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TOTAL BOUNDEDNESS IN PROBABILISTIC NORMED
SPACES

R. SAADATI', G. ZHANG?, B. LAFUERZA--GUILLEN?

In this paper, we study total boundedness in probabilistic normed space and
we give criterion for total boundedness and D-boundedness in these spaces. Also we
show that in general a totally bounded set is not D-bounded.
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1. Introduction

In this paper, we shall consider the space of all distance probability
distribution functions (briefly, d.f.'s), namely the set of all left--continuous and
non--decreasing functions from Rr into [0,1] such that Fo)=0 and F(+x)=1; here
as usual, rR:=RuU{-w+x}. The spaces of these functions will be denoted by A",
while the subset p™ < o* will denote the set of all proper distance d.f.'s, namely
those for which ¢~F(+x) =1. Here ¢~ f(x) denotes the left limit of the function  at
the point x, ¢~ f(x):=lim_x— f(t). FOr any a>o, ¢, isthe d.f. givenby ¢ =0 if
x>a and g, =1 if x<a. In particular, under the usual point-wise ordering of
functions, ¢, is the maximal element of A*. A triangle function is a binary

operation on A", namely a function r:a*xa" A" that is associative,
commutative, nondecreasing and which has g, as unit, continuity of a triangle

function means continuity with respect to the topology of weak convergence
in A",

Probabilistic normed spaces were introduced by Sherstnev in 1962 [1] by
means of a definition that was closely modeled on the theory of (classical) normed
spaces, and used to study the problem of best approximation in statistics. Then a
new definition was proposed by Alsina, Schweizer and Sklar [2]. The properties
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of these spaces were studied by several authors; here we shall mention [3-9] (but
see also the survey paper [10]).
Definition 1.1 A Probabilistic Normed space (briefly, PN space) is a

quadruple «v,v,z,z), where v is a real vector space, r and : are continuous
triangle functions with <7 and v is a mapping (the probabilistic norm) from
v into A", such that for every choice of p and q in v the following hold: (N1)
v, =¢, if, and only if, p=0(¢ is the null vector in v); (N2) v_ =v , (N3)
Voq27(vovy)s (N8) v <z'(v, vy ,,) TOrevery iepo].
A PN space is called a Serstnev space if it satisfies (N1), (N3) and the
following condition: For every «~0eRr and x>0 one has
(NS) Vep (¥) = v (x|,
which clearly implies (N2) and also (N4) in the strengthened form
v =M O 2p V(o) p) The triple (v,v,7) where v is a real vector space, r is a
continuous triangle functions and v is a mapping from v into A", such that
(N1), (NS) and (N3) hold is a Serstnev space.

A PN space in which ;=~. and : =7 for a suitable continuous t--

norm T and its conorm T is called a Menger PN space. In the case of PN
spaces, the concepts of boundedness are based on the consideration of the
probabilistic radius rather than that of the probabilistic diameter; the probabilistic
radius r,of a set Acv is defined by Rr,(+0)=1 and, for x>o, by

Rp (%)= y_)|§(my<xinf{vp(y): pe A} In a PN space there is an easy characterization of a

D -bounded set A: A is p-bounded if, and only if,there exists a proper distance
distribution function G, i.e. one for which |imy_s,cG(x) =1, such that vp =G for
every peA.

Definition 1.2 Let (v,v,7,z") be a PN-space. For each p inv and 1>0,
the strong 4 - neighborhood of p is the set N (1)={qeV:vy_q(2)>1-4} and the
strong neighborhood system for v is the union ypeyN, Where Ny ={N(2): 2 > 0}

The strong neighborhood system for v determines a Hausdorff topology

for v which is also first countable.
Definition 1.3 Let (v,v,z,z") be a PN space, a sequence {p } in V is said

to be strongly convergent to p in Vv if for each 1>0, there exists a positive
integer N such that p eN,(4), for n>N . Also the sequence {p } in V is called

strongly Cauchy sequence if for every 1>0, there exists a positive integer N
such that v, (1) >1-4, whenever m,n>N. A PN space (V,v,7,7") is said to be
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strongly complete in the strong topology if and only if every strongly Cauchy
sequence in V is strongly convergent to a pointin v .
Lemma 1.4 ([2]) If || p| then v <y, forevery p inv.

Definition 1.5 A subset A of TVS (topological vector space) Vv is said to
be topologically bounded if for every sequence {«,} of real numbers that

converges to zero as n—+oo and for every {p } of elements of A, one has
a,p, — @, in the strong topology. The PN space (vV,v,z,7") is called characteristic
whenever v(V)c D*.

Example 1.6 The triple (v,v,z,), where v:v > A" is defined by

X__is a characteristic Serstnev space (see [11, Theorem 9]).

vp(X) =
P el

Theorem 1.7 ([11]) A Serstnev space (V,v,7) is a TVS if and only if it is

characteristic. )
Lemma 1.8 ([11]) In a characteristic Serstnev space (V,v,z) a subset A

of v is topologically bounded if and only if it is D-bounded .
Lemma 1.9 Let r be a continuous triangle function. Then for every
FeD" and F <g, there exists G > F such that 7(G,G)>F.

Proof. Let there exists Fe D" and F <g, such that for every G>F we
have 7(G,G)<F . Consider the sequence of d.f. 's defined by G =max(s,,F),

then G, >F for every neN, therefore 7(G,,G,)<F.Taking n—oo in the above
inequality then we have g, <F which is a contradiction.

2. The Main Results
Definition 2.1 Let (v,v,r,z") be a PN space and AcVv . We say A is a

probabilistic strongly totally bounded set if for every FeD" and F <g,, there
exists a finite subset S. of A such that
Ac |JD,(F).(2.1)

peSF
WhereD, (F)={qeV v, ,>F}.
Lemma 2.2 Let (V,v,7,7") be a PN space and AcV . A is a probabilistic
strongly totally bounded set if and only if for every FeD" with F<g,, there
exists a finite subset S_ of v such that

Ac |JD,(F).(22)

peSF
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Proof. Let FeD", F <¢, and condition (2.2) holds. By continuity of 7,
there exists G>F such that 7(G,G)>F. Now, applying condition (2.2) for G,
there exists a subset S; ={p,,..., p,} of V such that ACUpiESGDp(G)' We assume
that D, (G)nA=g¢, otherwise we omit p, from S, and so we have

]
Ac UpiESG\{pj}Dpi (G). For every i=1,.,n we select g; in D, (G)NA, and we put
S ={q,,...q,}.- Now for every q in A, there exists ie{1,..,n} such that v >G.
Therefore we have (by using property N3 of a PN space),

Voo 27V vy o) 27(G,G) >F. Which implies that ACUp . D, (F)- The
I 1 iEF 1

a-q; —
converse is trivial.
Lemma 2.3 Let (V,v,r,z) be a PN space and Acv. If A is a

probabilistic strongly totally bounded set then so is its closure A.
Proof. Let FeD", F <g,, then there exists a finite subset S_ ={q,,...,q,}

of v with G>F and 7(G,G) > F, such that Aqu . D, (G)- Since for every r
i€°c

a-p;’

in A, Nr(l)ﬂA is non-empty for every neN (see Definition 1.2 and first
n

countability property) therefore we can find pe A such that v >G and there
exists 1<i<n suchthat v . >G,therefore v >z(v,_,,v, ) >7(G G)>F.

Hence Kch . D, (F), i.e. A is probabilistic strongly totally bounded
[l

r-p?

set.
Theorem 2.4 Let (V,v,r,z") be a PN space and AcVv. A is a

probabilistic strongly totally bounded set if and only if every sequence in A has a
strongly Cauchy subsequence.
Proof. Let A be a probabilistic strongly totally bounded set. Let {p } be a

sequence in A. For every k eN, there exists a finite subset S, of v such that

AquEsF D,(F), here F =g . Hence, for k=1, there exists g es. and a
k k

subsequence {p, } of {p,} such that p, €D, (F) for every neN. Similarly,
there exists g, e S, and a subsequence {p, } of {p, } suchthat p, e D,,(F.) for
every neN. Continuing this process, we get g, e S, and subsequences {p, .} of
{p.1,} such that p D, (F), for every neN. Now we consider the

subsequence {p,.} of {p}. For every FeD" and F<g,, by continuity of 7,
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there exists an n,eN such that ¢(F, ,F,)>F and F,_>F . Therefore for every

n,
k,m>n,, we have

n

) =z(F, ,F ) >F.

Vpk,k’pm,m = 7:(Vpk,k’qno ’ano’pm,m
Hence {p, .} is a strongly Cauchy sequence. Conversely, suppose that A

is not a probabilistic strongly totally bounded set. Then there exists F e D* such
that for every finite subset S_ of v, A is not a subset of Uq . Dy(F)- Fix p eA.
F

Since A is not a subset of Uq oPa(F) there exists p, e A such that Vos
Py

<F.
2

Since A is not a subset of qu{p . Da(F), there exists a p, e A such that Vop, SF
1F2

p

and Vo,p, SF Continuing this process, we construct a sequence {p,} of distinct

P
points in A such that v <F, for every i= j. Therefore {p } has not strongly
i7"

Cauchy subsequence.

Every probabilistic strongly totally bounded set is not D-bounded set , in
general, as can see from the next example.

Example 2.5 The quadruple (R,v,z,,z,) where v:R— A" is defined by

v,()=0 if x=0, v, (x) =exp(—/ p|), if 0<x<+wand v,(x)=1if x=cw. And
v, = &, IS @ PN space (see, [12]). In this space, since the set {3 :neN} has strongly
n

Cauchy subsequence then it is probabilistic strongly totally bounded but it is not
D-bounded set (note that v, (x) =exp(-/ p[) <1, for all p=0). Note that in this

space only {0} is a D-bounded set.
Lemma 2.6 In a characteristic Serstnev space (V,v,r) every strongly

Cauchy sequence is topologically bounded set.
Proof. Let {p,} be a strongly Cauchy sequence. Then there exists a n,
such that for every mn>n,, v, >¢, .Nowlet ¢, »0 and 0<«, <1, thenwe

m~Pn
m+n

have (by using a property of Serstnev space in which v, (0= VP(X""‘m‘) >V ()
m

)
)

v 27(v,

14 27(v 14
mPm ampno) ( pm’pno’ a

m(pm’pno)’ mpn0

>z(e , Vv

m+no

as m tends to infinity.

ampno) = 7(&0:60) = &,
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Lemma 2.7 In a characteristic Serstnev space (V,v,z) every probabilistic

strongly totally bounded set is D-bounded.

Proof. We show that if A is a probabilistic strongly totally bounded set
then it is topologically bounded, and so by Lemma 1.8, it is D-bounded. If A is
not topologically bounded, there exists a sequence {p }< A and a real sequence

a, —0 such that ¢ p, doesn't tend to the null vector in v . There is an infinite
set J <N such that the sequence {«,p,}.., stays off a neighborhood of the
origin. Since {p_} is probabilistic strongly totally bounded, then has a Cauchy
subsequence say {pn,} which by Lemma 2.6 is topologically bounded and since

then
oy —0 V”‘ml Py

{a,p,}- Then {«, p,} is probabilistic strongly totally bounded and so is
{@, P}, therefore there is a strong Cauchy subsequence of {« p.}..,, say
U, P, which stays off a neighborhood of the origin, hence it doesn't tend to the

— ¢, and hence {at P} is a strongly Cauchy subsequence of

null vector in v, on the other hand, since {ay, Py } is a strongly Cauchy sequence

then there is a k, eN such that for every k,t>k, wehave y _ >¢ .Thus

mk I’T]t m

Vo o >z(v
k Tk

Pmy =Py ,Vamk p”‘k) 2rle Ve p"‘k)

v 27(v
“my Py =P )" m Py )27(
0 0 kekg

> 7(gy, &) = &
as k tends to infinity. Which is a contradiction.

Every D-bounded set is not probabilistic strongly totally bounded set, in
general, as can see from the next example.

Example 2.8 Let v:I” > A" via v, = Eo| for every pel”. Let r,z° be
continuous triangle functions such that <" and (¢,,s,) =¢,,,, for all a,b>0.
For instance,it suffices to take r=7, and "= ., where T is a continuous t--

norm and T™ is its t--conorm. Then (I*,v,z,z") is a PN space (see [6, Example
1.1]). Suppose A={p:pl=1pel®}, A is D-bounded set but not probabilistic
strongly totally bounded set. In fact

RA(X) = y_)|)i(my<xinf{g”p”(y): pe A}=—>1,(x > +©).

therefore A is D-bounded. Let {p }; is a sequence of A, where
Py = (1.00,...0,..), Py = (0,1,0,..0,..),.... Py = (0,00,...1,0,...)....
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In view of Definition 1.3., It is obvious that {p }  is not strongly Cauchy

sequence. By Theorem 2.4., we have that A is not probabilistic strongly totally
bounded set.

Theorem 2.9 Let (v,»,r,-) be a PN space. If A and B are two
probabilistic strongly totally bounded subsets of v . Then
(i) aus is probabilistic strongly totally bounded,;
(i) A+B is probabilistic strongly totally bounded, where the set A+B
givenby A+B:={p+q:pecAqeB}.
Proof. (i). By Definition 2.1., for every FeD" and F <g,, there exist

finite subset s. of A and s. of B such that ac y p,(F) ad B U Dy(F).
peSg peSi:

where Dp(F)={aeVivp_q>F}

So we have that ABc U Dp(F)U( U Dy (F)) = U Dy (F). Thus aus is
peSE peSE peSE USE

probabilistic strongly totally bounded.
(it). Let {c,} is a sequence of A+B. Suppose c, = p,+q,, where {p,}e A

and {q,}<B. Because A and B are probabilistic strongly totally bounded subsets,
by Theorem 2.4., there exist subsequence {p, .} of {p,} and {q, } of {q,}, where
{p.,} and {q,} are Dboth strongly Cauchy subsequences, i.e.,

vV, . =&, Mn—>o, Vo o —> &, MN—>0.50
Pk,n=Pk,m 9%,n~%,m

Vck,n_ck,m - V(pk,n+qk‘n)_(pk,m+qk‘m) - V(pk,n_pk,m)J’(qk,n_qk,m)

2 T(V(pk’n—Pk’m)’V(qun—qk’m)) - T(é‘o, 80) =&o
as m,n tends to infinity, i.e., the subsequence {c, .} of {c,} is a strongly

Cauchy subsequence. By Theorem 2.4. we have that A+B is probabilistic strongly
totally bounded.

Corollary 2.10. Let (v.v,z,z)) be a PN space. Let A be probabilistic
strongly totally bounded, where i=1,2,3,...,n.Then we have that [, A and > A

are all probabilistic strongly totally bounded, where 3" A= A+ A, +..+ A,
3. Conclusions
In this paper, we studied the concept of total boundedness in PN space and

its relation to D-boundedness . We proved that A is a probabilistic strongly
totally bounded set if and only if every sequence in A has a strongly Cauchy
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subsequence .Next we showed that every probabilistic strongly totally bounded
set is not D-bounded set , in general.
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