2/3

(5.32)

where the 2/3rd root is chosen which is real and positive on γ−
∞. This is a conformal map from Uδ onto a

neighborhood of 0 provided δ > 0 is small enough. We note that γ−
∞ is mapped to the positive real axis, ΓC

to (a part of) the negative real axis. Recall that φ is real and negative on γ−

1 and γ−

−1 and we see that γ−

1

is mapped to arg w = 2π/3 and γ−

−1 to argw = −2π/3 (Fig. 11). Then the Riemann-Hilbert problem for P
is solved by (cf. [22])

P (z) =
[
E(z)Ψ(n2/3f(z))enφ(z)σ3

]−t

, (5.33)
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where

E(z) =
√

πe
πi
6

(
1 −1
−i −i

)(
n1/6f(z)1/4

a(z)

)σ3

, (5.34)

and Ψ is built out of the Airy function Ai and its derivative Ai′ as follows

Ψ(s) =





(
Ai(s) Ai(ω2s)
Ai′(s) ω2 Ai′(ω2s)

)
e−

πi
6 σ3 for 0 < arg s < 2π/3,

(
Ai(s) Ai(ω2s)
Ai′(s) ω2 Ai′(ω2s)

)
e−

πi
6 σ3

(
1 0
−1 1

)
for 2π/3 < arg s < π,

(
Ai(s) −ω2 Ai(ωs)
Ai′(s) −Ai′(ωs)

)
e−

πi
6 σ3

(
1 0
1 1

)
for − π < arg s < −2π/3,

(
Ai(s) −ω2 Ai(ωs)
Ai′(s) −Ai′(ωs)

)
e−

πi
6 σ3 for − 2π/3 < arg s < 0,

(5.35)

with ω = e2πi/3.
Note that we take the inverse transpose in (5.33), which is absent in the construction in [22]. This is

of course due to the fact that the Riemann-Hilbert problem for T−t is comparable to the Riemann-Hilbert
problem found in [22], see the remark at the end of subsection 5.4.

A similar construction yields a parametrix P̃ in a neighborhood Ũδ = {z : |z − ζ+| < δ}.

5.7 Final transformation T 7→ S

1−1

γ
−1
+

γ
−1
−

γ
1
+

γ
1
−

γ
∞
−

γ
∞
+

C
δ

C
δ

∼

Figure 12: Contour ΓS for the Riemann-Hilbert problem of S.

The final transformation T 7→ S is

S = TN−1 outside the disks Uδ and Ũδ, (5.36)

S = TP−1 inside the disk Uδ, (5.37)

S = T P̃−1 inside the disk Ũδ. (5.38)
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Then by construction, S has jumps on the circles Cδ = ∂Uδ and C̃δ = ∂Ũδ as well as on ΓC ∪ Γ⊥. Since
the jumps of T and N on ΓC agree, we have that S is analytic across the part of ΓC outside the disks Uδ

and Ũδ. Similarly, the jumps of T and P agree inside the disk Uδ, and the jumps of T and P̃ agree inside
the disk Ũδ, so that S is analytic in Uδ and Ũδ with possible isolated singularities at ζ±. However it follows
from the behavior of T and N near ζ± that the singularities are removable. Thus S solves the following
Riemann-Hilbert problem.

(a) S is analytic on C \ΓS, where ΓS consists of the circles Cδ and C̃δ, and of the parts of γ−1, γ1 and γ∞
outside the disks, see Fig. 12.

(b) S has continuous boundary values on ΓS such that

S+ = S−N

(
1 0

−e−2nφ 1

)
N−1 on γ−

∞ \ Ũδ, (5.39)

S+ = S−N

(
1 −e2nφ

0 1

)
N−1 on

(
γ−

−1 ∪ γ−

1

)
\ Ũδ, (5.40)

S+ = S−N

(
1 0

−e−2nφ̃ 1

)
N−1 on γ+

∞ \ Uδ, (5.41)

S+ = S−N

(
1 −e2nφ̃

0 1

)
N−1 on

(
γ+
−1 ∪ γ+

1

)
\ Uδ, (5.42)

S+ = S−PN−1 on Cδ, (5.43)

S+ = S−P̃N−1 on C̃δ. (5.44)

(c) S(z) = I + O
(

1
z

)
as z → ∞.

6 Asymptotics: Proofs of the theorems

6.1 Asymptotics of S

The analysis in the last section is done for fixed values of A, B, and n. All the transformations are exact for
finite n. It is now our aim to let n → ∞ and control the jump matrices in the Riemann-Hilbert problem for
S. We want to do it in a way which is valid locally uniformly for parameters A and B satisfying (1.1).

Then first of all we should study the dependence of the contour ΓS on the parameters A and B. Note
that ΓS does not depend on n, but it does depend on A and B. In fact, we have that Γ⊥ is completely
determined by A and B, while the radius δ of the circles around ζ± is only restricted by the requirement
that the mapping f from (5.32) is a conformal mapping on Uδ. With that in mind, it is clear that we may
assume that the curve ΓS depends on A and B in a continuous way.

Now we can see what happens with the jump matrices in (5.39)–(5.44) as n → ∞. On γ−
∞ \ Ũδ we have

that Re φ is strictly positive. Hence the jump matrix in (5.39) is I + O(e−cn) as n → ∞, uniformly on
γ−
∞ \ Ũδ. This estimate is also valid uniformly for A and B in compact subsets of the set

{(A, B) | −1 < A < 0, −1 < B < 0, −2 < A + B < −1}. (6.1)

Similarly, the jump matrices in (5.40)–(5.42) are I+O(e−cn) as n → ∞, uniformly on the respective contours
and uniformly for A and B in compact subsets of (6.1).

For (5.43) and (5.44) we make use of the matching conditions

P (z) =

(
I + O

(
1

n

))
N(z) uniformly for z ∈ Cδ. (6.2)
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and

P̃ (z) =

(
I + O

(
1

n

))
N(z) uniformly for z ∈ C̃δ. (6.3)

So that the jump matrices in (5.43) and (5.44) are I + O(1/n) as n → ∞, uniformly on the two circles. A
closer analysis also reveals that the O-terms in (6.2) and (6.3) are valid uniformly for A and B in compact
subsets of (6.1).

So the conclusion is that all jumps in (5.39)–(5.44) are I + O(1/n) uniformly for z on ΓS , and uniformly
for A and B in compact subsets of (6.1). Then arguments such as in [6, 7, 8] lead to the following conclusion.

Proposition 6.1 We have that

S(z) = I + O

(
1

n

)
(6.4)

uniformly for z ∈ C \ ΓS and uniformly for A and B in compact subsets of the set (6.1).

The estimate (6.4) is the basic asymptotic result. Unravelling the sequence of transformations Y 7→ U 7→
T̃ 7→ T 7→ S, we obtain asymptotic formulas for Y in any region of the complex plane. In this way we obtain
the asymptotic formulas for P̂n = Y11.

6.2 Proof of Theorem 2.6

Proof of Theorem 2.6. Suppose A and B satisfy (1.1) and let n ∈ N such that An, Bn, and (A + B)n

are non-integers. Then we have P̂
(An,Bn)
n (z) = Y11(z) by (4.3).

For z in domain I away from the branch points, we get by using (5.13), (5.17), (5.24) and (5.36),

Y11(z) =

(
G(z)

κ

)n

U11(z)

=

(
G(z)

κ

)n(
T̃11(z) − 1

dL
e−2nφ(z)T̃12(z)

)

=

(
G(z)e−φ(z)

κ

)n(
enφ(z)T11(z) − dR

dC
e−nφ(z)T12(z)

)

=

(
G(z)e−φ(z)

κ

)n(
enφ(z)(SN)11(z) − dR

dC
e−nφ(z)(SN)12(z)

)
. (6.5)

Since S = I + O( 1
n ) and since the entries of N are bounded and bounded away from zero away from the

branch points, we have that

(SN)11 = N11(I + O(1/n)) and (SN)12 = N12(I + O(1/n)). (6.6)

Next we recall that for z in domain I,

G′(z)

G(z)
= g′(z) =

A + B + 2

2

R(z)

z2 − 1
− A/2

z − 1
− B/2

z + 1
,

so that

log G(z) = φ(z) − A

2
log(z − 1) − B

2
log(z + 1) + const.

Thus there is a constant c such that

G(z)e−φ(z)

κ
= e−c(z − 1)−A/2(z + 1)−B/2 for z in domain I. (6.7)
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Since Y11(z) is a monic polynomial of degree n, we find by letting z → ∞ in (6.5) and using (2.14) and (6.7),
that c should be as defined in (2.14).

Plugging (6.6), (6.7) and the formulas (5.2) for dR and dC into formula (6.5) we obtain (2.15) for z in
domain I.

For z in domain II away from the branch points, we find in the same way

Y11(z) =

(
G(z)eφ(z)

κ

)n(
enφ(z)(SN)11(z) − dR

dC
e−nφ(z)(SN)12(z)

)
(6.8)

Since G+ = G−e−2φ on ΓL, see (5.8), we have that Geφ is the analytic continuation of Ge−φ into domain
II. So we have by (6.7)

G(z)eφ(z)

κ
= e−c(z − 1)−A/2(z + 1)B/2 for z in domain II. (6.9)

Then using (5.2), (6.6), and (6.9) in (6.8), we obtain (2.15) for z in domain II.

For z in domain III away from the branch points, we obtain

Y11(z) =

(
G(z)eφ(z)

κ

)n(
− dL

dC
enφ(z)(SN)11(z) − dR

dC
e−nφ(z)(SN)12(z)

)
. (6.10)

Again we use (5.2), (6.6), and (6.9) to obtain (2.16) from (6.10) for z in domain III.

The proofs of the formulas (2.17) and (2.18) for z in the other domains IV, V, and VI are the same.

We have derived the formulas (2.15)–(2.18) under the assumption that n is such that An, Bn, and
(A + B)n are non-integers. Since the formulas hold uniformly in A and B in compact subsets of (6.1) and

P̂
(An,Bn)
n depends continuously on A and B, they continue to hold if An or Bn is an integer. However, we

cannot allow (A + B)n to be an integer, since then there is a reduction in the degree of P
(An,Bn)
n and we

cannot normalize the Jacobi polynomial to be monic.
This completes the proof of Theorem 2.6. 2

6.3 Proof of Theorem 2.12

Proof of Theorem 2.12. Suppose A and B satisfy (1.1) and let n ∈ N such that An, Bn, and (A + B)n

are non-integers. Then we have P̂
(An,Bn)
n (z) = Y11(z) by (4.3).

Let z ∈ Uδ be in domain VI. Following the transformations (5.13), (5.22), (5.24), we see that

(
Y11(z)

∗

)
=

(
G(z)e−φ(z)

κ

)n

T (z)

(
enφ(z)

− dL

dC
e−nφ(z)

)
,

where ∗ denotes an unimportant unspecified entry. For z in domain VI, we have (6.7) so that

(
Y11(z)

∗

)
= e−nc(z − 1)−An/2(z + 1)−Bn/2T (z)

(
enφ(z)

− dL

dC
e−nφ(z)

)
.

Since z belongs to Uδ, we have T (z) = S(z)P (z) by (5.37). By (5.33) we have P (z) = E−t(z)Ψ−t(s)e−nφ(z)σ3

where s = n2/3f(z). Thus

(
Y11(z)

∗

)
= e−nc(z − 1)−An/2(z + 1)−Bn/2S(z)E−t(z)Ψ−t(s)

(
1

− dL

dC

)
. (6.11)
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From (5.34) we see that

E−t(z) =
1

2
√

π
e−πi/6

(
1 −1
i i

) (
a(z)

s1/4

)σ3

. (6.12)

Furthermore, we have 0 < arg s < π/3 for s = n2/3f(z) since z is in domain VI, so that we use the formula
(5.35) to evaluate Ψ−t(s). Taking into account that

det

(
Ai(s) Ai(ω2s)
Ai′(s) ω2 Ai′(ω2s)

)
=

1

2π
eπi/6,

we have from (6.12) and (5.35),

E−t(z)Ψ−t(s) =
√

πeπi/6

(
−i i
1 1

)(
a(z)

s1/4

)σ3
(

ω2 Ai′(ω2s) −Ai′(s)
−Ai(ω2s) Ai(s)

)
eπi/6σ3 .

Plugging this into (6.11) we get

(
Y11(z)

∗

)
= e−nc(z − 1)−An/2(z + 1)−Bn/2√πS(z)

(
−i i
1 1

)(
a(z)

s1/4

)σ3
(
−
(
− dL

dC
Ai(s) + ω2 Ai(ω2s)

)′

− dL

dC
Ai(s) + ω2 Ai(ω2s)

)

where the prime denotes the derivative with respect to s.
Comparing with (5.2) and (2.24) we see that

A(s) = A(s; A, B, n) = − dL

dC
Ai(s) + ω2 Ai(ω2s).

Thus
(

Y11(z)
∗

)
= e−nc(z − 1)−An/2(z + 1)−Bn/2√πS(z)




i s1/4

a(z)A(s) + ia(z)

s1/4A′(s)

s1/4

a(z)A(s) − a(z)
s1/4A′(s)


 (6.13)

We derived the formula (6.13) for z ∈ Uδ in the domain VI. Similar calculations for z ∈ Uδ in the other
domains give the same result, so (6.13) is valid in the full neighborhood Uδ of ζ−. Now it remains to recall

that Y11 = P̃
(An,Bn)
n and that S = I + O(1/n) as n → ∞ in order to obtain (2.25).

We have derived (2.25) under the assumption that An and Bn are non-integers. Since the formula holds

uniformly for A and B in compact subsets of (6.1) and P̃
(An,Bn)
n depends continuously on A and B, they

continue to hold if An or Bn is an integer.
This completes the proof of Theorem 2.12. 2

6.4 Proof of Theorem 2.4

Proof of Theorem 2.4. Conclusions of Theorem 2.4 are based upon the strong asymptotics obtained in
Theorem 2.6.

We let (αn) and (βn) be two sequences such that α/n → A and βn/n → B where A and B satisfy the
inequalities (1.1) and we assume that the limits (2.10)–(2.12) exist.

Taking into account that formula (2.15) is uniform in A, B, for z in domains I and II we have

P̂ (αn,βn)
n (z) = e−nc(z − 1)−αn/2(z + 1)−βn/2

(
enφ(z)N11(z)

(
1 + O

(
1

n

))
− e−αnπi sin(βnπ)

sin((αn + βn)π)
e−nφ(z)N12(z)

(
1 + O

(
1

n

)))
.
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Since the first factors in the right hand side have no zeros in domains I–II, z is a zero of P
(αn,βn)
n only if

e2nφ(z) = e−αnπi sin(βnπ)

sin((αn + βn)π)

N12(z)

N11(z)

(
1 + O

(
1

n

))
. (6.14)

But N12/N11 is uniformly bounded and uniformly bounded away from zero, if we stay away from the branch
points ζ±. Thus, taking the absolute values in (6.14), we see that the zeros in domains I–II away from the
branch points must satisfy

2 Re φ(z) =
1

n
log

∣∣∣∣
sin(βnπ)

sin((αn + βn)π)

∣∣∣∣+ O

(
1

n

)
.

Analogously, the zeros of P
(αn,βn)
n in the other domains III–VI away from the branch points satisfy

2 Reφ(z) =
1

n
log

∣∣∣∣
sin(βnπ)

sin(αnπ)

∣∣∣∣+ O

(
1

n

)
, for z in domain III,

2 Re φ(z) =
1

n
log

∣∣∣∣
sin(αnπ)

sin(βnπ)

∣∣∣∣+ O

(
1

n

)
, for z in domain IV,

2 Reφ(z) =
1

n
log

∣∣∣∣
sin(αnπ)

sin((αn + βn)π)

∣∣∣∣+ O

(
1

n

)
, for z in domains V–VI.

Furthermore, for any sequence of real numbers (κn),

lim
n

1

n
log |sin(πκn)| = lim

n

1

n
log |dist(κn, Z)| ,

whenever either one of these limits exists. Thus, under the assumptions of the theorem, the zeros of P
(αn,βn)
n

away from the branch points must satisfy

2 Reφ(z) = r + O

(
1

n

)
, r =





rα+β − rβ , for z in domains I and II,

rα − rβ , for z in domain III,

rβ − rα, for z in domain IV,

rα+β − rα, for z in domains V and VI.

(6.15)

From the definition of the constants (2.10)–(2.12) it follows that the “generic” case is

rα = rβ = rα+β . (6.16)

Recall that Re φ(z) > 0 in domains I and VI, and Re φ(z) < 0 in domains II–V. Hence by (6.15), if z ∈ C\Γ,

then P
(αn,βn)
n (z) 6= 0 for sufficiently large n, which proves that the zeros can accumulate only on Γ.

Next assume we are in case (b) of the Theorem 2.4, that is,

rα+β > rα = rβ .

By (6.15), the zeros cannot accumulate in domains II, III, IV and V, nor on ΓL ∪ ΓR. In domains I and VI
they must satisfy

Re φ(z) = r + O

(
1

n

)
, r =

rα+β − rβ

2
=

rα+β − rα

2
,

showing that they must accumulate on the curve Γr defined in (2.9). Hence, in this case the accumulation
set belongs to ΓC ∪ Γr.
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The rest of the cases is analyzed in the same fashion.
Once we have established that the zeros accumulate along curves in the complex plane, it remains to find

the asymptotic zero distribution. We can use the differential equation (see e.g. [32, §4.22])

(1 − z2) y′′

n(z) + [βn − αn − (αn + βn + 2)z] y′

n(z) + n(n + αn + βn + 1) yn(z) = 0

satisfied by yn = P
(αn,βn)
n . Rewriting this equation in terms of hn = y′

n/(nyn) we reduce it to the Riccati
form

(1 − z2)

(
1

n
h′

n(z) + h2
n(z)

)
+

βn − αn − (αn + βn + 2)z

n
h′

n(z) +
n + αn + βn + 1

n
= 0 . (6.17)

Let νn denote the normalized zero counting measures of P
(αn,βn)
n . Using the week compactness of the

sequence (νn) we may take a subsequence Λ ⊂ N such that νn converge along Λ to a certain unit measure ν
in the weak*-topology. By the discussion above, ν is supported on a finite union of analytic arcs or curves

(level sets Γr), and every compact subset of C \ supp(ν) contains no zeros of P
(αn,βn)
n for n sufficiently large.

Hence,

hn(z) =

∫

Γ

dνn(t)

z − t
−→ h(z) =

∫

Γ

dν(t)

z − t
, n ∈ Λ ,

locally uniformly in C \ supp(ν). Taking limits in (6.17) we obtain that h satisfies the quadratic equation

(1 − z2)h2(z) + [B − A − (A + B)z] h(z) + A + B + 1 = 0 ,

so that ∫

Γ

dν(t)

z − t
=

A + B + 2

2

R(z)

z2 − 1
− 1

2

(
A

z − 1
+

B

z + 1

)
, z ∈ C \ supp(ν) ,

with R defined in (2.4) and ζ± given in (2.1). By Sokhotsky-Plemelj’s formulas, on every arc of supp(ν),

dν(z) =
A + B + 2

2πi

R+(z)

z2 − 1
dz . (6.18)

Assume that (6.16) holds, so that supp(ν) ⊂ Γ. By (6.18), ν′ = µ′ almost everywhere on supp(ν). Taking
into account Lemma 2.2 and that ν is a unit measure it follows that ν = µ.

If rα+β > rα = rβ then supp(ν) ⊂ ΓC ∪ Γr, r = (rα+β − rα)/2 > 0. Again taking into account Lemma
2.2 and the normalization of ν it follows that supp(ν) = ΓC ∪ Γr.

The remaining cases are analyzed analogously. This completes the proof of Theorem 2.4. 2
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