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Probabilistic no¡med spaces have been redefined by Alsina, Schweizer, and
Sklar. We give a detailed analysis of various boundedness notions for linear
operators between such spaces and we study the relationship among them and also
with the notion of continuiW. o 1999 Academic Press

1. INTRODUCTION

Probabilistic normed spaces (PN spaces henceforth) were introduced by
Serstnev in [13] by means of a definition that was closely modeled on the
theory of normed spaces. Here we consistently adopt the new, and in our
opinion convincing, definition of PN space given in the paper by Alsina,
Schweizer, and Sklar [1]. We recall it. The notation and the concepts used
are those of 112, 1,, and 21.

Dr'prNtrton 1.1. A probabilistic normed space (briefly a PN space) is a
quadruple (V,v,r,r*), where V is a real vector space, r and r* are
continuous triangle functions with r < r* and v is a mapping (the
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probablistic norm) v: V "+ A* such that for every choice of p and q in V
the following conditions hold:

(N1) vp: €o if, and only if, P : 0 (e is the null vector inV);
(N2) v-p : vp;

(N3) vp+q 2 r(vo, vr);
(N4) vo < r*(v¡.,v6-¡¡p) for every ,\ e [0,1].

A Menger PN space under 7 is a PN space (V,v,r,rx) in which r: rr
and r* : rr*, for some continuous /-norm ? and its ,-conorm Z*; it is

denoted by (V,v,T).
A PN space is called a Serstneu space if it satisfies (Nf) anO (N3) and the

following condition,

,'o(x) : for every a c R - {0} and for every x > O, (S)

which clearly implies (N2) and also (see [1D (N4) in the strengthened form,

up : ru(vt p, vlr- t1p) , for every )' in [0' 1].

There is a natural topology in a PN space (V, v, r , rx ), called the strong

topologt; it is defined by the neighbourhoods,

4(t)': {o =v, rn oU) > 1 - tl : lq ev: d"(vr r,eo) <tl,

where I ) 0. Here d, is the modified Lévy metric ([14D.

Adopting this definition of a PN space, we proved in [6] that every PN
has a completion and studied in [7] special classes of PN spaces. Here we

present a detailed analysis of various concepts of boundedness for subsets

of PN spaces (Section 2) and we study the connections between continuity
and boundedness, in its various versions, for linear operators between PN
spaces (Section 3). Our standpoint is entirely new, because the authors
(see [8-10D who previously have studied continuity and boundedness for
linear operators did so in the context of Serstnev spaces and-a great

restriction indeed-limited their attention to the operators that we call
strongly bounded.

An ordinary normed space can always be regarded as a special PN
space.

Exeupr-B 1.1. Let (V,ll'll) be a normed space and define n: V --> L+
via

frp t: erlplr'

",(#),

(1)
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Let r be a triangle function such that

r(eo, e6) : Ea+b¡ Q)

for all a,b ) 0 and let r* be a second triangle function with r < r*. For
instance, it suffices to take r: rr and r* : rr*, where ? is a continuous
Í-norm and Z* is its ,-conorm. Then (V,n,r,r*) is a PN space.

In the other direction, if (V,v,r,r*) is a PN space in which r satisfies
(2) and if there is a function f : V ---> R* such that no ': ef(p) holds, then /
satisfies the two properties

(i) f(p) :0 if, and only if, p : 0, where 0 is the null vector of Z;
(ii) f(p + q) < f(p) + f(q) for all p, e e V.

Note that such a function is not necessarily a norm. In order to see this it
suffices to consider the case V: R and to choose

p
f(p),: 

- 
ir+p

this latter function satisfies (i) and (ii), but it is not a norm, as is
immediately seen. If, moreover, (V,n,r,r¡n) is a Serstnev space, then / is

actuallv a norm on Z.

2. BOUNDED SETS

Given a nonempty set A in a PN space (V,v,r,r*) its probabilistic
radius Ro is defined by

where l- fl*) denotes the left limit of the function f at the point x and

ózG) ': inf{voQ): p e A}.
The following definition sharpens that of [].2, Section 12.41 as we detail

in Section 4.

DB¡r¡unoN 2.1. A nonempty set 1 in a PN space (V,v,r,r*) is said
to be:

(a) certainly bounded, if R (xe) : 1 for some .r0 €10, +oo[,

(b) perhaps bounded, if one has R7(x) ( L, for eyery x €10, +m[,
and /-Rr(**): 1;
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(c) perhaps unbounded, if Rr(x¡) > 0 for some .r0 e ]0, +co[ and
I- Rn(+*) e10,1[;

(d) certainly unbounded, if /-Rr(f -) : 0, i.e., if Ru: e*.

Moreover, A will be said tobe D-bounded if either (a) or (b) holds, i.e., if
Roeg+; otherwise, i.e., if R, e A+\9*, A wrll said to be D-un-
bounded.

Note that in the previous definition we could have used @, instead of
RA.

The following lemma, whose proof is simple, is useful in the remainder
of this paper.

Lnurre 2.1. Let A be e nonempty set in a PN space (V, v,r,r*). Then

(a) A is certainly bounded if, and only if , $nG) : 1 for some
.ro €]0, +oo[;

(b) A is perhaps bounded if, and only if, $aG) 11 for euery x0
€10, +co[ andl go(+*):1;

(c) A is perhaps unbounded if , and only if , I $u(+ *) e 10, 1[;

(d) A is certainly unbounded if , and only if , l- $n(+*) : 0, i.e.,

Ó¿:0;
It is easy to provide an intuitive justification for the preceding definition,

and, at the same time, to explain why we use two types of bounded sets,

absolutely and perhaps bounded, in place of the traditional one (112,

Definition 12.4.31).It suffices to think of the value at x of the probabilistic
norm zp of p as the probability that the norm llpllis smaller than x. Then
a set A is certainly bounded if, and only if, there is xo ) 0 such that, with
probability 1, llpll ( xo for every p in ,4; thus, almost certainly ,4 is

included in the open ball B(xs) centered at the origin 0 and of radius xo.
This closely corresponds to the idea of what a bounded set is in probabilis-
tic terms. If the set ,4 is not certainly bounded, then it is perhaps bounded
if, and only if, for every 6 > 0, there exists xo : xs(6) ) 0 such that every
point p in 1 belong to B(xo) with probability greater than 1 - 6. The set

-4 is certainly unbounded if, and only if, for every 5 ) 0 and for every
xo ) 0, there exists some point p in A that lies outside B(xo) with
probability greater than 1 - 6. Finally, if ,4 is not certainly unbounded,
then A is perhaps unbounded if, and only if, there exists 6 e 10, 1[ such
that, for every .r0 ) 0, there is a point p in A that lies outside B(xo) with
probability greater than 6.

The proof of the following result is very simple.

THsoRENa 2.1. A set A in the PN space (V,v,r,r*) is D-bounded if,
andonly if,there exists qd..f.G eg+ suchthat v,> Gforeuery p eA.
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It follows at once from Definition 2.t that a set -4 is D-bounded if. and
only if,

"!1-ó"('):1.
This latter condition implies that

,\\*'r(') 
: 

', 
forevery P eA' (4)

The converse is not true as the following example shows

ExavpI-B 2.1. Let (& | 
. 

D Ue the normed space of the reals R endowed
with the usual norm. It can be made into a Menger PN space as in
Example 1.1 by choosing any continuous f-norm T. Let,,4 be any un-
bounded subset of R. Then, for every x e ]0, a -[, there exists p e ,4 such
that lpl > x. Consequently,

ó"(*): )tt^noe) -- oi3le,r,(x) 
:0,

whence lim,-a. óaG):0; and thus (3) is not satisfied. On the other
hand, for every p =A

"\y*ro{4 
: 

,IT* ep1(x) : r,

so that (4) is satisfied.
For the definition of the special PN spaces in the following examples we

refer to our paper [7].

Exi'¡v:nrp.2.2. Let (V,F,M) be an equilateral PN space. If there is a
xo e]0, 1oo[ such that ,F(xo):1, then every nonempty set of Z is cer-
tainly bounded; otherwise, only the singleton {0} is certainly bounded; for
any subset A, one has Qn: F so thaf A is perhaps bounded if, and only
if,l-F(-*) : 1; if /-F(+*) < 1, then -4 is perhaps unbounded.

ExaupI-B 2.3. Let (V,ll ' lD be a normed space, and consider the simple
Menger space (V,ll . 

ll, G, M). Then

(a) if there exists xo e]0, +*[ such that G(xs):1, then the cer-
tainly bounded sets of (V,ll ' ll, G, M) coincide with the bounded sets of
(Z,ll'lD. Moreover, an unbounded set in (V,ll'll) is either perhaps un-
bounded or certainly unbounded in (V,ll ' ll, G, M) according to whether
/+G(0) ': lim,-o* G(x) belongs to ]0,1[ or is equal to 0, respectively;

(b) If / G(+*):1but, for every x el0, 1oo[, G(x) ( 1, then the
only certainly bounded set of (V,ll.ll,G,M) is the singleton {9}; the
perhaps bounded sets of (V,ll'll,G,M) coincide with the bounded sets of

187
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(4ll . lD, while the unbounded sets of (tr/, ll ' lD are either perhaps un-

bounded or certainly unbounded in (V,ll ' ll, G, M) according to whether

/+G(0) ) 0 or /*G(0) : 0, respectively;

(c) If /-G(+-) e]0,1[, everything behaves as in the previous case,

the only difference being that the bounded sets of (2, ll ' lD different from

to) are perhaps unbounded in (% ll 'll,G, M).

The same results hold for a-simple spaces.

Notice that for equilateral, simple, and c-simple PN spaces the nature

of a set, as far as boundedness is concerned, depends only on the
properties of the one distribution function that appears in the definition of
those spaces.

Ex¡t¡prp.2.4. The description of the various type of sets of Definition
2.1 is particularly transparent in the case of EN spaces; and here the

motivation behind the definitions also comes to the surface. I.eI A be a
subset of an EN space (S, v), i.e., a subset of Z-valued random variables;

then ,4 is:

(a) certainly bounded if, and only if, it is P-a.s. bounded; i.e., the

random variables of A are P-a.s. uniformly bounded;

(b) perhaps bounded, if, and only rf, for every e > 0, there is a ball
B, in (V,ll . ll) such that all the random variables tn A take values in B.
with probability greater than 1 - e;

(c) perhaps unbounded if, and only if, there exists É e 10,1[ such

that, for every .r € ]0, + @[, there is a random variable p e A such that
P{oe O: llp(a¡)ll >xl > É > 0(inotherwords,withstrictlypositiveprob-
ability, the radius of .4 is actually infinite);

(d) certainly unbounded, if, and only if, for every e ) 0, for every

r €10, aoo[, there is p e-4 such that P{a e O: llp(¿¡)ll >x} > 1 - e.

Next we present two results concerning the probabilistic radius. The first
one is just the analogue of a classical result, while the second one

generalizes the well-known relationship rov n 3 r¿ * r, valid for the radii
of the sets A and B.

Tsnonura 2.2. 1n ¿ PN space (V,v,r,rx), the probabilistic radius has

the following properties:

(a) for euery nonempty set A, Ro : R¡ where A denotes the closure of
A in the strong topologt;

(b) Rn, u > r (Rn R), if A and B are nonempty.

Proof. (a) Because A cA, and, as a consequence, Ro > R,a-, one has

only to show the converse inequality Ru <Rn-.When (2, u,r.r*) is



BOUNDEDNESS IN PN SPACES 189

endowed with the strong topology and A* is endowed with the topology of
weak convergence, i.e., the topology of the modified Lévy metric dr, the
probabilistic norrn z; V --> L,+ is uniformly continuous ([2, Theorem 1]); in
other words, for every T e]0, 1[ there exists 6:6(rl) ) 0 such that
d"(vo,vn) ( 4 wheneveldr(uo-n,es) < 6.

Now, for every p e. A, there exists 4(p) e ,4 such that

dr{'o n1o¡, eo) < 6;

therefore dr(vo,u4o¡) < T. In particular, for every t e.10,1/ql, one has

vo1)>vq<p¡(t-q)-n.

Then, for t e10,1/q[,

ó^t) : inf_voj) > inf_v4p¡(t - n) - tt
peA peA

)!\"n'o'Q-n)-n
t 

]2'ovo? - q) - q: ÓnQ - q) - n'

Therefore, if ¿ e lO,l/q[, then nolt)> noQ - d - n.This latter in-
equality holds for eyery.\ e10,1[ and for every t e]0,1./nl. Thus, letting
T -+ 0 and using the left-continuity of R, yields that, for every / ) 0,

Rat) > R"(t).

(b) For every p eA U,B and for every q e B we have that

uo : r(vo, e(r) ¿ r(vr, rn) > ,(ro, Ru),

because Rn 3 uo for all q e B. Therefore, if p e A
¡(Ru, R¡').

we have z, >

Repeating the same argument fot p e. A U B and q e ,4 leads to the
inequality v, > r(Ru, Ru) for every p e B. Now the last two inequalities
yield the assertion. I

As a consequence of Theorem 2.2(a), any boundedness property that
holds for a set A holds also for its closure A and conversely.

Our definition of boundedness has a topological content. It has been
shown (see, e.g., [3, 4, 15,17]) that in a PM space the topological issues
involved are delicate and, in general, do not follow traditional patterns.
However, in the present setting, there is one topology that comes to the
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fore-the strong topolory lI2, Chap. I2i. ln what follows we focus our
attention exclusively on it.

If (V,v,r,r*) is a topological vector space with respect to the strong

topology-which is the case if either (V,v,r) is a Serstnev space or if r*
is Archimedean (see [2])-then (see [11]) there is a unique translation
invariant uniformity % that induces the strong topology and which makes
(V,%) into a uniform space (see, e.g., t5D. lf {.4Q/n): ru e N} is a base of
neighbourhoods of 0 in the strong topology, then a base for the uniformity
% is given by the sets

(t',ll e v x v: y -. ="16(:), " =*)

1
R"(x) ,1 - ;,

Let Rn belong to 9+. Then, for every n e N, there exists

In a uniform space, a concept of boundedness for sets is given; we call this

type of boundedness "uniform" in order to distinguish it from those

previously introduced.
We recall that a subset A cV of a uniform space (V,Z) is uniformly

bounded if, and only if, for every circled neighbourhood U of the origin 0

there exists k e N such that A c kU.
The following result shows that uniform boundedness and perhaps

boundedness coincide in the case of Serstnev spaces.

THBonBu 2.3. For a subset A cV of a Serstneu space (V,v,r) the

following are equiu alent :

(a) A is unifurmly bounded;

(b) the probabilistic radius Ro of A belongs to 9+ .

Proof. 1u¡ - (b) Lat A be uniformly bounded and consider the

neighbourhood of g, 4Q/n). Then, there exists k e N such that, for
eJery p eA, p: kq for some q etf$(l/n).If x ) k/n,then, because of
(s),

,oQ) : vks(x) :
1

) 1- -,n

so that

',(il"'(:)

i.e., Ru e.9*.
(b) + (a)
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xn) 0 such that Rn(x,) > 1 - 1/n.T\erefore, for every p eA,

1
,o(x,) > Ro(r,) > L - -.

Set k ,: min{/¿ e N: h/n > r,}. Then

1
>uo(x,),t-;

Now (S) yields u,,¡,(1/r) > 1 - I/n so that p/k belongsto.4g(1/n),vu.
there exists q e/r(1./n) such that p : kq; this means that A ck.
40/n). I

As was mentioned earlier, if r* is an Archimedean triangle function,
then (V, v, r, r*) is a topological vector space ([2]). If the requirement that
rx be Archimedean is dropped,then(V,v,r,r*) need not be a topologi-
cal vector space and the condition characterizing uniform boundedness
takes a more complicated form (see, for instance [5, p. 130]). But even if r*
is Archimedean, the present state of our knowledge about PN spaces does
not allow us to decide, one way or the other, whether a result similar to
Theorem 2.3 holds.

3. LINEAR OPERATORS

Trmonnu 3.1. Let (V, v, r, r*) and (V' , p, o, o*) áe PN spaces. A
linear map T: V -'; V' is either continuous at euery point of V or at no point
of v.

We omit the proof because, except for a change of language and
notation, it is the same as the usual one (see, e.g., [16]).

Conolleny 3.1. If T: (V, v,r,rx) + (V', p, o, o*) is linear, then T is
continuous if , and only if , it is continuous at 0.

We recall that, in general, an operator Z from a metric or normed space
V into another metric or normed space V' is said to be bounded if it maps
every bounded set A of V into a bounded set TA of V'. This notion is
translated in the next definition.

DnrrNruoN 3.1. A linear map 7: (V, v, r, r* ) r (V' , p, o , u*) is said
to be

(a) certainly bounded if, and only if, it maps every certainly bounded
set -4 of the space (V,v,r,r*) into a certainly bounded set TA of the

,,(:)

t-

t
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space (V' , p, o , ox), i.e., if there exists xo e ]0, + m[ such

fi, 
"u"ry 

p eA, then there exists x, e ]0, +-[ such that

every p e A;
(b) bounded if it maps every D-bounded set of Z into a

sef of V', i.e., if, and only íf, RrA belongs to 9" for every

subset A of V. Equivalently, Z is bounded if, and only if it
implication,

that uo(xs) : 1

¡"7(x) : 1 for

D-bounded
D-bounded
satisfies the

lim Ór( x) : | + lim Sru(x) : I'
J-+- ^' ' xr+Ó

for every nonemPtY subset A of V;

(c) strongly bounded if there exists a constant ft ) 0 such that' for

eYery p e V andfor every x ) 0,

*rolx) 2 'rl;)'
or, equivalently, if there exists a constant h > 0 such that' for every p e V

and for every x ) 0,

Pr,(hx) > 
'o(x)'

Notice that the definition of a strongly bounded operator in a PN space

isnaturallysuggestedbytheclassicaldefinitionofaboundedlinear
operator: an operator T irom the normed space (V,ll'll) into the normed

;;;;-(i,,ll . ll,) is bounded if, and only if, there is a constant k ) 0 such

that, for every x e V,

llrxl[ < /cllxll. (s)

For this reason these operatols were the first to be studied ([8-10]) in the

context of Serstnev PN sPaces.

Notice also that, us u iont"quence of (5), a continuous linear operator

on an ordinary normed space is uniformly continuous' The same result

holds in PN spaces as an immediate consequence of Corollary 3'1'

Conorl¡nv 3.2. If T: (V1,v,r',rl)'(Vz,v',tr,rl) is linear and

continuous then it is unifurmly continuous'

The identity map / between any PN space (2, v'r'r*) and itself is a

strongly bounded óperator with k : 1' Also, all linear contraction map-

pi"gíá""or¿ing to tle definition of ll2,Section 12.6),are strongly bounded.

Llátt er, nontrivial, example of a strongly bounded operator is provided in

the following examPle.
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Ex¡vpr-E 3.1. Consider the spaces C([0,1]) and C1(0,11) of the func-

tions that are, respectively, continuous and continuous together with their

first derivatives on the interval [0, 1]. They are Banach spaces with respect

to the two norms ll/llo,: max,.¡s,111/(x)l in C([0,1]) and ll/lh': ll/llo +

llf'llo in C1(0,11). Choose any diitribution function G from A* different

fiom eo utrd fto- e- and consider the derivative map D from (C1(0,1]),

ll ' llr, G, M) into (C(0, 1l), ll ' llo, G, M) defined by Df : /'. Then, for every

x ) 0, one has vorG) > vr(x), whence D is strongly bounded'

The next result is immediate.

TneonBrvf 3.2. (a) Euery strongly bounded operator is also certainly

bounded.

(b) Euery strongly bounded operator is also perhaps bounded'

However the converse need not be true.

Exerupr-E3.2. Lef V:V': R, zo: ps: És,while,if p +o,then,for
x)0, let

/r\
vo(x) : ol, 

el ,|.
uo¡): r(bl),

where

G(r) : jr,o,,,(x) * 1¡1, **¡(r),

and U is the d.f. of the uniform law on (0,1),

U(r\ : x1p,,1(x) + 1t1, *.1(x).

Consider now the identity map 1: (R, I ' l, G, M) -- (R, | '|,U, M)' Ftom
Example 2.3, it is easy to prove that 1 is certainly bounded and bounded.

But f is not strongly bounded, because for every k ) 0 and for every

p * 0, one has, for x ( lPlmin{i,k},

.;:"ffi) :-(;)
Moreover, the notions of certainly bounded and bounded operators do

not imply each other.

Ex¡rupls 3.3. Let (V,ll'll) be a normed space. Let G and G' be in

A*-{eo, e.} and consider the identity map 1 between (V,ll'll,G,M) and

(Z,ll'll, G', M). Now' with reference to Example 2'3

*o(x):uo'):r(á) :ú
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_!u) it G(¡o) : 1 for some r elO, +*[ while G,(x) < 1
x elO, nm[, but l-G'(¡n¡:1, then 1 is bounded but not
bounded;

(b) it G(x) ( 1 for every x elO, +*[, if /-G(+*):
l-G'(+a) ( 1, then 1 is certainly bounded but not bounded.

In the classical theory, condition (5) is necessary as well as sufficient for
the continuity of a linear operator. In a pN space its analogue, namely,
strong boundedness, is only 

_sufficient ur prou"d in the follow"ing theorem
but not necessary as shown in Example 3.4.

Tn'onev 3.3. Euery strongry bounded rinear operator T is continuous
with respect to the strong topologies in (V,r,r,i*¡ and (V,, t", o, o*),
respectiuely.

Proof. Because of Corollary 3.1, it suffices to verif, that T is continu_
ous at.0.L",f /í),(t), with ¡ ) 0, be an arbitrary neighbourhood of d,. Take
s < min{/, t/k}; then, for every p e/$(s), one has

for every
certainly

1 and if

t-+"(t) > >ro!)>1-s>1-f,,,(;)

viz. Tp elt[,(t); in other words, Z is continuous. I
Exa¡r¿pls 3.4. Consider again the simple spaces of Example 3.2, and

the ¡a1e linear map I between them. Thé map 1 is continuous. It is easy
to check that, for every t e]0,1[, the neighbourhood 4G) coinc¡des with
the set {p e R: lpl < t/(t - r)}. on taking s <min{t7(t _ 0,+l,one has./rs(s): {peR: lpl <s}.Thus,if pe.riG),lpl <, <t/(t 1"í),sothat
p e/oe).

The following examples together with Example 3.3 prove that, in the
class of linear operators, no two of the concepts of cerlain boundedness,
boundedness and continuity imply each other.

Exeupr-¡ 3.5. (A contin rous linear operator that is neither certainly
bounded nor bounded). Let (V,ll . lD be a normed space and let f. and G
be distribution functions in g+ with F(xo):1 ftr some .r0 e]0, +m[.
consider the identity map 1 from the equiláteral space (v,F,ü) into the
simple space (V,ll . 

ll, G, M). Let A be aÁ unbounded set of (i,ll . ll). Then
,4 is certainly bounded in (v,F,M). But A is not D-boundeá in (v,ll.
ll,G, M). Therefore, 1 is neither certainly bounded nor bounded.

On the other hand, b-ecause the strong topology in an equilateral pM
space is discrete (see [12, section rz.3]), ind the strong topology in(V,ll'll,G,M) is the usual one in (V,ll.llt ú""uur" G belongs tá 9*, th"
identity I is continuous.
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Exavpls 3.6. In the previous example, 1 1 is both certainly bounded
and bounded without being continuous, as is immediately checked.

Tggoneu 3.4. Let (V, v, r, r*) and (V' , lL, ú , o* ) be two PN spaces

and let T: (V,v,r,r*) -- (V', &,ü,ü*) be a linear map. If there exists a

constqnt h > 0 such that, for euery x ) 0 andfor euery p e V,

vo(x) > Fro(hx), (6)

then T has a linear inuerse T 1 defined on W qnd T-1 is strongly bounded.

Proof. Take Tp : 0' in (6); then, for every x ) 0, vr(x) > 1, i.e.,
vo(x) :1, so that p : 0. This yields the existence and the linearity of Z 1.

Now (6) can be written in the form,

,, ,n(x) > pp(h.x),

where 4 is any element of TV. Therefore Z I is strongly bounded. I
In particular, under the assumptions of the last theorem, the operator

f-1 is continuous, bounded and certainly bounded. Moreover, it is not
hard to check that f maps certainly unbounded sets of (V,v,r,¡*) into
certainly unbounded sets of (V' , p, c, ux ) and Z maps D-unbounded sets

of (V, v, r, rx ) into D-unbounded sets of (V' , p, ú, c-x).
The proofs of the next two results follow easily from what we have

shown.

Conou-anv 3.2. Let T: (V,u,r,r*) t (V', p, o,o*) be a linear onto
map with an inuerse T-1. If both T and T 1 are strongly bounded, then T is a

homeomorphism between the PN spaces (V, v,r,r*) and (V', Lt', u, ox).

The identity 1 of Example 3.3(a) is a homeomorphism and its inverse is

not strongly bounded; therefore the converse of Theorem 3.4 does not
hold in general. The same example shows that also the converse of the

next corollary may not hold.

Conollenv 3.3. Let (V,v,r,r*) and (V, F,o,o*) be two PN ,spaces

hauing the same support V. If the identity and its inuerse are both strongly

bounded, then the strong topologies of the fwo PN spaces are equiualent.
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