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Abstract The notion of ideal convergence is a generalization of statistical convergence which has

been intensively investigated in last few years. For an admissible ideal
∮ ⊂ N × N, the aim of the

present paper is to introduce the concepts of
∮

-convergence and
∮ �

-convergence for double sequences

on probabilistic normed spaces (PN spaces for short). We give some relations related to these notions

and find condition on the ideal
∮

for which both the notions coincide. We also define
∮

-Cauchy and
∮ �

-

Cauchy double sequences on PN spaces and show that
∮

-convergent double sequences are
∮

-Cauchy on

these spaces. We establish example which shows that our method of convergence for double sequences

on PN spaces is more general.

Keywords Ideal convergence, double sequence, statistical convergence, continuous t-norm and prob-

abilistic normed spaces
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1 Introduction

Fast [1] presented a generalization of the usual concept of sequential limit which he called
statistical convergence. Schoenberg [2] and S̆alát [3] gave some basic properties of statistical
convergence. Fridy [4] introduced the concept of statistically Cauchy sequence and proved
that it is equivalent to statistical convergence. Such an extension has been widely studied
from various aspects and also applied to different problems arising in the convergence theory.
Mursaleen et al. [5] and Móricz [6] independently extended these concepts from single sequences
to double sequences with the help of two dimensional analogue of natural density of subsets of
N×N. Kostyrko et al. [7] presented an interesting generalization of statistical convergence with
the help of an admissible ideal

∮
and called it

∮
-convergence. The idea was extended to double

sequences by B. Tripathy and B. C. Tripathy [8] where some properties related to solidity,
symmetricity, completeness and denseness are obtained. Kumar [9] defined a closely related
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concept
∮ �-convergence for double sequences and proved some results related to

∮
and

∮ �-
convergence. On the other side, Menger [10] proposed the probabilistic concept of the distance
by replacing the number d(p, q) as the distance between points p, q by a probability distribution
function Fp,q(x). He interpreted Fp,q(x) as the probability that the distance between p and q

is less than x. This led to the development of the area now called probabilistic metric spaces.
This is S̆herstnev [11] who first used this idea of Menger to introduce the concept of a PN
space. In 1993, Alsina et al. [12] presented a new definition of probabilistic normed space
which includes the definition of S̆herstnev as a special case. For an extensive view on this
subject, we refer [13–19]. Quite recently, Karakus et al. [20] defined statistical analogues of
convergence and Cauchy double sequences on PN spaces and gave a useful characterization.
Subsequently, V. Kumar and K. Kumar [21] studied

∮
-Cauchy and

∮ �-Cauchy sequences on
the same spaces. In this paper, we extend the concepts of

∮
-convergence,

∮ �-convergence and
∮

-Cauchy from single sequences to double sequences on PN spaces and establish some results
related to these notions.

2 Preliminaries

Throughout this paper, N, R respectively denote the sets of positive integers and real numbers
whereas N × N denotes the usual product set. For any set S, P (S) stands for the power set of
S and AC denotes the complement of the set A.

Definition 2.1 A distribution function (briefly a d.f.) F is a function from the extended reals
R into [0, 1] such that

(a) it is non-decreasing ;

(b) it is left-continuous on R;

(c) F (−∞) = 0 and F (∞) = 1.

The set of all d.f.’s will be denoted by Δ. The subset of Δ consisting of proper d.f.’s, namely
of those elements F such that �+F (−∞) = F (−∞) = 0 and �−F (+∞) = F (+∞) = 1 will be
denoted by D. A distance distribution function (briefly, d.d.f.) is a d.f. F such that F (0) = 0.
The set of all d.d.f.’s will be denoted by Δ+, while D+ := D ∩Δ+ will denote the set of proper
d.d.f.’s.

Definition 2.2 A triangular norm or, briefly, a t-norm is a binary operation T : [0, 1]2 →
[0, 1] that satisfies the following conditions (see [22]):

(T1) T is commutative, i.e., T (s, t) = T (t, s) for all s and t in [0, 1];

(T2) T is associative, i.e., T (T (s, t), u) = T (s, T (t, u)) for all s, t and u in [0, 1];

(T3) T is nondecreasing, i.e., T (s, t) ≤ T (s′, t) for all t ∈ [0, 1] whenever s ≤ s′;

(T4) T satisfies the boundary condition T (1, t) = t for every t ∈ [0, 1].

T ∗ is a continuous t-conorm, namely, a continuous binary operation on [0, 1] that is related
to a continuous t-norm through T ∗(s, t) = 1 − T (1 − s, 1 − t). Notice that by virtue of its
commutativity, any t-norm T is nondecreasing in each place. Some examples of t-norms T

and its t-conorms T ∗ are: M(x, y) = min{x, y}, Π(x, y) = x · y and M∗(x, y) = max{x, y},
Π∗(x, y) = x + y − x · y.
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Using the definitions just given above S̆herstnev [11] defined a PN space as follows:

Definition 2.3 A triplet (X, ν, T ) is called a probabilistic normed space if X is a real vector
space, ν is a mapping from X into D and for x ∈ X, the d.f. ν(x) is denoted by νx, νx(t) is
the value of νx at t ∈ R and T is a t-norm. ν satisfies the following conditions :

(i) νx(0) = 0;
(ii) νx(t) = 1 for all t > 0 if and only if x = 0;
(iii) ναx(t) = νx( t

|α| ) for all α ∈ R \ {0};
(iv) νx+y(s + t) ≥ T (νx(s), νy(t)) for all x, y ∈ X and s, t ∈ R

+
0 = {x ∈ R : x ≥ 0}.

Let (X, ‖ · ‖) be a normed space and μ ∈ D with μ(0) = 0 and μ 	= ε0, where

ε0(t) =

⎧
⎨

⎩

0, if t ≤ 0,

1, if t > 0.

For x ∈ X, t ∈ R, if we define

νx(t) = μ

(
t

‖x‖
)

, x 	= 0,

then in [17], it is proved that (X, ν, T ) is a PN space in the sense of Definition 2.3.
Alsina et al. [12] gave new definition of a PN-Space. Before giving this, we recall for the

reader’s convenience the concept of a triangle function, that of a PN space from the point of
view of the new definition.

Definition 2.4 A triangle function is a mapping τ from Δ+ ×Δ+ into Δ+ such that, for all
F , G, H, K in Δ+,

(1) τ (F, ε0) = F ;
(2) τ (F, G) = τ (G, F );
(3) τ (F, G) ≤ τ (H, K) whenever F ≤ H, G ≤ K;
(4) τ (τ (F, G), H) = τ (F, τ (G, H)).

Particular and relevant triangle functions are the functions τT , τT∗ and those of the form
ΠT which, for any continuous t-norm T , and any x > 0, are given by

τT (F, G)(x) = sup{T (F (u), G(v)) | u + v = x},
τT∗(F, G)(x) = inf{T ∗(F (u), G(v)) | u + v = x}

and

ΠT (F, G)(x) = T (F (x), G(x)).

Definition 2.5 ([12]) A probabilistic normed space is a quad-ruple (X, ν, τ, τ∗), where X is a
real linear space, τ and τ∗ are continuous triangle functions such that τ ≤ τ∗and the mapping
ν : X → Δ+, called the probabilistic norm, satisfies for all p and q in X, the conditions

(PN1) νp = ε0 if and only if, p = θ (θ is the null vector in X);
(PN2) ∀ p ∈ X, ν−p = νp;
(PN3) νp+q ≥ τ (νp, νq);
(PN4) ∀α ∈ [0, 1] , νp ≤ τ∗(να p, ν(1−α) p).
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If a PN space (X, ν, τ, τ∗) satisfies the following condition

(Š) ∀ p ∈ X, ∀λ ∈ R \ {0}, ∀x > 0, νλp(x) = νp

(
x
|λ|

)
,

then it is called a S̆herstnev PN space; the condition (Š) implies that the best-possible selection
for τ∗ is τ∗ = τM , which satisfies a stricter version of (PN4), namely,

∀λ ∈ [0, 1] , νp = τM

(
νλp, ν(1−λ)p

)
.

It is possible to include the convergence of double sequences in these S̆herstnev PN spaces. See
[23, 24] for a recent study of triangle functions.

Definition 2.6 A Menger PN space under T is a PN space (X, ν, τ, τ∗) denoted by (X, ν, T ),
in which τ = τT and τ∗ = τT∗ , for some continuous t-norm T and its t-conorm T ∗.

Theorem 2.7 ([17]) The simple space generated by (X, ‖ · ‖) and by μ is a Menger PN space
under M and also a S̆herstnev PN space. Here M(x, y) := min{x, y}.

For further study, by a PN space we mean a PN space in the sense of Definition 2.3. We
now give a quick look on the characterization of convergence and Cauchy double sequences on
these spaces.

Let (X, ν, T ) be a PN space and x = (xij) be a double sequence in X. We say that (xij) is
convergent to ξ ∈ X with respect to the probabilistic norm ν if for each ε > 0 and λ ∈ (0, 1)
there exists a positive integer m such that νxij−ξ(ε) > 1 − λ whenever i, j ≥ m. The element
ξ is called the ordinary double limit of the sequence (xij) and we shall write ν-lim xij = ξ or
xij → ξ as i, j → ∞ with respect to the probabilistic norm ν.

A double sequence (xij) in X is said to be Cauchy with respect to the probabilistic norm ν

if for each ε > 0 and λ ∈ (0, 1) there exist a positive integer M ′ = M ′(ε, λ) and M = M(ε, λ)
such that νxij−xpq

(ε) > 1 − λ whenever i, p ≥ M ′ and j, q ≥ M .

Karakus and Demirci [20] defined the statistical analogues of convergence and Cauchy for
double sequences on PN spaces with the help of double natural density given by Mursaleen and
Ossama [5] as follows.

Let K ⊂ N × N and K(m, n) denote the number of (i, j) in K such that i ≤ m and j ≤ n.
Then the lower asymptotic density of K is defined by δ2(K) = lim infm,n→∞

K(m,n)
mn . In case

that the sequence (K(m,n)
mn ) has a limit, then we say that K has a double natural density and

is defined by limm,n→∞
K(m,n)

mn = δ2(K).

Finally, we recall the terminology used in [7] to define
∮
-convergence. Let S be a non-empty

set. A family of sets
∮ ⊂ P (S) is called an ideal in S if and only if (i) ∅ ∈ ∮

; (ii) for each
A, B ∈ ∮

, we have A ∪ B ∈ ∮
; (iii) for each A ∈ ∮

and B ⊂ A, we have B ∈ ∮
.

A non-empty family of sets F ⊂ P (S) is called a filter on S if and only if (i) ∅ /∈ F; (ii) for
each A, B ∈ F, we have A ∩ B ∈ F; (iii) for each A ∈ F and B ⊃ A, we have B ∈ F.

An ideal
∮

is called non-trivial if
∮ 	= {∅} and S /∈ ∮

.

It immediately follows that
∮ ⊂ P (S) is a non-trivial ideal if and only if the class � = �(

∮
)

= {S − A : A ∈ ∮ } is a filter on S. The filter � = �(
∮
) is called the filter associated with the

ideal
∮
.

A non-trivial ideal
∮ ⊂ P (S) is called an admissible ideal in S if and only if it contains all
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singletons, i.e., if it contains {{s} : s ∈ S}.
An admissible ideal

∮ ⊂ P (S) is said to satisfy the condition (AP) if for every countable
family of mutually disjoint sets {A1, A2, . . .} belonging to

∮
there exists a countable family

{B1, B2, . . .} in
∮

such that Ai � Bi is a finite set for each i ∈ N and B =
⋃∞

i=1 Bi ∈
∮

.

3
∮∮∮
-convergence of Double Sequences in PN Spaces

In this section, we define
∮

-convergence of double sequences on PN spaces and give some of its
properties.

Definition 3.1 Let (X, ν, T ) be a PN space and
∮ ⊂ P (N × N) be a non-trivial ideal. A

double sequence x = (xij) of elements in X is said to be
∮

ν
-convergent to ξ ∈ X with respect to

the probabilistic norm ν if for each ε > 0 and λ ∈ (0, 1), the set {(i, j) ∈ N × N : νxij−ξ(ε) ≤
1 − λ} ∈ ∮

. The element ξ is called the double
∮

ν
-limit of the sequence x = (xij) and we write

∮
ν
-limi,j xij = ξ.

Example 3.2 (i) If we take
∮

= {E ⊂ N × N : E = (N × A) ∪ (A × N) for some finite
subset A of N}, then

∮
-convergence of double sequence on PN spaces is equivalent to its usual

convergence on PN spaces.

(ii) If we take
∮

=
∮

δ2
= {A : A ⊂ N × N : δ2(A) = 0}, then

∮
is an admissible ideal and

the corresponding convergence of double sequences on PN spaces coincides with its statistical
convergence on PN spaces.

(iii) Take
∮

=
∮

δ∗ = {A ⊂ N × N : δ∗(A) = 0}, where δ∗(A) denotes the logarithmic
density of the set A ⊂ N × N and is defined as follows: A subset A of N × N is said to have
logarithmic density δ∗(A) if

δ∗(A) = lim
m,n→∞

1
smsn

m∑

k=1

n∑

p=1

χA(k, p)
kp

,

where sm =
∑m

k=1
1
k and sn =

∑n
p=1

1
p exists. One can check

∮
δ∗ is a non-trivial admissible ideal

in N × N and the corresponding convergence coincides with logarithmic statistical convergence
of double sequences on PN spaces.

(iv) The uniform density of a set A ⊂ N×N is defined as follows. For integers s, t ≥ 0 and
p, q ≥ 1, let A(s+1, s+q; t+1, t+p) = card{(m, n) ∈ A : s+1 ≤ m ≤ s+q and t+1 ≤ n ≤ t+p}.
Put Bp,q = lim infs,t→∞ A(s + 1, s + q; t + 1, t + p) and Bp,q = lim sups,t→∞ A(s + 1, s + q; t +
1, t + p). It can be shown that the limits u(A) = limp,q→∞

Bp,q

pq , u(A) = limp,q→∞ Bp,q

pq exist
(see [8]). If u(A) = u(A) = u(A), then u(A) is called the uniform density of the set A.
If we take

∮
=

∮
u

= {A ⊂ N × N : u(A) = 0}, then
∮

u
is a non-trivial admissible ideal

and the corresponding convergence of double sequences coincides with the uniform statistical
convergence on PN spaces.

The fact that for each ε > 0 and λ ∈ (0, 1), the set

{(i, j) ∈ N × N : νxij−ξ(ε) ≥ 1 + λ} = ∅,

together with Definition 3.1, implies the following proposition.
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Proposition 3.3 Let (X, ν, T ) be a PN space. For each ε > 0 and λ ∈ (0, 1), the following
statements are equivalent :

(i)
∮

ν
-limi,j xij = ξ;

(ii) {(i, j) ∈ N × N : νxij−ξ(ε) ≤ 1 − λ} ∈ ∮
;

(iii) {(i, j) ∈ N × N : νxij−ξ(ε) > 1 − λ} ∈ �(
∮

);

(iv)
∮
-lim νxij−ξ(ε) = 1.

The next theorem shows that
∮

ν
-limit of a double sequence in a PN space is unique provided

it exists.

Theorem 3.4 Let (X, ν, T ) be a PN space and let x = (xij) be a double sequence in X. If
(xij) is

∮
-convergent with respect to the probabilistic norm ν, then its

∮
ν
-limit is unique.

Proof Suppose that there exist ξ and η in X with ξ 	= η,
∮

ν
-lim xij = ξ and

∮
ν
-lim xij = η.

Let λ > 0. Choose γ ∈ (0, 1) such that

T (1 − γ, 1 − γ) > 1 − λ. (3.1)

Let ε > 0 be given. Define

K1 =
{

(i, j) ∈ N × N : νxij−ξ

(
ε

2

)

≤ 1 − γ

}

,

and

K2 =
{

(i, j) ∈ N × N : νxij−η

(
ε

2

)

≤ 1 − γ

}

.

Since
∮

ν
-lim xij = ξ and

∮
ν
-lim xij = η, therefore by definition of a filter we have KC

1 ∩KC
2 	= ∅.

Let (m, n) ∈ KC
1 ∩ KC

2 . It follows together with (3.1) that

νξ−η(ε) ≥ T

(

νxmn−ξ

(
ε

2

)

, νxmn−η

(
ε

2

))

> T (1 − γ, 1 − γ) > 1 − λ.

As λ > 0 was chosen arbitrarily, it follows that νξ−η(ε) = 1 for each ε > 0. By definition of a
PN space we have ξ − η = 0, i.e., ξ = η. Hence

∮
ν
-limit of (xij) is unique. �

Theorem 3.5 Let (X, ν, T ) be a PN space and x = (xij), y = (yij) be two sequences in X.

(i) If
∮

contains all sets of the form N×{n}, {n}×N for n ∈ N, then ν-limxij = ξ implies
∮

ν
-lim xij = ξ;

(ii) If
∮

ν
-lim xij = ξ and

∮
ν
-lim yij = η, then

∮
ν
-lim(xij + yij) = (ξ + η);

(iii) If
∮

ν
-limxij = ξ and α be a non-zero real number, then

∮
ν
-limαxij = αξ. If α = 0,

then the result is true only if the ideal
∮

contains all sets of the form N × {n}, {n} × N for
n ∈ N;

(iv) If
∮

ν
-limxij = ξ and

∮
ν
-lim yij = η, then

∮
ν
-lim(xij − yij) = (ξ − η).

Proof (i) Since ν-lim xij = ξ so for each ε > 0 and λ ∈ (0, 1), a positive integer m can be
found with νxij−ξ(ε) > 1 − λ for every i, j ≥ m. It follows that the set A = {(i, j) ∈ N × N :
νxij−ξ(ε) ≤ 1 − λ} ⊂ (N × {1, 2, 3, . . . , m − 1}) ∪ ({1, 2, 3, . . . , m − 1} × N). As the ideal

∮

contains all sets of the form N × {n}, {n} × N for n ∈ N, so the set on right side and hence A

belongs to
∮
. This shows that

∮
ν
-limi,j→∞ xij = ξ.
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(ii) Take ε > 0 and λ ∈ (0, 1) as arbitrary. Choose γ ∈ (0, 1) with the property as in (3.1). If
we define the sets K1 = {(i, j) ∈ N×N : νxij−ξ( ε

2 ) ≤ 1−γ} and K2 ={(i, j) ∈ N×N : Fxij−η( ε
2 ) ≤

1 − γ}, then as in Theorem 3.4, one can see by hypothesis of (ii) that KC
1 ∩ KC

2 ∈ �(
∮
). We

next claim that KC
1 ∩ KC

2 ⊂ {(i, j) ∈ N × N : ν(xij−ξ)+(yij−η)(ε) > 1 − λ}. For this let
(m, n) ∈ KC

1 ∩ KC
2 . Now we have, with use of (3.1),

ν(xmn−ξ)+(ymn−η)(ε) ≥ T

(

νxmn−ξ

(
ε

2

)

, νxmn−η

(
ε

2

))

> T (1 − γ, 1 − γ) > 1 − λ.

Hence KC
1 ∩ KC

2 ⊂ {(i, j) ∈ N × N : ν(xij−ξ)+(yij−η)(ε) > 1 − λ}. As KC
1 ∩ KC

2 ∈ �(
∮

), so
{(i, j) ∈ N × N : ν(xij−ξ)+(yij−η)(ε) ≤ 1 − λ} ∈ ∮

. Hence
∮

ν
-lim(xij + yij) = ξ + η.

(iii) Case 1 Take α 	= 0. Since
∮

ν
-lim xij = ξ, so for each ε > 0 and λ ∈ (0, 1), the set

A(ε) = {(i, j) ∈ N × N : νxij−ξ(ε) > 1 − λ} ∈ �(
∮

). If (m, n) ∈ A(ε), then we have

ναxmn−αξ(ε) = νxmn−ξ

(
ε

|α|
)

≥ T

(

νxmn−ξ(ε), ν0

(
ε

|α| − ε

))

≥ T (νxmn−ξ(ε), 1) ≥ νxmn−ξ(ε) > 1 − λ

as (m, n) ∈ A(ε). Hence A(ε) ⊂ {(i, j) ∈ N × N : ναxij−αξ(ε) > 1 − λ} and so {(i, j) ∈ N × N :
ναxij−αξ(ε) > 1− λ} ∈ �(

∮
). It follows that {(i, j) ∈ N×N : ναxij−αξ(ε) ≤ 1− λ} ∈ ∮

. Hence
∮

ν
-lim αxij = αξ .

Case 2 If α = 0. Since for ε > 0 and λ ∈ (0, 1). ν0xij−0ξ(ε) = νθ(ε) = 1 > 1 − λ, it follows
that ν-lim xij = 0. Hence by part (i) of the theorem,

∮
ν
-lim xij = 0.

(iv) The proof is similar as that of (ii). �

Definition 3.6 Let (X, ν, T ) be a PN space. For x ∈ X, t > 0 and r ∈ (0, 1), the (t, r)-
neighborhood of x is defined by

B(x, r, t) = {y ∈ X : νx−y(t) > 1 − r}.

Definition 3.7 A double sequence x = (xij) in a PN space (X, ν, T ) is said to be bounded if
for every r ∈ (0, 1), there exists t0 > 0 such that

νxij
(t0) > 1 − r

for i and j.

Let �ν2∞(X) denote the space of all bounded double sequences in the PN space (X, ν, T ).
For an admissible ideal

∮
, if

∮ ν2

b
(X) denotes the set of all

∮
-convergent and bounded double

sequences in a PN space, then we have the following theorem.

Theorem 3.8 Let (X, ν, T ) be a PN space. For an admissible ideal
∮
,

∮ ν2

b
(X) is a closed

linear subspace of �ν2∞(X).

Proof By Theorem 3.5, it is obvious that
∮ ν2

b
(X) is a subspace of �ν2∞(X). We next show

that it is closed. Since
∮ ν2

b
(X) ⊂ ∮ ν2

b
(X) always, so to prove the result it is sufficient to prove

that
∮ ν2

b
(X) ⊂ ∮ ν2

b
(X). Let y ∈ ∮ ν2

b
(X). As B(y, r, t) ∩ ∮ ν2

b
(X) 	= ∅, so there is an element
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x ∈ B(y, r, t) ∩ ∮ ν2

b
(X). Let t > 0 and ε ∈ (0, 1). Choose r ∈ (0, 1) such that

T (1 − r, 1 − r) > 1 − ε. (3.2)

Since x ∈ B(y, r, t) ∩ ∮ ν2

b
(X), there is a set K ⊆ N × N with K ∈ �(

∮
) such that for all

i, j ∈ K,

νyij−xij

(
t

2

)

> 1 − r and νxij

(
t

2

)

> 1 − r. (3.3)

For i, j ∈ K, we have by (3.2) and (3.3),

νyij
(t) = νyij−xij+xij

(t) ≥ T

(

νyij−xij

(
t

2

)

, νxij

(
t

2

))

≥ T ((1 − r), (1 − r)) > 1 − ε.

It follows that K ⊂ {(i, j) ∈ N × N : νyij
(t) > 1 − ε}. Since K ∈ �(

∮
), by definition,

{(i, j) ∈ N × N : νyij
(t) > 1 − ε} ∈ �(

∮
), and therefore {(i, j) ∈ N × N : νyij

(t) ≤ 1 − ε} ∈ ∮
.

This shows that y ∈ ∮ ν2

b
(X) and hence

∮ ν2

b
(X) ⊂ ∮ ν2

b
(X). This completes the proof of the

theorem. �

4
∮∮∮ �-convergence of Double Sequences in PN Spaces

In this section we define a more generalized convergence which is closely related to
∮
-conver-

gence. Recently Karakus et al. [20] proved that in a PN space (X, ν, T ), a double sequence
x = (xij) is statistically convergent to ξ if and only if there exists a subset K ⊂ N × N such
that δ2(K) = 1 and ν-lim(i,j)∈K, i,j→∞ xij = ξ. We use this well-known result of statistical
convergence to introduce the notion of

∮ �-convergence in PN spaces as follows.

Definition 4.1 A double sequence x = (xij) is said to be
∮ �

ν
-convergent to an element ξ ∈ X

if and only if there exist a set K ∈ �(
∮
) such that ν-lim(i,j)∈K,i,j→∞ xij = ξ.

Theorem 4.2 Let (X, ν, T ) be a PN space and x = (xij) be a double sequence in X. If
the ideal

∮
contains all sets of the form H × N, N × H, where H is a finite subset of N, then

∮ �

ν
-lim xij = ξ implies

∮
ν
-limxij = ξ.

Proof Since
∮ �

ν
-lim xij = ξ, so for ε > 0 and λ ∈ (0, 1), there are a set K = {(i, j); i, j =

1, 2, . . .} ∈ �(
∮
) and a positive integer n1 such that

νxij−ξ(ε) > 1 − λ

whenever i, j ≥ n1 and (i, j) ∈ K. Let A = {1, 2, . . . , n1 − 1}; B = {(i, j) ∈ K : νxij−ξ(ε) ≤
1−λ}. Then it is clear that B ⊂ (A×N)∪ (N×A) and therefore belongs to

∮
. Also K ∈ �(

∮
)

therefore K = N × N \ H for some H ∈ ∮
. Obviously, the set {(i, j) ∈ N × N : νxij−ξ(ε) ≤

1 − λ} ⊂ B ∪ H and so the theorem is proved. �

Example 4.3 Let (R, | · |) denote the space of real numbers with the usual norms. We define
T (a, b) = ab and νx(t) = t

t+|x| where x ∈ R and t ≥ 0. Then it is easy to see that (R, | · |) is a
PN space.

Let N =
⋃∞

i=1 Ni be a disjoint decomposition of N such that each Ni is an infinite set. Then
it is obvious that N×N =

⋃∞
i=1

⋃∞
j=1(Ni ×Nj) is a disjoint decomposition of N×N. If we take
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for some positive integers p and q,
∮

=
{

A ⊂ N × N : A ⊂
(

N ×
( p⋃

i=1

Ni

))

∪
(( q⋃

j=1

Nj

)

× N

)}

;

then it is easy to see that
∮

is an admissible ideal in N×N such that
∮

contains the sets of the
form H ×N, N×H where H is a finite subset of N. We define a sequence x = (xmn) as follows.
For (m, n) ∈ Ni × Nj , define xmn = 1

i + 1
j where i, j = 1, 2, 3 . . . . Now νxmn

(t) = t
t+|xmn| → 1

as m, n → ∞ and therefore first part of Theorem 3.5 we have
∮

ν
-lim xmn = 1.

Next we prove that x = (xmn) is not
∮ �

ν
-convergent. Suppose it is

∮ �

ν
-convergent se-

quence. By definition, there exists a set K = {(m, n) : m, n = 1, 2, 3, . . .} ∈ �(
∮
) such that

ν-lim(m,n)∈K, m,n→∞ xmn = ξ. Since K ∈ �(
∮
), therefore there is a set B ∈ ∮

such that
K = N × N \ B. By definition of an ideal there exist positive integers p and q such that

B ⊂
(

N ×
( p⋃

i=1

Ni

))

∪
(( q⋃

j=1

Nj

)

× N

)

.

It follows that the set {Np+1×Nq+1} ⊂ K. Since {Np+1×Nq+1} is an infinite set so K contains
1

p+1 + 1
q+1 as infinite numbers of terms. This shows that

∮ �

ν
-limm,n→∞ xmn does not exist and

therefore we arrive at a contradiction. Hence, the sequence x = (xmn) is not
∮ �

ν
-convergent.

Theorem 4.4 Let (X, ν, T ) be a PN space and x = (xij) be a double sequence in X. If the
ideal

∮
satisfies the property (AP), then

∮
ν
-convergence implies

∮ �

ν
-convergence.

Proof Suppose that the ideal
∮

satisfies the condition (AP ). Let x = (xij) be a double
sequence in X such that

∮
ν
-lim xij = ξ for some ξ ∈ X. Then for each ε > 0 and λ ∈ (0, 1) the

set {(i, j) ∈ N × N : νxij−ξ(ε) ≤ 1 − λ} ∈ ∮
. For n ∈ N, we define the set An as follows:

An =
{

(i, j) ∈ N × N : 1 − 1
n

< νxij−ξ(ε) ≤ 1 − 1
n + 1

}

.

It is clear that {A1, A2, . . .} is a countable family of mutually disjoint sets belonging to
∮

and
therefore by the condition (AP) there is a countable family of sets {B1, B2, . . .} ∈ ∮

such that
Ai�Bi is a finite set for each i ∈ N and B =

⋃∞
i=1 Bi ∈ ∮

. Since B ∈ ∮
so there is a set

K ∈ �(
∮
), such that K = N × N \ B. Now to prove the result it is sufficient to prove that

ν-limi,j∈K,i,j→∞ xij = ξ.

Let ε > 0 be given and take λ ∈ (0, 1). Choose a positive integer q such that 1
q < λ . Then

we have

{(i, j) ∈ N × N : νxij−ξ(ε) ≤ 1 − λ} ⊂
{

(i, j) ∈ N × N : νxij−ξ(ε) ≤ 1 − 1
q

}

⊂
q⋃

i=1

Ai. (4.1)

Since Ai�Bi is a finite set for each i = 1, 2, . . . , q +1, therefore there exist a positive integer n0

such that {{⋃q+1
i=1 Bi}∩{(i, j) ∈ N×N : i, j ≥ n0}} = {{⋃q+1

i=1 Ai}∩{(i, j) ∈ N×N : i, j ≥ n0}}.
If i, j > n0 and (i, j) ∈ K, then (i, j) /∈ B. This implies that (i, j) /∈ ⋃q

i=1 Bi, and therefore
(i, j) /∈ ⋃q

i=1 Ai. Hence for every i, j ≥ n0, (i, j) ∈ K, we have, by (4.1), νxij−ξ(ε) > 1 − λ.
This completes the proof of the theorem. �
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5
∮∮∮
-Cauchy and

∮∮∮ �-Cauchy Double Sequences in PN Spaces

Dems [25] defined the
∮

-Cauchy sequence in a metric space. In this section we introduce
∮

-Cauchy and
∮ �-Cauchy for double sequences on PN spaces as follows.

Definition 5.1 Let (X, ν, T ) be a PN space. A double sequence x = (xij) is said to be
∮

ν
-

Cauchy sequence if for each ε > 0 and λ ∈ (0, 1), there exists (m, n) ∈ N × N such that the set
{(i, j) ∈ N × N : νxij−xmn

(ε) ≤ 1 − λ} ∈ ∮
.

Definition 5.2 Let (X, ν, T ) be a PN space. A double sequence x = (xij) is said to be
∮ �

ν
-

Cauchy if and only if there exist a set K = {(i, j)}, i, j = 1, 2, 3, . . .} ∈ �(
∮
) such that the

subsequence (xik,jk
) is an ordinary Cauchy sequence with respect to the probabilistic norm ν.

Theorem 5.3 Let (X, ν, T ) be a PN space. If a double sequence x = (xij) is
∮

ν
-convergent,

then it is
∮

ν
-Cauchy.

Proof Let x = (xij) be
∮

ν
-convergent to ξ. Take ε > 0 and λ ∈ (0, 1) to be arbitrary.

Choose γ ∈ (0, 1) such that (3.1) holds. Since
∮

ν
-lim xij = ξ, it follows that for each ε > 0

and λ ∈ (0, 1), the set A = {(i, j) ∈ N × N : νxij−ξ(ε) ≤ 1 − γ} ∈ ∮
and hence AC =

{(i, j) ∈ N × N : νxij−ξ(ε) > 1 − γ} is a non-empty set in �(
∮
). Let (m, n) ∈ AC . If we take

B = {(i, j) ∈ N×N : νxij−xmn
(ε) ≤ 1−λ}, then to prove the result it is sufficient to prove that

B is contained in A. If (k, l) ∈ B, then we have νxkl−xmn
(ε) ≤ 1 − λ. Furthermore, we have

either νxkl−ξ( ε
2 ) ≤ 1 − γ or νxkl−ξ( ε

2 ) > 1 − γ. If νxkl−ξ( ε
2 ) ≤ 1 − γ, then (k, l) ∈ A. Assume

that νxkl−ξ( ε
2 ) > 1 − γ, then

1 − λ ≥ νxkl−xmn
(ε) ≥ T

(

νxkl−ξ

(
ε

2

)

, νxmn−ξ

(
ε

2

))

> T (1 − γ, 1 − γ) > 1 − λ,

which is not possible. Hence, B ⊂ A and therefore B ∈ ∮
. This shows that (xij) is

∮
ν
-

Cauchy. �

Theorem 5.4 Let (X, ν, T ) be a PN space. If some subsequence of a
∮

ν
-Cauchy double se-

quence x = (xij) is
∮

ν
-convergent, then the sequence x = (xij) is

∮
ν
-convergent.

Proof Take ε > 0 and λ ∈ (0, 1) to be arbitrary. Choose γ ∈ (0, 1) such that

T (1 − γ, 1 − γ) > 1 − λ. (5.1)

Since (xij) is a
∮

ν
-Cauchy sequence so there exists a pair (m, n) in N × N such that the set

A = {(i, j) ∈ N × N : νxij−xmn
( ε
2 ) > 1 − γ} ∈ �(

∮
). Suppose that (xikjk

) is a subsequence of
(xij) such that

∮
ν
-lim xikjk

= ξ. It follows that the set B = {(ik, jk) ∈ N × N : νxikjk
−ξ( ε

2 ) >

1 − γ} ∈ �(
∮

). Let C = {(i, j) ∈ N × N : νxij−ξ(ε) > 1 − λ}. We claim that A ∩ B ⊂ C. If
(ik, jk) ∈ A ∩ B, then we have

νxikjk
−xmn

(
ε

2

)

> 1 − γ and νxikjk
−ξ

(
ε

2

)

> 1 − γ.

Since

νxikjk
−ξ(ε) ≥ T

(

νxikjk
−xmn

(
ε

2

)

, νmn−ξ

(
ε

2

))

> T (1 − γ, 1 − γ) > 1 − λ,

it follows that (ik, jk) ∈ C. Hence A ∩ B ⊂ C and therefore the theorem is proved. �
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Theorem 5.5 Let (X, ν, T ) be a PN space. If a double sequence x = (xij) is
∮ �

ν
-convergent,

then it is
∮ �

ν
-Cauchy sequence.

6 Conclusion

In this paper we study ideal convergence and related notions for double sequences on PN spaces
and observe that giving particular choice to the ideal

∮
, we obtain the corresponding usual and

statistical convergence. Since ideal convergence is a generalization of statistical convergence
and the latter is used to find optimal paths so the results presented in this paper can be used
as theoretical tools to study optical paths where the norm is probabilistic rather than crisp.
Furthermore, every ordinary norm induces a probabilistic norm, the results obtained here are
more general than the corresponding of normed spaces. The definitions and results presented
in this work remain valid in a more general context, that of general PN spaces in the sense of
Definition 2.5.
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