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Requirement engineering is a key issue in the development of a software project. Like any other 

development activity is not without risks. This work is about the empirical study of risks of 

requirements by applying machine learning techniques, specifically Bayesian networks classifiers. 

We have defined several models to predict the risk level for a given requirement using three dataset 

that collect metrics taken from the requirement specifications of different projects. The classification 

accuracy of the Bayesian models obtained is evaluated and compared using several classification 

performance measures. The results of the experiments show that the Bayesians networks allow 

obtaining valid predictors. Specifically, a tree augmented network structure shows a competitive 

experimental performance in all datasets. Besides, the relations established between the variables 

collected to determine the level of risk in a requirement, match with those set by requirement 

engineers. We show that Bayesian networks are valid tools for the automation of risks assessment in 

requirement engineering. 

Keywords: Requirement Engineering, Risk assessment, Data Mining, Bayesian Networks Classifiers. 

1.   Introduction 

Software development organizations fail many times to deliverer its products within 

schedule and budget. Statistical studies, as those conducted by Standish Group, 

Department of Defense or Software Engineering Institute (SEI) [1, 2], show that, 

frequently, tasks related to requirements lead software project to the disaster. Problems in 

requirements have been often cited as one of the highest risks during software life [3]. 

These problems may be avoided or reduced using systematic and disciplined methods of 

managing software development risk, specially focused on requirements risk [4, 5]. 

A risk is an uncertain event that could have a negative outcome; a problem is a risk 

now materialized. Associated to any risk there are two measures: probability of an 

unsatisfactory outcome and the loss that will occur if the problem appears [4]. Risk 

exposure combines these measures. Project managers need to handle risks in a way that 
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they ensure the success, minimizing potential risk consequences. These managers’ tasks 

are called software risk management. 

The goal of risk management in software development is to identify, quantify, plan 

for, and then react against to potential risks, to keep them from affecting the software 

project. But as DeMarco [6] confirms, risk management is really project management for 

adults. This fact combined with that the requirements reside basically in the problem 

space whereas other software artifacts reside in the solution space [7], make risk 

management in Requirement Engineering a hard, imprecise and undetermined work. 

The most used methods for the identification of the risky software development 

components are qualitative [8, 9]. Potential risks are assessed by applying subjective risk 

assessment techniques that are qualitative, human-intensive and error-prone [10]. These 

assessment tasks should be based on quantitative measures calculated from product 

attributes. If we are managing risks related to requirements, we would need some metrics 

about requirements that can give us estimation about the incidence of the potential risks, 

but nowadays all risk assessment methods currently applied are performed manually. 

This work deals with how to apply a specific formalism, Bayesian Networks [11, 12], 

which originated in artificial intelligence and knowledge engineering fields, as classifiers 

with the purpose of enhancing activities related to risk management, specifically in 

requirements activities. This work explores the use of Bayesian networks in requirement 

engineering, specifically focused on the identification and assessment of risky 

requirements. The use of Bayesian networks in Software Engineering is not new [13, 14, 

15], for example they have been applied in maintenance [15], defect prediction [13] or 

implementation of a software project [14]. Furthermore, this formalism has also 

successfully been applied in other issues of Requirement Engineering as in the prediction 

of the need for a requirements' document review [16] or in the analysis of use cases [17]. 

Our main purpose is to make a study about the estimation of the risks related to the 

requirements using automatic learning techniques based on classification trees and 

Bayesians networks. These techniques will be applied to obtain predictors that indicate 

the necessity to use risk management techniques to mitigate the exposure to risks. The 

results obtained by the different predictors will be contrasted against each other. At the 

time of comparing results, we will use as reference the model based on classification 

trees. Besides, in the case of predictors based on Bayesian networks, the starting point 

will be to applied a Naïve Bayes method, that is affected by the hypothesis of 

independence between predicting variables, and to compare its results with those 

obtained by other models based on Bayesians networks (with increased tree structure or 

k-dependencies) that do not make this hypothesis. The various dataset used for the 

empirical study are freely distributed through the Web pages of the National Aeronautics 

and Space Administrator (NASA) IV & V facility Metrics Data Program (MDP) 

repository (http://mdp.ivv.nasa.gov/) and Predictor Models In Software Engineering 

(PROMISE) projects (http://promisedata.org). 

This paper is organized in six sections (excluding this introduction). In Section 2 is 

described the problem of the risks in Requirement Engineering. The techniques applied to 
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obtain the predictors are explained in Section 3. The datasets used in this work are 

included and detailed in Section 4. The experiments designed and the result of the study 

of the classification performance of Bayesian networks classifiers applied to predict the 

level of risk for a given requirement, are described in Section 5. The Bayesian classifiers 

selected on Section 6 gives an explanation of the relationship between the variables used 

for risk assessment. Due to this reason, this Bayesian network is the generic model that 

can be used in order to predict the risk level. Finally, in Section 7 the obtained 

conclusions and the future works that can extend this study are presented. 

2.   Risks of Requirement Engineering 

One of the major problems when developing complex software systems is that of 

Requirement Engineering. When requirement-related tasks are poorly defined or 

executed, the software product is typically unsatisfactory [18, 19], and therefore, any 

improvement in requirements will affect favorably the whole software lifecycle. This is 

supported by the information collected and analyzed in several reports [19, 20, 1], which 

point out that about a 70% of software project have troubles and among these an 

unsuccessful requirements study is the cause of troubles or cancellation in the 50% of the 

times. Besides if tasks related to requirements are not correctly performed, 35% of all 

software development projects will not meet the desired and expected quality. 

Software requirements express the needs and constraints fixed for a software product 

that contribute to the solution of some real world problem [21]. Traditionally, obtaining 

requirements has been considered as a fuzzy step in the software development lifecycle, 

in which a set of informal ideas must be translated into formal expressions; ambiguity is 

the rule, not the exception. 

Requirements can be considered as the bricks gluing different stages in software 

project development [22]. So, if we have a risky requirements process, probably we will 

have a risky project. In order to mitigate the risks, we need to identify and assess risks of 

requirements, and then, these risks need to be resolved and monitored during a project. 

Requirement Engineering must be supplemented with Requirement Risk Management in 

order to avoiding, minimizing, monitoring, mitigating and compensating requirement-

based problems [23].  

During the last 20 years, many authors have written about risks in software 

development [4, 5, 3, 24, 25, 26], having as goal the identification of the major risks that 

can impact software project, the classification of these risks, and the development of 

more accurate strategies in order to control them. There are many works whose goal is to 

study and propose mechanisms for risk management in general [8, 4, 9, 27, 28]. Among 

these works, it is worth to mention the efforts of the Software Engineering Institute (SEI), 

[8] that offers a wide set of works and technical reports about risks, and defines a model 

for the management of software development risks, which controls the quality, cost, and 

schedule of software products. This risk management paradigm follows five cyclic 

activities: Identification, Analysis, Planning, Track and Control. Identification is about 

searching for and locating risks that need to be translated into decision-making 
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information during the analysis. The planning activity is in charge of translating risk 

information into mitigation actions. Finally, track activity monitors risks and actions and 

may lead to control actions to correct deviations from the plan. 

Risk identification [29, 30] usually is performed by applying taxonomy–based 

questionnaires that define a framework for identifying the potential risks that can be 

evolve into a problem in a specific software project. Taxonomy represents an attempt to 

organize the sources of software development risks around three aspects in software 

development: Development cycle risks, Development environment risks and Program 

risks. Development environment and Program risks are not directly related with the 

software product that is being under development. The development cycle encompasses 

the tasks associated with software production: requirements gathering, code design, 

formulation of specifications, project planning, implementation, and testing. 

When we face requirements-related risks, we focus on the problem of development 

cycle risks. The risks included in this category are usually intrinsic risks. That is, risks 

that can be managed from within the project itself once they have been assessed [30]. 

Besides, development cycle risks often come from requirements that are difficult or 

impossible to implement, combined with a lack of an efficient negotiation or incorrect 

budgets and schedules; from unsuitable analysis of requirements or design specification; 

or from poor quality design or coding [29]. Thus, many of them come from products or 

artifacts generated during the project development (i.e. requirements, design 

specifications). 

In the domain of risks related to the stage of gathering and analysis of the 

requirement, several authors have proposed different kinds of requirements’ risks: 

overlooking a crucial requirement, inadequate customer representation, modeling only 

functional requirements, not inspecting requirement, attempting to perfect requirement 

before construction, representing requirement in form of design [3]; developing the 

wrong functions and properties, developing wrong user interface, gold plating, continuing 

stream of requirement changes [4]; unrealistic customer expectations, insufficient 

customer involvement, poor impact analysis, scope creep, defective requirements, new 

processes and tools [24]. All of them, including [2, 29, 30], focus on the identification of 

the risks during the Requirements Engineering stage, indicating the origin or the cause of 

a risk, instead of what are the products with risks. In our case, these are precisely the 

risky requirements that need to be carefully monitored. 

The main approaches to the identification process apply a qualitative and subjective 

assessment to identify potential risks [29, 30, 31]. A better approach would be that these 

assessment tasks would be based on quantitative measures calculated from product 

attributes. If we are managing risks related to requirements, then we will need some 

metrics about requirements that can give us an estimation about the incidence of the 

potential risks. The most significant benefits of software metrics is that they provide 

information to support decision making during software lifecycle [32]. We will have 

better information for the work of planning and risk control by applying metrics in the 

process of risk management. The first attempt to use quantitative information in order to 
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evaluate risks was proposed by Palmer [33]. This author enhances a qualitative risks 

assessment with a quantitative risk-based metric defining three attributes for each 

function or requirement to be implemented: volatility, ambiguity and conflict. These 

values, counts and ratios help user and developer in risk management for the detection of 

requirements with problems and issues. Other recent works have investigated whether 

metrics can be used to build predictive models applying textual requirement metrics. 

Their goal is to identify fault prone software models [34]. Hayes [35] focuses on building 

a taxonomy of requirement faults working with the data provided by National 

Aeronautics and Space Administrator (NASA) about some project’s metrics. Authors as 

Feather & Conrford [36] and Wyatt et al. [37] propose predictive models to identify 

requirement risks, estimating, early in development life cycle, the available metrics about 

individual requirement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  How to enhance risk management using Bayesian Networks. 

With respect to requirements, risk managers have the workload in risk management. The 

activity diagram under the label PRESENT (see figure 1), shows the workflow that is 

currently applied. Once requirements have been elicited, and a specification of the 

requirements (SRS) has been written, requirements are measured by means of software 

tools (e.g. ARM tool in NASA software IV&V project). These metrics provide 

information to risks managers in order to identify the risk related to requirements. Then 

the workflow iterates through the cyclic activities described previously. Our goal is to 

automate the identification process of risky requirements, as is showed in the activity 

diagram under the label FUTURE (see figure 1). This could be done using the Bayesian 

network classifier, if we give it as input the value of one or more metrics for a 
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requirement obtained from SRS, it returns a risk level assessment for this requirement. In 

this way the workload of the risk managers is reduced. 

Requirements metrics are the basic components that allow us to define the problem of 

identifying and evaluating risks of an individual requirement as a classification problem. 

A classification problem tries to separate the objects belonging to a specific domain, into 

smaller classes, using criteria to determine whether a particular object in the domain 

belongs or not to a particular class. The information about requirements is that collected 

on projects such as the NASA Independent Verification & Validation Facility’s MDP or 

PROMISE [38]. In these dataset there are three levels of risk that make up the different 

classes used for the classification of requirements. One goal is to observe how 

information (i.e. metrics) collected about a requirement affects to its risk level, and other 

is to check if the relationships identified in the classification model between 

requirements’ metrics match with those identified naturally by engineers during the 

process of requirements’ risk assessment. We will search for classifiers through the 

empirical study of such data.  

3.   Bayesian Networks as Classifiers 

The problem of supervised classification is to assign a vector  𝒂 = (𝑎1 ,···, 𝑎𝑛) of 

attributes or features, one of the m classes of the variable 𝐶. The true class is denoted by c 

and takes values in {1, 2, … , 𝑚}. There is a cost matrix 𝑐𝑜𝑠𝑡(𝑟, 𝑠) with 𝑟, 𝑠 = 1, …𝑚 

which reflects the cost associated with incorrect classifications. In particular 𝑐𝑜𝑠𝑡(𝑟, 𝑠) 

shows the cost of classifying an item of class r in class s. In the case of using the cost 

function 0/1, we have 

𝑐𝑜𝑠𝑡(𝑟, 𝑠) =  
1     𝑟 ≠ 𝑠
0      𝑟 = 𝑠

                                                       (1) 

Underlying the observations, we assume the existence of a joint probability 

distribution which is unknown: 

𝑝 𝑎1, … , 𝑎𝑛 , 𝑐 = 𝑝 𝑐 𝑎1 , … , 𝑎𝑛 𝑝 𝑎1 , … , 𝑎𝑛 = 𝑝 𝑎1 , … , 𝑎𝑛  𝑐 𝑝(𝑐)           (2) 

The aim is to build a classifier that minimizes the total cost of mistakes. This is 

achieved through the Bayes classifier  

𝛾 𝒂 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑘

 𝑐𝑜𝑠(𝑘, 𝑐)

𝑚

𝑐=1

 𝑝 𝑐 𝑎1, … , 𝑎𝑛                                              3  

In the case that the cost function is 0/1, the Bayes classifier is equivalent to assigning 

the instance 𝒂 = (𝑎1 ,···, 𝑎𝑛) the class with the highest posterior probability. That is, 

𝛾 𝒂 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑐

𝑝 𝑐 𝑎1, … , 𝑎𝑛                                              4  

In practice, the joint distribution function 𝑝(𝑎1 ,···, 𝑎𝑛 , 𝑐) is unknown, and can be 

estimated from a simple random sample {(𝒂 1 , 𝑐 1 ), … . , (𝒂 𝑁 , 𝑐 𝑁 )} that is supposed  

extracted from the joint distribution function. 
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3.1.    Naïve Bayes 

Under this name is known the classification paradigm that uses Bayes' theorem in 

conjunction with the hypothesis of conditional independence of the predictors variables 

given the class [39, 40] 

The naïve Bayes paradigm is based on two premises established on the predictors 

(findings) and the variable to predict (diagnosis). These premises are: 

 Diagnoses are mutually exclusive. That is, the variable to predict 𝐶 takes one of its m 

possible values. 

 Findings are conditionally independent given the diagnosis. That is, if you know the 

value of the diagnosis variable, knowledge of any of the findings is irrelevant to the 

other findings. 

𝑝 𝐴1 = 𝑎1 , … , 𝐴𝑛 = 𝑎𝑛  𝐶 = 𝑐 =   𝑝 𝐴𝑖 = 𝑎𝑖 𝐶 = 𝑐 

𝑛

𝑖=1

                   (5) 

Therefore, in the naïve Bayes paradigm, finding most likely diagnosis, 𝑐∗, once 

known symptoms (𝑎1 , . . . 𝑎𝑛) for a particular patient, reduces to find  

𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐

𝑝(𝑐 = 𝑐)  𝑝 𝐴𝑖 = 𝑎𝑖 𝐶 = 𝑐 

𝑛

𝑖=1

                               (6) 

Trying to overcome the strong constraints underlying in the naïve Bayes paradigm, 

other paradigms have been developed allowing us to express dependency relationships 

between the predictors. 

3.2.    Tree Augmented Naïve Bayes 

In order to obtain a naïve Bayes classifier with a tree enhanced structure, we start with a 

tree structure with the predictors variables, to later connect the class variable with each of 

the predictor variables. 

Friedman et al. [41] present an algorithm called tree augmented network (TAN), 

which is basically an adaptation of the Chow-Liu algorithm [42]. It takes into account the 

amount of mutual information conditional on the class variable. The amount of mutual 

information between discrete variables 𝐴, 𝐵 conditional on the variable 𝐶 is defined as 

𝐼 𝐴, 𝐵 𝐶 =    𝑝(𝑎𝑖 , 𝑏𝑗 , 𝑐𝑘) 𝑙𝑜𝑔
𝑝(𝑎𝑖 , 𝑏𝑗 |𝑐𝑘)

𝑝 𝑎𝑖  , 𝑐𝑘 𝑝(𝑏𝑗 |𝑐𝑘)

𝑣

𝑘=1

𝑢

𝑗=1

𝑡

𝑖=1

                      (7) 

 

If the data has been generated by a tree-shaped structure, the TAN algorithm is 

asymptotically correct, in the sense that if the sample is large enough, it will recall the 

structure that generated the file of cases. 
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3.3.   K-Dependent Bayesian Classifiers 

Sahami [43] proposed an algorithm called k dependence Bayesian classifier (KDB), 

which enables traverse the wide spectrum of dependences available between the naïve 

Bayes model and the model corresponding to a complete Bayesian network. The 

algorithm is based on the concept of k-dependent Bayesian classifier, which contains the 

structure of the naïve Bayes classifier and allows each predictor have a maximum of k 

parents variables without counting the class variable. 

Thus, the naïve Bayes model corresponds to a 0-dependent Bayesian classifier, a 

TAN model would be a 1-dependent Bayesian classifier and a complete Bayesian 

classifier (the structure does not reflect any independence) would correspond to a (n-1)-

dependent Bayesian classifier. 

The basic idea of the algorithm is to generalize the algorithm proposed by Friedman 

et al [41] allowing each variable to have a number of parents, without counting the class 

variable 𝐶, bounded by 𝑘. 

4.   NASA IV & V requirement metrics 

The NASA IV & V facility Metrics Data Program (MDP) repository provides access to 

software metrics and the associated error data at the function/method level for NASA 

software development projects. The repository is a database that stores problem data, 

product data and metrics data. These data provides the opportunity to investigate the 

relationship of metrics or combinations of metrics to the software. 

Measures can help in the understanding of software and the Software Engineering 

processes in order to derive models of those processes and examine relationships among 

the process parameters. The software measurement guidebook [44] provides three key 

reasons for software measurement: 

 

1. Understand and model software engineering processes and products 

2. Aid in the management of software projects 

3. Guide improvements in software engineering processes 

 

 

 



Requirement Risk Level Forecast Using Bayesian Networks Classifiers     9 

 

Table 1.  NASA MDP Requirement metrics (from http://mdp.ivv.nasa.gov/). 

Measure Description Observation 

Identifier Unique requirement Identifier  

Action Represents the number of actions the requirement needs to be capable of 

performing 

Manual 

assignment 

(MA) 

Conditional Represents whether the requirement will be addressing more than one 

condition. This indicates a higher level of complexity in dealing with multiple 

conditions within the requirement (i.e., If, when, in the event of). 

MA 

Continuance Phrases such as "the following:" that follow an imperative and precede the 

definition of lower level requirement specification. The extent that 

continuances are used is an indication that requirements have been organized    

and structured. These characteristics contribute to the tractability and 

maintenance of the subject requirement specification. However, extensive use 

of continuances indicate multiple, complex requirements that may not be 

adequately factored into development resource and schedule estimates 

Automated 

Requirement 

Measurement 

software tool 

(ARM) 

Imperative Those words and phrases that command that something must be provided. 

"Shall" normally dictates the provision of a functional capability. "Must" or 

"must not", normally establish performance requirements or constraints. 

"Will" normally indicates that something will be provided from outside the 

capability being specified. The ARM report lists the imperatives and their 

associated counts in descending order of forcefulness. An explicit 

specification will have most of its counts high in the report IMPERATIVE list 

(i.e. shall, must, required) 

ARM 

Incomplete Phrases such as "TBD" or "TBR". They are used when a requirement has yet 

to be determined. These are considered critical to requirements documents and 

need to be corrected as soon as possible. They can cause unexpected delays 

and high costs. 

ARM 

Option Those words that give the developer latitude in the implementation of the 

specification that contains them. This type of statement loosens the 

specification, reduces the acquirer's control over the final product, and 

establishes a basis for possible cost and schedule risks 

ARM 

Risk Level A calculated risk level metric based on weighted averages from metrics 

collected for each requirement. 

Level 1: Indicates a non-complex straight forward requirement containing one 

imperative, single action and single source.  

Level 2: Indicates a requirement containing multiple imperatives, more than 

one action and/or more than one source.  

Level 3: Indicates a requirement containing conditionals and more than one 

action and/or source 

MA 

Source Represents the number of sources the requirement will interface with or 

receive data from. 
MA 

Weak Phrase Clauses that are apt to cause uncertainty and leave room for multiple 

interpretations. Use of phrases such as "adequate" and "as appropriate" 

indicate that what is required is either defined elsewhere or worst, the 

requirement is open to subjective interpretation. Phrases such as "but not 

limited to" and "as a minimum" provide the basis for expanding requirements 

that have been identified or adding future requirements. Weak Phrase total is 

indication of the extent that the specification is ambiguous and incomplete. 

ARM 

   

 

 

 

http://mdp.ivv.nasa.gov/
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We use different datasets from NASA MDP repository. Each one contains many 

metrics, which describe product´s size, complexity and some structural properties. Only 3 

of the 13 project included in the NASA MDP offer requirement metrics. As Table 1 

shows the assignment of values of some of these metrics is performed manually (MA) 

whereas the values assignment of other metrics is performed making use of natural 

language processing (NLP) techniques. NLP methods are also used in commercial tools 

for the analysis of requirement’s quality, such as the QualityAnalyzer for DOORS and 

IRqA (http://www.reusecompany.com). 

The NASA projects used are: CM1 project is a NASA spacecraft instrument, JM1 is a 

real-time prediction ground system, PC1 is a flight software for earth orbiting satellite. 

All are writing in C and the numbers of modules are, respectively, 498, 10885 and 1109. 

Table 1 shows the set of 10 attributes used to describe requirements in NASA MDP. 

Table 2 shows the analysis of requirement measures contained in each dataset and the 

number of instances for each of the three requirements’ risk levels considered.  

 

Risk level is assigned manually to each requirement during requirement analysis 

through a revision of the metrics collected for each requirement. Thus, Risk level 3 

corresponds to requirements having conditional and/or incomplete sentences together 

with multiple imperatives, actions or sources. These requirements are the most complex 

for implementation and require additional testing. Risk level 2 corresponds to 

requirements that can contain imperatives, weak phrases, options and/or continuances. 

They are moderately complex requirements that do not contain conditional or incomplete 

sentences. Risk level 1 is associated to requirements with weak phrases, options and/or 

imperatives and that are defined in a clear and concise way.  

 

 

 

Table 2.   Requirement Measures Analysis 

Measure CM1 (160 instances) JM1 (74 instances) PC1 (320 instances) 

 Min Max Mean Stdev Min Max Mean Stdev Min Max Mean Stdev 

Action 1 5 1.463 0.768 0 5 1.514 0.996 1 6 1.659 0.976 

Conditional 0 1 0.144 0.352 0 1 0.284 0.454 0 1 0.234 0.424 

Continuance 0 3 0.425 0.61 0 4 0.595 0.978 0 5 0.666 0.894 

Imperative 1 4 1.238 0.599 0 5 1.392 1.031 0 5 0.816 0.885 

Incomplete 0 0 0 0 0 0 0 0 0 0 0 0 

Option 0 1 0.025 0.157 0 1 0.081 0.275 0 3 0.019 0.193 

Source 1 5 1.55 0.896 0 6 1.797 1.238 1 23 2.072 2.034 

Weak phrase 0 1 0.125 0.332 0 1 0.108 0.313 0 2 0.013 0.137 

            
 Level 1  Level 2  Level 3 Level 1  Level 2   Level 3 Level 1 Level 2  Level 3 

Risk Level 68      58   34   24      23            27 168     104         48 

 

http://www.reusecompany.com/
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5.   Bayesian Network Classifiers applied to Risk of RE 

Once the attributes (i.e. action, conditional, continuance, imperative, option, source, weak 

phrase) and class (i.e. requirement risk level) have been identified in the previous section, 

we are going to apply Bayesian networks in order to classify the risk associated to a given 

requirement. Notice that attribute “incomplete” has assigned a zero value in all the cases 

of the three datasets been considered. This is the reason why we have not taken it into 

account as an attribute in the classification problem. 

In order to develop the experimental study we have applied the same schema in the 

different datasets: 

1. Learn using stratified tenfold cross-validation a model for each of the different 

types of Bayesian networks classifiers proposed and a classification tree 

2. Obtain the classification results of each classifier as a contingency table. 

3. Evaluate and compare the classification accuracy achieved by the different 

classifiers. 

First, we have learnt using stratified tenfold cross-validation a model each of the 

different types of Bayesian networks classifiers proposed and a classification tree. That 

is, the original dataset is divided into ten parts, each of which preserves the properties of 

the original sample, using nine for learning and one for testing. The learning-testing 

process is repeated ten times, one for each partition. The classification tree will be used 

as reference at the time of comparing and evaluating results, because it is a commonly 

used technique in data mining. Second, we have obtained the classification results of each 

classifier as a contingency table with a row and a column for each class. Each element of 

the contingence table shows the number of instances for which the actual class is the row 

and the predicted class is the column. In our problem, the predicted variable is the risk 

level for a given requirement, so we have a 3x3 contingency table as is depicted in Table 

3 collecting prediction outcomes for each classifier. 

 

 

Third, a comparison between the different models applied to predict the risk level for 

a given requirement, is performed evaluating and comparing the classification accuracy 

achieved by the different classifiers using several measures [45] (the first five can be 

calculated directly from the contingency table): 

 

Table 3.   Contingency table for requirements’ level of risk prediction. 

  Predicted class 

  Risk Level 1 Risk Level 2 Risk Level 3 

 Risk Level 1 a b c 

Actual class Risk Level 2 d e i 

 Risk Level 3 g h j 

 

Ç 
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 Percentage of correctly classified instances, for example for the contingency matrix 

shown in Table 3 this value will be computed as. (a+e+i)/(a+b+c+d+e+f+g+h+i) 

 True positive (TP) rate for each class is the proportion of instances that were 

correctly classified, among all instances which truly belongs to the class. For 

example, the TP for “Risk level 1” class is a/(a+b+c). It is equivalent to recall, i.e. 

the portion of the class that was captured, and give us a measure of completeness. 

 False positive (FP) rate for each class is the proportion of instances that were 

incorrectly classified in the class, among all the instances which do not belong to the 

class. For example, the FP for “Risk level 1” class is (d+g)/(d+e+f+g+h+i). 

 Precision is the proportion of instances which truly belong to a given class among all 

those which were classified in the class, i.e. a/(a+d+g) for “risk level 1”. It is a 

measure of exactness or fidelity that tells us the probability of a correct classification 

of the risk level of a given requirement. 

 F-measure is a measure of accuracy and is defined as the harmonic mean of precision 

and recall: F=2·(precision·recall)/(precision+recall). 

 Relative Operating Characteristic (ROC) curve and the Area Under ROC Curve 

(AUC). The ROC curve provides a graphical representation of the classification 

performance by means of depicting the TP rate as function of the FP rate across all 

the possible experimental settings. A ROC curve allows visual examination of the 

tradeoff  between the ability of a classifier to correctly detect risky requirements 

(recall) and the number of requirements whose risk level is incorrectly classified 

(false positive). The classification accuracy can be measured by the AUC (an area of 

1 represents a perfect test whilst an area of 0.5 corresponds to a worthless test).  As 

Fawcett [46], points out, this measure can be interpreted as the probability that when 

we randomly pick one positive and one negative example, the classifier will assign a 

higher score to the positive example than to the negative. 

 

 

The values obtained for these measures in the different datasets are shown in Tables 

4, 5, 6, 7.  

Table 4 shows the percentage of correctly classified instances obtained by each 

classifier in each dataset. The best percentages are highlighted in boldface suggesting that 

TAN is the most appropriate schema for a Bayesian classifier that predicts the risk level 

of a requirement. 

Table 4.   Percentage of Correctly Classified Instances 

Dataset J48 Naïve TAN KNN BN 

CM1 91,88 92,50 92,50 91,25 91,25 

JM1 79,73 75,68 85,14 83,78 83,78 

PC1 91,88 85,31 86,25 86,25 87,19 
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From the viewpoint of a software project, risk levels 2 and 3 are the most important, 

because requirements within these levels are those that need to be monitored throughout 

the project. Requirements with a high level of risk can affect the project in a way that it 

cannot meet quality, deadlines or, even worst, that the project can be canceled. An error 

in classifying the risk level associated with one of these requirements affect the entire 

subsequent development of the project. 

On the other hand, if we assign a risk level 2 or 3 to a requirement which has a risk 

level of 1, we increase the cost of the software project, because we are expending 

resources and taking control actions to manage a requirement which need not be so 

closely controlled. 

A requirement with risk level 1 is a requirement that is clearly defined and not too 

complex, which is unlikely to present problems in its implementation on the delivered 

software product. These requirements have less influence on the project risk. 

 

 

Table 5.   Performance Results for CM1 

  TP Rate FP Rate Precision F-measure AUC 

 J48 1,000 0,076 0,907 0,951 0,986 

 Naïve 1,000 0,033 0,958 0,978 1,000 

Risk Level 1 TAN 1,000 0,033 0,958 0,978 0,998 

 KNN 1,000 0,022 0,971 0,986 0,997 

 BN 1,000 0,022 0,971 0,986 1,000 

       

 J48 0,828 0,029 0,941 0,881 0,929 

 Naïve 0,897 0,059 0,897 0,897 0,960 

Risk Level 2 TAN 0,914 0,059 0,898 0,906 0,962 

 KNN 0,897 0,078 0,867 0,881 0,966 

 BN 0,879 0,069 0,879 0,879 0,972 

       

 J48 0,912 0,024 0,912 0,912 0,956 

 Naïve 0,824 0,024 0,903 0,862 0,976 

Risk Level 3 TAN 0,794 0,024 0,900 0,844 0,979 

 KNN 0,765 0,032 0,867 0,813 0,978 

 BN 0,794 0,040 0,844 0,818 0,977 
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Table 6.   Performance Results for JM1 

  TP Rate FP Rate Precision F-measure AUC 

 J48 0,958 0,040 0,920 0,939 0,958 

 Naïve 0,958 0,080 0,852 0,902 0,962 

Risk Level 1 TAN 0,958 0,040 0,920 0,939 0,966 

 KNN 0,958 0,040 0,920 0,939 0,963 

 BN 0,958 0,040 0,920 0,939 0,963 

       

 J48 0,652 0,137 0,682 0,667 0,851 

 Naïve 0,609 0,176 0,609 0,609 0,789 

Risk Level 2 TAN 0,739 0,098 0,773 0,756 0,890 

 KNN 0,652 0,078 0,789 0,714 0,883 

 BN 0,652 0,078 0,789 0,714 0,878 

       

 J48 0,778 0,128 0,778 0,778 0,863 

 Naïve 0,704 0,106 0,792 0,745 0,915 

Risk Level 3 TAN 0,852 0,085 0,852 0,852 0,968 

 KNN 0,889 0,128 0,800 0,842 0,968 

 BN 0,889 0,128 0,800 0,842 0,967 

 

Table 7.   Performance Results for PC1 

  TP Rate FP Rate Precision F-measure AUC 

 J48 0,970 0,053 0,953 0,962 0,979 

 Naïve 0,899 0,099 0,910 0,904 0,973 

Risk Level 1 TAN 0,917 0,118 0,895 0,906 0,974 

 KNN 0,923 0,118 0,896 0,909 0,973 

 BN 0,917 0,125 0,890 0,903 0,970 

       

 J48 0,904 0,074 0,855 0,879 0,939 

 Naïve 0,788 0,111 0,774 0,781 0,935 

Risk Level 2 TAN 0,788 0,097 0,796 0,792 0,944 

 KNN 0,788 0,097 0,796 0,792 0,941 

 BN 0,817 0,097 0,802 0,810 0,939 

       

 J48 0,771 0,007 0,949 0,851 0,927 

 Naïve 0,833 0,029 0,833 0,833 0,977 

Risk Level 3 TAN 0,833 0,018 0,889 0,860 0,976 

 KNN 0,813 0,018 0,886 0,848 0,974 

 BN 0,833 0,004 0,976 0,899 0,977 
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Tables 5, 6, 7 show the performance measures associated to each dataset. These 

measures are analyzed taking into account the nature of the risks in the requirement 

domain. Thus, in order to select the most appropriate structure for the Bayesian classifier, 

we consider the two structures that have achieved best values on the performance 

measures associated to risk levels 3 and 2. The values highlighted in boldface in these 

tables correspond to the maximum value reached, except in the case of FP-rate, which is 

the lowest one. Therefore, the selected structures are Naïve y TAN in the case of the 

dataset CM1, TAN and KNN for JM1, and TAN and NB in the case of PC1.  

In order to make more comprehensive the comparative, the Figures 2, 3, 4 depict the 

ROC curves associated to the above selected Bayesian classifiers and to the classification 

tree which we take as a reference model.  

We fix our attention on two regions when examining ROC curves. First region is 

unfavorable for the cost and covers the initial part of the ROC curve with low values for 

the rates of false positives and true positives. The second region is unfavorable for risk 

and covers the final part of the ROC curve with high values for both rates. As was 

previously pointed out, in the problem at hand is more important to identify the risk level 

of a requirement that the cost of reviewing its level of risk. Thereto, we focus our 

attention on the risk adverse region, preferring classifiers whose performance is higher in 

the unfavorable risk area for the different risk levels. 
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Fig. 2.  ROC curve of CM1 dataset. 

 

 

Figure 2 shows the equality on performance achieved for the CM1 data set between 

Naïve and TAN, as is reflected by the data in Table 5. The same fact is shown in Figures 

3 and 4, between TAN and KNN, and BN y TAN, for the datasets JM1 and PC1 

respectively. It is worth to notice that in all cases TAN shows a competitive behavior, i.e. 

it is the second best in CM1, the best in JM1 and the third best in PC1. 
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Fig. 3.  ROC curve of JM1 dataset. 
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Fig. 4.  ROC curve of PC1 dataset. 

 

 

6.   A Tree Augmented Network for classifying the risk level of requirements  

The classification performance exhibited by the TAN classifier leads us to consider 

whether we can find a Bayesian classifier that works on all data sets and, at the same 

time, explain the relationship between the variables used for the allocation of risk to 

requirements that are proposed in the MDP of NASA (http://mdp.ivv.nasa.gov/). 
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Fig. 5.  Different TAN structures learned from dataset. 
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Figure 5 shows the three TAN structures learned. Of those three structures, that 

obtained on JM1 (Fig. 5.b) represents relationships between requirement metrics (the 

direct relationships are represented as arcs in the structure) that can be explained in a 

natural way from a risk manager point of view. The fact that a requirement has a high 

level of complexity (conditional), influences directly on the number of sources that it has 

to interface with (source) and on the number of actions that it has to be capable of 

performing (actions), in an increasing way. Thus, if a requirement has to be able to 

perform a high number of actions, there is a higher chance that its explicit specification 

will have a greater number of imperative terms telling that something must be provided 

(imperative). When the number of actions increases, also increase the need for a greater 

organization and a better structure in the requirement (continuance). Moreover, the 

increase of actions reduces the acquirer’s control over the final product. In other words 

the value of the metric “option” increases. Finally, the increase in the number of actions 

has also a direct impact on the extent that the specification is ambiguous and incomplete 

(weak phrase). This is the reason why we have decided to select it and call it Risk Level 

of Requirements TAN (RLRTAN). 

In order to check the validity of these claims, we have kept the RLRTAN structure on 

CM1 and PC1 sets to estimate the model parameters and evaluate the performance of the 

classifier. The results are shown in Table 8 and from them it follows that RLRTAN 

improves the percentage of correctly classified instances in 1.25% for CM1 and 0.63% 

for PC1. This improvement is also seen in the other measures used (compare Tables 5 

and 7 with Table 8). To ensure that this structure is the most suitable from among those 

used in this study, we have check experimentally that the KNN structure learned from 

JM1 and the Bayesian network learned from PC1, when kept fixed and its parameters are 

learned in the other data sets, do not provide better results than the models previously 

considered, but make them worse. 

Now once a knowledge model, RLRTAN, has been built, then it can be used to assess 

the risk level for a requirement. The Bayesian network receives as input the values of the 

metrics associated to a given requirement and through an inference process computes its 

risk level. 

Table 8.   Performance Results for RLRTAN. 

Data set 
% Correct 

Classification 
Risk Level TP Rate FP Rate Precision F-measure AUC 

  1 1,000 0,011 0,986 0,993 1,000 

CM1 93,75 2 0,931 0,059 0,900 0,915 0,971 

  3 0,824 0,024 0,903 0,862 0,979 

        

  1 0,923 0,105 0,906 0,914 0,972 

PC1 86,88 2 0,808 0,102 0,792 0,800 0,938 

  3 0,813 0,015 0,907 0,857 0,965 
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7.   Conclusions and Future works 

The risks assessment problem in Requirement Engineering traditionally is solved based 

on the skills, capabilities and experience of developers. In order to facilitate this 

assessment, requirements metrics must be the basic components that allow us to define 

the problem of identification and evaluation of risks of an individual requirement. If we 

focus on the identification of the risky requirements that need to be carefully monitored, 

then this problem can be redefined as a classification problem. 

In this paper we have developed an empirical study using several datasets that collect 

metrics taken from the requirement specifications in three different NASA projects, 

developed for a spacecraft instrument, a real time prediction ground system and a flight 

software for orbiting satellite. In these datasets the risk level of a given requirement was 

fixed manually, based on a set of requirement metrics, between three classes that 

correspond to the values high, medium, and low that can be assess to risk level.  

In our experimental study, we have applied the same schema in the different datasets. 

First, we have learnt using stratified tenfold cross-validation a model each of the different 

types of Bayesian networks classifiers proposed and a classification tree. Then, we have 

obtained the classification results and compute several performance measures (i.e. FP-

rate, TP-rate, F-measure, AUC). We have selected the most appropriate structure for the 

Bayesian classifier, considering the two structures that have achieved best classification 

performance values taking into account that it is more important to identify the risk level 

of a requirement that the cost of reviewing its level of risk. 

The classification performance exhibited by the TAN classifier leads us to consider 

whether we can find a Bayesian classifier that works on all datasets and, at the same time, 

explain the relationship between the variables used for the allocation of risk to 

requirements. In consequence, we have obtained a TAN structure (RLTAN) whose set of 

relationships reflects the way in which requirements’ attributes characterize risks. 

In addition to these conclusions, we can say that the available data are not as 

extensive as it would be necessary. Nonetheless, they are related with those Requirement 

Engineering approaches in which the requirement specification is a document. The actual 

approaches in requirement development usually are assisted by requirement management 

tools, making the requirement specification something more than just a document. These 

tools offer the possibility of defining some other more useful metrics, i.e. the number of 

changes that a requirement has experienced; the relative growth of a requirement; the 

number of stakeholders that has proposed it; if the requirement has been reused from 

other projects; etc. As future work, we plan to extend this study using new metrics and to 

incorporate the classifiers obtained as an aid facility in requirement management tools in 

order to obtain automatic risk predictions. 
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