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1. introduction
Serstnev introduced the first definition of & probabilistic normed (PN) space in a series
of articles [1-4]; he was motivated by the problems of best approximation in statistics.
His definition runs along the same path followed in order to probabilize the notion of
metric space and to introduce Probabilistic Metric spaces (briefly, PM spaces).

For the reader’s convenience, now we recall the most recent definition of a Probabil-
istic Normed space (briefly, a PN space) [5]. It is also the definition adopted in this
article and became the standard one, and, to the best of the authors’ knowledge, it has

been adopted by all the researchers who, after them, have

investigated the properties,
the uses or the applications of PN spaces. 'his new definition is suggested by a result
([[5], Theorem 1]) that sheds light on the definition of a “classical” normed space. The
notation is essentially fixed in the classical book by Schweizer and Sklar [6].

In the context of the PN spaces redefined in 1993, one introduces in this article a
study of the concept of -Serstnev PN spaces {or generalized Sersinev PN spaces, see

[7]). This study, with ¢ & 10, 1[Ull, +=o[has never been carried 1 out,

Some preliminaries

A distribution function, briefly a d. f, is a function F defined on the extended reals
= |—oc, +o¢] that is non-decreasing, left-continuous on and such that F(-e) = 0

and F(+oo) = 1. The set of all d.f’s will be denoted by A; the subset of those d.fs such

that F(0) = 0 will be denoted by A™ and by D* the subset of the df’s in A" such that

lim,.,... Flx) = 1. Forevery ae =, &, is the d.f. defined by
0,x<a,
ga(x) =
1, x> a.

The set A, as well as its subsets, can partially be ordered by the usual pointwise
order: in this order, ¢ is the maximal element in AT The subset D' ¢ A* is the sub-

set of the proper d.f’s of A"

o
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Definition 1.1. [8,9] A triangle function is a mapping r from AT x A” into A” such
that, for all F, G, H, K in A",

(1) o(F, &) = F,

(2) o(F, G) = «(G, F),

(3) «(F, G) < «(H, K) whenever F < H, GG < K,
(@) 1(e(F, G), H) = o(F, (G, H)).

A

Typical continuous triangle functions are the operations 7, and r+ which are,
respectively, given by

tr(F, G)(x) := sup T(E(s), G(1)),

S+i=x
and

4 (F, G)(x) = inf T*(E(s), G(1)

S+I=x

forall £, Ge A" and all x € 7 [6]. Here, T is a continuous f-norm and T* is the
corresponding continuous ¢-conorm, ie., both are continuous binary operations on [0,
1] that are commutative, associative, and nondecreasing in each place; 7 has 1 as iden-
tity and 7% has 0 as identity. If T'is a -norm and 7% is defined on [0, 11 % [0, 1] via T
(6, 9):=1-T(1-x 1 -y), then T%is a t-conorm, specifically the 1-conorm of T,

Definition 1.2. A PM space is a triple (S, F, 1) where S is a nonempty set {whose
elements are the points of the space), 7 is a function from S x §into A”, 7 is a trian-
gle function, and the following conditions are satistied for all pog rin S

(PM1) F(p.p) = 0.

(PM2) F(p.q) # e0 if p # q.

(PM3) F(p. q) = F(q.p).

(PM4) F(p, 1) = «(F(p, 9), F(q. 1)).

Definition 1.3. (introduced by Serstnev [1] about PN spaces: it was the first defini-
tion) A PN space is a triple (V, v, 7), where V is a (real or complex) linear space, v is a
mapping from V into A* and 7 is a continuous triangle function and the following con-
ditions are satisfied for all p and ¢ in V-

(N1) v, = ¢ if, and only if, p = 0 (0 is the null vector in V)

(N3) Vprg 2 7 (v, vp);

(S) Yo € R\{0} VxeR. Vap () = wp (2) .

Notice that condition (S) implies

N2)Vpe Vv, =,

Definition 1.4. (PN spaces redefined: [5]) A PN space is a quadruple (V, v, 7, %),
where V'is a real linear space, r and 7* are continuous triangle functions such that ¢ <

7% and the mapping v : V —» A" satisfies, for all p and ¢ in V, the conditions:

(N1} v, = & if, and only if, p = 0 (0 is the null vector in V);
N2)Vpe Vv, = Vps
(N3) Vpig 2 7 (v, vp);
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(N[‘l') v o e [O$ 1W ‘:;‘) b T* (Vﬂ pr 1,”"{” /'\)'

The function v is called the probabilistic norm. if v satisfies the condition, weaker
than (N1),

Vn = &g,

then (Viv, 7, t*) is called a Probabilistic Pseudo-Norined space (briefly, a PPN space).
If v satisfies the conditions (N1) and (N2), then (Viv, 7, ) is said to be a Probabilistic
seminormed space (briefly, PSN space). If 7 = 1, and t* = 7 for some continuous f-
norm 7 and its t-conorm 7% then (V, v, 7y, ry+) is denoted by (V, v, T) and is called a
Menger PN space. A PN space is called a Serstnev space if it satisfies (N1), (N3) and
condition (S).

Definition 1.5. [6] Let (V,v, 7, ) be a PN space. For every A >0, the strong A-neigh-
borhood N,(4) at a point p of V is defined by

Np(A) :={g eV :vgp(X) > 1 -2}

The system of neighborhoods {N,(A): p € V, 1 >0} determines a Hausdor(f topology
on V, called the strong topology.

Definition 1.6. [6] Let (V, v, 7, r*) be a PN space. A sequence {p,}, of points of Vis
said to be a strong Cauchy sequence in V if it has the property that given A >0, there

is a positive integer N such that

Vpy—p(X) > 1 =2 whenever m, n > N.

A PN space (V,v, 7, 7*) is said to be strongly complete if every strong Cauchy
sequence in V' is strongly convergent.

Definition 1.7. [10] A subset A of a PN space (Viv, 7, ) is said to be D -compact if
every sequence of points of A has a convergent subsequence that converges o a mem-
ber of A.

The probabilistic racius R, of a nonempty set A in PN space (V,v, 7, 7¥) is defined by

[Tpa(x), x € [0, +ox |,

Ra(x) := 1 Yo

where I flx) denotes the left limit of the function Jat the point x and @ {x): = inf{v,
(x): pe AL

Definition 1.8. [11] Definition 2.1] A nonempty set A in a PN space (V,v, 1, r) is
said to be:

(a) certainly bounded, if R4(xy) = 1 for some x, € |0, +oo [z

(b) perhaps bounded, if one has &,(x) <1 for every x € 10, = [, and /" Ry(+) = 1.

Moreover, the set A will be said to be D -bounded if either (a) or (b} holds, i.e., if
Ra € D*.

Definition 1.9. [12] A subset A of a topological vector space (briefly, TV space) £ is
topologically bounded, if for every sequence {4,}, of real numbers that converges to 0

as 1 — < and for every sequence {p,}, of elements of A, one has Aop, -6 in the
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topology of E. Also by Rudin {[13], Theorem 1.30], A4 is topologically bounded if, and
only if, for every neighborhood {/ of #, we have A € ¢/ for all sufficiently large ¢

From the point of view of topological vector spaces, the most interesting PN spaces
are those that are not Serstney {or 1-Serstnev) spaces. In these cases vector addition is
still continuous (provided the triangle function is determined by a continuous £-norm),
while scalar multiplication, in general, is not continuous with respect to the strong
topology [14].

We recall from [15]: for 0 < b < + o, let M, be the set of m-transforms consisting of
all continuous and strictly increasing functions from | [0, b} onto [0, +eo]. More gener-

ally, let py be the set of non- decreasing left—contmuous functions @ : [0, +o] [0, +50],

with @ (0) = 0, @ (+) = +o and @(x) >0 for x >0. Then My € M once m is extended
to [0, +eo] by mi{x) = +oo for ali x = b. Note that a function ¢ ¢ Mis bijective if, and
only if, p € M,.. Sometimes, the probabilistic norms v and v’ of two given PN spaces

satisfy v’ = vo for some ¢ € M, .. not necessarily bijective. Let ¢ be the (unique)

quasi-inverse of ¢ which is left-continuous. Recall from [[6], p. 49] that ¢ is defined
by $(0) = 0, $(+00) = +oc and q@(r) =supfu: ¢(u) <t} for all 0 < ¢ <reo, It follows
that ¢(¢(x)) < x and ¢(d(y)) < y for all x and y.

Definition 1.10. A quadruple (V,v, 7, 7) is said to satisfv the ¢-Serstnev condition if

(¢ — S)vip(x) = Vp (q?((/’;—*‘))) for every p e V, for everv x >0 and A e 210},

A PN space (V,v, 7, ) which satisfies the @-Serstnev condition is called a ©-Serstney
PN space.

Example 1.1. If ¢(x) = x'/“ for a fixed positive real number ¢, the condition (¢-S)
takes the form

(a—S)vAp(x) = <W) for every p e V, for every x >0 and A ¢ 7 {0},

PN spaces satisfying the condition (¢-S) are called a-Serstnev PN s spaces, For o = 1
one has a Serstnev (or 1-Serstnev) PN space.

Definition 1.11. Let (V,
from ¢y and ¢, .; define v: V —> A" by vy = ¢4 and

1) be a normed space and let G be a d.f. of A* different

uo(1) :=c< p[HQ) (p#6, t > 0),

where o 2 0. Then the pair (V1) will be called the o-simple space generated by (V, ||
~|]) and G.

The a-simple space generated by (V, || - 1) and G is, as immediately checked, a PSN

space; it will be denoted by (V, || - ||, G; o).

A PSN space (V,v) is said to be equilateral if there is d.f. £ e A, different from #; and
from ¢.., such that, for every p = 04, vp = F.In Definition 1.11, if & = 0 and o = 1, one
obtains the equilateral and simple space, respectively.

Definition 1.12. [16] The PN space (Viv, 7, t*) is said to satisfy the double infinity-

condition (briefly, Dl-condition) if the probabilistic norm v is such that, for all 4 e

0}, x R and pe V,

vip(x) = vp(@(r, x)),
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where ¢ : ¥ x [0, +o0 [—> [0, +o» [satisfies

lim ¢(%, x) = +oo  and limg(), x) = +~.

X—>+00 A—0

Definition 1.13. Let (§, <) be a partially ordered set and let f and g be commutative
and associative binary operations on S with common identity e. Then, f dominates g,
and one writes /> g, if, for all Xy, X2, Y1, Vo In S,

f(8(x1,71),8(x2,v2)) = g(f(x1,%2), f (1, 12)).

It is easily shown that the dominance relation is reflexive and antisymmetric. How-
ever, although not, in general, transitive, as examples due to Sherwood [17] and Sar-
koci [18] show.

2. Main results (I)-a-simple PN space and some classes of o-Serstnev PN
spaces

In this section, we give several classes of -Serstnev PN spaces and characterize them.
Also, we investigate the relationship between a-simple PN spaces and o-Serstney PN
spaces.

Theorem 2.1. ([[16], Theorem 2.1)) Let (Viv, 1, v*) be u PN space which satisfies the
DI-condition. Then for a subset A € V, the following statements are equivalent:

(a) A is D -bounded.
(b) A is bounded, namely, for every n ¢ N and for every p e A, there is k € N such
that v, (1/n) >1 - 1/n.

(¢) A is topologically bounded.

Example 2.1. Let (V,v, 7, %) be an a-Serstnev PN space. It is easy to see that (Vy, 7,
7*) satisfies the D/-condition, where

p(%, x) = e
Theorem 2.2. Let (Vv 1, ™) be an o-Serstnev PN space. Then, for a subset A € V,
the same statements as in Theorem 2.1 are equivalent.
Definition 2.1. The PN space (V,v, 1, ¢*) is called strict whenever p(V) < D,
Corollary 2.1. Let Wy = (Vov, 7, %) and Wo = (Vv o, (¢%)) be two PN spaces with
the same base vector space and suppose that v = v for some ¢ e M. Then the follow-

ing statement holds:

- If the scalar multiplication 11 % x V — V is continuous at the first place with

respect to v, then it is with respect to v If Wy is a TV PN space. then it is with W,

It was proved in [[14], Theorem 4] that, if the triangle function * is Archimedean, i.
e., if 7* admits no idempotents other than goand .. [6], and v, = & for all p eV, then
for every p e V the map from 7 into V defined by A @ Ap is continuous and, as a con-
sequence of [14] the PN space (V,v, 7, %) is a TV space.

Theorem 2.3. [7]Let ¢ € Msuch that lim, ., d(x) = oc. A @-Serstnev PN space is a

TV space if, and only if, it is strict.

Page 5 of 15
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Corollary 2.2. An «-Serstnev PN space (Viv, v, o) is a TV space if, and only If, it is
strict.

Corollary 2.3. Let (V,v, 7, *) be an «-Serstnev PN space and t* be Archimedean and
Vp # & for all p € V. Then the probabilistic norm v is strict.

Theorem 2.4. Every equilateral PN space (V. I, 11y} with F = ey and 8 =10, 1lsatis-

fies the following statements:

() It is an a-Serstnev PN space.
(ii) 1t is an a-simple PN space.

Theorem 2.5. Every o-simple space satisfies the (¢-S) condition for ¢ &0, 1[U]l, +eal.
Proof. Let (V, || - ||, G; &v) be an a-simple PN space with o € [0, 1[U]l, +eo[. From

vp(t) = G(W) for every t € [0, o], one has v,(t)=G (W) = (;) and

[a 1 lpll

Vp (#) =G ”‘pﬁ = G(m) Then v, (1) = vy ( : ) and hence (V, 1] - ||, G; o)

[A]«

is an - Serstnev PN space.

An a-simple space with @ = 1 does not satisfy the condition (S) as seen in the fol-
lowing theorem.

Theorem 2.6. Let (V, || - |} be a normed space, G a d. [ different from e, and e.,
and let & be a positive real number different from 1. Then the ¢-simple space (V. {| -
|, G; @) satisfies the condition (S) only when G = constant in (0, +e2).

Proof. 1t is immediately checked that the o-simple space (V, || - 1], &; &) satisfies
(N1) and (N2). Hence, it is a PSN space. It is well known thai the condition (S) holds
if, and only if, for every pe Vand B e [0, 1], one has

vp = Tm(Vpp v(1-p)p)-

To see G has to be constant: for every p # ¢ and x € 10, +oo[, one has

G(L>—5u min{(’( 5 ) C( ! >}
pie) o o) "\a=p upi«/|

Since G is non-decreasing, the lower upper bound is reached when

N t

Beliplle (1=B)Y1lple

equivalent to s = W’T_ﬁ—)—x Hence the lower upper bound is

G([ﬂf’ AT )

Finally, since the function of # given by f“+(1- £)”, being continuous in the compact

al-0 S 1 . . : / .
set [0, 1], takes all values between 1 and 2", and 77 takes any value in (0, =), one

concludes that G(x) = G(Ax) for every A e [1, 2°"] (if & »1) or for every A & [277, 1]
(if or <1). Then G = constant in (0, +0) and the proof is concluded.
Notice that if G = constant in (0, +o0), then (V, || - ||, G; 1) is & PN space of Serstnev

under any triangle function z.

Page 6 of 15
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Among all a-simple spaces (V. || - ||, G; &) one has the a-simple PN spaces consid-
ered in Theorem 3.2 in [19], i.e., the Menger PN space given by (V, v, 7., Tree ),
and in Theorem 3.1 in [19], i.e, the Menger PN space given by (V, v, Ty, T1v,).
From Theorems 3.1 and 3.2 in [19] the following result holds:

Corollary 2.4. Every a-simple PN spaces of the type considered in Theorems 3.1 and
3.2 in [19]are (-S) PN spaces of Menger.

Next, we give an example of an «-Serstnev PN space which is also an ¢-simple PN
space.

Example 2.2. Let (%,v, 7, t%) be an a-Serstnev PN space. Let v, = G with G & A” dif-
ferent from ¢y and ¢.... Since (“,v, 7, 7% is an o-Serstnev PN space, for every p e #,

one has

W) = vpa(3) = v (Ipxl"> =G<|px!u>'

The preceding example suggests the following theorem.

Theorem 2.7. Let (V, || - ||) be a normed space and dim V = 1. Then every «-Serst-
nev PN space is an o-simple PN space.

Proof. Let x e Vand ||x|| = 1. Then V={Ax: A& =} Nowifpe V, thereisalde

R such that p = Ax. Therefore, one has

vp(t) = vix(t) = vy (! ;!“> =G (H_P[—H;)

and (V,v, 7, ) is an a-simple PN space.

The converse of Theorem 2.5 fails as is shown in the tollowing examples.
5 » ) “ o
Example 2.3. Let B €10, 1]. For p = (py, po) € 77, one defines the probabilistic norm
v by vy = g and

_ € (x), p1 # 0,
v(x) = {ﬂso(x) o]therwise

We show that (5%v, 11, 114, is an o-Serstnev PN space, but it is not an a-simple
PN space. It is easily ascertained that (N1) and (N2) hold. Now assume that p = (p;,
p2) and g = (g1, g2) belong to 2, hence p+qg=p+q,p+ g Hp +q =0 then
Vorg = B0, S0 Ty (v vy) < vy Let py+ g3 = 0. Then, p; = 0 or gy = 0. Without loss
of generality, suppose that p; = 0. Then 1 (v, v,) = v, = ¢, As a consequence
(N3) holds. Similarly, (N4) holds. Let p = (py, po) and A & 2 YOL If p; = 0, then

vip(x) =€ and v, (ﬁ) = 0o (W%) .

In the other direction, if p; = 0, and p, = 0, then

vip(x) = Beo(x) and v, (ﬁ) = Beo (ﬁi) ‘

) - - . =, o
Therefore, (7°,v, Ty, 1y) is an @-Serstnev PN space.
Now we show that it is not an ¢-simple PN space. Assume, if possible, {# 7y, Ty,

I,) is an ¢-simple PN space. Hence, there is G & A'lley, oo} such that
M )

Page 7 of 15
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€o0(%) = v(1,0)(x) = G(x), for every pe

sw(x) = 1)(1,0)(x) = G(X),
and
Peo(x) = vio)(x) = G(x),

which is a contradiction.

Example 2.4. Let 0 < o < 1. For p = (p1, po) & 22 define v by v, = op and

Exc (x)/ P2 3‘/ 0,
vp(x) =1 i
e x , otherwise.

It is not difficult to show that (72, [Ty, 11,,) is an o-Serstnev PN space, but it is not
an o-simple PN space.
e
a basis for V, where ||e,|]| = 1. We can construct some examples on V, similar to
Examples 2.3 and 2.4, of a-Serstnev PN spaces which are not o-simple PN spaces,
Example 2.5. (a) Let S & 10, 1] and iy e /. For p e V, we define the probabilistic
norm v by vy = ¢, and

Let V' be a normed space with dim V >1 {finite or infinite dimensional) and {e}., b

o) = {550(”' p = hei, (% € R\(0}),

g (x), otherwise.

Then, (Viv, [Ty, Ty} is an o-Serstnev PN space, but it is not an ¢-simple PN space,
(b) Let 0 < @ = 1. For pe V, define v by vy = g and
— Al
p(x):=1e x p=2ie (1 eR\{0}),
£co(x)  otherwise

Then (V, v, Iy, I1,,) is an o-Serstnev PN space, but it is not an a-simple PN space.

Proposition 2.1. Let (V,v, 7, 7*) be an o-Serstnev PN space. Then, its completion
(0, v, T, t*)is also an a-Serstnev PN space.

Proof. By [[20], Theorem 3], the completion of a PN space is a PN space.

Then we only have to check that the ¢-Serstnev condition holds for V. Indeed if p =

lim,,_,.. p,, where p,, € V, and % >0, then for all x e

X X
vip(x) = lim vy, (x) = lim v — = ~——).
0 = Jim v (9 = fim () < (2

The following result concerns finite products of PN spaces [21]. In a given PN space
Vv, 7, t%) the value of the probabilistic norm of p ¢ V at the point x will be denoted
| P ]

by v(p)(x) or by v,(x).



Lafuerza-Guillén and Shaabani Journal of Inequalities and Applications 2011, 2011:127 Page 9 of 15
http://www journalofinequalitiesandapplications.com/content/2011/1/127

Proposition 2.2. Let (V,, v, 7, t*) be «-Serstner PN spaces for i = 1, 2, and let v be a
triangle function. Suppose that t* > vy and v > 7. Let v: V

Vi x Vo = AT be defined for
all p = (py, p2) € Vi x Vs via
v(p1,p2) = tr(vi(p1). va(p2)).

Then the tr -product (Vi x Vs, v, 7, %) is an a-Serstuev PN space under v and t*.
Proof. For every & e E\{0} and for every left-continuous t-norm 7, one has
Vap = Tr(vi(Ap1), v2 (Ap2))(x)
= sup{T(vy (Ap1)(u), va(Ap2)(x — 1))}

= sup {T(m(ﬁl) (ﬁ) va(pa) (T :\u>>}

= 7r(v1(p1), v2(p2)) (I ;er) = G (\ )Y;“)

for every o € 10, 1[U}1, +eo [. It is easy to check the axioms (N1} and (N2) hold,

(N3) Let p = (py, py) and g = (g, G») be points in V; x V5. Then since 7, >
has

7, one

tr(vi(pr +q1), va(pa2 + q2))
tr(t(vi(pr) vi(q1)) T (va(p2), v2(q2)))
t(tp(vi(pr), va(p2)) (v (g1 ) v2(q2))) = 1(vp, vg).

Vp+g

%

%

(N4) Next, for any B e [0, 1], we have
vi(pr) < v (vi(Bp1).vi((1 = B)p1))
and
va(p2) < T (va(Bp2), v2((1 = B)p2)).
Whence since 7* > 1, we have

Vp = 1"]‘(!,’1 (p])/ V2 (Pz))
< (T (Bp) v (1= B)p)), T (ma(Bpa) 2 (1 = B)p2)))

T (Vg V(1—p)p),

IA

which concludes the proof.

w - 2 1 -
= Vo, = and 7, = Iy, Let

O<a<l Forps=(p,p)e 7% define v, and v, by vi(8) = () = & and

Example 2.6. Assume that in Proposition 2.2 choose V,

v (p)(x) = va(p)(x) := {Fm(x)/ P2 #0,

@ix’)—”i, otherwise.
Then (22 x 2, TT;;, Ty, with
v(p.q) = tr(vi(p) v2(q))

is the I, -product and it is an o-Serstnev PN space under 1, and Iy
Proof. The conclusion follows from Lemma 2.1 in [22].
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3. Main results (il)-PN spaces of linear operators which are -Serstnev PN
spaces

Let (Vi,v,71,7{) and (V2, V', 12, 1}) be two PN spaces and let [ = L{V,, V5) be the

2

4

vector space of linear operators T: 1V, — V..

As was shown in [14], PN spaces are not neccssaﬁ'iy mpniogical linear spaces.

We recall that for a given linear map 7'e L, the map vA . [ _s D+ is defined via

A(T) :=

We recall also [23,24] that a subset H of a space V is said to be a Hanzel basis {or
algebraic basis) if every vector x of V can be represented in a unique wayv as a finite
sum

X =y 40Uy + -+ Ayl
where o, o, ..., a, are scalars and uy, u, ..., u, belong to H; a subset H of Visa
Hamel basis if, and only if it is a maximal linear independent set [25]. This condition
ensures that (L(Vy, Va), v*, 7, ) is a PN space as we can see in t126], Theorem 3.2].
Theorem 3.1. Let A be a subset of a PN space (V1. v, 11, 17 ) that contains a Hamel
basis for Vy. Let (Va,V', 12,15 )be an a-Serstnev PN space. Then (L(V), Vo)ovh 1o, 13)
is an o-Serstnev PN space whose topology is stronger than that of simple « convergence
for operators, ie.,

v Ty = T) = g0 = Vp e V, VIp—1p = 0-

Proof. By [[26], Theorem 3.2], it suffices to check that it is an a-Serstnev space, Let 4

>0 and x € R7. Then

uff,‘(X) = R’)g/'/\ (X) = ;gl\flx /\Ip( )

X X
= bk gy f e o g [ 2
;?A‘“’<ux|w> "(uuw)
L’(HAHG,'

Corollary 3.1. Let A be an absorbing subset of a PN space (Vi,v,11,17). If
A

1]

(Va, V' 12, ©3) is an o-Serstney PN space, then (L(Vy, V1), v", 1, 13) is an (75@):51‘}/161)
PN space; convergence in the probabilistic norm v* is equivalent to uniform convergence
of operators on A.

Proof. See Theorem 3.1 and [[26], Corollary 3.1].

Corollary 3.2. If V5 is o« complete o-Serstnev PN space, then (L(V), Vo)t o, 13 ) s
also a complete o-Serstnev PN space.

Proof. See Theorem 3.1 and [[26], Theorem 4.11.

In the remainder of this section, we study some classes of ¢-Serstnev PN spaces of
linear operators. We investigate the relationship between (L(V1, Vo), v, 13, 75), and

Vvt tf) or (Vo,v.12,1}) and we set some conditions such that
1 2

(L(V1, V2),vA, 15, 15) becomes a TV space.



Lafuerza-Guillén and Shaabani Journal of Inequalities and Applications 2011, 2011:12
http: //www journalofinequalitiesandapplications.com/content/2011/1/127

Theorem 3.2. Let A be a subset of a PN space (Vy, v, Ty, 7)) that contains a Hamel
basis for V; and (Vy, v/, 15, ©3) be an a-Serstnev PN space. If (L(Vy, V)), v4, 15, 13)is a
TV space, then (Va,V', 12, 15)is a TV space.

Proof. Assume, if possible, (V2, V', 12, 75) is not a TV space. Hence, by Corollary 2.2,
there is a ¢ € V, such that v, € A"\D*, [et po = tand p, e A. Now, we define T : V.
- V, by

_ 12 p=2po(r € R),
Tl = {O, otherwise.

Then, v}(T) = lim,_, inffvy, (x) | p € A) < limy~ovi (%) < 1. So vA(T) € AN\D*
and (L(V1, V2),v4, 13, 75) is not a TV space, which is a contradiction.

The following theorem shows that the converse of the receding theorem does not

8 F £

hold.

Theorem 3.3. Let A be a subset of a PN space (Vi, v, 11, 1) that contains a Hamel
basis for V, and (Va, V', 12, T} )be an a-Serstnev PN space. Then the following state-

. i 2 / . S

ments hold:

() If sup{|A] : A € B, Ap e A} = = for some p ¢ A and p = 6 then

(L(V1, Vo), vA, 1o, 23 is not a TV space.

(ii) If (L(Vy, V), v%, 10, 15)is a TV space, then sup{id] :de 5, Ape A} <o for
- 2 ys L e £ K

every pe Aandp = 0.

Proof. Since statement (ii) is the contrapositive of statement (i), it suffices to prove
(i). By Corollary 2.2, it is enough to show that (L(Vy, V,), v*, 13, 1¥) is not strict. Let p
= @ and sup{I/H FoAp e Al = . We define T e L(V;, Vs) such that Tip) = 6.
Let {4,}, €

Ae #, Ape Al and JA,| — o as n — o Since Yrp) # €0, one has

lim v; 1(py (%) = lim vy, (—J\-> =f <1

n— 00 n—oc [ Axl¥

for every x e F. Hence inf{vy, (x):p € A} < B <1 for every x e %, so

Ilm inf{v), (n(*¥) :p €A} <

Then vA(T) € A*\D*.

Corollary 3.3. Let (Vi,v, 11, 1{) be a PN space and (Vo, V', 1a, 13 )be an o-Serstnev
PN space. Then (L(V1,V,),v"", 12, 13) is not a TV space.

Example 3.1. Suppose that A is a subset of a PN space (Vi, 1,11, 1) that contains a
Hamel basis for V;. Let @ € 10, 1] and V, be a normed s space. If we define v: V, > A
" by vy = &4 and vp(x) = eﬂ for p # & and x >0, then (Vo ITyy, T1y) is a TV space.
If sup{|A| : A e %, Ape A} = o for some pe A and p = 0, then (L(V1, V), vA, 1, 13)

is not a TV space.

Page 11 of 15
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Lemma 3.1. [[27], p. 105]
(a) If V is a finite-dimensional PN space and Ty, Tyare two topologies on V that
make it into a TV space, then T, =7T,.
(b) If Vis a TV PN space and M is a finite-dimensional linear manifold in V, then

M is closed.

If (X, || - |]) is a normed space, we say that A € X is classically bounded if, and only

if, there is an M € ¥ such that for each a € A, {|a|l £ M. Now, we state the following

theorem that we will use it frequently in the rest of this section,
Theorem 3.4. [f dim V = n <eo aund (V, v, 1, %) is a PN space that is also a TV space
and A is a subspace of V, then:

(a) V is normable.
(b) V is complete.
(c) A is D -compact if, and only if, it is compact.

Also if (V,v,11,17) is an o-Serstnev PN space, thei:

(d) A is D -bounded if, and only if, it is topologically bounded if, and only if, it is
classically bounded.

(€) A is D -compact if, and only if, it is compact if, and only if, it is closed and
D -bounded.

Proof. (a) Let {ey, ey, ..., €,} be a Hamel basis for V. Then, for every p in V, there are

oy, Oy, .., O, in B such that p = aqej+@ses++0,e,. If +Qs o+ ad,
1 1 1 2 n

then || - || defines a norm on V. It is easy to check that (V, || - |}) is a TV space. By
Lemma 3.1, if 77 is the strong topology and 7, is the norm top(vE(‘)gy on V which is
defined as above, then 7, = 7,. So V is normable.

Before proving the other parts, we notice the following fact:

(i) A sequence {p,}, is a strong Cauchy sequence if, and only if, it is Cauchy
sequence in the norm topology.
(i) A sequence {p,}, is a strongly convergent to p € V if, and only if, it is con-
vergent to p in the norm topology.
(b) Let ip,}, be a strong Cauchy sequence. Then {p,}, is a Cauchy sequence in the
norm topology. Since (V,73) is complete, there is p & V such that p, = pin
(V,T2) asn — . S0 p, , pin (V,T1) as n — . Hence, the result follows.
(¢) Since T; = T3, the identity map [: (V,T1) = (V. 72) is a homeomorphism.
Hence, [[28], Theorem 28.2] and the arguments before part (b) give the desired
conclusion.
(d) By the fact that 7; = 75 and Theorem 2.2, the results follow.
(e) Let (", ||-|]) be Euclidean space and fe;, €2, ..., e,} be a Hamel basis for V. We
define f:(V,T2) — (R | - |I) by flaey + aves =~ + 6,

clear that fis a homeomorphism. Since a subset in =" is compact if, and only if, it

= (aq, day .y @) 1L S
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is closed and bounded, 4 is compact in the strong topology if, and only if, it is
closed and D -bounded.

Theorem 3.5. Let A be a subset of a PN space (Vi,v, 11, 1)) that contains a Hamel

basis for Vi and (V2,v', 12, 13) be an a-Serstnev PN space. Then one has:

(@) (L(V1, V2),vA, 12, t5)is a TV space if, and only if, TA is D -bounded for every T
e L(Vy, Vo).
(b) Let Vy = Vo = V. If (L(V, V), v, 10, 1} )is a TV space, then A is D -bounded.

Moreover, if (Vi,v. 11, 1) and (V2,v' 12, 13)are a-Serstnev PN spaces that are TV

spaces, then the following statements hold:

(c) Let dim V, <eo. If A is D -bounded, then (L(Vy, V1), v" 12, 13) is a TV space.
(d) Let dim V; <eo and dim Vy < dim Vo, Then (L(V1, V2), v, 10, 15) is a TV space
if, and only if, A is D -bounded.

Proof. Parts (a) and (b) infer immediately from Corollary 2.2, We just prove parts (c)

and (d).

(c) It is enough to show that T4 is D -bounded for every T e L{V,), Vo). Since dim
V; <eo, Theorem 3.4 and [[27], p. 70] imply that 7" V7 —» Rang7 is continuous for
every T e L(V;, V3). Also by [[11], Theorem 2.2}, A is D -bounded. Hence, Theo-
rem 3.4 concludes that A is compact. Then, TA is compact. Invoking Theorem
3.4, it follows that TA is D -bounded.

(d) Let (L(V;,V2), vA, 1, 7;) be a TV space. Since dim V; < < and dim V; € dim

Vs, we can define a one-to-one linear operator 7: Vy > V5. Then, by Theorem 3.4
and [[27], p. 70}, T : V| —> RangT is a homeomorphism. Since TA is D -bounded,

TA is compact. So, T~!(TA) is compact and therefore A is D -bounded.

Conversely, it follows from part (c).
Theorem 3.6. Let (Vi, v, 11, 15) and (Vo,v', 12, 7)) be a-Serstnev PN spaces and A
1 2 Ié
be a subset of Vy that contains a Hamel basis for Vy. If dim Vy <o (Vi,v, T, T)is a
TV space and A is D -bounded, then (Vo,v', 12, 1,")is a TV space if, and only if,
(L(V1, Vo), vA, 10, 15) is a TV space.

Proof. By Theorems 3.1 and 3.5(¢), the proof is obvious.

Example 3.2. Let ¢ €10, 1] and n > m. We define v - " — AT by vy = & and

Vp(x) := ejf-i for p e 2" and x >0. Also we define v & — A" by v, =€ and
—lpll* o o M & N ¥ .

v (%) = e\+}ll for p e 2™ and x >0. Hence (£, v, I1yy, I1y) and (=", v, Ilp, I1y) are

a-Serstnev PN spaces; furthermore, they are TV spaces. Then A is classically bounded
in " if, and only if, (L(2", &), v*, [y, T1y)) is a TV space.

The following example shows that the converse of Theorem 3.3 is not true.

Page 13 of 15
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Example 3.3. Let @ € 10, 1} and n > m. We define (=",v, Tiy, ) and (77, v, Ty,
I, in a similar way to the earlier example. If A = {(k, &7, 0, .., 0} ke NU{(1, 0, 0, .
0), (0, 1,0, ..., 0), ... (0,0, .., 0, 1)}, then A is a subset of ~” that contains a H amel
basis for R”. Although sup{|A| : L e =, Ape A} <= forevery pe A and p = 8, (L2

R™), v, Tl, [1y) is not a TV space, because A is not D -bounded.
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