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Abstract  

From the discovering of first iron oxidizer microorganisms, bioleaching community has 

been studied by a great deal of researchers. Nevertheless, the microbial community 

structure involved in this process is still not clear. The increasing interest to replicate the 

bioleaching process for environmental bioremediation or mineral extraction has fostered 

this topic as the body of many studies nowadays.  

Therefore, information from different researches about the most successful techniques 

for iron oxidizer identification have been gathered in this thesis, in order to find out a 

complete phylogenetic tree of the bioleaching microorganisms existing in mine waters 

of Reiche Zeche, Freiberg (Germany).  

Diverse water samples from leaching have been analysed throughout different DNA 

identification techniques and their fingerprint obtained by ARDRA, sequenced and 

analysed by T-RFLP.  

Expected and unexpected results have been obtained about the microbial community 

structure. Thus, common iron oxidizers such as Acidithiobacillus sp. or Leptospirillum 

sp. has been detected along with a large list of uncultivated microorganism which made 

up their own separated group in the phylogenetic tree. Therefore knowledge on the 

distribution and biodiversity of this group of iron oxidizers is still not completed making 

necessary deeper analyses. 

Resumen 

Desde el descubrimiento de las primeras especies de microorganismos oxidadores de 

hierro, la comunidad implicada en la biolixiviación ha sido objeto de estudio de un gran 

número de investigaciones. A pesar de ello, la estructura de dicha comunidad sigue sin 

estar clara. El creciente interés por replicar el proceso de biolixiviación para usos como 

la bioremediación ambiental o como técnica de extracción minera ha fomentado este 

tema como objetivo de muchos estudios hoy día. 

En este trabajo se reúne información de distintas investigaciones sobre las técnicas más 

exitosas para la identificación de microorganismos oxidadores de hierro, con la 

intención de obtener un árbol filogenético completo de los organismos implicados en 

fenómenos de bioloxiviación existentes en las agua de la mina de Reiche Zeche Freiberg 

(Alemania). Diversas muestras de agua lixiviada han sido analizadas usando diferentes 

técnicas de identificación de ADN, como ARDRA, secuenciación y  análisis T-RFLP. 

Se han obtenido tanto resultados esperados como inesperados sobre la estructura de la 

comunidad microbiana. Así, además de microorganismos oxidadores de hierro 

comúnmente encontrados, tales como Acidithiobacillus sp. o Leptospirillum sp.,se ha 

encontrado  una larga lista de microrganismos no cultivados, los cuales forman su 

propio grupo aislado en el árbol filogenético. Por tanto, el conocimiento en la 

distribución y biodiversidad de este grupo de oxidadores de hierro sigue sin estar 

completo, haciendo necesarios análisis más detallados.  
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1. Aim 
The final purpose of this research was the identification of bacterial diversity of the 

acidic environment of mine of Reiche Zeche, Freiberg, Germany, as well as find out 

which of these microorganism are the possible key players of the natural bioleaching 

process. Additionally, a preliminary study of the favourable conditions, such as 

pressure, temperature, pH and geochemical conditions, for a more efficient bioleaching 

process was also attempted. 

For this purpose water from the deep-mine was sampled and the bacterial DNA was 

extracted and amplified. A sequence analysis of these bacterial DNA was performed 

and the bacterial composition of the samples was determined. Final data was added to a 

Clone-Library in order to store the gathered information and make it available for other 

researchers. 

 

2. Bibliographic background 
“The iron-oxidizing proteobacteria” has been reviewed by Hedrich (Hedrich, 2011). 

This review provide a comprehensive current description about the phylogenetic and 

physiological diversity of the iron-oxidizing proteobacteria. In accordance with the 

information gathered in such review, bacteria such as Thiobacillus ferrooxidans, 

Acidithiobacillus spp.  and Ferrovum myxofaciens are common inhabitants of extremely 

acid environments (about 3 and 2 pH) being named then as extreme acidophiles. 

Thiomonas spp. is the main moderate acidophile, living within an optima pH for growth 

of 3–5. 

In addition, regarding with the article “Population Dynamics of Iron-Oxidizing 

Communities in Pilot Plants for the Treatment of Acid Mine Waters” (Heinze, 2009), 

The habitat was definitely dominated by two groups of Betaproteobacteria affiliated 

with species “Ferrovum myxofaciens” and with strains related to Gallionella ferruginea. 

The clear dominance was perceptible even under changing pH and iron concentration 

conditions.  

Consequently aforementioned articles stablished the hints of which iron oxidizer 

microorganism were expected to be found in this Thesis. 

 

3. Introduction 

3.1 Geology of mine Reiche Zeche 

The Freiberger deposit is characterised by metamorphic rocks from Precambrian to 

Lower Paleozoic and is composed by three mining areas called Freiberg Muldenhütten, 

Halsbrücke and Brand-Erbisdorf (Figure 1). 
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Figure 1: Freiberger deposit map 

 

The deposit has 15 kilometres North-South extension, 9 kilometres from East to West 

and 320 to 500 metres over sea level. A place where the predominant material is the 

rock named grey gneiss. 

Changings in pressure inside and diverse contractions, resulting from cooling of the 

outside, lead to fractures inside of the gneiss, which were filled with different minerals, 

what resulted in about 500 lodes in Freiberger district forming a complicated net of gaps 

in different directions. 

After several periods of mineralisation, minerals like galena, sphalerite, pyrite, 

chalcopyrite, and quarz can be found in common. 

 

3.2 Mine waters of Reiche Zeche 

The mine waters are usually classified as acidic and metal-rich. The water coming from 

rivers, aquifers flowcharts and rain water “penetrates through the flooded shafts, 

galleries, backfilled veins and open veins and gets enriched in acid metals” (Baacke 

2000). Indeed, many parts of the Freiberg mining district, especially above the flooding 

water level, have extremely acid mine drainage (AMD) with pH as low as 2 (Baacke 

2000). 
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Aforementioned extremophile acid mine drainage is an environment in which the 

majority of prokaryotic and eukaryotic organisms could not survive, but some 

“acidophiles” Bacteria and Archaea thrive within it (Johnson et al., 2003) and even 

modify the geochemical conditions of the field. 

 

3.3 Extremophile bacteria as bioleaching promoters and water pollution 

Such “acidophiles” microorganisms mainly act over several minerals modifying their 

physical and chemical state. The combination of this biological activity with other 

abiotic reactions has given an incredible result on the mining extraction techniques 

field. For a better compression of how relevant could the biological activity be, it is 

required to have in mind determinate mineral behaviours, like sulphide reactions under 

extremely acidic conditions. 

Sulphide minerals such as pyrite (FeS2), commonly are chemically and biologically 

stable in areas lacking oxygen and water. However, upon exposure to moisture or air 

iron oxidation immediately starts. This causes the break of the bond between metal and 

sulphur releasing it as described in the general leaching reaction (Reaction 1) and the 

following example for the first oxidation (Reaction 2)(Johnson et al., 2003). 

MS + 2 Fe3+  M2+ + S0 + 2 Fe2+                                                          (1) 

  FeS2 + 6Fe3+ + 3H2O  7Fe2+ + S2O2-
3 + 6H+                                          (2) 

It is show that the bond breaking is fostered by ferric iron (Reaction 1) that reacts 

becoming into ferrous iron.  

Ferrous iron is stable under acid conditions. Therefore in mining habitats with acid 

drainage, this leaching process would stop whenever all the reactant ferric iron becomes 

into ferrous. At this point is where the microorganism’s role is crucial. 

Because of the activity of the microorganisms, the ferrous iron can be oxidized to ferric 

iron and so the leaching process will continue (Reaction 3). This new process is called 

bioleaching. 

        2H+ + 0.5O2 + 2Fe2+ 2 Fe3+ + H2O                                  (3) 

Indeed, bioleaching is not an isolated reaction, bioleaching involves in general three 

important sub-reaction, viz., and attack of the sulphide mineral by a chemical ferric 

leach producing ferrous iron. These reactions also take place in the abiotic leaching 

process. But in addiction, bioleaching process includes a microbial oxidation of ferrous 

iron (Reaction 3) and perhaps sulphur compounds (Reaction 4) (Hansford et al., 1999). 

Only a certain group of bioleaching microorganisms carry out the oxidation of sulphur, 

decreasing even more the pH in the area and generating acid mine drainage (AMD). 

S0 + 1.5O2 + H2O  2 H+ + SO4
-2                                                          (4) 
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The role of the bacteria is to re-oxidise the ferrous iron back to the ferric form and 

maintain a high redox potential (Hansford et al., 1999). These activities are crucial 

considering that ferrous iron is stable under acid pH condition. Exclusively when the 

metabolites produced by the bacteria create a high oxidising potential on solutions 

(Escobar et al., 2008) ferrous iron becomes non-stable, enabling its solubilisation and 

the conversion anew to the ferric form. Due to the metabolites are not generated by the 

abiotic bioleaching, ferrous solubilisation is not possible by the abiotic pathway in such 

acid mine waters (pH < 4). 

That is why oxidation rate is far higher in the presence of certain iron oxidizers 

prokaryotes, due to the ferrous iron re-generation (Reaction 4).  

Hence it has been shown that, although the abiotic oxidation may react in anaerobic as 

well as in aerobic environments, in the biotic oxidation oxygen presence is required 

(Johnson et al., 2003), only the biotic pathway is able to regenerate the ferric iron within 

extremely acid waters. It is for this reason that the combination of both pathways causes 

a highest efficiency in the mining extraction techniques field, as well as the reduction of 

the pH and thus acid mine Drainage (AMD) (Reaction 3 and 5) (Johnson et al., 2003) 

                                        Fe3+ + 3H2O  Fe(OH)3 + 3H+                                           (5) 

 

This natural process can be used by human activity, creating a new definition in which 

bioleaching is considered as a simple, inexpensive and eco-friendly human technology 

for mineral extraction from mine. The bioleaching technology takes advantage of the 

natural microorganism’s activity for the mineral extraction or bioremediation of 

contaminated soils (Bosecker, 1997). Such microorganisms are found in most mines all 

over the world. They feed on nutrients in minerals with the advantage that this same 

nutritional process causes the extraction of desired precious metals embedded in ore – 

like copper, zinc or indium. So to say, microorganisms are used to solubilize the mine 

metals (Bosecker, 1997), avoiding damaging caused by non-environmental friendly 

methods such as melting or roasting. This method is often used nowadays for extraction 

of ore with low metal concentrations (Mithra, 2014). 

Iron-oxidizing Bacteria and Archaea are included in the lithotrophic prokaryotes group 

(‘‘rock eating’’). The most common and important Bacteria in this process due to their 

oxidising capacity are Thiobacillus ferrooxidans and Leptospirillum ferrooxidans 

(Escobar et al., 2008). T. ferrooxidans has been recently renamed Acidithiobacillus 

ferrooxidans (Johnson et al., 2003).  
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4. Materials and Methods 
The method structure employed in this research is made up by six important steps: Gene 

cloning with Polymerase Chain Reaction, Terminal Restriction Fragment Length 

Polymorphism (T-RFLP), ARDRA, Transformation and Cultivation. The results depend 

directly on these six main steps. Hence, to know how aforementioned steps were carried 

out, their characteristics and the reasons for choosing one protocol or another becomes a 

highly significant aspect. 

In the first case, the Gene cloning with Polymerase Chain Reaction (PCR) allows to 

generate millions of copies of a specific gene. For this purpose 16S rRNA gene 

sequences was used in this work to study bacterial phylogeny and taxonomy for several 

reasons here named (i) its presence in almost all bacteria; (ii) the function of the 16S 

rRNA gene over time has not changed, suggesting that random sequence changes are a 

more accurate measure of time (evolution); and (iii) the 16S rRNA gene (1,500 bp) is 

large enough for informatic purposes (Patel, 2001) 

Once the PCR product is checked, the T-RFLP proceed to measure the size 

polymorphism of terminal restriction fragments from a PCR amplified marker, 

providing a diversity assessment (Bohannan., 1999). 

During the investigation it was also necessary to run a “transformation” with E.coli, also 

called “cloning”. 

As the last method and the most crucial together with sequencing, to reach the research 

aim, is the ARDRA. This method includes the use of different enzymes known as 

restriction endonucleases. These enzymes cut DNA-fragments at specific locations 

based on the nucleotide sequence. DNA treatment with a restriction enzyme produces 

many smaller fragments, of varying sizes. These fragments are visualized in the 

Electrophoresis as separate bands of similar chain length. Each species is defined by a 

determinate bands pattern. So ARDRA allows to identify the different DNAs presence 

in the samples and make a first population approximation of each species gathering the 

ones with the same shape. 

 

4.1 Water Sampling 

The sampling place is located approximately at 50.92 º, 13.35º, and around 150m 

underneath Freiberg city’s ground (Figure 2). Nearby this localization, seven separated 

and different water samples were taken in the mine of Reiche Zeche, from puddling 

water (named RZ_2, RZ_3, RZ_4, RZ_5, RZ_6 and RZ_7) to roof leaking water 

(RZ_1). Always trying to cover as much as possible of the area in order to maintain the 

representation of the mine water. For the sampling task, sterile 50 mL Falcon Tubes and 

800 mL glass bottles were used. During the samples collection an in situ geochemical 

analysis of the water sample was done (Table 1.1, 1.2 and 1.3) 
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Figure 2: Sampling points, mine of Reiche Zeche. 

 

 

 

 

 

 

 

 

 

Table 1.1: In situ geochemical data in the sampling points.  

 

Table 1.1 and 1.2 and 1.3 shows the characteristics of water samples collected. Ferrous 

iron was analysed qualitatively (absence or presence) because the device employed for 

the in situ analysis did not have the necessary standards to quantify it (Table 1.1) 

 

Sample Look pH T 

[°C] 

Conductivity 

[µS/cm] 

O2-

content 

[%Saturation] 

O2-

content 

[mg/L] 

RZ_1 Colourless,clear 7,4 13,7 8 67 6.9 

RZ_2 brownSlightlyturbid 2,9 13,3 11.9 47 5.5 

RZ_3 brown,turbid 2,7 13,8 15.9 57 5.2 

RZ_4 brown,very turbid 2,0 12,6 15.6 52 5.8 

RZ_5 brown,turbid 2,5 12,7 11,7 55 5,8 

RZ_6 grey-green 

Sediment 

6,8     

RZ_7 Red-brown,clear 2,6 11,8 24,1 59 5,2 

Table 1.2: In situ geochemical data in the sampling points. 

 

 

 

SAMPLE Water 

amount (L) 

[Zn2+] 

mg/L 

[Fe3+] 

mg/L 

Fe2+ 

presence 

[mV]±50mV 

Redox 

RZ_1 1,2  - 2 - 210 

RZ_2 1,6 32 245 Positive 600 

RZ_3 2 1302 4114 Positive 640 

RZ_4 1 3393 4055 - 730 

RZ_5 1,1 595 2576 - 800 

RZ_6 0,75 2 9 -  

RZ_7 2 7159 7696 - 710 
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Sample Site of sampling Hints 

RZ_1 1.Level,WilhelmstehenderN Dripping water from the ceiling 

RZ_2 1.Level,Wilhelmstehender Standing water 

RZ_3 1.Level,WilhelmstehenderN Standing water 

RZ_4 1.Level,WilhelmstehenderN, 

downAbbaustrecke 

Standing water 

RZ_5 1.Level,WilhelmstehenderN, 

downAbbaustrecke 

Standing water 

RZ_6 1.Level,Richtstrecke 

Wilhelm- 

stehenderS,bythBergziege 

SlimySediment 

RZ_7 1.Level,WilhelmstehenderS, 

below the hospital of Freiberg 

Standing water 

Table 1.3: In situ geochemical data in the sampling points. 

 

The samples were brought to the laboratory for filtration as soon as possible while 

cooling.  

 

4.2 DNA extraction 

Filtration 

For detection of microbes water samples required a filtration step to first trap and 

concentrate the organisms. 

Samples RZ_3, RZ_6, RZ_7.1 and RZ_7.2 were vacuum filtered (Image 2) first through 

a 0.45 µm gridded sterile membrane and then through 0.22 µm membrane 

MicronSepCellulosic (Thomas Scientific Company, New Jersey, United States). 

For samples RZ_2. RZ_4 and RZ_5 a Watson-Marlow 323 pump (Image 1) was used 

running at 200 rpm that allowed to filter directly through a 0.22 µm membrane. 

 

Image 1: Watson-Marlow 323 pump, DNA extraction               Image 2: Vacuum, DNA extraction 

 

The filters, 0.45 and 0.22 µm, were stored inside 2 ml Eppendorf tubes at -80ºC for the 

following DNA extraction. All filters for the same sample were kept together, using in 
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some cases more than one Reaction Eppendorf for sample. In order to facilitate the 

storage membranes were cut into two pieces and rolled before been introduced inside 

the Reaction Eppendorfs (Image 3). 

Image 3: membrane storage after filtration, DNA extraction. 

Extraction 

For DNA extraction from filters two different kits were used: PowerSoil® DNA 

Isolation Kit and PowerWater® Sterivex™ DNA Isolation Kit, both from MO BIO 

Laboratories, Inc (California). 

The protocols used for each kit were similar to the recommendations of manufacturer 

except for some seldom substitutions in the amount of components. These variations 

were as follows. 

a) PowerSoil® DNA Isolation Kit 

- The first critical step of the procedure was to cut the filters into small pieces 

and kept in new sterile Eppendorfs. It was noticed that the smaller pieces, the 

merrier results in the DNA extraction. 

- 2ndStep; Increase on the incubation time to 1.5 hours 

- 14thStep: Instead 1.2 mL of Solution C4, 500 µL was added. 

The Alternate Protocol for PowerVacTM Mini Spin Filter Adapter was not used. 

 

b) PowerWater® Sterivex™ DNA Isolation Kit 

VacMaster™ vacuum was employed, providing faster results than PowerSoil® 

DNA Isolation Kit 

In order to verify the extraction, a measurement of the DNA concentration was done 

using NanoDrop® ND-1000 Spectrophotometer (Thermo Fisher Scientific, 

Wilmington, United States) 

 

4.3 Cloning by PCR, PCR clean-up and Electrophoresis 

PCR 

To control a successful extraction of the DNA from the water samples and the PCR run, 

positive and negative controls were used along with samples. Negative and positive 

controls were composed by PCR mix (Table 4) without DNA template and distillated 

water, respectively. 

A PCR of samples with specific primers 27F and 1387R (Table 2) for 16S rRNA gene 

amplification was performed.  
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Primer Sequence 

27F 5´- AGA GTT TGA TCC TGG CTC AG - 3´ 

1387R 5´- GGG CGG NGT GTA CAA GGC - 3´ 

Table2: Sequence of primer 27F and 1387R 

 

Polymerase Chain Reaction with the 16s mode (Table 3 and 4) of samples was run to 

generate copies of the DNA extracted in a Biometra TGradient Thermocycler (Biometra 

GmbH Company, Germany). For this PCR a set of 12 samples was prepared: Eight 

water samples, two controls (negative control plus a positive control) and one additional 

sample without DNA template in order to correct the possible pipetting mistakes and to 

secure enough amount for each mini tubes. 

 
Step Temperature in °C Time Repeat 

Top heating 94 5min  

Denaturation 98 30 sec   

Annealing 50 30 sec 29x 

Elongation 72 30 sec  
Break 15 °C -   

Table3: Program for 16S-rRNA gene PCR 

 

Components Approach for 12,5 

(µL) 

Approach for 25 

(µL) 

x 12 from 12,5 

column (µL) 

Master Mix 6,25 12,5 75 

BSA 0,0625 0,125 0,75 

DMSO 0,625 1,25 7,5 

Primer 27f 0,15 0,3 1,8 

Primer 1387r 0,15 0,3 1,8 

ddH20 4,26 8,53 51,12 

DNA Template 1,0 2,0 1,0 per sample 

Table4: Composition of the PCR-mixture for 16S-rRNA gene 

 

Samples that did not give proper results in the analysis were subjected to a new PCR 

with the intention to increase the DNA concentration up to 50-150 ng before repeat the 

process. In this case the PCR Dream Taq (ThermoScientific, Molecular Biology, United 

States)(Table 7) was used in order to overcome the absence of some sample bands after 

16s PCR that was noticed by using the standard Master Mix. Dream Taq is an enhanced 

Taq DNA polymerase optimized for all standard PCR applications and it ensures a 

higher sensitivity than Maxter Mix (Weyant, R. S. et al., 1990) 

PCR-cleaning 

After PCR, samples were cleaned up in order to purify PCR products from enzymes, 

dNTPs, primers and other undesirable reaction by-products. The PCR products cleaning 

was done using UltraClean® PCR Clean-Up Kit (Mobio laboratories, Carlsbad, 
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California) according to manufacturer instructions except for steps 4th, 8th, 10th and 13th 

which were run at the maximum centrifuge speed and time; and 12th Step that instead 50 

µl of Elution Buffer, 35 µL dH2O was added. 

 

Gel Electrophoresis 

After PCR products cleaning a gel electrophoresis was run to determine if the targeted 

16S gen was successfully amplified by visualizing within the gel exclusively the size 

fragments corresponding to 16s rRNA. 

For this purpose, 30 mL agarose gel composed by 1 x Buffer TAE at pH 8 (Sambrook et 

al., 2001) and 1% of Agarose (Biozym, Germany) was used (Table 5). A mixture of 

PCR-product and loading buffer (10 µL) was loaded in the gel. Also 1 kb-size marker 

was also loaded in the gel to compare the fragment length of the PCR product. The gel 

was run at 90 V for 20 min.  

After staining with ethidiumbromide (30 seconds) and water (30 min), the gel was 

documented with the ChemiGenius Bioimaging System (Syngene, Cambridge, United 

Kingdom) using the Software Genesnap. If the DNA extracted was successfully 

amplified a PCR- product with a length of 1350 bp could be found and these samples 

were used for further steps. 

 

TAE Amount 

Tris 242 g 

Acetic acid 51.1 g 

EDTA (0.5 M) 100 mL 

Table 5: 1 x Buffer TAE composition 

 

4.4 Microbial composition determination by T-RFLP 

16s r-RNA gene PCR 

A second 16s PCR amplification in order to reach 150 ng/µl DNA concentration for 

each clone and label the end restriction sites was run. In this case four repetitions for 

each sample were carried out. The cleaned PCR products (25 µL) were labelled by 

using in this case universal fluorescent 27 cy5 PCR primer, instead of primer 27f  

(Table 2).Once the PCR was run all mini-tubes with the same clone were pooled 

together. 

 

During the set-up of this step a difficulty appeared: due to the fluorescent characteristic, 

primer 27 cy5 cannot be exposed to the light, neither the samples containing it. In order 

to overcome the difficulty and secure an adequate process, the samples were covered 

with black plastics thus avoiding the light inside the tubes and painstakingly handled.  
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Gel electrophoresis and PCR-cleaning 

The same methodology than previously described for gel electrophoresis was employed 

(Materials and methods, Cloning by PCR, PCR clean-up and Electrophoresis, page 16-

17) but 3 µL Fluorescent PCR product instead 8 µL was loaded. The procedure was 

done as described in the UltraClean® PCR Clean-up Kit Protocol (MO BIO 

Laboratories Inc., California) but DNA was dissolved in 30 µL dH2O instead Elution 

Buffer. As a process assessment, the DNA concentration was measured by NanoDrop® 

ND-1000 Spectrophotometer 

Digestion 

Digestion process consisted of cutting amplified DNA at specific sites. Such cuttings 

were performed by restriction enzymes MspI (BioLabs Inc., New England) and AluI 

(ThermoScientific, Unites States) according to the reaction mixtures reported in Table 

6. 

 

Mixture Amount Type 

Buffer 1.0 µL Buffer R (ThermoScientific) for AluI 

SmartCut (BioLabs Inc) for MspI 

Restriction 

Enzymes 

 

0.1 µL 

Alul for all samples 

Msp I for RZ_4.2 and RZ_6 

DNA  150 ng 

d H2O Up to 10 µL 

Table 6: Digestion mixture for T-RFLP 

 

Once the mixture was prepared it was incubated during 3 h at 37ºC and afterwards kept 

at -20ºC until the following T-RFLP analysis. 

 

T-RFLP 

Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis can be 

considered one of the most relevant steps in this research. This is because the technique 

allows determining the microbial community composition, i.e, the biodiversity of the 

different water samples gathered in Reiche Zeche, by detecting the restriction site 

closest to the 27 cy5 labelled end of the enzyme digested DNA. 

 

CEQ™ 8000 Series Genetic Analysis System (Beckman Coulter Life Science 

Researches, Barcelona, Spain) was used to run the T-RFLP. This equipment contains 

diverse trays, which were filled with the mix described in Table 7. 
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Components Amount 

Buffer Genome Separation Buffer More than the half directly inside 

each well. 

Fluorescent SLS+ standart 28.5 µL 

DigestedSample 1.5 µL 

Table 7: T-RFLP mixture 

 

It is important to remove air bubbles from each well before running the T-RFLP and 

overlay them with one drop of mineral oil in order to avoid evaporation. 

 

New PCRs and new T-RFLP 

Samples that did not give proper results, as for example sample RZ_5, in the T-RFLP 

analysis previously described, were subjected to a new PCR with Dream Taq (Table 8) 

(Cloning by PCR, PCR clean-up and Electrophoresis, page 18). 

 

 

PCR Dream Taq 

Mixture 25 µL column x 8 

Dream Taq 0.25 µL 2 µL 

dNTP coach 2.5 µL 20 µL 

Primer 27f 0.3 µL 2.4 µL 

Primer 1387f 0.3 µL 2.4 µL 

Buffer 2.5 µL 20 µL 

dH2O 17.15 µL 137.2 µL 

DNA Template 2 µL 2 µL 

Table 8: 16s Dream Taq PCR mixture 

 

Succeeding the new T-RFLP analysis, Sample RZ_5 and RZ_6 were selected for 

sequencing (Results: T-RFLP).  

Regarding to the last PCR results, it was proven that sample RZ_6 was more efficiently 

amplified with Master Mix, meanwhile sample RZ_5 was properly amplified using only 

Dream Taq.  

 

4.5 Cloning 

The extracted DNA (DNA extraction, page 15-16) was cloned into E. coli in order to get 

a clone library of bacteria from water samples. This process required three steps: 

ligation, transformation and cultivation. 
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Ligation 

The StrataCloneTM PCR Cloning Kit (Agilent Technologies, Canada and United States) 

was used for ligation according to manual instructions. The mixture reported in Table 9 

containing the plasmid used as a vector, buffer and PCR product (RZ_5 and RZ_6) was 

incubated for 5 min at room temperature and afterwards placed on ice to stop the 

reaction. 

 

Mixture (for sample) Amount for sample (µL) 

StrataCloneTM Cloning buffer 3 

Clean 16s PCR-product (50 ng/µL) 2 

StrataCloneTM Vektor Mix Amplifican 1 

Table 9: Ligation mixture, regarding with StrataCloneTM PCR Cloning Kit 

 

As a result of ligation, PCR product inserts into operon Lac site of plasmid (Figure 3). 

 

 

Figure 3: Vector pSC-A (Agilent technologies, Canada, Unite States). 

 

Transformation 

According to the instructions of the StrataCloneTM SoloPack Competent Cells Kit 

(Agilent Technologies, Canada and United States) 2 µL of ligation mix was added into a 

tube of E. coli competent cells and incubated on ice approximately for 20 minutes. This 

technique requires that the host cells are exposed to an environmental change which 

makes them "competent" or temporarily permeable to the vector. That is why the total 

mixture was warmed up to 42ºC during 45 s, generating a transformation by heat shock. 

The heat shocks must be rapidly stopped by incubation on ice for 2 minutes. 

 

Summarizing, in this process E.coli’s vector pSC-A is cut. This cutting site is located 

between a section of DNA with numerous restriction cutting sites (multiple cloning site) 

and lacZ-gene. It is there where the fragment of the 16S-rRNA gene is incorporated. 
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Cultivation 

LB_ampicillin medium (Sambrook et al., 2001) was chosen for carrying cells 

cultivation (Table 10). 

 

Components Amount 

Trypton 8g 

yeast-extract 4g 

NaCl 8g 

Agar-Agar for solid medium 13g 

dH2O 800mL 

Table10: LB_ampicillin medium 

 

The medium was adjusted between 7.0 and 7.2 pH with 1N NaOH, autoclaved and cool 

down up to 55ºC. After reaching this temperature 0.8 mL Ampicillin 100µg/mL were 

added and the medium was poured on Petri plates. 

 

Next in the line, eight diverse cell culture dilutions or transformation product, with 

different concentration per sample (RZ_5 and R_6) were poured on the Petri plates 

(Table 11). Sometimes liquid LB medium was also added (Table 11) to facilitate the 

platting, in those who did not have sufficient cell mix amount for been spread 

(considering that start to be enough amount with 30 µL) and finally the plates were 

incubated at 37ºC. 

 

Plate number [cells mix] µL liquid LB medium 

1 5 55 

2 5 55 

3 20 40 

4 20 40 

5 50 - 

6 50 - 

7 100 - 

8 30 - 

Table 11: Transformation product and liquid LB medium 

amount on the Petri Plates. 

Summarizing, sixteen plates were incubated overnight, eight from RZ_5 and the same 

number from RZ_6. 

Just after, the outgrowth period, ten LB_ampicillin_plates were selected for being 

spread with 40 µL X-galon each plate for blue-white colour screening. This is because 

StrataClone cells strain has a mutation which supports dark blue colour when it has no 
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absorbed the plasmid, therefore colonies harbouring plasmids containing typical PCR 

product inserts are expected to be white or light blue after prolonged incubation 

facilitating the identification of the colonies with the plasmid of interest inside. 

 

4.6 ARDRA 

With a view to identify the gene sequences and the microorganisms’ fingerprints, 

ARDRA technique was chosen. ARDRA consisted of the 16s amplification and in the 

subsequent digestion of the amplification product with enzymes and separation by 

electrophoresis (Blaszczyk, 2011). The fragments obtained after enzyme digestion were 

separated by electrophoresis in agarose gel according to their size. Therefore, 

fragments created a vertical line (from negative to positive in the agarose gel) with 

several bands. Such lines were considered as the clones’ “fingerprint”. 

 

However, first of all a selection of clones, their numeration and a PCR with the primers 

T3 and T7 was necessary. 

 

Clones Selection and T3T7 amplification 

Two hundred and twenty mini tubes for each sample were prepared for T3T7 PCR with 

the components from the column 15 µL (Table 12). 

 

Mixture Approach for 15 µL x 226 per sample (µL) 

2 x MM 7.5 1695 

T3 0.18 40.68 

T7 0.18 40.68 

DMSO 0.38 85.88 

BSA 0.04 9.04 

dH2O 6.72 1518.72 

Table 12: T3T7 PCR mixtures 
 

This step tries to focus its activity on the separation of the E. coli colonies with insert. 

For that all white colonies were picked with sterilised picks from the plates with 

different cell mix concentrations, and transferred on a fresh and numbered LB_plates 

(Image 3) with 40 µl 2% X-Gal already on them. With the same pick per clone, was also 

placed a little amount inside the mini tubes for T3T7 PCR. 
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ccccccccc                       

Image 4: Colonies separation and T3T7 preparation 

Digestion 

After amplification T3T7 PCR products were subjected to an digestion with BsuRI 

enzyme (Table 13). BsurI restriction enzyme (ThermoScientific, United States) had the 

responsibility in this case to recognize determinate parts of the gen and cut them with 

high yields at 37ºC (tiempo?). 

 

Mixture Amount per clone (µL) 

dH2O 4.9 

Buffer R 1 

T3T7 PCR Product 4 

Enzyme BsuRI 0.1 

Table 13: Digestion mixture for ARDRA 
 

The visualization by the electrophoresis gel of the digestion product brought to us 

pictures with a big range of shapes, where each different shape belongs to a one specific 

species (Images 6 to 22). With a simple but painstaking gathering of the shapes it is 

possible to get an approach about diversity and population, similar than the one 

obtained with the T-RFLP analysis. 

 

4.7 Clones Storage 

The Storage of clones will allow further investigations to continue the research, 

considering that it has, as main objective, the preservation of the microorganisms under 

laboratory conditions, maintaining their vitality and avoiding spontaneous mutations 

(Donev, 2001) thus enabling future uses of the samples. 

In this research the Cryobiological Method (Donev, 2001) was used for clones storage. 

This was performed as follows. 

First one glass tubes per clone with 3mL liquid LB_medium and 0.3 µL ampicillin were 

prepared. Working in a sterile atmosphere, the numerated colonies from the numerated 

Petri Plates (Clones Selection and T3T7 amplification, page. 23) were transferred to the 
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liquid LB_medium. After an overnight incubation at 37º, the presence of turbidity or 

pellets at the bottom of the liquid LB_medium tubes was indicative of a positive growth 

of E.coli with plasmid. 

For the next step in the storage, 700µL liquid LB medium with positive clone 

reproduction were transferred into 2µL sterile reaction plastic tubes, named with the 

corresponding sample (RZ_5 or RZ_6) and clone number. Moreover, 700µL prewarmed 

glycerine was pipetted into the same reaction tubes and strongly vortexed looking for a 

homogenous mixture. 

Reaction tubes were finally placed inside gridded boxes and rapidly frozen employing 

liquid nitrogen. With this fast freezing the process of recrystallization of the ice is 

prevented and mechanical membrane damages are avoided (Donev, 2001). Finally all 

pre-frozen clones were stored at -80ºC. 

 

4.8 Sequencing, cultures identification 

The sequencing itself was carried out by an external laboratory GATC Biotech AG 

(Konstanz, Germany). The unique requirement for the correct analysis was to send fresh 

cultures on a tray. In order to get these fresh cultures, LB_plates with X-gal were newly 

prepared and a small amount of the mix kept inside the plastic reaction tubes stored at -

80ºC were spread and incubated overnight. Only the most relevant clones for each 

ARDRA group were cultivated for the sequencing (Table 14) 

 

Sample Clone 

RZ_5 6, 66, 62 68, 150, 79, 103, 20, 14, 24, 105, 22, 15, 11, 54, 88, 217, 

27, 32, 12, 122, 52, 101, 17, 26, 133, 168, 18, 28, 33. 

RZ_6 10, 126, 9, 12, 15, 81, 72, 198, 149, 53, 31, 39, 41, 42, 50, 60, 63. 

Table 14: most representative clones of each ARDRA group selected for sequencing. 

 

The forward and reverse sequences obtained from each clone were edited, aligned and 

assembled in a fasta-file by using the StanPackage. 

Next in the line, the tool BLAST of the NCBI-Database was used in order to find 

relatives or similarities to other species with the created fasta-file. The phylogenetic 

treewas created with the NCBI_Database results by using the program MEGA6 with the 

Maximum Likelihood method (Image 22). 

 

4.9 Clone Library 

This last task looked for attach the results of the cloning experiment to the Clone 

Library. T-RFLP analysis on each single clone was required, called T-RF. By the reason 

to figure out the clones’ identification and fill with such information the Clone library 

with the clones ‘information (McClean, 1997). 
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Therefore inside this data base, saved information from each ARDRA representative 

clones identified is stored for further possible uses. 

Individual T-RFs allowed not only validate each of the peaks of the original T-RFLP, 

also related T-RF “assessed the relative abundance of each variant in the library either”  

For such T-RF analysis is required to have directly access to the genetic material or 

plasmid. Consequently in order to perform T-RF it was necessary a first clone DNA 

extraction from the E.coli cell. 

 

Plasmid extraction 

For the clones’ DNA extraction, Thermo Scientific GeneJET™ Plasmid Miniprep Kit 

was used. According to instructions attached in the Kit, before setting up the extraction, 

new tubes with 3mL liquid LB_medium were prepared and cultivated with the 

representative clones coming from the fresh plates used to sequencing for a next 

overnight incubation. 

In general, after several reactions between cultivated liquid LB_medium and lysis 

solutions and wash solutions, plasmids DNA wereliberated from recombinant E. coli 

cultures.  

 

T-RF 

T-RF and T-TRFLP techniques are similar, thus, as it was described before (Microbial 

composition determination by T.RFLP, page 18) the analysis was made up by the same 

four steps, except for substitutions in the Alul restriction enzyme by BsurI and the 

following Buffer R. 

 

5. Results and Discussion 

5.1 Water Sampling, in situ geochemical data. 

A low or negative ferrous iron presence together with a high ferric iron presence 

(Reaction 3) and elevated redox potential are indicators of iron oxidizer activity. Thus it 

was expected to find microorganisms related to this activity in the samples RZ_2 RZ_5 

and RZ_6. 

The pH ranged between 6.5 and 2, proving the permanently acid condition of the mine 

water (Table 1.2). 

Low parameters were in general detected for the sample RZ_1, even the ferric 

concentration. These results can be explained by the sampling point. RZ_1 was 

collected from the mine roof and no puddling water 
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5.2 DNA Extraction 

It is notable the difference between concentrations depending on the Kit employed. 

Indeed the origin of these differences was the improper handling of the membranes. 

PowerWater® Sterivex™ vacuum was run up to high pressures, overcoming the 

membrane pressure limit and developing cracks on the filter. 

 

PowerWater® 

Sterivex™ 
[DNA] ng/µl  PowerSoil® [DNA] ng/µl 

RZ_1 4.8  RZ_3 42.4 

RZ_ 2.2 5  RZ_6 9.4 

RZ_ 4.1 3.2  RZ_7.1 5.6 

RZ_ 4.2 2.4  RZ_7.2 7.0 

RZ_ 5 4.0    

 

Table 15: First DNA concentration analysis with NanoDrop® ND-1000 Spectrophotometer 

 

5.3 PCR 

Several 16sPCR were run. Image 5 shows one example of 16sPCR visualization by 

agarose gel. In this example wrong results, marked with a square, and right results after 

PCR were obtained. Those with wrong results were repeated. Only sample RZ_6 

needed the application of Dream Taq 

 

Image 5: Result of PCR product and controls in a gel electrophoresis. 
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5.4 T-RFLP for diversity 

Resulting T-RFLP graphics, also named electropherograms, described the communities’ 

diversity assessment. Such electropherograms have provided information on a 

collection of microorganisms that might be present in the different samples. Series of 

peaks (DNA fragments) of various heights represents the profiles of each samples. Each 

peak corresponds to one genetic variant in the original sample while its height 

corresponds to its relative abundance in the specific community (Osborn, M., 2000). 

 

 

 

 

 

 

Graphic 1: RZ_6 T-RFLP results with Alul enzyme 
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Graphic 2: RZ_6 T-RFLP results with MspI enzyme 

 

Graphic 3: RZ_5 T-RFLP results with MspI enzyme 
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Graphic 4: RZ_5 T-RFLP results with Alul enzyme 
 

Regarding to the graphics or electropherograms, samples RZ_5 and RZ_6 are examples 

for the highest diversity together with RZ_2. Around eighteen different DNAs are 

represented in the graphics for RZ_5 (Graphic 3 and 4) and twenty-two to twenty-eight 

approximately for RZ_6 (Graphic 1 and 2).  

 

SAMPLE [mV]±50mV 

Redox 

[Fe3+] 

mg/L 

Fe2+ 

presence 

Number of pics 

(Diversity) 

 

pH 

RZ_1 210 2 - - 6,5 

RZ_2 600 245 Positive 24-26 2 ~ 3 

RZ_3 640 4114 Positive 8 2 ~ 3 

RZ_4 730 4055 - 6-10 2 ~ 3 

RZ_5 800 2576 - 13-18 2 ~ 3 

RZ_6  9 - 20-28 6,5 

RZ_7 710 7696 - 5-10 2 ~ 3 

Table 16:In situ geochemical data and diversity 

RZ_7 had high metal concentration. Elevated redox potential and a biodiversity 

approximately between 5 and 10 species. These parameters represent hints of a very 

active bioleaching in an extremophile medium. However, this sample was not chosen 

for further analyse because of the diversity results were not high enough. 
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On the other hand, samples RZ_5 and RZ_6 were chosen for a deeper study because the 

following reasons: 

The relation high ferric presence and low ferrous concentration iron (Reaction 3) 

matched with the iron oxidizers’ activities and the corresponding elevated redox 

potential obtained from the ferrous oxidation. Both of the samples were found in acid 

pH and, the most determinant, with high diversity results.  

In addition, similar parameters as in the sample RZ_5 were already studied before (by 

the Bio SciencesGroup, Technic University of Freiberg, Germany) with positive result 

in iron oxidizer presence. Thus, it was already known that they would be find in this 

kind of water. 

Furthermore, the election of RZ_6 instead RZ_2 was because even both met the 

characteristics for an iron oxidizer habitat, only RZ_6 had a different acid pH 

thanRZ_5. It provides the possibility to study a wider environmental range and therefore 

far greater diversity. 

Consequently, samples RZ_5 and RZ_6 were used for ARDRA analysis. 

 

5.5 ARDRA 

ARDRA gels provided the protection of the DNA fragments as well as the T-RFLP did. 

Nevertheless, instead picks ARDRA technique projects the fragments information as 

bands. Each different DNA is defined on the gels by a collection of vertical bands 

(Image 6 to 22). Therefore such bands creates several shapes also named fingerprints. 

 

Sample RZ_5 

 

Image 6: gel1_20140526 



Bacterial Community Analysis in Acidic Mine Waters 

 

  

32 

 

 

Image 7: gel2_20140526 

 

 

 

 

Image 8: gel1_20140527 
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Image 9: gel2_20140527 

 

 

 

 

Image 10: gel3_20140527 



Bacterial Community Analysis in Acidic Mine Waters 

 

  

34 

 

 

Image 11: gel4_20140527 

 

 

 

 

Image 12: gel1_20140530 
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Image 13: gel1_20140617 

 

 

 

Image 14: gel2_20140617 
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Image 15: gel1_20140618 

 

 

Sample RZ_6 

 

Image 16: gel1_20140424 
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Image 17: gel2_20140424 

 

 

 

 

Image 18: gel1_20140425 
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Image 19: gel1_20140428 

 

 

 

Image 20: gel2_20140428 
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Image 21: gel1_20140502 

 

 

Image 22: gel2_20140502 
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In total gathering the different shapes or fingerprints, RZ_5 reached the twenty-two 

groups plus 3 isolated shapes that did not met and with other groups. On the other hand, 

for RZ_6 were found twenty-six groups plus 7 isolated and unique DNA’s shapes. 

 

5.6 Identification of cultures (sequencing analysis) 

 

 
Image 22: Phylogenetic tree showing the different iron oxidizers found in sample RZ_5 

Six kind of Iron oxidizer were found in the water samples RZ_5 of Reiche Zeche mine: 

Acidithiobacillus sp., Acidicferrobacter sp., Acinetobacter sp., the soil Bacterium Ellin 

310(Sait et al., 2002), Actinobacterium sp., Leptospirillumsp. and many uncultured 

bacterium large list of uncultivated microorganism which made up their own isolated 

group in the phylogenetic tree, as for example the last group down to Leptospirillum sp.  

The presence of uncultured bacterium was not considered possible mistake because of 

the information found in NCBI data base, which described the uncultured bacterium 

with the phrase: “microbial stratification in low pH oxic and suboxic macroscopic 

growths along an acid mine drainage”. Consequently, NCBI data base confirmed and 

agreed the acid water mine uncultured bacterium origin.  

In addition to aforementioned information, the phylogenetic tree results were also 

considered successful due to the overall presence of more than 70% of correlation. 



Bacterial Community Analysis in Acidic Mine Waters 

 

  

41 

 

RZ_6 sequencing results are unfortunately not available so far, because of 

complications with the operation time at the University of Freiberg (Germany), limited 

to six months.  

 

5.7 Clone Library, T-RF 

Individual T-RF profiles, with one unique pick, for each organism were obtained as it is 

shown on Graphic 5. Such profiles helped to identify the different microorganisms 

which belonged to the sample RZ_5. Information extracted from this process was used 

to create the clone library. 

 

 

 

Graphic 5: T_RF example for a Finger-print of a single clone (Clone12) belonging to the sample RZ_5. 
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6. Conclusion 

The final identification proved the presence of Acidithiobacillus sp., Acidicferrobacter 

sp., Acinetobacter sp., Bacterium Ellin 310,Actinobacterium sp. and Leptospirillum sp. 

in the sample RZ_5.  

In addition, uncultured bacterium common to acid mine drainage inhabitants were also 

identified together with the aforementioned iron oxidizers. Such uncultured group made 

up an independent group. 

It is possible that the answer for the favourable geochemical conditions were in the 

RZ_7, which represents the more efficient bioleaching process of the samplings points. 

Under this suppose the favourable conditions would be a 2-3 pH range, 11-12 ºC 

temperature condition, around 24 µS/cm conductivity and 59% Oxygen saturation. 

 

7. Outlook 

Uncultured bacterium group reach a very interesting position in the phylogenetic tree 

because of several reasons: such group is totally independent from to the rest of the 

groups. In fact, the uncultured group was placed even far from the uppers group, but for 

a better view the tree and a higher understanding of the phylogenetic the position was 

modified. Nevertheless the similarity is greater with Leptospirillum sp., but there are 

still considerable differences in between the groups. 

Therefore and concluding, further studies on the unidentified bacterium as well as on 

RZ_7 would be highly interesting with the view to create a representative and 

completed phylogenetic bioleaching tree and to ascertain the favourable conditions for a 

high bioleaching yield. 
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