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ABSTRACT. We prove that every probabilistic normed space, either according to the original

definition given by Serstnev, or according to the ¡ecent one introduced by Alsina, Schweizer and

Sklar. has a completion.
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1. INTRODUCTION.

As is well known, a real or complex nornred linear space admits a completion, namely, given

a normed linear space (y, Il . ll ), there exists another linear space (y', ll ll 
') such that V' is

isometric to a ddnse subspace of I/.
It was proved by Mu5tari [2], Sherwooci ([7], [8j) and Sempi [5] thai a probabilistic metric

space has a completion. Here we answe¡ in the positive the natural question of whether a
probabilistic normed space has a completion. In fact, there are two definitions of probabilistic

normed space ( : P-Iy'-space): the original one by Éerstnev ([6], but see [3] for a presentation in

agreement with our notation), and a more recent one by Alsina, Schweizer and Sklar (see [1]).

The proof will be given in both cases. For the notation and the concepts used we refer to the

book by Schweizer and Sklar [3]; we shall write cl.f. for distribution function.

According to Éerstnev, a Py'f-space is a triple (V,u,r), where V is a real linear space; r is a

triangle function ([3], section 7.1), i.e., a binary operation on A+, the space of dista¡ce

dist¡ibution functions, that is commutative, associative and nondecreasing in each variable and

which has the d.f. eo as identity, i.e.,

(u) V,F',GeA+ r(F,G):r(G,F);
(b) YF,G,H e L.+ r(F,r(G,H): r(r(F,G),H);
(") V.I/eA+F<G+ r(F,H)S¡(G.H);
(d) VF e A+ r(tr'.eo)= f.
Here e6 is ihe d.f. defined by

¿0\¿.,,'
ifr(0,
if¿>0;

_f'- Ir,
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v is the proba.bilistic nornr, i.e., z is tr tutip from V iuto A + tirat satisfies the foliowing

conditions:

(N.1) z(p) : €0, if, and only if, p : {, ¡'Lr:re d is the null vectol of V;

(N.2) Vz € R*,r¿ € R, with a f 0 v(up\(:t): v(p)(xl lal);
(N.3) Vp,q e Ir v@+ d}- r[u(p),u(t1)].

In both clefinitions the triangle functioli is ¿issumed to be continuous.

The space A+ can be metrized by dilTcrcnt met¡ics ([9], [3], [4], [10]), but we sha1l use here

the modified Lévy rnt:tric d¿ [3].

2. MAIN RESULTS.

THEOREM 1. Every PN-space (V,u,r) h:Ls a completion. viz. is isometric to a dense linear

subspace of a complcte PN-space (V',u',r).

PROOF. Only the steps needed to corriplement tire t¡eaturent in [7] and [8] will be given.

Now V'is the set of equiva,lence classes of Car.rchy sequences of elements of V. In order to prove

that V' is a lineal space, iet p' and q' be elements of V' and let {p"} and {g"} be Cauchy

sequences of elements of V with {p*} e p' and iq"} € q'. Since V is a linear space' one has, for

every n € N,p"* q,€V. We wish to shorv ihat it is possible to deline a sum of p' and q'in such

awaythat p'+q'ell',. Since (V,Í,r), wiih$(p,q)::r(p-g)isaprobabilisticmetricspace([3],

Theorem 15.1.2), one has, if n and m are iargr: enough'

Í(pnl qn,p^* q,,) -- ,((p"* rt") - (p*-t s))
: v((p^- p^) + k"- q*)) (because of (N.3))

> rlr(p,- p*), ,(q.- q^)1.

Taking into account Lemma 4.3.4 in [3], one has

dr(Í@^* Q,",P^* qn,),eo) < d¡(rlu(p*- p,n),'(Qn- s*)],€o)

: d ÁrlÍ (p 
^, 

p,,,), s(g", q,")1, eo)

The continuity of both d¿ and 7 ensules that, when boih rn and n tend to infinity'

Í(p^*Qn,p^*q^) 3 eo. Thus {p"*q"} is a Cauchy sequence and, as a consequence, it belongs

to an element of v', which will be denoted by r'' Then we define p'* {' : r" This definition does

not depend on the elements of p' and g' selected, for, if {p"}, { p;} e p' and {q"}' {qi} € g', then

Í(p^* q^,p;+ qi,) = v(p^- P*,,Q,- s;) > 'l'(p^- pi,),'(q^- s;)] : rlÍ(p",pi),$(q^,c;)l'

so that
d 

"(Í 
(p 

^ 
* q 

^, 
pi* sl), to ) < d' t (rlÍ (p,, p;), $(s", s;)l' €0 

)'

Since both d,¡ ará. ¡ are continuous we obtain Í(p,* q*,pi+ S) 3 €0, i.e., {p,* q^} - 1ei + el}'

Thus the sum defined above is a good definition, which immediately satisfies the properties of an

abelian group.

For every o € R, and for every Cauchy sequence {p"} of elements of V, also {a p"} is a

cauchysequenceofelementsofv. Thisisobviousifa:0. Ifafj,onehas,foreveryr>0,

' Í(ap^,ap^)(t): v(ap,- ap*)(t): u(P,- p)@l l"l)
:5(p,,p,,")(xl lal),

and ihis tends to 1, for every r)0' as n and'm tend to infinity, i.e.,Í(apn,crp-) J3 eo' Thus

{op"} is a Cauchy sequence; let us denote by u' the element of V' to which ii belongs. Then we

define op':d. This is again a good definition; in fact, lei {p"},{pi} € p'. Then

5(op",opi)(r): ula(p^- pi)l(') : u(p,-rt(É): +tr".r;(fr)
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wliich te¡lds to 1 for all ¡ > 0 wherr n+oo, rvlrr:uce {crp"} - {opi}. Therefore it is irnmediate to

conc[¡de that V'is a linear space. All tha.t is left to shorv is that the distance d.f. S'clerives from

aprobabilisticnotrl/'ol1V'. Foreveryp'€1"", set,if {p"}e p'rvith p^€Vfor everyrz(N

í(p'): :4'(p',,J') : Intt,, Í(pn,,9) : Iim^ t'(pn). (2.1)

Thus

íb',q'): lint^Í(p^,cl,) : Iimn v(p,- t1,): u'(p' - c').

It is now an easy task to veri{y that ¡u'does indeecl fulfill conditions (N.1), (N.2) and (N.3). D

We now turn to the proof of the analogous result for PN-spaces according to the definition

given in [1]. This latter differs from the one given above in that condition (N.2) is replaced by

the weaker one

(N.2') VpeV v(- p) :v(P);

and a new one is a.dded:

(N.4) Vc € [0, l]Vp € Iz v(p) < flv(ap), z((1 - a)p)l'

Then a PN-space is a quadruple (v,u,r,r.), where v, as above, is a real linear space, r,r*

are continuous triangle functions and v':v+L,+ is a map such that conditions (N.1), (N.2',), (N.3)

and (N.a) are satisfied.

The last part of this note is entirely devoied to Plü-spaces according to this latter definition.

LEMMA 2. Let (V,v,r,r*) be a PN-sptrce and let ñ and k be two real constants such that

0 < /¿ < /c; then

Vp,q€V ú(kp,kq) < Í(hP,hq),

where S(p, g): : u(p - (i.
PROOF. There is .\ e [0, 1] such that h. = )]. Then

Í(kp,kq): v(kp - kq) : vlk(p - s)i <

! r.lvl\k(p - q)),,|(t - r)r(p - q)l] 5

< r-lul\k(p - q)1, uo] : vlk(p - n¡1: ulh(n - ill: r(he'hq)' E

THEOREM 3. Every PN-space (V,v,r,r") has a completion, viz. is isometric to a dense

linear subspace of a complete P.lf-space (V',u',r,r*).

PROOF. Exactly as in the proof of Theolem 1, one can prove that if boih p'and g'belong

to V', then í + q' e V'. However, one can no longer use the same proof of the fact that if o € R

and p' € V' then ap' € V' , because recourse 'rvas made to property (N2) w'hich now may well not

hold.

Now assume a € R and p' e v" let {p*} € p', and consider the sequence {op"}. As a first

step, we shall prove that it is a Cauchy secluence in I/. This is obviously true for o = 0 and

a = 1. Because of (N.2'), it suffices to considel only the case o > 0. Now assume that {op"} is a

Cauchy sequence for o = 0,1, ' ' ',ft - 1(& € N). Then

Í(kp,,kp^): 'lk(p^- 
p-)l > 4'@,- p^),'l(k - 1Xp^ - p-)l]:

= r]"11p^,p^).Í((t - 1)p",(k - 1)p-)].

Since ¡ is continuots and
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itfol]owsthataiso{cp"}isaCatrchysc(ltlcnceforeverya€v+.Ifoispositive,butnot
integer, therc cxists l' € Z * such that I¡ < o < l' * 1' Lemma 2 rlorv gives

C((* + 1)/,,,,(t' + 1)l',,,)< Í(a¡r,,'cip,,.) < 9(Á:2"'ftp"');

hence it is immecli¿rtc¡ to conclucle ttrat ioir,,) is a Cauchy seqüc1lce {or every a € R+' Thus tirere

exists an elenrent u'€ !" such that {4p,,} € u'. Let us clefine u' : oP " In orrler to checli that this

is a good definition, let {p"} - {pi.i' If o € [0' 1]' it follows from Lemma 2 that

Í(p*,pi)<$(rrp",rrp|); since, by assurnptiortf(pn,pi):!e¡t' also s(ap"'opi)3eo' lf a:k€v+'

as above, one has

9(Ap,,,A2i) : ulk(p^- P;)l >'l'(p*-pi')''[(l' - 1Xp"- p;)]] :

= rl5(p,,,pi,),4((t - r)P,,,(k - 1)Pl)]'

Thesanreargurrleutasaboveyielcls{ftp,,}-{¡pl'}foleverykeV*'Again'fromthisitiseasy
to obtain that. for every a € R one has {42"} - {opL}'

Therefore v, is a linear space. only corrdiiions (N.2') and (N.4) renrain now to be proved

Proceedingasabove,letp€V,andlet{p,.}b"aCauchyseqllenceofelementsofVthatbelongs
to p,; then { - p"} € - 2,. Since z, is definecl by (2.1)' one has, on account of (N.2,), which lrolds

lot v,
v'( - p') = limn u( - p,,): lim, v(p*) = u'(p')'

Moreover, for every a e [0' 1], one has, bec¿ruse r* is contrnuous'

v'(p') = lim^ u(p^) !lirn^ r-lv(ap")'v((1 - o)p")]

: ,.1,'(oP'),'((r - o)P')l' n
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