
International Journal of Software Engineering and Knowledge Engineering

 World Scientific Publishing Company

1

REQUIREMENT RISK LEVEL FORECAST USING BAYESIAN NETWORKS

CLASSIFIERS

ISABEL MARÍA DEL ÁGUILA

Dpt. Languages and Computation, University of Almería, Carretera de la Playa,

Almería, 04120,Spain

imaguila@ual.es

JOSÉ DEL SAGRADO

Dpt. Languages and Computation, University of Almería, Carretera de la Playa,
Almería, 04120,Spain

jsagrado@ual.es

Received (15 01 2010)

Revised (15 12 2010)

Accepted (Day Month Year)

Requirement engineering is a key issue in the development of a software project. Like any other

development activity is not without risks. This work is about the empirical study of risks of

requirements by applying machine learning techniques, specifically Bayesian networks classifiers.

We have defined several models to predict the risk level for a given requirement using three dataset

that collect metrics taken from the requirement specifications of different projects. The classification

accuracy of the Bayesian models obtained is evaluated and compared using several classification

performance measures. The results of the experiments show that the Bayesians networks allow

obtaining valid predictors. Specifically, a tree augmented network structure shows a competitive

experimental performance in all datasets. Besides, the relations established between the variables

collected to determine the level of risk in a requirement, match with those set by requirement

engineers. We show that Bayesian networks are valid tools for the automation of risks assessment in

requirement engineering.

Keywords: Requirement Engineering, Risk assessment, Data Mining, Bayesian Networks Classifiers.

1. Introduction

Software development organizations fail many times to deliverer its products within

schedule and budget. Statistical studies, as those conducted by Standish Group,

Department of Defense or Software Engineering Institute (SEI) [1, 2], show that,

frequently, tasks related to requirements lead software project to the disaster. Problems in

requirements have been often cited as one of the highest risks during software life [3].

These problems may be avoided or reduced using systematic and disciplined methods of

managing software development risk, specially focused on requirements risk [4, 5].

A risk is an uncertain event that could have a negative outcome; a problem is a risk

now materialized. Associated to any risk there are two measures: probability of an

unsatisfactory outcome and the loss that will occur if the problem appears [4]. Risk

exposure combines these measures. Project managers need to handle risks in a way that

2 I. M. del Águila & J. del Sagrado

they ensure the success, minimizing potential risk consequences. These managers’ tasks

are called software risk management.

The goal of risk management in software development is to identify, quantify, plan

for, and then react against to potential risks, to keep them from affecting the software

project. But as DeMarco [6] confirms, risk management is really project management for

adults. This fact combined with that the requirements reside basically in the problem

space whereas other software artifacts reside in the solution space [7], make risk

management in Requirement Engineering a hard, imprecise and undetermined work.

The most used methods for the identification of the risky software development

components are qualitative [8, 9]. Potential risks are assessed by applying subjective risk

assessment techniques that are qualitative, human-intensive and error-prone [10]. These

assessment tasks should be based on quantitative measures calculated from product

attributes. If we are managing risks related to requirements, we would need some metrics

about requirements that can give us estimation about the incidence of the potential risks,

but nowadays all risk assessment methods currently applied are performed manually.

This work deals with how to apply a specific formalism, Bayesian Networks [11, 12],

which originated in artificial intelligence and knowledge engineering fields, as classifiers

with the purpose of enhancing activities related to risk management, specifically in

requirements activities. This work explores the use of Bayesian networks in requirement

engineering, specifically focused on the identification and assessment of risky

requirements. The use of Bayesian networks in Software Engineering is not new [13, 14,

15], for example they have been applied in maintenance [15], defect prediction [13] or

implementation of a software project [14]. Furthermore, this formalism has also

successfully been applied in other issues of Requirement Engineering as in the prediction

of the need for a requirements' document review [16] or in the analysis of use cases [17].

Our main purpose is to make a study about the estimation of the risks related to the

requirements using automatic learning techniques based on classification trees and

Bayesians networks. These techniques will be applied to obtain predictors that indicate

the necessity to use risk management techniques to mitigate the exposure to risks. The

results obtained by the different predictors will be contrasted against each other. At the

time of comparing results, we will use as reference the model based on classification

trees. Besides, in the case of predictors based on Bayesian networks, the starting point

will be to applied a Naïve Bayes method, that is affected by the hypothesis of

independence between predicting variables, and to compare its results with those

obtained by other models based on Bayesians networks (with increased tree structure or

k-dependencies) that do not make this hypothesis. The various dataset used for the

empirical study are freely distributed through the Web pages of the National Aeronautics

and Space Administrator (NASA) IV & V facility Metrics Data Program (MDP)

repository (http://mdp.ivv.nasa.gov/) and Predictor Models In Software Engineering

(PROMISE) projects (http://promisedata.org).

This paper is organized in six sections (excluding this introduction). In Section 2 is

described the problem of the risks in Requirement Engineering. The techniques applied to

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 3

obtain the predictors are explained in Section 3. The datasets used in this work are

included and detailed in Section 4. The experiments designed and the result of the study

of the classification performance of Bayesian networks classifiers applied to predict the

level of risk for a given requirement, are described in Section 5. The Bayesian classifiers

selected on Section 6 gives an explanation of the relationship between the variables used

for risk assessment. Due to this reason, this Bayesian network is the generic model that

can be used in order to predict the risk level. Finally, in Section 7 the obtained

conclusions and the future works that can extend this study are presented.

2. Risks of Requirement Engineering

One of the major problems when developing complex software systems is that of

Requirement Engineering. When requirement-related tasks are poorly defined or

executed, the software product is typically unsatisfactory [18, 19], and therefore, any

improvement in requirements will affect favorably the whole software lifecycle. This is

supported by the information collected and analyzed in several reports [19, 20, 1], which

point out that about a 70% of software project have troubles and among these an

unsuccessful requirements study is the cause of troubles or cancellation in the 50% of the

times. Besides if tasks related to requirements are not correctly performed, 35% of all

software development projects will not meet the desired and expected quality.

Software requirements express the needs and constraints fixed for a software product

that contribute to the solution of some real world problem [21]. Traditionally, obtaining

requirements has been considered as a fuzzy step in the software development lifecycle,

in which a set of informal ideas must be translated into formal expressions; ambiguity is

the rule, not the exception.

Requirements can be considered as the bricks gluing different stages in software

project development [22]. So, if we have a risky requirements process, probably we will

have a risky project. In order to mitigate the risks, we need to identify and assess risks of

requirements, and then, these risks need to be resolved and monitored during a project.

Requirement Engineering must be supplemented with Requirement Risk Management in

order to avoiding, minimizing, monitoring, mitigating and compensating requirement-

based problems [23].

During the last 20 years, many authors have written about risks in software

development [4, 5, 3, 24, 25, 26], having as goal the identification of the major risks that

can impact software project, the classification of these risks, and the development of

more accurate strategies in order to control them. There are many works whose goal is to

study and propose mechanisms for risk management in general [8, 4, 9, 27, 28]. Among

these works, it is worth to mention the efforts of the Software Engineering Institute (SEI),

[8] that offers a wide set of works and technical reports about risks, and defines a model

for the management of software development risks, which controls the quality, cost, and

schedule of software products. This risk management paradigm follows five cyclic

activities: Identification, Analysis, Planning, Track and Control. Identification is about

searching for and locating risks that need to be translated into decision-making

4 I. M. del Águila & J. del Sagrado

information during the analysis. The planning activity is in charge of translating risk

information into mitigation actions. Finally, track activity monitors risks and actions and

may lead to control actions to correct deviations from the plan.

Risk identification [29, 30] usually is performed by applying taxonomy–based

questionnaires that define a framework for identifying the potential risks that can be

evolve into a problem in a specific software project. Taxonomy represents an attempt to

organize the sources of software development risks around three aspects in software

development: Development cycle risks, Development environment risks and Program

risks. Development environment and Program risks are not directly related with the

software product that is being under development. The development cycle encompasses

the tasks associated with software production: requirements gathering, code design,

formulation of specifications, project planning, implementation, and testing.

When we face requirements-related risks, we focus on the problem of development

cycle risks. The risks included in this category are usually intrinsic risks. That is, risks

that can be managed from within the project itself once they have been assessed [30].

Besides, development cycle risks often come from requirements that are difficult or

impossible to implement, combined with a lack of an efficient negotiation or incorrect

budgets and schedules; from unsuitable analysis of requirements or design specification;

or from poor quality design or coding [29]. Thus, many of them come from products or

artifacts generated during the project development (i.e. requirements, design

specifications).

In the domain of risks related to the stage of gathering and analysis of the

requirement, several authors have proposed different kinds of requirements’ risks:

overlooking a crucial requirement, inadequate customer representation, modeling only

functional requirements, not inspecting requirement, attempting to perfect requirement

before construction, representing requirement in form of design [3]; developing the

wrong functions and properties, developing wrong user interface, gold plating, continuing

stream of requirement changes [4]; unrealistic customer expectations, insufficient

customer involvement, poor impact analysis, scope creep, defective requirements, new

processes and tools [24]. All of them, including [2, 29, 30], focus on the identification of

the risks during the Requirements Engineering stage, indicating the origin or the cause of

a risk, instead of what are the products with risks. In our case, these are precisely the

risky requirements that need to be carefully monitored.

The main approaches to the identification process apply a qualitative and subjective

assessment to identify potential risks [29, 30, 31]. A better approach would be that these

assessment tasks would be based on quantitative measures calculated from product

attributes. If we are managing risks related to requirements, then we will need some

metrics about requirements that can give us an estimation about the incidence of the

potential risks. The most significant benefits of software metrics is that they provide

information to support decision making during software lifecycle [32]. We will have

better information for the work of planning and risk control by applying metrics in the

process of risk management. The first attempt to use quantitative information in order to

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 5

evaluate risks was proposed by Palmer [33]. This author enhances a qualitative risks

assessment with a quantitative risk-based metric defining three attributes for each

function or requirement to be implemented: volatility, ambiguity and conflict. These

values, counts and ratios help user and developer in risk management for the detection of

requirements with problems and issues. Other recent works have investigated whether

metrics can be used to build predictive models applying textual requirement metrics.

Their goal is to identify fault prone software models [34]. Hayes [35] focuses on building

a taxonomy of requirement faults working with the data provided by National

Aeronautics and Space Administrator (NASA) about some project’s metrics. Authors as

Feather & Conrford [36] and Wyatt et al. [37] propose predictive models to identify

requirement risks, estimating, early in development life cycle, the available metrics about

individual requirement.

Fig. 1. How to enhance risk management using Bayesian Networks.

With respect to requirements, risk managers have the workload in risk management. The

activity diagram under the label PRESENT (see figure 1), shows the workflow that is

currently applied. Once requirements have been elicited, and a specification of the

requirements (SRS) has been written, requirements are measured by means of software

tools (e.g. ARM tool in NASA software IV&V project). These metrics provide

information to risks managers in order to identify the risk related to requirements. Then

the workflow iterates through the cyclic activities described previously. Our goal is to

automate the identification process of risky requirements, as is showed in the activity

diagram under the label FUTURE (see figure 1). This could be done using the Bayesian

network classifier, if we give it as input the value of one or more metrics for a

6 I. M. del Águila & J. del Sagrado

requirement obtained from SRS, it returns a risk level assessment for this requirement. In

this way the workload of the risk managers is reduced.

Requirements metrics are the basic components that allow us to define the problem of

identifying and evaluating risks of an individual requirement as a classification problem.

A classification problem tries to separate the objects belonging to a specific domain, into

smaller classes, using criteria to determine whether a particular object in the domain

belongs or not to a particular class. The information about requirements is that collected

on projects such as the NASA Independent Verification & Validation Facility’s MDP or

PROMISE [38]. In these dataset there are three levels of risk that make up the different

classes used for the classification of requirements. One goal is to observe how

information (i.e. metrics) collected about a requirement affects to its risk level, and other

is to check if the relationships identified in the classification model between

requirements’ metrics match with those identified naturally by engineers during the

process of requirements’ risk assessment. We will search for classifiers through the

empirical study of such data.

3. Bayesian Networks as Classifiers

The problem of supervised classification is to assign a vector 𝒂 = (𝑎1 ,···, 𝑎𝑛) of

attributes or features, one of the m classes of the variable 𝐶. The true class is denoted by c

and takes values in {1, 2, … , 𝑚}. There is a cost matrix 𝑐𝑜𝑠𝑡(𝑟, 𝑠) with 𝑟, 𝑠 = 1, …𝑚

which reflects the cost associated with incorrect classifications. In particular 𝑐𝑜𝑠𝑡(𝑟, 𝑠)

shows the cost of classifying an item of class r in class s. In the case of using the cost

function 0/1, we have

𝑐𝑜𝑠𝑡(𝑟, 𝑠) =
1 𝑟 ≠ 𝑠
0 𝑟 = 𝑠

 (1)

Underlying the observations, we assume the existence of a joint probability

distribution which is unknown:

𝑝 𝑎1, … , 𝑎𝑛 , 𝑐 = 𝑝 𝑐 𝑎1 , … , 𝑎𝑛 𝑝 𝑎1 , … , 𝑎𝑛 = 𝑝 𝑎1 , … , 𝑎𝑛 𝑐 𝑝(𝑐) (2)

The aim is to build a classifier that minimizes the total cost of mistakes. This is

achieved through the Bayes classifier

𝛾 𝒂 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘

 𝑐𝑜𝑠(𝑘, 𝑐)

𝑚

𝑐=1

 𝑝 𝑐 𝑎1, … , 𝑎𝑛 3

In the case that the cost function is 0/1, the Bayes classifier is equivalent to assigning

the instance 𝒂 = (𝑎1 ,···, 𝑎𝑛) the class with the highest posterior probability. That is,

𝛾 𝒂 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

𝑝 𝑐 𝑎1, … , 𝑎𝑛 4

In practice, the joint distribution function 𝑝(𝑎1 ,···, 𝑎𝑛 , 𝑐) is unknown, and can be

estimated from a simple random sample {(𝒂 1 , 𝑐 1), … . , (𝒂 𝑁 , 𝑐 𝑁)} that is supposed

extracted from the joint distribution function.

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 7

3.1. Naïve Bayes

Under this name is known the classification paradigm that uses Bayes' theorem in

conjunction with the hypothesis of conditional independence of the predictors variables

given the class [39, 40]

The naïve Bayes paradigm is based on two premises established on the predictors

(findings) and the variable to predict (diagnosis). These premises are:

 Diagnoses are mutually exclusive. That is, the variable to predict 𝐶 takes one of its m

possible values.

 Findings are conditionally independent given the diagnosis. That is, if you know the

value of the diagnosis variable, knowledge of any of the findings is irrelevant to the

other findings.

𝑝 𝐴1 = 𝑎1 , … , 𝐴𝑛 = 𝑎𝑛 𝐶 = 𝑐 = 𝑝 𝐴𝑖 = 𝑎𝑖 𝐶 = 𝑐

𝑛

𝑖=1

 (5)

Therefore, in the naïve Bayes paradigm, finding most likely diagnosis, 𝑐∗, once

known symptoms (𝑎1 , . . . 𝑎𝑛) for a particular patient, reduces to find

𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐

𝑝(𝑐 = 𝑐) 𝑝 𝐴𝑖 = 𝑎𝑖 𝐶 = 𝑐

𝑛

𝑖=1

 (6)

Trying to overcome the strong constraints underlying in the naïve Bayes paradigm,

other paradigms have been developed allowing us to express dependency relationships

between the predictors.

3.2. Tree Augmented Naïve Bayes

In order to obtain a naïve Bayes classifier with a tree enhanced structure, we start with a

tree structure with the predictors variables, to later connect the class variable with each of

the predictor variables.

Friedman et al. [41] present an algorithm called tree augmented network (TAN),

which is basically an adaptation of the Chow-Liu algorithm [42]. It takes into account the

amount of mutual information conditional on the class variable. The amount of mutual

information between discrete variables 𝐴, 𝐵 conditional on the variable 𝐶 is defined as

𝐼 𝐴, 𝐵 𝐶 = 𝑝(𝑎𝑖 , 𝑏𝑗 , 𝑐𝑘) 𝑙𝑜𝑔
𝑝(𝑎𝑖 , 𝑏𝑗 |𝑐𝑘)

𝑝 𝑎𝑖 , 𝑐𝑘 𝑝(𝑏𝑗 |𝑐𝑘)

𝑣

𝑘=1

𝑢

𝑗=1

𝑡

𝑖=1

 (7)

If the data has been generated by a tree-shaped structure, the TAN algorithm is

asymptotically correct, in the sense that if the sample is large enough, it will recall the

structure that generated the file of cases.

8 I. M. del Águila & J. del Sagrado

3.3. K-Dependent Bayesian Classifiers

Sahami [43] proposed an algorithm called k dependence Bayesian classifier (KDB),

which enables traverse the wide spectrum of dependences available between the naïve

Bayes model and the model corresponding to a complete Bayesian network. The

algorithm is based on the concept of k-dependent Bayesian classifier, which contains the

structure of the naïve Bayes classifier and allows each predictor have a maximum of k

parents variables without counting the class variable.

Thus, the naïve Bayes model corresponds to a 0-dependent Bayesian classifier, a

TAN model would be a 1-dependent Bayesian classifier and a complete Bayesian

classifier (the structure does not reflect any independence) would correspond to a (n-1)-

dependent Bayesian classifier.

The basic idea of the algorithm is to generalize the algorithm proposed by Friedman

et al [41] allowing each variable to have a number of parents, without counting the class

variable 𝐶, bounded by 𝑘.

4. NASA IV & V requirement metrics

The NASA IV & V facility Metrics Data Program (MDP) repository provides access to

software metrics and the associated error data at the function/method level for NASA

software development projects. The repository is a database that stores problem data,

product data and metrics data. These data provides the opportunity to investigate the

relationship of metrics or combinations of metrics to the software.

Measures can help in the understanding of software and the Software Engineering

processes in order to derive models of those processes and examine relationships among

the process parameters. The software measurement guidebook [44] provides three key

reasons for software measurement:

1. Understand and model software engineering processes and products

2. Aid in the management of software projects

3. Guide improvements in software engineering processes

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 9

Table 1. NASA MDP Requirement metrics (from http://mdp.ivv.nasa.gov/).

Measure Description Observation

Identifier Unique requirement Identifier

Action Represents the number of actions the requirement needs to be capable of

performing

Manual

assignment

(MA)

Conditional Represents whether the requirement will be addressing more than one

condition. This indicates a higher level of complexity in dealing with multiple

conditions within the requirement (i.e., If, when, in the event of).

MA

Continuance Phrases such as "the following:" that follow an imperative and precede the

definition of lower level requirement specification. The extent that

continuances are used is an indication that requirements have been organized

and structured. These characteristics contribute to the tractability and

maintenance of the subject requirement specification. However, extensive use

of continuances indicate multiple, complex requirements that may not be

adequately factored into development resource and schedule estimates

Automated

Requirement

Measurement

software tool

(ARM)

Imperative Those words and phrases that command that something must be provided.

"Shall" normally dictates the provision of a functional capability. "Must" or

"must not", normally establish performance requirements or constraints.

"Will" normally indicates that something will be provided from outside the

capability being specified. The ARM report lists the imperatives and their

associated counts in descending order of forcefulness. An explicit

specification will have most of its counts high in the report IMPERATIVE list

(i.e. shall, must, required)

ARM

Incomplete Phrases such as "TBD" or "TBR". They are used when a requirement has yet

to be determined. These are considered critical to requirements documents and

need to be corrected as soon as possible. They can cause unexpected delays

and high costs.

ARM

Option Those words that give the developer latitude in the implementation of the

specification that contains them. This type of statement loosens the

specification, reduces the acquirer's control over the final product, and

establishes a basis for possible cost and schedule risks

ARM

Risk Level A calculated risk level metric based on weighted averages from metrics

collected for each requirement.

Level 1: Indicates a non-complex straight forward requirement containing one

imperative, single action and single source.

Level 2: Indicates a requirement containing multiple imperatives, more than

one action and/or more than one source.

Level 3: Indicates a requirement containing conditionals and more than one

action and/or source

MA

Source Represents the number of sources the requirement will interface with or

receive data from.
MA

Weak Phrase Clauses that are apt to cause uncertainty and leave room for multiple

interpretations. Use of phrases such as "adequate" and "as appropriate"

indicate that what is required is either defined elsewhere or worst, the

requirement is open to subjective interpretation. Phrases such as "but not

limited to" and "as a minimum" provide the basis for expanding requirements

that have been identified or adding future requirements. Weak Phrase total is

indication of the extent that the specification is ambiguous and incomplete.

ARM

http://mdp.ivv.nasa.gov/

10 I. M. del Águila & J. del Sagrado

We use different datasets from NASA MDP repository. Each one contains many

metrics, which describe product´s size, complexity and some structural properties. Only 3

of the 13 project included in the NASA MDP offer requirement metrics. As Table 1

shows the assignment of values of some of these metrics is performed manually (MA)

whereas the values assignment of other metrics is performed making use of natural

language processing (NLP) techniques. NLP methods are also used in commercial tools

for the analysis of requirement’s quality, such as the QualityAnalyzer for DOORS and

IRqA (http://www.reusecompany.com).

The NASA projects used are: CM1 project is a NASA spacecraft instrument, JM1 is a

real-time prediction ground system, PC1 is a flight software for earth orbiting satellite.

All are writing in C and the numbers of modules are, respectively, 498, 10885 and 1109.

Table 1 shows the set of 10 attributes used to describe requirements in NASA MDP.

Table 2 shows the analysis of requirement measures contained in each dataset and the

number of instances for each of the three requirements’ risk levels considered.

Risk level is assigned manually to each requirement during requirement analysis

through a revision of the metrics collected for each requirement. Thus, Risk level 3

corresponds to requirements having conditional and/or incomplete sentences together

with multiple imperatives, actions or sources. These requirements are the most complex

for implementation and require additional testing. Risk level 2 corresponds to

requirements that can contain imperatives, weak phrases, options and/or continuances.

They are moderately complex requirements that do not contain conditional or incomplete

sentences. Risk level 1 is associated to requirements with weak phrases, options and/or

imperatives and that are defined in a clear and concise way.

Table 2. Requirement Measures Analysis

Measure CM1 (160 instances) JM1 (74 instances) PC1 (320 instances)

 Min Max Mean Stdev Min Max Mean Stdev Min Max Mean Stdev

Action 1 5 1.463 0.768 0 5 1.514 0.996 1 6 1.659 0.976

Conditional 0 1 0.144 0.352 0 1 0.284 0.454 0 1 0.234 0.424

Continuance 0 3 0.425 0.61 0 4 0.595 0.978 0 5 0.666 0.894

Imperative 1 4 1.238 0.599 0 5 1.392 1.031 0 5 0.816 0.885

Incomplete 0 0 0 0 0 0 0 0 0 0 0 0

Option 0 1 0.025 0.157 0 1 0.081 0.275 0 3 0.019 0.193

Source 1 5 1.55 0.896 0 6 1.797 1.238 1 23 2.072 2.034

Weak phrase 0 1 0.125 0.332 0 1 0.108 0.313 0 2 0.013 0.137

 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Risk Level 68 58 34 24 23 27 168 104 48

http://www.reusecompany.com/

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 11

5. Bayesian Network Classifiers applied to Risk of RE

Once the attributes (i.e. action, conditional, continuance, imperative, option, source, weak

phrase) and class (i.e. requirement risk level) have been identified in the previous section,

we are going to apply Bayesian networks in order to classify the risk associated to a given

requirement. Notice that attribute “incomplete” has assigned a zero value in all the cases

of the three datasets been considered. This is the reason why we have not taken it into

account as an attribute in the classification problem.

In order to develop the experimental study we have applied the same schema in the

different datasets:

1. Learn using stratified tenfold cross-validation a model for each of the different

types of Bayesian networks classifiers proposed and a classification tree

2. Obtain the classification results of each classifier as a contingency table.

3. Evaluate and compare the classification accuracy achieved by the different

classifiers.

First, we have learnt using stratified tenfold cross-validation a model each of the

different types of Bayesian networks classifiers proposed and a classification tree. That

is, the original dataset is divided into ten parts, each of which preserves the properties of

the original sample, using nine for learning and one for testing. The learning-testing

process is repeated ten times, one for each partition. The classification tree will be used

as reference at the time of comparing and evaluating results, because it is a commonly

used technique in data mining. Second, we have obtained the classification results of each

classifier as a contingency table with a row and a column for each class. Each element of

the contingence table shows the number of instances for which the actual class is the row

and the predicted class is the column. In our problem, the predicted variable is the risk

level for a given requirement, so we have a 3x3 contingency table as is depicted in Table

3 collecting prediction outcomes for each classifier.

Third, a comparison between the different models applied to predict the risk level for

a given requirement, is performed evaluating and comparing the classification accuracy

achieved by the different classifiers using several measures [45] (the first five can be

calculated directly from the contingency table):

Table 3. Contingency table for requirements’ level of risk prediction.

 Predicted class

 Risk Level 1 Risk Level 2 Risk Level 3

 Risk Level 1 a b c

Actual class Risk Level 2 d e i

 Risk Level 3 g h j

Ç

12 I. M. del Águila & J. del Sagrado

 Percentage of correctly classified instances, for example for the contingency matrix

shown in Table 3 this value will be computed as. (a+e+i)/(a+b+c+d+e+f+g+h+i)

 True positive (TP) rate for each class is the proportion of instances that were

correctly classified, among all instances which truly belongs to the class. For

example, the TP for “Risk level 1” class is a/(a+b+c). It is equivalent to recall, i.e.

the portion of the class that was captured, and give us a measure of completeness.

 False positive (FP) rate for each class is the proportion of instances that were

incorrectly classified in the class, among all the instances which do not belong to the

class. For example, the FP for “Risk level 1” class is (d+g)/(d+e+f+g+h+i).

 Precision is the proportion of instances which truly belong to a given class among all

those which were classified in the class, i.e. a/(a+d+g) for “risk level 1”. It is a

measure of exactness or fidelity that tells us the probability of a correct classification

of the risk level of a given requirement.

 F-measure is a measure of accuracy and is defined as the harmonic mean of precision

and recall: F=2·(precision·recall)/(precision+recall).

 Relative Operating Characteristic (ROC) curve and the Area Under ROC Curve

(AUC). The ROC curve provides a graphical representation of the classification

performance by means of depicting the TP rate as function of the FP rate across all

the possible experimental settings. A ROC curve allows visual examination of the

tradeoff between the ability of a classifier to correctly detect risky requirements

(recall) and the number of requirements whose risk level is incorrectly classified

(false positive). The classification accuracy can be measured by the AUC (an area of

1 represents a perfect test whilst an area of 0.5 corresponds to a worthless test). As

Fawcett [46], points out, this measure can be interpreted as the probability that when

we randomly pick one positive and one negative example, the classifier will assign a

higher score to the positive example than to the negative.

The values obtained for these measures in the different datasets are shown in Tables

4, 5, 6, 7.

Table 4 shows the percentage of correctly classified instances obtained by each

classifier in each dataset. The best percentages are highlighted in boldface suggesting that

TAN is the most appropriate schema for a Bayesian classifier that predicts the risk level

of a requirement.

Table 4. Percentage of Correctly Classified Instances

Dataset J48 Naïve TAN KNN BN

CM1 91,88 92,50 92,50 91,25 91,25

JM1 79,73 75,68 85,14 83,78 83,78

PC1 91,88 85,31 86,25 86,25 87,19

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 13

From the viewpoint of a software project, risk levels 2 and 3 are the most important,

because requirements within these levels are those that need to be monitored throughout

the project. Requirements with a high level of risk can affect the project in a way that it

cannot meet quality, deadlines or, even worst, that the project can be canceled. An error

in classifying the risk level associated with one of these requirements affect the entire

subsequent development of the project.

On the other hand, if we assign a risk level 2 or 3 to a requirement which has a risk

level of 1, we increase the cost of the software project, because we are expending

resources and taking control actions to manage a requirement which need not be so

closely controlled.

A requirement with risk level 1 is a requirement that is clearly defined and not too

complex, which is unlikely to present problems in its implementation on the delivered

software product. These requirements have less influence on the project risk.

Table 5. Performance Results for CM1

 TP Rate FP Rate Precision F-measure AUC

 J48 1,000 0,076 0,907 0,951 0,986

 Naïve 1,000 0,033 0,958 0,978 1,000

Risk Level 1 TAN 1,000 0,033 0,958 0,978 0,998

 KNN 1,000 0,022 0,971 0,986 0,997

 BN 1,000 0,022 0,971 0,986 1,000

 J48 0,828 0,029 0,941 0,881 0,929

 Naïve 0,897 0,059 0,897 0,897 0,960

Risk Level 2 TAN 0,914 0,059 0,898 0,906 0,962

 KNN 0,897 0,078 0,867 0,881 0,966

 BN 0,879 0,069 0,879 0,879 0,972

 J48 0,912 0,024 0,912 0,912 0,956

 Naïve 0,824 0,024 0,903 0,862 0,976

Risk Level 3 TAN 0,794 0,024 0,900 0,844 0,979

 KNN 0,765 0,032 0,867 0,813 0,978

 BN 0,794 0,040 0,844 0,818 0,977

14 I. M. del Águila & J. del Sagrado

Table 6. Performance Results for JM1

 TP Rate FP Rate Precision F-measure AUC

 J48 0,958 0,040 0,920 0,939 0,958

 Naïve 0,958 0,080 0,852 0,902 0,962

Risk Level 1 TAN 0,958 0,040 0,920 0,939 0,966

 KNN 0,958 0,040 0,920 0,939 0,963

 BN 0,958 0,040 0,920 0,939 0,963

 J48 0,652 0,137 0,682 0,667 0,851

 Naïve 0,609 0,176 0,609 0,609 0,789

Risk Level 2 TAN 0,739 0,098 0,773 0,756 0,890

 KNN 0,652 0,078 0,789 0,714 0,883

 BN 0,652 0,078 0,789 0,714 0,878

 J48 0,778 0,128 0,778 0,778 0,863

 Naïve 0,704 0,106 0,792 0,745 0,915

Risk Level 3 TAN 0,852 0,085 0,852 0,852 0,968

 KNN 0,889 0,128 0,800 0,842 0,968

 BN 0,889 0,128 0,800 0,842 0,967

Table 7. Performance Results for PC1

 TP Rate FP Rate Precision F-measure AUC

 J48 0,970 0,053 0,953 0,962 0,979

 Naïve 0,899 0,099 0,910 0,904 0,973

Risk Level 1 TAN 0,917 0,118 0,895 0,906 0,974

 KNN 0,923 0,118 0,896 0,909 0,973

 BN 0,917 0,125 0,890 0,903 0,970

 J48 0,904 0,074 0,855 0,879 0,939

 Naïve 0,788 0,111 0,774 0,781 0,935

Risk Level 2 TAN 0,788 0,097 0,796 0,792 0,944

 KNN 0,788 0,097 0,796 0,792 0,941

 BN 0,817 0,097 0,802 0,810 0,939

 J48 0,771 0,007 0,949 0,851 0,927

 Naïve 0,833 0,029 0,833 0,833 0,977

Risk Level 3 TAN 0,833 0,018 0,889 0,860 0,976

 KNN 0,813 0,018 0,886 0,848 0,974

 BN 0,833 0,004 0,976 0,899 0,977

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 15

Tables 5, 6, 7 show the performance measures associated to each dataset. These

measures are analyzed taking into account the nature of the risks in the requirement

domain. Thus, in order to select the most appropriate structure for the Bayesian classifier,

we consider the two structures that have achieved best values on the performance

measures associated to risk levels 3 and 2. The values highlighted in boldface in these

tables correspond to the maximum value reached, except in the case of FP-rate, which is

the lowest one. Therefore, the selected structures are Naïve y TAN in the case of the

dataset CM1, TAN and KNN for JM1, and TAN and NB in the case of PC1.

In order to make more comprehensive the comparative, the Figures 2, 3, 4 depict the

ROC curves associated to the above selected Bayesian classifiers and to the classification

tree which we take as a reference model.

We fix our attention on two regions when examining ROC curves. First region is

unfavorable for the cost and covers the initial part of the ROC curve with low values for

the rates of false positives and true positives. The second region is unfavorable for risk

and covers the final part of the ROC curve with high values for both rates. As was

previously pointed out, in the problem at hand is more important to identify the risk level

of a requirement that the cost of reviewing its level of risk. Thereto, we focus our

attention on the risk adverse region, preferring classifiers whose performance is higher in

the unfavorable risk area for the different risk levels.

16 I. M. del Águila & J. del Sagrado

Fig. 2. ROC curve of CM1 dataset.

Figure 2 shows the equality on performance achieved for the CM1 data set between

Naïve and TAN, as is reflected by the data in Table 5. The same fact is shown in Figures

3 and 4, between TAN and KNN, and BN y TAN, for the datasets JM1 and PC1

respectively. It is worth to notice that in all cases TAN shows a competitive behavior, i.e.

it is the second best in CM1, the best in JM1 and the third best in PC1.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

CM1 Risk Level 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

CM1 Risk Level 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

CM1 Risk Level 3

J48

Naïve

TAN

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 17

Fig. 3. ROC curve of JM1 dataset.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

JM1 Risk Level 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

JM1 Risk Level 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

JM1 Risk Level 3

J48

KNN

TAN

18 I. M. del Águila & J. del Sagrado

Fig. 4. ROC curve of PC1 dataset.

6. A Tree Augmented Network for classifying the risk level of requirements

The classification performance exhibited by the TAN classifier leads us to consider

whether we can find a Bayesian classifier that works on all data sets and, at the same

time, explain the relationship between the variables used for the allocation of risk to

requirements that are proposed in the MDP of NASA (http://mdp.ivv.nasa.gov/).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

PC1 Risk Level 1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

PC1 Risk Level 2

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

PC1 Risk Level 3

J48

BN

TAN

http://mdp.ivv.nasa.gov/

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 19

Fig. 5. Different TAN structures learned from dataset.

SOURCE

ACTIONCONTINUANCEWEAK_PHRASE

IMPERATIVE

CONDITIONAL OPTION

RISK LEVEL

SOURCE

ACTION

CONTINUANCE

WEAK_PHRASE

IMPERATIVE

CONDITIONAL

OPTION

RISK LEVEL

SOURCE ACTION

CONDITIONAL

CONTINUANCE WEAK_PHRASEIMPERATIVE OPTION

RISK LEVEL

(a) TAN structure for CM1

(a) TAN structure for JM1 (RLRTAN)

(a) TAN structure for PC1

20 I. M. del Águila & J. del Sagrado

Figure 5 shows the three TAN structures learned. Of those three structures, that

obtained on JM1 (Fig. 5.b) represents relationships between requirement metrics (the

direct relationships are represented as arcs in the structure) that can be explained in a

natural way from a risk manager point of view. The fact that a requirement has a high

level of complexity (conditional), influences directly on the number of sources that it has

to interface with (source) and on the number of actions that it has to be capable of

performing (actions), in an increasing way. Thus, if a requirement has to be able to

perform a high number of actions, there is a higher chance that its explicit specification

will have a greater number of imperative terms telling that something must be provided

(imperative). When the number of actions increases, also increase the need for a greater

organization and a better structure in the requirement (continuance). Moreover, the

increase of actions reduces the acquirer’s control over the final product. In other words

the value of the metric “option” increases. Finally, the increase in the number of actions

has also a direct impact on the extent that the specification is ambiguous and incomplete

(weak phrase). This is the reason why we have decided to select it and call it Risk Level

of Requirements TAN (RLRTAN).

In order to check the validity of these claims, we have kept the RLRTAN structure on

CM1 and PC1 sets to estimate the model parameters and evaluate the performance of the

classifier. The results are shown in Table 8 and from them it follows that RLRTAN

improves the percentage of correctly classified instances in 1.25% for CM1 and 0.63%

for PC1. This improvement is also seen in the other measures used (compare Tables 5

and 7 with Table 8). To ensure that this structure is the most suitable from among those

used in this study, we have check experimentally that the KNN structure learned from

JM1 and the Bayesian network learned from PC1, when kept fixed and its parameters are

learned in the other data sets, do not provide better results than the models previously

considered, but make them worse.

Now once a knowledge model, RLRTAN, has been built, then it can be used to assess

the risk level for a requirement. The Bayesian network receives as input the values of the

metrics associated to a given requirement and through an inference process computes its

risk level.

Table 8. Performance Results for RLRTAN.

Data set
% Correct

Classification
Risk Level TP Rate FP Rate Precision F-measure AUC

 1 1,000 0,011 0,986 0,993 1,000

CM1 93,75 2 0,931 0,059 0,900 0,915 0,971

 3 0,824 0,024 0,903 0,862 0,979

 1 0,923 0,105 0,906 0,914 0,972

PC1 86,88 2 0,808 0,102 0,792 0,800 0,938

 3 0,813 0,015 0,907 0,857 0,965

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 21

7. Conclusions and Future works

The risks assessment problem in Requirement Engineering traditionally is solved based

on the skills, capabilities and experience of developers. In order to facilitate this

assessment, requirements metrics must be the basic components that allow us to define

the problem of identification and evaluation of risks of an individual requirement. If we

focus on the identification of the risky requirements that need to be carefully monitored,

then this problem can be redefined as a classification problem.

In this paper we have developed an empirical study using several datasets that collect

metrics taken from the requirement specifications in three different NASA projects,

developed for a spacecraft instrument, a real time prediction ground system and a flight

software for orbiting satellite. In these datasets the risk level of a given requirement was

fixed manually, based on a set of requirement metrics, between three classes that

correspond to the values high, medium, and low that can be assess to risk level.

In our experimental study, we have applied the same schema in the different datasets.

First, we have learnt using stratified tenfold cross-validation a model each of the different

types of Bayesian networks classifiers proposed and a classification tree. Then, we have

obtained the classification results and compute several performance measures (i.e. FP-

rate, TP-rate, F-measure, AUC). We have selected the most appropriate structure for the

Bayesian classifier, considering the two structures that have achieved best classification

performance values taking into account that it is more important to identify the risk level

of a requirement that the cost of reviewing its level of risk.

The classification performance exhibited by the TAN classifier leads us to consider

whether we can find a Bayesian classifier that works on all datasets and, at the same time,

explain the relationship between the variables used for the allocation of risk to

requirements. In consequence, we have obtained a TAN structure (RLTAN) whose set of

relationships reflects the way in which requirements’ attributes characterize risks.

In addition to these conclusions, we can say that the available data are not as

extensive as it would be necessary. Nonetheless, they are related with those Requirement

Engineering approaches in which the requirement specification is a document. The actual

approaches in requirement development usually are assisted by requirement management

tools, making the requirement specification something more than just a document. These

tools offer the possibility of defining some other more useful metrics, i.e. the number of

changes that a requirement has experienced; the relative growth of a requirement; the

number of stakeholders that has proposed it; if the requirement has been reused from

other projects; etc. As future work, we plan to extend this study using new metrics and to

incorporate the classifiers obtained as an aid facility in requirement management tools in

order to obtain automatic risk predictions.

22 I. M. del Águila & J. del Sagrado

Acknowledgments

This work was supported by the Spanish Ministry of Education and Science under project

TIN2010-20900-C04-02 and by the Junta of Andalucía under project TEP-06174.

References

[1] Standish Group, CHAOS Summary 2009, (Standish group, Boston, MA, USA, 2009).

[2] T.R. Leishman, D.A. Cook, Requirements Risks Can Drown Software Projects CrossTalk –

Journal of Defense Software Engineering (April 2002). http://www.stsc.hill.af.mil/

crosstalk/2002/04/leishman.html

[3] B. Lawrence, K. Wiegers and C. Ebert, The Top Risks of Requirements Engineering, IEEE

Software 18 (2001) 62-63.

[4] B. Boehm, Software risk management: principles and practices, IEEE Software 8(1) (1991)

32-41.

[5] R. Fairley, Risk Management for Software Projects, IEEE Software 11(3) (1994) 57-67.

[6] T. DeMarco and T. Lister, Risk Management during Requirements, IEEE Software 20(5)

(2005) 99-101.

[7] B. H. C. Cheng and J.-M. Atlee, Research Directions in Requirements Engineering, in Proc of

Future of Software Engineering (FOSE 2007), Minneapolis, MN, USA, 2007, pp 285-303.

[8] A.J. Dorofee, Continuous Risk Management Guidebook First Edition (Carnegie Melon

University, Pittsburgh, PA, USA, 1996).

[9] R.C. Williams, G.J. Pandelios and S.G. Behrens, Software Risk Evaluation (SRE) Method

Description (Version 2.0), CMU-Technical Report, SEI-99-TR-029, (Ed.: Software

Engineering Institute, Carnegie Mellon University, 1999)

[10] N.F. Schneidewind, Predicting risk as a function of risk factors, Innovations in Systems and

Software Engineering 1(1) (2005) 63-70.

[11] J. Pearl, Probabilistic reasoning in intelligent systems: networks of plausible inference

(Morgan Kaufman, San Mateo, CA, 1988).

[12] F.V. Jensen, Bayesian Networks and decision graphs (Springer-Verlag, 2001).

[13] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause and R. Mishra, Predicting

software defects in varying development lifecycles using Bayesian nets, Information and

Software Technology 49(1) (2007) 32-43.

[14] E.J. Lauria and P.J. Duchessi, A Bayesian Belief Network for IT implementation decision

support, Decision Support Systems 42(3) (2006) 1573-1588.

[15] A.C. de Melo and A.J. Sanchez, Software maintenance project delays prediction using

Bayesian Networks, Expert Systems with Applications 34(2) (2008) 908-919.

[16] J. del Sagrado, and I.M. del Águila. A Bayesian Network for Predicting the Need for a

Requirements Review. In Artificial Intelligence Applications for Improved Software

Engineering Development: New Prospects, (Ed.: Farid Meziane and Sunil Vadera, IGI Global,

Hershey PA, USA , 2009), pp. 106-128.

[17] Ganesh Pai, Joanne Bechta-Dugan, Khalid Lateef, "Bayesian Networks applied to Software

IV&V," Software Engineering Workshop, Annual IEEE/NASA Goddard, pp. 293-304,

29th Annual IEEE/NASA Software Engineering Workshop, 2005

[18] I. Sommerville, Software Engineering: (Update) (8th Edition) (Addison Wesley, Essex,

England, 2006).

[19] R.L. Glass, Facts and Fallacies of Software Engineering (Addison Wesley, Boston, MA,

2002).

[20] Standish Group, Chaos Chronicles v3.0. (Standish group, Boston, MA, USA, 1999).

Requirement Risk Level Forecast Using Bayesian Networks Classifiers 23

[21] G. Kotonya and I. Sommerville, Requirements Engineering: Processes and Techniques

(Wiley, New York, NY, 1998).

[22] C. Ebert, Understanding the product life cycle: four key requirements engineering techniques,

IEEE Software 23(3) (2006) 19-25.

[23] D. Gelperine, Identifying and Controlling Requirements Risk (v40 1.2M) Technical Report

(Ed: Clearspecs, Posted: 6/15/2009), http://clearspecs.com/joomla15/.

[24] Ellen Gottesdiener, How Agile Practices Reduce Requirements Risk, Better Software, Jul/Ago

(2009) 14-15.

[25] C. Chittister and Y. Haimes, Fellow, Risk Associated with Software Development, IEEE

Transactions on Systems, Man and Cybernetics 23(3) (1993) 14-15.

[26] M. Keil, P.E. Cule, K. Lyytinen and R.C. Schmidt, A Framework for Identifying Software

Project Risks, Communication of the ACM 41(11) (1998) 76-83.

[27] G. Stoneburner, A.Goguen, and A. Feringa, Risk Management Guide for Information

Technology Systems, Report Nº SP 800-30 (Ed.: National Institute of Standards and

Technology, 2002).

[28] F. Brown, K. Canal, R. Cullen, M. Elliott, J. Faulkner, M. Lackner, C. Owens, D. Peercy, G.D.

Reisz, P. Tempel and P. Trellue, Software Risk Management A Practical Guide, Report Nº

SQAS21.01.00 (Ed.: Software Quality Assurance Subcommittee, Department of Energy,

1999).

[29] M.J. Carr, S.L. Konda, I. Monarch, F.C. Ulrich and C. F. Walker, Taxonomy-Based Risk

Identification, CMU-Technical Report SEI-93-TR-6 ESC-TR-93-183, (Ed.: Software

Engineering Institute, Carnegie Mellon University, 1993).

[30] R.P. Kendall, D.E. Post, J.C. Carver, D.B. Henderson and D.A. Fisher, A Proposed,

Taxonomy for Software Development Risks for High-Performance Computing (HPC)

Scientific/Engineering Applications, CMU-Technical Notes SEI-2006-TN-039, (Ed.: Software

Engineering Institute, Carnegie Mellon University, 2007).

[31] H. Barki, S. Rivard and J. Talbot Toward an assessment of software development risk, Journal

of Management Information Systems 10(2) (1993) 203-225.

[32] N.E. Fenton and M.Neil, Software metrics: successes, failures and new directions, Journal of

Systems and Software 47(2-3) (1999) 149-157.

[33] J.D.Palmer, and R.P. Evans, Software risk management: requirements-based risk metrics, In

Proc of International Conference on Systems, Man, and Cybernetics, 1994. 'Humans,

Information and Technology', vol.1 San Antonio, Texas, USA, 1994, pp. 836-841

[34] Y. Jiang, B. Cukic and Y. Ma: Techniques for evaluating fault prediction models, Empirical

Software Engineering 13(5) (2008) 561-595.

[35] J.H. Hayes: Building a Requirement Fault Taxonomy: Experiences from a NASA Verification

and Validation Research Project, In Proc. Of the 14th International Synposium on Reliability

Engineering. (ISSRE 2003), Denver, Colorado, USA, 2003, pp.49-59.

[36] M.S. Feather and S.L. Cornford, Quantitative risk-based requirements reasoning, Requirement

Engineering 8(4) (2003) 248-265.

[37] V. Wyatt, J.S. Di Stefano, M. Chapman and Edward Aycoth: A Metrics Based Approach for

Identifying Requirements Risks. In Proc. of the 28th Annual NASA Goddard Software

Enginnering Workshop (SEW 2003) Greenbelt, Maryland, USA, 2003, pp. 23-28.

[38] G. Boetticher, T. Menzies and T. Ostrand, PROMISE Repository of empirical software

engineering data http://promisedata.org/ repository, (Ed.: West Virginia University,

Department of Computer Science, 2007).

[39] B. Cestnick, I. Kononenko and I. Bratko. ASSISTANT 86: A Knowledge- Elicitation Tool for

Sophisticated Users, In Proceedings of 2nd European Working Session on Learning (EWSL

87), Bled, Yugoslavia, 1987. pp: 31-45.

[40] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis (Wiley, 1973).

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cule:Paul_E=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lyytinen:Kalle.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Schmidt:Roy_C=.html
http://www.informatik.uni-trier.de/~ley/db/journals/cacm/cacm41.html#KeilCLS98
http://portal.acm.org/author_page.cfm?id=81100610471&coll=GUIDE&dl=GUIDE&trk=0&CFID=72626482&CFTOKEN=24154612
http://portal.acm.org/author_page.cfm?id=81100103517&coll=GUIDE&dl=GUIDE&trk=0&CFID=72626482&CFTOKEN=24154612
http://portal.acm.org/author_page.cfm?id=81100516545&coll=GUIDE&dl=GUIDE&trk=0&CFID=72626482&CFTOKEN=24154612

24 I. M. del Águila & J. del Sagrado

[41] N. Friedman, D. Geiger and M. Goldszmidt: Bayesian Network Classifiers, Machine

Learning 29(2-3) (1997) 131-163.

[42] C.K. Chow, and C. N. Liu, Approximating discrete probability distributions with dependence

trees, IEEE Transactions on Information Theory 14(3) (1968) 462-467.

[43] M. Sahami, Learning Limited Dependence Bayesian Classifiers, in Proc 2º International

Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA,

pp. 335-338.

[44] NASA, Software Engineering Program Software Measurement Guidebook, Report Nº: NASA-

GB-001-94 (Ed.: National Aeronautics and Space Administration, 1994).

[45] Y. Ma and B. Cukic, Adequate and Precise Evaluation of Quality Models in Software

Engineering Studies, In Proceedings of the Third International Workshop on Predictor Models

in Software Engineering (PROMISE,2007), Minneapolis, MN, USA, 2007.

[46] T. Fawcett, An introduction to ROC analysis. Pattern Recognition. Letters. 27(8) (2006) 861-

874.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Geiger:Dan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Goldszmidt:Mois=eacute=s.html
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml29.html#FriedmanGG97
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml29.html#FriedmanGG97
http://www.informatik.uni-trier.de/~ley/db/journals/ml/ml29.html#FriedmanGG97

