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Probabilistic normed spaces have been redefined by Alsina, Schweizer, and
Sklar. We give a detailed analysis of various boundedness notions for linear
operators between such spaces and we study the relationship among them and also
with the notion of continuity. ~ © 1999 Academic Press

1. INTRODUCTION

Probabilistic normed spaces (PN spaces henceforth) were introduced by
Serstnev in [13] by means of a definition that was closely modeled on the
theory of normed spaces. Here we consistently adopt the new, and in our
opinion convincing, definition of PN space given in the paper by Alsina,
Schweizer, and Sklar [1]. We recall it. The notation and the concepts used
are those of [12, 1, and 2].

DEFINITION 1.1. A probabilistic normed space (briefly a PN space) is a
quadruple (V, v, 7,7*), where V is a real vector space, 7 and 7* are
continuous triangle functions with 7 < 7* and v is a mapping (the
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probablistic norm) v: V — A" such that for every choice of p and g in V
the following conditions hold:

(N1 », = ¢, if, and only if, p = 6 (6 is the null vector in V);

(N2) u_, = U;
(N3) y,,, = 7(y,, 1);

(ND v, < (1, ¥4 - n,) for every A € [0,1].

A Menger PN space under T is a PN space (V, v, 7, 7*) in which 7 = 7,
and 7* = 7.+, for some continuous ¢-norm T and its z-conorm T%; it is
denoted by (V, v, T).

A PN space is called a Serstnev space if it satisfies (N1) and (N3) and the
following condition,

x =
v, (x) =v|—|, foreverya € R — {0} and for every x > 0, (S
ap p |a|

which clearly implies (N2) and also (see [1]) (N4) in the strengthened form,

v, = Ty (Bps Ya—nryp)» forevery Ain [0,1].
There is a natural topology in a PN space (V, v, 7, 7*), called the strong
topology; it is defined by the neighbourhoods,

A1) ={geViy (1) >1-1t}={geV:d (v, &) <t},

where ¢ > 0. Here d, is the modified Lévy metric ([14].

Adopting this definition of a PN space, we proved in [6] that every PN
has a completion and studied in [7] special classes of PN spaces. Here we
present a detailed analysis of various concepts of boundedness for subsets
of PN spaces (Section 2) and we study the connections between continuity
and boundedness, in its various versions, for linear operators between PN
spaces (Section 3). Our standpoint is entirely new, because the authors
(see [8—10]) who previously have studied continuity and boundedness for
linear operators did so in the context of Serstnev spaces and—a great
restriction indeed—limited their attention to the operators that we call
strongly bounded.

An ordinary normed space can always be regarded as a special PN
space.

ExampLE 1.1. Let (V,] - |) be a normed space and define n: V' — A*
via

Ry = €p) (1)
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Let 7 be a triangle function such that

T(Ea’eb) = €14b> (2)

for all a,b > 0 and let 7* be a second triangle function with 7 < 7*. For
instance, it suffices to take 7 = 7, and 7* = 7., where T is a continuous
t-norm and T* is its ~conorm. Then (V, n, 7, 7*) is a PN space.

In the other direction, if (V, v, 7, 7*) is a PN space in which 7 satisfies
(2) and if there is a function f: V" — R, such that n, == ¢, holds, then f
satisfies the two properties

() f(p) =0if, and only if, p = 6, where 6 is the null vector of V;
() f(p+q <f(p)+f(q) forall p,geV.
Note that such a function is not necessarily a norm. In order to see this it

suffices to consider the case V' = R and to choose

p
1+p

bl

f(p) =

this latter function satisfies (i) and (ii), but it is not a norm, as is
immediately seen. If, moreover, (V, n, 7, 7,,) is a Serstnev space, then f is
actually a norm on V.

2. BOUNDED SETS

Given a nonempty set A in a PN space (V, v, 7,7*) its probabilistic
radius R , is defined by

I"¢u(x), x€[0, + o[,
1, X =+,

Ry(x) = {

where [7f(x) denotes the left limit of the function f at the point x and
b (x) = inf{vp(x): p € A).

The following definition sharpens that of [12, Section 12.4] as we detail
in Section 4.

DEFINITION 2.1. A nonempty set 4 in a PN space (V, v, 7, 7*) is said
to be:
(a) certainly bounded, if R, (x,) =1 for some x, €10, + <,

(b) perhaps bounded, if one has R,(x) < 1, for every x €]0, 4+,
and /"R (4+) = 1,
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(c) perhaps unbounded, if R ,(x,) > 0 for some x, €]0, +o[ and
I"R (+=) €]0,1[;

(d) certainly unbounded, if 1" R (+) = 0, ie., if R, = €,.

Moreover, A will be said to be D-bounded if either (a) or (b) holds, i.e., if
R, €97, otherwise, ie., if R, € A"\ 2", 4 will said to be D-un-
bounded.

Note that in the previous definition we could have used ¢, instead of
R,.
The following lemma, whose proof is simple, is useful in the remainder
of this paper.

LEmMA 2.1. Let A be a nonempty set in a PN space (V, v, 7, 7*). Then

(@) A is certainly bounded if, and only if, ¢,(x,) =1 for some
xO 6]05 +OO[;

(b) A is perhaps bounded if, and only if, ¢,(x,) <1 for every x,
€10, +oof and I~ ¢, (+) = 1;

(¢c) A is perhaps unbounded if, and only if, I~ ¢ ,(+ ) €]0,1];

(d) A is certainly unbounded if, and only if, 1" ¢, (+=) =0, i.e.,
¢, =0;

It is easy to provide an intuitive justification for the preceding definition,
and, at the same time, to explain why we use two types of bounded sets,
absolutely and perhaps bounded, in place of the traditional one ([12,
Definition 12.4.3]). It suffices to think of the value at x of the probabilistic
norm v, of p as the probability that the norm || pll is smaller than x. Then
a set A is certainly bounded if, and only if, there is x, > 0 such that, with
probability 1, [[pll <x, for every p in A; thus, almost certainly A is
included in the open ball B(x,) centered at the origin 6 and of radius x,,.
This closely corresponds to the idea of what a bounded set is in probabilis-
tic terms. If the set A4 is not certainly bounded, then it is perhaps bounded
if, and only if, for every 8 > 0, there exists x, = x,(8) > 0 such that every
point p in A belong to B(x,) with probability greater than 1 — . The set
A is certainly unbounded if, and only if, for every 6 > 0 and for every
x, > 0, there exists some point p in A that lies outside B(x,) with
probability greater than 1 — 6. Finally, if A is not certainly unbounded,
then A is perhaps unbounded if, and only if, there exists 6 €10, 1[ such
that, for every x, > 0, there is a point p in A that lies outside B(x,) with
probability greater than §.

The proof of the following result is very simple.

THEOREM 2.1. A set A in the PN space (V, v, ,7*) is D-bounded if,
and only if, there exists a d.f. G €2 such that v, > G for every p € A.
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It follows at once from Definition 2.1 that a set 4 is D-bounded if, and
only if,

lim ¢,(x) =1. (3)
x> +
This latter condition implies that

lim y,(x) =1, foreveryp € A. (4)

X— +
The converse is not true as the following example shows

ExaMmPLE 2.1. Let (R,|-]) be the normed space of the reals R endowed
with the usual norm. It can be made into a Menger PN space as in
Example 1.1 by choosing any continuous ¢t-norm 7. Let A4 be any un-
bounded subset of R. Then, for every x €10, 4+, there exists p € 4 such
that |p| > x. Consequently,

ba(x) = pilelgnp(x) = pifelg €p(x) =0,

whence lim , ,, ¢,(x) = 0; and thus (3) is not satisfied. On the other
hand, for every p € 4

i ()=l e (3) =
so that (4) is satisfied.

For the definition of the special PN spaces in the following examples we
refer to our paper [7].

ExaMPLE 2.2. Let (V, F,M) be an equilateral PN space. If there is a
x, €10, +oo such that F(x,) = 1, then every nonempty set of V is cer-
tainly bounded; otherwise, only the singleton {6} is certainly bounded; for
any subset A, one has ¢, = F so that A4 is perhaps bounded if, and only
if, T F(—x) = 1; if [TF(+) < 1, then A is perhaps unbounded.

ExaMPLE 2.3. Let (V, ||| be a normed space, and consider the simple
Menger space (V, || - |, G, M). Then

(a) if there exists x, €]0, +[ such that G(x,) = 1, then the cer-
tainly bounded sets of (V, |- ||, G, M) coincide with the bounded sets of
(V,Il- ). Moreover, an unbounded set in (V,||-|) is either perhaps un-
bounded or certainly unbounded in (V, |||, G, M) according to whether
I"G(0) = lim, , ,, G(x) belongs to ]0, 1[ or is equal to 0, respectively;

(b) If I"G(+=) =1 but, for every x €]0, +o[, G(x) < 1, then the
only certainly bounded set of (V,|-|l,G, M) is the singleton {6}; the
perhaps bounded sets of (V, || - |, G, M) coincide with the bounded sets of
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(V,1I- D, while the unbounded sets of (V,||-|) are either perhaps un-
bounded or certainly unbounded in (V|- ||, G, M) according to whether
I"G(0) > 0 or I"G(0) = 0, respectively;

(¢) If 1" G(+») €]0,1[, everything behaves as in the previous case,
the only difference being that the bounded sets of (V, || - [ different from
{6} are perhaps unbounded in (V, |- I, G, M).

The same results hold for a-simple spaces.

Notice that for equilateral, simple, and a-simple PN spaces the nature
of a set, as far as boundedness is concerned, depends only on the
properties of the one distribution function that appears in the definition of
those spaces.

ExAMPLE 2.4. The description of the various type of sets of Definition
2.1 is particularly transparent in the case of EN spaces; and here the
motivation behind the definitions also comes to the surface. Let A4 be a
subset of an EN space (S, v), i.e., a subset of V-valued random variables;
then A is:

(a) certainly bounded if, and only if, it is P-a.s. bounded; i.e., the
random variables of A are P-a.s. uniformly bounded;

(b) perhaps bounded, if, and only if, for every € > 0, there is a ball
B, in (V,||-1) such that all the random variables in A take values in B,
with probability greater than 1 — €;

(c) perhaps unbounded if, and only if, there exists B €10, 1[ such
that, for every x €]0, +oo, there is a random variable p € A such that
Plw € Q: || p(w)ll = x} = B > 0 (in other words, with strictly positive prob-
ability, the radius of A is actually infinite);

(d) certainly unbounded, if, and only if, for every € > 0, for every
x €10, +oo[, there is p € 4 such that P{lw € Q: [[p(w)l| =x} > 1 — €.

Next we present two results concerning the probabilistic radius. The first
one is just the analogue of a classical result, while the second one
generalizes the well-known relationship 7, , 5 < 74 + 7 valid for the radii
of the sets A and B.

THEOREM 2.2. In a PN space (V, v, r,7*), the probabilistic radius has
the following properties:

(a) for every nonempty set A, R, = R 1 where A denotes the closure of
A in the strong topology;

(b) R,z =71 (R, Ry), if A and B are nonempty.

Proof. (a) Because A C A, and, as a consequence, R, > Rz, one has
only to show the converse inequality R, <Rz When (V,v,7,7%) is
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endowed with the strong topology and A* is endowed with the topology of
weak convergence, i.e., the topology of the modified Lévy metric d;, the
probabilistic norm v: ¥ — A" is uniformly continuous ([2, Theorem 1]); in
other words, for every n €10,1[ there exists § = 8(n) > 0 such that
d,(v,, v,) < n whenever d,(v,_,, ) < &.

Now, for every p € A, there exists g(p) € A such that

d1(%q(ry> €) < 83

therefore d,(v

s Yy p)) < m. In particular, for every ¢t €]0,1/7[, one has

(1) 2 vyt = m) — .
Then, for ¢t €]0,1 /7],
(i)ff(t) = pilelg—yp(t) Plnf V(p)(t ) -

= inf V(p)(t m) —n
pe
Zplan(t—n)—n—¢A(t—n)—n

Therefore, if ¢ €]0,1/7m[, then R{¢) > R,(t — n) — n. This latter in-
equality holds for every  €]0, 1] and for every ¢ €]0,1/n[. Thus, letting
n — 0 and using the left-continuity of R, yields that, for every ¢ > 0,

Ri(t) =R (1)-
(b) For every p € A U B and for every g € B we have that

v, =1(y,, &) = 7(,,7,) = 7(,, Rg),
because Ry <y, for all g € B. Therefore, if p €A we have v, >

(R, Rp).

Repeating the same argument for p € 4 U B and g € 4 leads to the
inequality v, > 7(R, Rp) for every p € B. Now the last two inequalities
yield the assertion. [

As a consequence of Theorem 2.2(a), any boundedness property that
holds for a set A holds also for its closure 4 and conversely.

Our definition of boundedness has a topological content. It has been
shown (see, e.g., [3, 4, 15, 17]) that in a PM space the topological issues
involved are delicate and, in general, do not follow traditional patterns.
However, in the present setting, there is one topology that comes to the
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fore—the strong topology [12, Chap. 12]. In what follows we focus our
attention exclusively on it.

If (V,v,r,7*) is a topological vector space with respect to the strong
topology—which is the case if either (V, v, 7) is a Serstnev space or if 7*
is Archimedean (see [2])—then (see [11]) there is a unique translation
invariant uniformity % that induces the strong topology and which makes
(V, %) into a uniform space (see, e.g., [5]). If {#,(1/n): n € N} is a base of
neighbourhoods of 6 in the strong topology, then a base for the uniformity
% is given by the sets

1
{(x,y) eV X V:y—xE/Ve(—),nEN}.
n

In a uniform space, a concept of boundedness for sets is given; we call this
type of boundedness “uniform” in order to distinguish it from those
previously introduced.

We recall that a subset 4 C V of a uniform space (V, %) is uniformly
bounded if, and only if, for every circled neighbourhood U of the origin 6
there exists k € N such that 4 C kU.

The following result shows that uniform boundedness and perhaps
boundedness coincide in the case of Serstnev spaces.

THEOREM 2.3. For a subset A CV of a Serstnev space (V,v,T) the
following are equivalent:

(a) A is uniformly bounded,
(b) the probabilistic radius R, of A belongs to 2.

Proof. (a) = (b) Let A be uniformly bounded and consider the
neighbourhood of 6, .#%,(1/n). Then, there exists k € N such that, for
every p € A, p = kq for some g eA;(1/n). If x > k/n, then, because of
(S),

b (x) = peg(x) = Vq(%) > vq(i—) o

n

so that

R =1~

ie, R, €o".
(b) = (a) Let R, belong to & . Then, for every n € N, there exists
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x, > 0 such that R (x,) > 1 — 1/n. Therefore, for every p € A4,
R 1 !
> >1-—,
Vp(xn) = A(xn) n
Set k :== min{h € N: h/n > x,}. Then

v,

k 1
P; ZVP(xn)>1——.

n

Now (S) yields v, (1/n) > 1 — 1/n so that p/k belongs to .#(1/n), viz.
there exists g €.,(1/n) such that p = kg; this means that A4 C k-
AQ/m). 1

As was mentioned earlier, if 7* is an Archimedean triangle function,
then (V, v, 7, 7*) is a topological vector space ([2]). If the requirement that
7 be Archimedean is dropped, then (V, v, 7, 7*) need not be a topologi-
cal vector space and the condition characterizing uniform boundedness
takes a more complicated form (see, for instance [5, p. 130]). But even if 7*
is Archimedean, the present state of our knowledge about PN spaces does
not allow us to decide, one way or the other, whether a result similar to
Theorem 2.3 holds.

3. LINEAR OPERATORS

THEOREM 3.1. Let (V,v,7,7*) and (V', u, o, 0*) be PN spaces. A
linear map T: V — V' is either continuous at every point of V or at no point
of V.

We omit the proof because, except for a change of language and
notation, it is the same as the usual one (see, e.g., [16]).

CorOLLARY 3.1. If T: (V,v,7,7*) = (V', u, o, c*) is linear, then T is
continuous if, and only if, it is continuous at 6.

We recall that, in general, an operator T from a metric or normed space
V' into another metric or normed space V' is said to be bounded if it maps
every bounded set A of V' into a bounded set 74 of V. This notion is
translated in the next definition.

DEFINITION 3.1. A linear map T: (V, v, 7,7*) > (V', u, o, o*) is said
to be

(a) certainly bounded if, and only if, it maps every certainly bounded
set A of the space (V,v,7,7*) into a certainly bounded set TA of the
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space (V', u, o, 0*), ie., if there exists x, €10, +o°[ such that v (x) =1
for every p € A, then there exists x; €10, +oo[ such that /.LTP(X]) =1 for
every p € 4;

(b) bounded if it maps every D-bounded set of V' into a D-bounded
set of V', i.e., if, and only if, R, belongs to 9" for every D-bounded
subset A of V. Equivalently, T is bounded if, and only if, it satisfies the
implication,

lim ¢, (x) =1 = lim ¢pu(x) =1
x> +®© x> +®

for every nonempty subset A of V;

(c) strongly bounded if there exists a constant k > 0 such that, for
every p € V and for every x > 0,

pr(X) = Vp(%),

or, equivalently, if there exists a constant h > 0 such that, for every p € V
and for every x > 0,

IJ‘T,,(h‘x) = Vp(x)‘

Notice that the definition of a strongly bounded operator in a PN space
is naturally suggested by the classical definition of a bounded linear
operator: an operator T from the normed space (V, |-} into the normed
space (V7. |- 1) is bounded if, and only if, there is a constant k > 0 such
that, for every x € V,

ITxll" < kllx]l. (5)

For this reason these operators were the first to be studied ([8-10)) in the
context of Serstnev PN spaces.

Notice also that, as a consequence of (5), a continuous linear operator
on an ordinary normed space is uniformly continuous. The same result
holds in PN spaces as an immediate consequence of Corollary 3.1.

COROLLARY 32. If T: (V,v,7,7F) = (V3 V', 1,,7%) is linear and
continuous then it is uniformly continuous.

The identity map I between any PN space (V, v, 7,7*) and itself is a
strongly bounded operator with k = 1. Also, all linear contraction map-
pings, according to the definition of [12, Section 12.6], are strongly bounded.
Another, nontrivial, example of a strongly bounded operator is provided in
the following example.
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ExaMmpLE 3.1. Consider the spaces C([0,1]) and C([0,1]) of the func-
tions that are, respectively, continuous and continuous together with their
first derivatives on the interval [0, 1]. They are Banach spaces with respect
to the two norms | fllo == max, ¢ o )| f(x)] in C([0,1]) and |ifll; = lIfllo +
Ilf'llo in C,([0,1]). Choose any distribution function G from A" different
from €, and from €, and consider the derivative map D from (C,([0, 1],
Il 1l1, G, M) into (C([0, 1], 1 - llo, G, M) defined by Df = f'. Then, for every
x > 0, one has vj,(x) > v,(x), whence D is strongly bounded.

The next result is immediate.

THEOREM 3.2. (a) Every strongly bounded operator is also certainly
bounded.

(b) Every strongly bounded operator is also perhaps bounded.
However the converse need not be true.

EXaMPLE 3.2. Let V=V' =R, v, = p, = €, while, if p # 0, then, for
x> 0, let

x x
w) =6( ) mn =)
where
G(x) = %1]0,1]()‘) + 1 (%),
and U is the d.f. of the uniform law on (0, 1),
U(x) =x1]0’1](x) + 1]1,+w](x).

Consider now the identity map I: (R,|-|,G,M) - R,[-|,U, M). From
Example 2.3, it is easy to prove that I is certainly bounded and bounded.
But I is not strongly bounded, because for every k > 0 and for every
p # 0, one has, for x < | plmin{3, &},

i) = 0 = {51 = 5 <3 =) = L)

Moreover, the notions of certainly bounded and bounded operators do
not imply each other.

ExampLE 3.3. Let (V,]l-]) be a normed space. Let G and G’ be in
A*—{e,, €.} and consider the identity map I between W, -, G, M) and
W, |- |, G', M). Now, with reference to Example 2.3
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(a) if G(xy) =1 for some x €10, +o[ while G'(x) <1 for every
x €10, +[, but I"G'(+%) =1, then I is bounded but not certainly
bounded;

(b) if G(x) <1 for every x €]0, +o, if I"G(+%) =1 and if
I”G'(+x) < 1, then I is certainly bounded but not bounded.

In the classical theory, condition (5) is necessary as well as sufficient for
the continuity of a linear operator. In a PN space its analogue, namely,
strong boundedness, is only sufficient as proved in the following theorem
but not necessary as shown in Example 3.4.

THEOREM 3.3.  Every strongly bounded linear operator T is continuous
with respect to the strong topologies in (V,v,r,7*) and V', u, o, 0%),
respectively.

Proof.  Because of Corollary 3.1, it suffices to verify that 7 is continu-
ous at . Let .#,(¢), with ¢ > 0, be an arbitrary neighbourhood of 6’. Take
s < min{t, ¢/k}; then, for every p €.,(s), one has

t
pr (1) > VP(Z) >y(s)>1-s5s>1-1,

viz. Tp €45(1); in other words, T is continuous. [ |

EXAMPLE 3.4. Consider again the simple spaces of Example 3.2, and
the same linear map I between them. The map [ is continuous. It is easy
to check that, for every ¢ €]0, 1], the neighbourhood A(t) coincides with
the set {p € R: [p| <t/(1 — 1)}. On taking s < min{z/(1 — 1), 1}, one has
Ao(s) ={p € R: |p| < s}. Thus, if p EHy(s), Ipl <s <t/(1 — 1), so that
p E/I/(')(t).

The following examples together with Example 3.3 prove that, in the
class of linear operators, no two of the concepts of certain boundedness,
boundedness and continuity imply each other.

ExampLE 3.5. (A continuous linear operator that is neither certainly
bounded nor bounded). Let (V, |- |)) be a normed space and let F and G
be distribution functions in 2* with F(xy) =1 for some x, €]0, + .
Consider the identity map I from the equilateral space (V, F,M) into the
simple space (V, - |, G, M). Let A be an unbounded set of (W, Il ID. Then
A is certainly bounded in (V, F,M). But A4 is not D-bounded in (V||
l, G, M). Therefore, I is neither certainly bounded nor bounded.

On the other hand, because the strong topology in an equilateral PM
space is discrete (see [12, Section 12.3]), and the strong topology in
(W, NI 1, G, M) is the usual one in (V, |- ||) because G belongs to 2, the
identity I is continuous.
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EXAMPLE 3.6. In the previous example, /™! is both certainly bounded
and bounded without being continuous, as is immediately checked.

THEOREM 3.4. Let (V,v,1,7*) and (V', u, o, c*) be two PN spaces
and let T: WV, v,7,7%) > (V', u, o0, c*) be a linear map. If there exists a
constant h > 0 such that, for every x > 0 and for everyp € V,

vp(x) 2 MTp(h‘x)’ (6)
then T has a linear inverse T~ defined on TV and T~ is strongly bounded.

Proof. Take Tp = 6' in (6); then, for every x >0, p,(x) > 1, ie,
v,(x) = 1, 50 that p = 6. This yields the existence and the linearity of T
Now (6) can be written in the form,

VT’lq(x) = M’p(h’x)’

where g is any element of TV. Therefore T~ is strongly bounded. |

In particular, under the assumptions of the last theorem, the operator
T-! is continuous, bounded and certainly bounded. Moreover, it is not
hard to check that 7 maps certainly unbounded sets of (V, v, 7, 7*) into
certainly unbounded sets of (VV', u, o, 0*) and T maps D-unbounded sets
of (V, v, r,7*) into D-unbounded sets of (V', u, o, a*).

The proofs of the next two results follow easily from what we have
shown.

COROLLARY 3.2. Let T: (V,v,7,7*) = (V', u, o0, 0*) be a linear onto
map with an inverse T~'. If both T and T~ are strongly bounded, then T is a
homeomorphism between the PN spaces (V, v, 7,7*) and (V', u, o, o).

The identity I of Example 3.3(a) is a homeomorphism and its inverse is
not strongly bounded; therefore the converse of Theorem 3.4 does not
hold in general. The same example shows that also the converse of the
next corollary may not hold.

COROLLARY 3.3. Let (V,v,7,7*) and (V, u, o, c*) be two PN spaces
having the same support V. If the identity and its inverse are both strongly
bounded, then the strong topologies of the two PN spaces are equivalent.
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