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Abstract in English

The present degree’s project intends to be a brief guide for those who want to be-
gin a path in convex set theory and functional analysis. This ambitious project has
also been motivated by the achievement of Collaboration’s scholarship for the student
and it is a first approach to the contents that have been developed during the whole
academic course.

The title of this work, Krein-Milman theorem and its applications, contains the es-
sence of our purpose, which is delving into the previous theorem and its requirements:
topological vector spaces, convexity, measure theory, and so on and so forth. The ref-
erence of the original paper can be consulted in [1].

The first chapter introduces clearly the essential concepts of convex analysis, and
also the main ideas of this topic in finite-dimensional spaces, due to Carathéodory and
Minkowski. In that environment, the writer has included some graphic examples (and
counterexamples) which are supposed to be profitable for the reader. The structure of
the chapter and the obtaining of the main results has been elaborated via [2], [3] and
[4]. Specifically:

In the first section we have used [2] to introduce the definitions, whereas the rest
of result has been developed by the student.

In the second section lies one of the most important theorems of the chapter
(Carathéodory’s theorem), and it also incorporates a long list of remarks to show
the importance and the improvable facts of the theorem. In the following section,
we discuss the notion of dimension of a convex set and its relative interior. To
write these sections, the writer has selected [4].

To conclude the chapter, sections four and five comprise concepts of paramount
importance for the next chapter, such as extreme point, face or exposed point.
One can highlight the canonical way to build faces via continuous linear func-
tionals, the existence of extreme points for compact convex sets, the Carathéodory-
Minkowski’s theorem and one of the most beautiful applications in finite-dimensional
theory, which is the existence of extreme values of linear functionals over com-
pact convex sets in extreme points of the domain. To elaborate this sections we
have consulted [3].

The second chapter is devoted to the exposition of Krein-Milman theorem, giving a
wide introduction to the infinite-dimensional spaces via several examples of canonical
spaces. Specifically,

The enriching list of examples of extreme points has been developed in order to
get the reader used to the main strategies which lies into this theory; the sixth
example is inspired by [9] and [13].

Before getting into Krein-Milman theorem, there are some considerations about
the origin of the main algebraic concepts involved in this theory, which are bal-
ancedness, absorbency and the own definition of convexity, through the algebraic
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characterisation of unit balls in seminormed spaces (it has been required [14]).
Furthermore, since compactness is one of the most cultivated concepts in Gen-
eral Topology, it is reasonable to study the convex hull of a compact set, giving a
solution to that problem in an infinite-dimensional context.

The proof of the mentioned theorem is based on [6]. Some interesting remarks
are made after the theorem, which delve into the conditions applied on the the-
orem and the notation of some other authors. Finally, it will be discussed one
more detail about compactness, which reflects the fact that those sets contain
every extreme point of the closure of their convex hull, i.e., Milman theorem
(also based on [6]).

The applications of Krein-Milman theorem has been adapted from [6] (necessary
condition for duality, representation theorem), [12] (Stone-Cech compactifica-
tion), [13] (Banach-Stone theorem) and [3] (Stone-Weierstrass theorem).



Resumen en español

El presente trabajo de fin de grado pretende ser una breve guía para aquellos que
quieren dar unos primeros pasos en la teoría de conjuntos convexos y análisis fun-
cional. Este ambicioso proyecto ha sido motivado por la obtención de la beca de Col-
aboración por parte del alumno, y es una primera aproximación a los contenidos que
han sido desarrollados durante el curso académico.

El título de este trabajo, El teorema de Krein-Milman y sus aplicaciones, contiene
la esencia de nuestro objetivo, que consiste en analizar en profundidad el anterior
teorema y todos sus prerrequisitos: espacios vectoriales topológicos, convexidad, teoría
de la medida, etcétera. La referencia original puede ser consultada en [1].

El primer capítulo introduce de forma clara los conceptos esenciales del análisis
convexo, y también las principales ideas de esta materia en espacios finito-dimensionales,
debidos a Carathéodory y Minkowski. En este contexto, el se han incluido numerosos
ejemplos gráficos (y contraejemplos) que serán productivos para el lector. La estruc-
tura del capítulo y la obtención de los principales resultados ha sido elaborada a partir
de [2], [3] and [4]. Concretamente:

En la primera sección se ha usado [2] para introducir definiciones, mientras que
el resto de resultados han sido desarrollados por el estudiante.

La segunda sección alberga uno de los teoremas más importantes del capítulo
(teorema de Carathéodory) y también incorpora una larga lista de observaciones
para ensalzar su importancia y los detalles mejorables del mismo. En la siguiente
sección, se discute la noción de dimensión de un conjunto convexo y su interior
relativo. Para escribir estas secciones, se ha escogido [4].

Para concluir el capítulo, las secciones cuatro y cinco comprenden conceptos de
primordial importancia para el siguiente capítulo, tales como punto extremo,
cara de un conjunto convexo o punto expuesto. Resaltamos además la forma
canónica de construir caras mediante funcionales lineales y continuos, la exist-
encia de puntos extremos para conjuntos compactos y convexos, el teorema de
Carathéodory-Minkowski y una de las más relucientes aplicaciones en un con-
texto finito-dimensional, que es la existencia de valores extremos en funcionales
lineales y continuos sobre compactos convexos. Para elaborar estas secciones,
hemos consultado [3].

El segundo capítulo está dedicado a la exposición del teorema de Krein-Milman, dando
una amplia introducción a los espacios infinito-dimensionales mediante ejemplos sobre
espacios canónicos. Concretamente,

La enriquecedora lista de ejemplos sobre puntos extremos ha sido desarrollada
para introducir al lector en las principales estrategias que subyacen en esta teoría;
el sexto ejemplo está inspirado en [9] y [13].

Antes de adentrarnos en el teorema de Krein-Milman, hacemos algunas consid-
eraciones sobre el origen de las principales definiciones algebraicas tratadas en
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el tema, tales como equilibrio, absorbencia y el propio concepto de convexidad,
a través de la caracterización algebraica de bolas unidad en espacios seminor-
mados (ha sido requerido [14]). Además, dado que la compacidad es una de las
más cultivadas de la Topología General, es razonable estudiar la envolvente con-
vexa de conjuntos compactos, dando una solución contundente a tal problema en
espacios de dimensión infinita.

La demostración del mencionado teorema está basada en [6]. Algunas observa-
ciones oportunas son propuestas tras el teorema, que profundizan en las con-
diciones aplicadas en la hipótesis del teorema y la notación de algunos autores.
Finalmente, será considerado un detalle adicional sobre compacidad que refleja
el hecho de que tales conjuntos contienen cada puntos extremo del cierre de su
envolvente convexa, i.e., el teorema de Milman (también basado en [6]).

Las aplicaciones del teorema de Krein-Milman han sido adaptadas de [6] (con-
dición necesaria de dualidad, teorema de representación), [12] (compactifica-
ción de Stone-Cech), [13] (teorema de Banach-Stone) y [3] (teorema de Stone-
Weierstrass).



1Basic concepts and finite-dimensional
theory

The first chapter will be devoted to the exposition of several elementary notions
related to convex and functional analysis. We start our path to Krein-Milman the-
orem proving its famous finite-dimensional preceding; i.e., Carathéodory-Minkowski
theorem.

Recall that a topological vector space is a pair (X,τ) where X is a vector space over
the field K = R∨C, and τ is a compatible topology with the vector structure in X; that
is, the maps (x,y) 7→ x + y and (α,x) 7→ αx are continuous from X ×X onto X and from
K×X onto X respectively, considering the product topology in each space.

Secondly, a normed space is a pair (X,‖·‖) where X is a vector space and ‖·‖ a norm
in X. Since the topology induced by the norm is compatible with the vector structure,
normed space form a strongly relevant example of topological vector spaces. There
also are other structures which are compatible with the norm, such as the weak topo-
logy of a normed space X, denoted by ω, and the weak-star topology, written as ω∗.
As usual, we write X instead of (X,τ) or (X,‖·‖) when we are making reference to a
topological vector space or a normed space, respectively.

Let n be a natural number andX a Hausdorff topological vector space with dim(X) =
n. Then, every linear bijection from Kn onto X is bicontinuous, hence X is isomorphic
as a vector space to Kn and homeomorphic as a topological vector space to the Eu-
clidean space. However, the notation X for finite-dimensional spaces will be used
during the whole chapter, since it will make easier the step of abstraction given in the
following chapters.

1.1 Convex sets and maps

Definition 1.1. In a vector space X over K, a subset A ⊂ X is convex if, given x,y ∈ A and
t ∈ [0,1],

{tx+ (1− t)y : t ∈]0,1[} ⊂ A. (1.1)

Definition 1.2. If A ⊂ X is a convex set, a function f : A→ R is said to be convex (resp.
concave) if the following inequality holds for each x,y ∈ A and t ∈ [0,1]:

f (tx+ (1− t)y) ≤ tf (x) + (1− t)f (y) (resp.f (tx+ (1− t)y) ≥ tf (x) + (1− t)f (y)). (1.2)

If the inequalities 1.2 are strict, f is strictly convex (resp. strictly concave), and if it is an
equality in both cases, f is affine.

The following examples can be easily checked by the reader.

Examples 1.1.

Any segment (either open or closed) is a convex set:

Sx,y = {tx+ (1− t)y : t ∈ [0,1]},
◦
Sx,y = {tx+ (1− t)y : t ∈]0,1[}

where x,y are arbitrary points of a vector space.
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Any hyperplane is a convex set

H = {x ∈ X : f (x) = λ} ,

where f : X → R is a linear functional on a vector space and λ ∈ R, and every half-
space

H1 = {x ∈ X : f (x) ≤ λ} , H2 = {x ∈ X : f (x) ≥ λ}

is also a convex set.

Any ball (either open or closed) in a normed space X is a convex set

B(x,r) = {y ∈ X : ‖y − x‖ < r}, B(x,r) = {y ∈ X : ‖y − x‖ < r},

Actually, every set with the form C = F ∪B(x,r), F ⊂ ∂B(x,r) := S(x,r) is convex.

Let X be a vector space and consider A ⊂ X. The convex hull of A is the intersection of
all the convex subsets of X containing A. It is clear that A ⊂ co(A) and co(A) is convex
(see proposition 1.1); in addition, we state that co(A) admits the expression

co(A) =

 n∑
i=1

λixi : n ∈ N, xi ∈ A, λi ∈ R+
0 , ∀i = {1, . . . ,n},

n∑
i=1

λi = 1

 , (1.3)

In fact, let V be the set in the right side of the equation (1.3).

To verify that co(A) ⊂ V it is enough to show that V is convex (note thatA ⊂ V ). Given
a =

∑n
i=1αiyi and b =

∑m
i=1βizi elements in V (suppose without loss of generality that

n ≤m), for each t ∈ [0,1] we make the change of variables

λi =
{

(1− t)αi if i = 1, . . . ,n
tβi if i = n+ 1, . . . ,n+m

, xi =
{

(1− t)yi if i = 1, . . . ,n
tzi if i = n+ 1, . . . ,n+m



so we obtain (1 − t)a + tb =
∑n+m
i=1 λixi where

∑n+m
i=1 λi = 1 and xi ∈ A for every i =

1, . . . ,n+m.

The other inclusion will be proved by induction. For n = 1 it is clear, so long as
A ⊂ co(A) and co(A) is a convex set. Suppose that the statement holds for n ∈ N and
let x =

∑n+1
i=1 λixi . If λn+1 = 0∨λn+1 = 1 is straightforward. Otherwise,

x = (1−λn+1)
n∑
i=1

λi
1−λn+1

xi +λn+1xn+1,

which is a convex combination of
∑n
i=1

λi
1−λn+1

xi and xn+1, both elements of A by in-
duction hypothesis.

Figure 1.1: Convex hull of a galleon.

In particular, if A is a finite union of convex sets; i.e., A = ∪ni=1Ai with Ai convex
for every i = 1, . . . ,n, then one can choose every point of the previous convex linear
combination in each Ai :

co(A) =

 n∑
i=1

λixi , xi ∈ Ai , λi ∈ R+
0 , ∀i ∈ {1, . . . ,n},

n∑
i=1

λi = 1

 . (1.4)

First of all, the reader should appreciate that the number n is fixed under these circum-
stances. It is easy to check that the set

E =

 n∑
i=1

λixi , xi ∈ Ai , λi ∈ R+
0 , ∀i ∈ {1, . . . ,n},

n∑
i=1

λi = 1


is convex. On the one hand, the inclusion A ⊂ E and the convexity of E implies that
co(A) ⊂ E. On the other hand, the previous example shows that E ⊂ co(A).

In a similar way, we define the real affine hull of A ⊂ X as

aff(A) =

 n∑
i=1

λixi : n ∈ N, xi ∈ A, λi ∈ R, ∀i ∈ {1, . . . ,n},
n∑
i=1

λi = 1

 , (1.5)



and it also verifies that it is the least affine space which contains A, and aff(A) =
aff(co(A)).

Every affine map is linear-convex by definition. Reciprocally, we can suppose that t < 0
without losing generality (if t > 1 we can interchange the role of x and y). Then,

f (y) = f


1

1− t︸︷︷︸
∈[0,1]

(tx+ (1− t)y) +
(
1− 1

1− t

)
x

 .
Using the affinity of f , this reduces to

f (y) =
1

1− t
f (tx+ (1− t)y) +

(
1− 1

1− t

)
f (x)⇒ f (tx+ (1− t)y) = tf (x) + (1− t)f (y).

Proposition 1.1. Let C the family of all the convex sets of a vector space X. Then,

1. Whatever {Ci}i∈I ⊂ C is ∩i∈ICi ∈ C.

2. C satisfies that A+B ∈ C, λA ∈ C for all A,B ∈ C and λ ∈ R. In addition, (λ+ µ)A =
λA+µA for every λ,µ ∈ R such that λµ ≥ 0.1

3. co(·) : X→C is a monotone and additive operator.

4. A is convex iff A = co(A).

Proof. 1. Given x,y ∈ ∩i∈ICi , since x,y ∈ Ci for all i ∈ I , tx+ (1− t)y ∈ Ci for all i ∈ I and
t ∈ [0,1]. Hence tx+ (1− t)y ∈ ∩i∈ICi for every t ∈ [0,1].

2. Let x,y ∈ A+B and t ∈ [0,1]. We can express x = ax + bx, y = ay + by with ax, ay ∈
A, bx,by ∈ B. Then,

tx+(1−t)y = t(ax+bx)+(1−t)(ay+by) = [tax+(1−t)ay]+[tbx+(1−t)by] ∈ A+B, ∀t ∈ [0,1].

Furthermore, for every λ ∈ R and x,y ∈ A,

t(λx) + (1− t)(λy) = λ[tx+ (1− t)y] ∈ λA, ∀t ∈ [0,1].

The last statement is checked as follows: the implication (λ + µ)A ⊂ λA + µA is clear
thanks to the distributive law in K; reciprocally, it is straightforward when λ = 0∨µ =
0. Otherwise, let λa ∈ λA, µa′ ∈ µA, then

λa+µa′ =
λ

λ+µ
(λ+µ)a+

µ

λ+µ
(λ+µ)a′.

Since the previous equality is a convex combination of elements in (λ+µ)A, the result
lies in that set, hence λA+µA ⊂ (λ+µ)A.

1Indeed, one can characterise C through this property, in an even easier way than the implication
we have already proved. In fact, if A is not convex, we can find x ∈ X, λ = µ = 1

2 satisfying that x ∈ A but
x < 1

2A+ 1
2A.



3. The monotony derives from the definition. To see that co(A+B) ⊂ co(A) + co(B),
given x ∈ co(A + B), there exist {λi}ki=1 ⊂ R+

0 , {ai}ki=1 ⊂ A and {bi}ki=1 ⊂ B such that∑k
i=1λi = 1 and

x =
k∑
i=1

λi(ai + bi) =
k∑
i=1

λiai +
k∑
i=1

λibi ∈ co(A) + co(B).

On the other hand, given a ∈ co(A) and b ∈ co(B), there exists {λi}ki=1, {µj}
m
j=1 ⊂ R+

0 ,

{ai}ki=1 ⊂ A and {bj}mj=1 ⊂ B such that
∑k
i=1λi =

∑m
j=1µj = 1 and

a+ b =
m∑
j=1

µj︸︷︷︸
1

 k∑
i=1

λiai

+
k∑
i=1

λi︸︷︷︸
1

 m∑
j=1

µjbj

 =
∑
i,j

λiµj(ai + bj) ∈ co(A+B)

since
∑
i,j λiµj =

(∑k
i=1λi

)(∑m
j=1µj

)
= 1 and λiµj ≥ 0 for each i, j.

4. ⇒) Since A is convex and A ⊂ A, we have that co(A) ⊂ A.
⇐) It is clear that co(A) is convex, hence A is convex too.

Remarks 1.1.

The union of convex sets is not necessarily a convex set, as the next figure based on
examples 1.1 shows:

Figure 1.2: Counterexample for the union of convex sets.



The intersection of hyperplanes gives us the solution of a linear system of equations,
and the intersection of half-spaces gives us a polyhedron; a bounded polyhedron is
called a polytope. In particular, the k-simplex (k ≤ N + 1) determined by a set of
affine-independent points {xi}ki=1 ⊂ X is ∆k

(
{xi}ki=1

)
= co

(
{xi}ki=1

)
(figure 1.3).

Figure 1.3: Example of 4-simplex in X = R3 (tetrahedron).

1.2 Carathéodory’s theorem

Let X be a vector space. The definition of convex hull of a subset A ⊂ X brings us a
characterisation of convex sets through proposition 1.1. However, there is no limit in
the number of elements involved in the representation of each x ∈ co(A). In this sense,
Carathéodory’s theorem states that every point x ∈ co(A) can be expressed with n + 1
points of A as much.

The following lemma shows, in particular, the highest number of linear-independent
elements.

Lemma 1.1. A set of points {xi}ki=1 ⊂ X is affine-dependent iff there exists {λi}ki=1 ∈ R such
that

∑k
i=1λi = 0 <

∑k
i=1|λi | and

∑k
i=1λixi = 0.

Proof. Since {xi}ki=1 ⊂ X is affine-dependent, we have that {xj−x1}kj=2 is linear-dependent

as a set of vectors, so there exists {αj}kj=2 with
∑k
j=2|αj | > 0 and

0 =
k∑
j=2

αj(xj − x1) =

− k∑
j=2

αj

x1 +
k∑
j=2

αjxj

({
λ1 = −

∑k
j=2αj

λj = αj , j = 2, . . . , k

)
=

k∑
i=1

λixi .

The collection of numbers {λi}ki=1 achieves what we desired.



Theorem 1.1 (Carathéodory). If dim(X) = n, A ⊂ X and x ∈ co(A), then x is a convex
combination of affine-independent points from A (in particular, n+ 1 as much).

Proof. Let x ∈ co(A) such that

x =
k∑
i=1

λixi

with {xi}ki=1 ⊂ A, {λi}ki=1 ⊂ R+
0 and

∑k
i=1λi = 1 to be the shortest expression of x in terms

of elements of A. By reductio ad absurdum, suppose that {xi}ki=1 are affine-dependent.
The previous lemma 1.1 shows that there exists {αi}ki=1 ⊂ R satisfying

k∑
i=1

αi = 0 <
k∑
i=1

|αi |,
k∑
i=1

αixi = 0.

It can also be considered, without losing generality, that

λk
αk

= min
i=1,...,k

{
λi
αi

: αi > 0
}
,

the objective now is looking for a linear combination of x in terms of {xi}k−1
i=1 to find a

contradiction:

x =
k∑
i=1

λixi =
k−1∑
k=1

(
λi −

λk
αk
αi

)
xi +

k−1∑
i=1

λk
αk
αixi +λkxk︸                ︷︷                ︸

0

=
k−1∑
k=1

(
λi −

λk
αk
αi

)
xi .

Calling ξi = λi −
λk
αk
αi for each i = 1, . . . , k − 1, it is clear that ξi ≥ 0 because of the

assumption over λk
αk

. Finally,

k−1∑
i=1

ξi =

λk +
k−1∑
i=1

λi

−
λk +

k−1∑
i=1

λk
αk
αi

 = 1− λk
αk

k∑
i=1

αi︸︷︷︸
0

= 1.

In spite of its usefulness, this result does not give any information about the points
we select to express some x ∈ co(A). In fact, as we have already seen, this result is valid
for every vector space (with no topological structure). However, it would be desirable
to obtain a more powerful result with the aid of a suitable structure.

The next step in the process will be the choice of a reduced group of points P of a
set A satisfying co(P ) = A. That is a first approach to what Krein-Milman theorem will
state in next chapter for locally convex topological vector spaces:

co(P ) = A.

The mentioned set A would have to be compact and convex. There are some reasons
why it is fixed the attention in that kind of sets:



Convexity’s hypothesis is clear, since our purpose is the reconstruction of the set A
through its convex hull (or its closed convex hull if necessary) of a distinguished
subset P of A.

Compactness is also required, since one can find examples of closed and bounded
convex sets which has no extreme points (see subsection 2.1). As well as in many
other branches of Mathematics, this is a convenient hypothesis to ensure the ex-
istence of the previous set P ⊂ A satisfying the desired condition.

In the rest of the section, we will assume that X is a finite-dimensional topological
(only required for proposition 1.2) vector space; this is enough to prove Carathéodory-
Minkowski theorem, even if the previous results can be discussed in more general
structures.

The next results show the topological properties of co(·) as an operator over C.

Lemma 1.2. Given A ⊂ X convex, x ∈ int(A) and y ∈ A, is
◦
Sx,y ⊂ int(A).

Proof. Let t ∈]0,1[ be fixed; we have to show that tx+ (1− t)y ∈ int(A). By translation if
necessary we can assume that tx + (1− t)y = 0, in particular y = αx where α < 0. Since
the mapping ω 7→ αω is a homeomorphism of X and x ∈ int(A), y ∈ A, there exists
z ∈ int(A) such that αz ∈ A.

Let µ = α
α−1 ; then µ ∈]0,1[ and

µz+ (1−µ)αz = 0.

Then, the set
U = {µω+ (1−µ)αz : ω ∈ int(A)}

is a 0-neighbourhood, as long asω 7→ µω+(1−µ)αz is a homeomorphism of X mapping
z ∈ int(A) onto 0. But ω ∈ int(A) and αz ∈ A imply that U ⊂ A for being A convex, and
0 ∈ int(A).

Proposition 1.2. Given a set A ⊂ X, we have:

1. int(A) and A are convex sets if A is convex.

2. co(·) maps open sets into open sets.

3. co(·) maps bounded sets into bounded sets.

4. co(·) maps compact sets into compact sets.2

5. co(·) maps precompact sets into precompact sets.

6. If A is convex and int(A) , ∅, then int(A) = int(A) and int(A) = A.

Proof. 1. For any x,y ∈ int(A), we have that
◦
Sx,y ⊂ int(A) by lemma 1.2, so Sx,y ⊂ int(A)

and int(A) is convex. Furthermore, given x,y ∈ A and t ∈ [0,1], there exist sequences

2Here is required that X is a finite-dimensional space.



{xn}n∈N, {yn}n∈N in A which converge to x and y respectively. By convexity of A, the
family of sequences

zn,t = txn + (1− t)yn, n ∈ N,

belong to A and converge to tx + (1 − t)y for each t ∈ [0,1]. Hence Sx,y ⊂ A and A is
convex.

2. Consider z ∈ co(A). Then exist {λi}ki=1 ⊂ R+
0 and {xi}ki=1 ⊂ A satisfying

k∑
i=1

λi = 1, z =
k∑
i=1

λixi .

Since A is open, there are {δi}ki=1 ⊂ R+ such that Bi := B(xi ,δi) ⊂ A for every i = 1, . . . , k.
Calling δ := mini=1,...,k {δi}, it is clear that

B(z,δ) ⊂
k∑
i=1

λiBi ⊂ co(A).

3.Let M ∈ R such that ‖x‖ ≤M. Then choosing y ∈ co(A), there exist {xi}ki=1 in A and
{λi}ki=1 satisfying y =

∑
i λixi . Using the triangle inequality we conclude that ‖y‖ ≤M.

4. Let n = dim(X) and consider the map

F : [0,1]n+1 ×An+1 −→ X

given by

F(λ1, . . . ,λn+1,x1, . . . ,xn+1) =
n+1∑
i=1

λixi

It is clear that

Γ = {(λ1, . . . ,λn+1) ∈ [0,1]n+1 :
n+1∑
i=1

λi = 1}

is compact, so Γ ×An+1 is compact in [0,1]n+1×An+1. Applying theorem 1.1, F(Γ ×An+1) =
co(A). Since F is continuous, co(A) is compact too.

5. Given A ⊂ X precompact and ε ∈ R+, there exists a finite set S ⊂ A satisfying

A ⊂
⋃
x∈S

B(x,ε).

Using the previous result3, co(S) is compact and co(A) ⊂ co(S) + B(x,ε) since co(S) +
B(x,ε) is convex and contains A. Hence it can be found a finite set S1 ⊂ co(S) such that

co(S) =
⋃
x∈S1

B
(
x,
ε
2

)
.

Now it follows that co(A) ⊂ ∪x∈S1
B(x,ε), showing that co(A) is precompact.

3It can be used, so long as S is compact and dim(co(S)) < +∞.



6. The inclusion int(A) ⊂ int(A) is trivial. On the other hand, given z ∈ int(A) and
x ∈ int(A) with z , x (if z = x is obvious), consider r > 0 such that B(z, r) ⊂ A and the
point

ω = z+
r
2
z − x
‖z − x‖

∈ B(z, r) ⊂ A. (1.6)

Using lemma 1.2 is
◦
Sx,ω ⊂ int(A). Solving the equation 1.6 for z we have z = tx+(1−t)ω

where t = r
r+2‖z−x‖ ∈]0,1[ and z ∈

◦
Sx,ω ⊂ int(A).

To prove the other equality, it is clear that int(A) ⊂ A. Reciprocally, given x ∈ int(A)

and z ∈ A, is
◦
Sx,z ⊂ int(A) by lemma 1.2. Hence, taking any sequence {xi}i∈N ⊂

◦
Sx,z

which converges to z, we conclude that z ∈ int(A).

Remark 1.1.

Even in finite-dimensional spaces, the application co(·) does not always map closed sets to
closed sets. To give an example,

A =
{(
±n, 1

n

)
: n ∈ N

}
⊂ R2

is closed but X = {(x,0) : x ∈ R} ∈ co(A)− co(A).
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Figure 1.4: Illustration of A.

1.3 Dimension of a convex set

Suggestively, the dimension of a vector space is the number of elements which has
every base that can be defined on it. Nonetheless, this concept is reserved to subspaces
(in particular the own space). As it could be appreciated in examples 1.1, the definition
of affine hull gives us the possibility to assign a dimension to convex sets. During this
section, we will assume that X is a finite-dimensional topological vector space with
dim(X) = n, hence we can suppose that the norm employed is the Euclidean one, which
comes from its respective scalar product.



Definition 1.3. Let X be a convex set. For any convex set A ⊂ X, the dimension of A is the
dimension of its affine hull:

dim(A) = dim(aff(A)).

There arises now the problem of studying the convex set in its affine hull, in order
to get more information. For this circumstance appears the next definition.

Definition 1.4. In a topological vector space X, the relative interior of a convex set A ⊂ X is
the interior of A in the induced topology by its affine hull. The collection of relative interior
points of A is denoted by ri(A).

It should be appreciated that int(A) and ri(A) are not the same concepts: in fact,
given X = R3 and A any unit disk, i.e.,

A = {(x,y,z) ∈ R3 : x2 + y2 < 1, z = 0},

we have thatA is convex, but int(A) = ∅ and ri(A) = A since aff(A) = {(x,y,z) ∈ R3 : z = 0}.

Proposition 1.3. Let X be a topological vector space and A be a non-empty convex subset
of X. Then,

1. ri(A) , ∅.

2. aff(A) = aff(ri(A)).

3. A = ri(A).

Proof. 1. First of all, lemma 1.2 shows that ri(A) is convex. We can suppose without
losing generality that 0 ∈ A and dim(A) =m, 0 ≤m ≤ n = dim(X).

If m = 0 it is trivial, so long as A = aff(A) = {0} and ri(A) = {0}. Otherwise, we can
find {xi}mi=1 linear-independent vectors that span aff(A) (i.e., forming a basis for aff(A)).
Consider

Y =

x ∈ A : x =
m∑
i=1

λixi ,
m∑
i=1

λi < 1, λi > 0, ∀i = 1, . . . ,m.

 .
We want to state that Y is open relative to aff(A). To do that, fix y ∈ Y and let x ∈ aff(A).
LetM be the n×m-matrix which columns are {xi}mi=1 and λ, λ the uniquem-dimensional
vectors such that

y =Mλ, x =Mλ.

Due to the fact that MtM is a symmetric and positive definite matrix, we can find
γ ∈ R+ satisfying

‖x − y‖2 = ‖M(λ−λ)‖2 = (M(λ−λ))t(M(λ−λ)) = (λ−λ)tMtM(λ−λ) ≥ γ‖λ−λ‖2.

Since y ∈ Y , the vector λ lies in the open set

E =

(λ1, . . . ,λm) :
m∑
i=1

λi < 1, λi > 0, ∀i = 1, . . . ,m

 .
From the above calculations we see that if x lies in a suitable small ball centered at y,
the corresponding vector λ lies in E, implying that x ∈ Y .



This means that Y contains the intersection of aff(A) and an open ball centred at y,
so Y is open relative to aff(A). Note that every point y ∈ Y is a relative interior point of
A, and hence ri(A) , ∅.

2. Our previous construction of Y gives us that aff(Y ) = aff(A), and since Y ⊂ ri(A),
we see that aff(A) = aff(ri(A)).

3. It is clear that ri(A) ⊂ A⇒ ri(A) ⊂ A. On the other hand, let y ∈ A and x ∈ ri(A).

If x = y, it is done. Otherwise, we know that
◦
Sx,y ⊂ ri(A).

Consider the sequence {1
n
x+

(
1− 1

n

)
y
}
n∈N
⊂ ri(A).

This sequence converges to y, hence y ∈ ri(A) and A ⊂ ri(A).

A detailed reading of the last proposition gives us an explicit expression of the
relative interior of a convex set given by the convex hull of affine-independent points:

ri[co({x0, . . . ,xk})] =

 k∑
i=0

λixi :
k∑
i=0

λi = 1, λi > 0, ∀i = 0, . . . , k

 .

1.4 Extreme points

We devote the most important section of this chapter to the introduction of the
concept of extreme point.

Definition 1.5. An extreme point of a convex set A in a vector space X is a point x ∈ A
satisfying, for every y,z ∈ A:

x ∈ Sy,z⇒ x = y ∨ x = z.

We will denote as ext(A) the set of extreme points of A.

In other words, an extreme point is a point which is not contained in any non-trivial
segment of points of A.

Examples 1.2.

The extreme points of a polyhedron are their own vertexes.

In a closed Euclidean ball A = B(x,r), ext(A) = S(x,r). This example shows that ext(A)
may not be necessarily finite.

Consider the following subset of X = R3:

A = co({(±1,±1,±1)} ∪ {(cosα,±(1 + sinα),0) : a ∈ [0,π]}).

In this case, the points {(±1,±1,0)} < ext(A) since they are contained in any segment
with the form S(±1,±1,r),(±1,±1,−r) ⊂ A, 0 < r ≤ 1. Now it can be appreciated that ext(A)
may not be closed (see figure 1.5).



Figure 1.5: Plot of A and co(A).

A more general notion is derived from the previous concept.

Definition 1.6. Let A ⊂ X a convex set in a vector space. A subset F ⊂ A is said to be a face
of A if it is a convex set and, for every x,y ∈ A,

◦
Sx,y ∩F , ∅⇒ Sx,y ⊂ F.

A proper face F ⊂ A satisfies F , A.

Extreme points are one-point faces of A. A canonical way proper faces are con-
structed is via linear functionals.

Proposition 1.4. LetA ⊂ X a convex set in a vector space and f : A→ R an affine functional
with supx∈A f (x) = α < +∞. Then, if

F = {y ∈ A : f (y) = α} (1.7)

is a non-empty set, is a face of A. In particular, when X is a topological vector space, any
linear and continuous functional defines a face over a compact convex subset A ⊂ X in a
topological vector space.

Proof. It is clear that F is convex by linearity of f . Given y,z ∈ A with
◦
Sy,z ⊂ F, we have

tf (y) + (1− t)f (z) = α
f (y) ≤ α
f (z) ≤ α

⇒ f (y) = f (z) = α

and Sy,z ⊂ F.

If X is a topological vector space and the functional f which appeared in proposi-
tion 1.4 is nonzero, linear, continuous and defined in X, the set given by the equation
(1.7) is called an exposed set; in particular, if it is a singleton, we call the point an
exposed point.



Remarks 1.2. Let X be a topological vector space.

In addition to the previous proposition, if the functional f is nonconstant in A, then
the mentioned face is proper.

Every exposed set F is closed (in the relative topology of A) by the own definition. In
particular, if X is Hausdorff and A ⊂ X is compact, so is F.

Every exposed point is an extreme point, but the reciprocal is not true in general. As
an example, consider X = R3 and

A =
{
(x,y,z) ∈ R3 : x2 + y2 ≤ 1, −2 ≤ z ≤ 0,

}⋃{
(x,y,z) ∈ R3 : x2 + y2 + z2 ≤ 1

}
.

Every point in the set
{
(x,y,z) ∈ R3 : x2 + y2 = 1, z = 0

}
is an extreme one, but it is not

an exposed one since the unique supporting hyperplane is not a singleton (figure 1.6).

Figure 1.6: Example of non-exposed and extreme points.

Recall now the geometric version of Hahn-Banach theorem:

Theorem 1.2 (Existence of supporting functionals). Let X be a topological vector space
and A a closed convex subset of X such that int(A) , ∅. Then, for any x0 in the boundary of
A, there exists a nonzero linear and continuous functional f such that

Ref (x0) = max
x∈A

Ref (x).

If α = Ref (x0), the affine hyperplane in XR given by H = {x ∈ X : Ref (x) = α} con-
tains x0 and isolates A; we say that the functional f or the hyperplane H supports the
set A in the point x0. One can easily notice that the supporting hyperplane may not be
unique (any vertex of a regular polyhedron admits infinite many of them).

This is an appropriate moment to define the convex bodies: a subset A of a topolo-
gical vector space X is said to be a convex body if it is closed, convex and int(A) , ∅.



Proposition 1.5. LetX be a topological vector space andA a convex subset ofX. Any proper
face F ⊂ A lies in the boundary of A. Conversely, if A is a convex body, then every point of
its boundary is contained in a proper face.

Proof. Let x ∈ F and y ∈ A−F. The set B = {t ∈ R : tx+ (1− t)y ⊂ A} is contained in [0,1]
but it can not include any t > 1 for if it did, x would be an interior point of a segment
in A with at least one point in A−F. Hence{

(1 +n−1)x+n−1y
}
n∈N

is a sequence in X −A which converges to x, i.e. x ∈ A∩X −A = ∂A.
Reciprocally, let us assume that A is a convex body and x0 a point in its bound-

ary. In light of theorem 1.2, there exists a continuous functional f , 0 such that
α = supy∈ARef (y) = Ref (x0). In addition, according to proposition 1.5, the set {x ∈
A : Ref (x) = α} defines a proper face of A which contains x0, so long as if Ref was
constant in A, it would be constant in X.

Corollary 1.1. If X is a finite-dimensional topological vector space the dimension of any
proper face F of a convex set A ⊂ X is strictly less than dim(A).

Proof. If dim(F) = dim(A), then V = aff(A) = aff(F), hence ri(F) , ∅. But F lies in the
boundary of A relative to V by proposition 1.5, so we have a contradiction.

Proposition 1.5 highlights the importance of compact sets, so long as it is needed
the existence of boundary points (closed sets) and their abundance (bounded sets).
Henceforth, we will also restrict the term “face” to indicate a closed set, even if there
exist nonclosed faces in infinite dimensional spaces. We conclude this section with an
observation about the transitivity of the faces in a convex set.

Proposition 1.6. Let A ⊂ X be a convex set in a vector space and F a face of A. Let B ⊂ F.
Then B is a face of F iff it is a face of A. In particular, x ∈ F is in ext(F) iff it is also in ext(A),
i.e.,

ext(F) = F ∩ ext(A).

Proof. ⇒) Suppose that B ⊂ F is a face, x ∈ B and x ∈
◦
Sy,z ⊂ A. Since x ∈ F and F is a

face, we have that y,z ∈ F. Hence y,z ∈ B and so B is a face of A.

⇐) If B ⊂ A is a face, x ∈ B and x ∈
◦
Sy,z ⊂ F ⊂ A, then y,z ∈ F ⊂ A and consequently

y,z ∈ B for being B a face of A. Thus, B is a face of F.

1.5 Carathéodory-Minkowski theorem

The final section of this chapter will introduce us to Carathéodory-Minkowski the-
orem in finite-dimensional spaces. The existence of extreme points will be given by
the compactness of the convex set.

Taking into account that, for a finite-dimensional vector space X, there exists a
unique Hausdorff topology compatible with the vector structure, and that topology is
induced by any norm, we can use the Euclidean one for our purposes.



Lemma 1.3. Let A ⊂ X a compact convex set.

1. Every compact convex set A ⊂ X has at least one extreme point.

2. If f : A→ R is an affine functional which attains a unique maximum in a ∈ A, a is an
extreme point.

Proof. 1. Since A is compact and ‖·‖ : X→ R is continuous in A, it attains its maximum
in a ∈ A. Suppose, without losing generality, that a = 1

2(x+ y) for some Sx,y ⊂ A. Then,

‖a‖2 ≤ 1
4

(‖x‖+ ‖y‖)2 =
1
4

(‖x‖2 + ‖y‖2 + 2‖x‖‖y‖) ≤ 1
4

(‖a‖2 + ‖a‖2 + 2‖a‖‖a‖) = ‖a‖2.

Then ‖a‖ = 1
2(‖x‖+ ‖y‖).

If ‖x‖ < ‖y‖ ∨ ‖y‖ ≤ ‖x‖, then ‖a‖ < ‖y‖ ∨ ‖a‖ < ‖x‖, which is a contradiction with
the choice of a.

If ‖x‖ = ‖y‖, the strict convexity of the Euclidean norm concludes that a = x = y.

2. It is an easy consequence of proposition 1.4.

The final theorem of this chapter is ready to be introduced now.

Theorem 1.3 (Carathéodory-Minkowski). Let A ⊂ X a compact convex subset of a finite-
dimensional space X (with dim(X) = n). Then,

A = co(ext(A)),

namely, every a ∈ A is a convex combination of n+ 1 extreme points in A as much.

Proof. It will be done by induction on the dimension n. For n = 0, A is a point and the
result is obvious. Let assume the theorem for n < d. It can be also supposed, without
loss of generality that int(A) , ∅. Otherwise we can find an affine variety of lower
dimension (< d) that contains the set A such that ri(A) is non-empty (proposition 1.3).
Since the dimension will be less than d, the result follows from induction hypothesis.

Let a an element in the boundary of A. By proposition 1.5, there exists a face F such
that a ∈ F isolating A. Since dim(F) < d (corollary 1.1) and any face of a compact con-
vex set is a compact convex set, by induction hypothesis is a ∈ co(ext(F)) ⊂ co(ext(A))
(propositions 1.1 and 1.6).

Suppose a ∈ int(A). Since A is bounded, there exist x,y in the boundary of A satisfy-

ing a ∈
◦
Sx,y ⊂ A. As it has been proved, x,y ∈ co(ext(A)), and since co(ext(A)) is convex,

a ∈ co(ext(A)).

After having established Carathéodory-Minkowski’s theorem, it can be fathomed
that for every non-empty compact convex subset A ⊂ X, the set of its extreme points,
ext(A), is always non-empty and it can also be justified the assertion that the convex
hull of ext(A), co(ext(A)), is always closed (in fact, compact).

The following corollary highlights the importance of Carathéodory-Minkowski’s
theorem in linear optimization.



Corollary 1.2. Let A ⊂ X be a compact convex set and f : A → R a linear (continuous)
functional. Then f attains its maximum (or its minimum) at an extreme point of A.

Proof. By lemma 1.3 A has an extreme point. Plus, since f is continuous and A com-
pact, f attains its maximum (the other case can be reduced to consider the functional
−f ) in a point a ∈ A. Then a is a convex combination of some extreme points of A, i.e.,

a =
n+1∑
i=1

λixi ,
n+1∑
i=1

|λi | > 0,
n+1∑
i=1

λi = 1, {xi}n+1
i=1 ⊂ ext(A).

Hence,

f (a) =
n+1∑
i=1

λif (xi) ≤
n+1∑
i=1

λif (a) = f (a).

It is clear that, for every λi , 0, f (xi) = f (a), and hence f attains its maximum at an
extreme point.





2Krein-Milman theorem
Now we have a slight background about finite-dimensional theory, we want to ex-

tend those results to an arbitrary dimension (with appropriate considerations). Indeed,
we will extend the domain of the space we are going to develop the theory, and we
will consider locally convex Hausdorff topological vector spaces; specifically, Krein-
Milman theorem states that:

“Every non-empty compact convex subset of a locally convex Hausdorff topological vector
space is the topological closure of the convex hull of its extreme points”.

This generalisation adds up within our purpose of studying convex sets, since it is only
needed the structure of vector space1. In that sense, a first approach to the problem
will be given by the algebraic characterisation of unit balls in normed spaces. This step
will bring us naturally the main algebraic concepts involved in this theory, which are
balancedness, absorbency and the own definition of convexity. The immediate general-
isation of those results will make us able to extend the domain to TVS.

The essential tool in the proof will be, as well as in many other results of functional
analysis, Zorn’s lemma. The next reminder of the mentioned statement will be useful
for the reader:

Theorem 2.1 (Zorn). Let X be a preordered set. If each chain in X has an upper bound,
then X has at least one maximal element.

A further relation between the axiom of choice, Zorn’s lemma and Zermelo’s the-
orem can be found in [10].

Another useful result will be Hahn-Banach theorem, specifically one form of it
which is known as the Geometric Hahn-Banach theorem. It states that:

Theorem 2.2 (Hahn-Banach). Let X be a locally convex topological vector space over K =
R∨C. If A,B are convex, non-empty disjoint subsets of X, A compact and B closed, then
there exists a continuous linear map f : X→K and s, t ∈ R satisfying

Re(f (a)) < t < s < Re(f (b)), ∀a ∈ A, ∀b ∈ B.

In particular, X∗ separates points of X.
To begin with, we will develop some examples of extreme points in infinite-dimensional

spaces to show not only the differences between both cases, but also the main strategies
that can be developed during the analysis of this theory.

2.1 Examples of extreme points

The most usual examples of topological vector spaces are normed spaces (X,‖·‖).
Plus, the study of extreme points in some closed ball B(x,r) for x ∈ X and r > 0 can be
reduced to the study of B(0,1). For those reasons, our first examples will be devoted in
that environment.

1To revise some concepts related to (locally convex) topological vector spaces, (cf. [6]).
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Even if proposition 1.5 shows that extreme points can be only found in S(0,1),
it is interesting to consider the wide variety of enriching strategies which take place

during the particular verifications that
◦
BX has no extreme points. In order to establish

some helpful notation for an arbitrary topological vector space X over a field K, the
following concepts will be abbreviated as follows:

BX := B(0,1), SX := S(0,1), T := {λ ∈K : |λ| = 1}, EX := ext(BX).

Lp([0,1]) spaces

The first example of extreme points (which also contains infinite many of them)
will show the difference between extreme points in Lp([0,1]) spaces, taking into con-
sideration whether p = 1 or 1 < p < +∞. If p = 1, there are no extreme points in BL1

,
whereas if 1 < p < +∞ we have that ELp = SLp .

First let f ∈ BL1
with ‖f ‖1 = 0. Then,

f = 0 =
1
2

(1) +
1
2

(−1)

almost everywhere. Since 1 and −1 are different functions in B1, f ∈
◦
S−1,1 ⊂ BL1

,
hence f < EL1

. Now consider f ∈ BL1
with 0 < ‖f ‖1 ≤ 1 and the function F :

[0,1]→ R given by

F(x) =
∫ x

0
|f (t)|dt, ∀x ∈ [0,1].

Then, F is continuous and satisfies F(0) = 0, F(1) = ‖f ‖1 ≤ 1. Hence, by the Inter-
mediate Value Theorem there exists ξ ∈]0,1[ satisfying F(ξ) = 1

2F(1).

Now for each t ∈ [0,1], define

f1(t) = χ[0,ξ]2f (t), f2(t) = χ]ξ,1]2f (t).

It is clear that f1, f2 ∈ BL1
and, for every t ∈ [0,1]:

f (t) = χ[0,ξ]f (t) +χ]ξ,1]f (t) =
1
2

(
χ[0,ξ]2f (t)

)
+

1
2

(
χ]ξ,1]2f (t)

)
=

1
2
f1(t) +

1
2
f2(t).

Finally, it has to be checked that f ∈
◦
Sf1,f2 :

‖f − f1‖1 =
∫ 1

0
|(f − f1)(t)|dt ≥

∫ ξ

0
|(f − f1)(t)|dt =

∫ ξ

0
|(f − 2f )(t)|dt

=
∫ ξ

0
|f (t)|dt =

1
2

∫ 1

0
|f (t)|dt =

1
2
‖f ‖1 > 0.

‖f − f2‖1 =
∫ 1

0
|(f − f2)(t)|dt ≥

∫ 1

ξ
|(f − f2)(t)|dt =

∫ 1

ξ
|(f − 2f )(t)|dt

=
∫ 1

ξ
|f (t)|dt =

1
2

∫ 1

0
|f (t)|dt =

1
2
‖f ‖1 > 0.



The first part of the strategy is going to be followed now is slightly different, so
long as BLp has infinite many extreme points. To show that ELp = SLp , it will be
required the fact that the map

x 7→ ‖x‖pp
is strictly convex for each 1 < p < +∞, which means in particular that, for every
different f ,g ∈ Lp([0,1]) and t ∈]0,1[,

‖tf + (1− t)g‖pp < t‖f ‖
p
p + (1− t)‖g‖pp.

In fact, suppose that there exists f ∈ SLp with f = 1
2(f1 + f2) for some different

f1, f2 ∈ BLp . Then,

‖f ‖pp =
∣∣∣∣∣∣∣∣∣∣12(f1 + f2)

∣∣∣∣∣∣∣∣∣∣p
p
<

1
2
‖f1‖

p
p +

1
2
‖f2‖

p
p ≤

1
2

+
1
2

= 1,

hence there is a contradiction since ‖f ‖p = 1 = ‖f ‖pp.

The implication SLp ⊂ ext(BLp) has been proved. To check the equality, it only has
to be considered the proposition 1.5.

c0 space

The next example will be devoted to the space c0 of convergent sequences to 0. First
of all, given any x = {xn}n∈N ∈ Bc0 , we have that |xn| ≤ 1 for all n ∈ N and there also exists
m ∈ N satisfying

|xn| <
1
2
, ∀n ≥m.

Let y,z be the elements given by

yn =
{

xn if n ,m
xm + 1

2 if n =m
, zn =

{
xn if n ,m

xm − 1
2 if n =m

.

It is clear that y,z ∈ Bc0 , y , z and x = 1
2(y + z), hence x is not an extreme point.

`1 space

Now we are going to consider the closed unit ball B`1
in the space of sequences `1

whose series is absolutely convergent. To check that

E`1
=

{
eα,k := {eα,k(n)}n∈N

}
k∈N

with α ∈ T and eα,i(j) = αδij , suppose that there exist a = {ai}i∈N, b = {bj}j∈N ∈ B`1
− {0}

with eα,k = 1
2(a+ b). Then,

eα,k(k) = α =
1
2

(ak + bk) ∧ eα,k(m) = 0 =
1
2

(am + bm), m , k.

In particular, |am| = |bm| for each m , k and |ak | = |2− bk | ≥ |2− |bk || = 2− |bk |, hence

‖a‖ = 2− |bk |+
+∞∑
k=1
k,m

|bk | ≥ 2− |bk | > 1,



and we have a contradiction.
It only lefts to prove that 0 < E`1

, but that is trivial, so long as it can be considered
any eα,k := a and its opposite −eα,k := b for any k ∈ N (which are different) satisfying
0 = 1

2(a+ b).
Now, let x = {xn}n∈N ∈ B`1

− {0} with ‖x‖ < 1 and consider 0 < ε < 1− ‖x‖. Defining

yn =
{
x1 + ε if n = 1

xn if n > 1
, zn =

{
x1 − ε if n = 1

xn if n > 1
,

we have that y , z and

‖y‖ ≤ ε+
+∞∑
n=1

|xn| < 1, ‖z‖ ≤ ε+
+∞∑
n=1

|xn| < 1,

hence y,z ∈ B`1
and x = 1

2(y + z).
Finally, if ‖x‖ = 1 and there exist at least two i, j ∈ N such that 0 < {xi ,xj}, define

0 < ε <min {|xi |, |xj |} and

yn =


xn if n < {i, j}

xi
(
1 + ε

|xi |

)
if n = i

xj

(
1− ε

|xj |

)
if n = j

, zn =


xn if n < {i, j}

xi
(
1− ε

|xi |

)
if n = i

xj

(
1 + ε

|xj |

)
if n = j

.

We have that y , z and

‖y‖ = |xi |
(
1 +

ε
|xi |

)
+ |xj |

(
1− ε
|xj |

)
+

+∞∑
n=1
n<{i,j}

|xn| = |xi |+ ε+ |xj | − ε+
+∞∑
n=1
n<{i,j}

|xn| =
+∞∑
n=1

|xn| = 1

‖z‖ = |xi |
(
1− ε
|xi |

)
+ |xj |

(
1 +

ε
|xj |

)
+

+∞∑
n=1
n<{i,j}

|xn| = |xi | − ε+ |xj |+ ε+
+∞∑
n=1
n<{i,j}

|xn| =
+∞∑
n=1

|xn| = 1

hence y,z ∈ B`1
and x = 1

2(y + z).

`∞ space

Let B`∞ be the closed unit ball in `∞, and define

C = {x := {xn}n∈N ∈ B`∞ : xn ∈ T, ∀n ∈ N} .

To verify that E`∞ = C, consider x ∈ C. Since every xn ∈ T is an extreme point of BK,
it follows that x ∈ E`∞ . Now select x ∈ B`∞ − C; there exists m ∈ N such that |xm| < 1.
Defining 0 < ε < 1− |xm| and

yn =
{
xm + ε if n =m

xn if n ,m
, zn =

{
xm − ε if n =m

xn if n ,m
,

we have that y , z and

‖y‖ = sup
n∈N
n,m

{{|xn|} ∪ {|xm + ε|}} ≤ 1, ‖z‖ = sup
n∈N
n,m

{{|xn|} ∪ {|xm − ε|}} ≤ 1,

hence y,z ∈ B`∞ and x = 1
2(y + z).



C(X) space

Let X be a compact Hausdorff space. Then, the space C(X) of continuous function-
als f : X → K is a normed space with ‖f ‖∞ = supx∈X |f (x)|. Consider BC(X) the unit
closed ball in C(X), and

C =
{
f ∈ BC(X) : Im(f ) ⊂ T

}
.

To show that C ⊂ EC(X), it only has to be noticed that every f (x) ∈ T is an extreme point
of BK.

Conversely, given f ∈ BC(X) with |f (x)| < 1 for some x ∈ X, by continuity of f it can
be found

0 < ε < 1− |f (x)|

and δ > 0 satisfying the previous inequality for every x ∈ B(x,δ). Given b ∈ B(x,δ),
Urysohn’s lemma states that there exists φ ∈ BC(X) such that φ(b) = 1 and φ|B(x,δ)C = 0.
Let g = εφ ∈ BC(X); then

|(f ± g)(y)| =
{
|(f ± εφ)(y)| < 1− ε+ ε = 1 if y ∈ B(x,δ)

|f (y)| ≤ 1 if y ∈ B(x,δ)C
⇒ ‖f ± g‖∞ ≤ 1,

hence f ± g ∈ BC(X) and f = 1
2 [(f + g) + (f − g)].

Probability measures on a compact Hausdorff space

The next example concerns the extreme points of the set of probability measures on
a (locally) compact Hausdorff topological space X. This is an example of paramount
importance related to the integral representation theorems of convex sets. The object-
ive of this section is proving that EP (X) = {εx : x ∈ X}, where P (X) is the set of probability
measures on X and εx is the Borel measure which equals 1 on any Borel subset of X
which contains x, and equals 0 otherwise.

First it is going to be remarked the definition of a Radon measure.

Definition 2.1. Let X be a locally compact Hausdorff topological space. A Radon measure
µ on X is a Borel measure satisfying the following conditions:

µ(K) < +∞ for every compact set K ⊂ X.

Outer regularity: For each Borel set A ⊂ X,

µ(A) = inf {µ(U ) : U open ,A ⊂U }.

Inner regularity: For each open set U ⊂ X,

µ(U ) = sup {µ(K) : K compact ,K ⊂U }.

A probability measure is a Radon measure on X having total mass equal to 1.

Roughly speaking, the support of a Radon measure µ is the biggest closed subset of
X for which every open neighbourhood of every point of the set has positive measure.
In order to define it, consider {Ui}i∈I the family of open set such that µ(Ui) = 0. Then,
the set U = ∪i∈IUi is clearly open and µ(U ) = 0. Using the inner regularity of µ, it is



enough proving the result for every K ⊂ U compact. Since K is compact, there exists
i1, . . . , in ∈ I satisfying

K ⊂
n⋃
j=1

Uij .

Hence,

µ(K) ≤ µ

 n⋃
j=1

Uij

 ≤ n∑
j=1

µ(Uij ) = 0.

Definition 2.2. The support of a Radon measure µ is the complement of the setU previously
defined.

Given x ∈ X, recall that the support of the Dirac mass δx at x is supp(δx) = {x}. In
addition, the converse also holds.

Lemma 2.1. Let µ be a Radon measure on a locally compact Hausdorff topological space X
and x ∈ X. If supp(µ) = {x}, then µ = cεx where c = µ(X).

Proof. By the definition of support of a measure,

µ({x}) = µ(X)−µ(X − {x}) = µ(X) = c.

To show that µ = cεx, let A ∈ B(X). If x < A, A ⊂ X − {x} and µ(A) = 0 = cεx(A). On the
other hand, if x ∈ A, then

µ(A) = µ(A− {x}) +µ({x}) = µ({x}) = µ(X) = cεx(A).

Thus, µ = cεx for all x ∈ X.

The next lemma highlights the importance of the support of a measure in terms of
integration theory.

Lemma 2.2. Let µ be a Radon measure on a locally compact Hausdorff topological space X.
If f ∈ BC(X) and f (x) > 0 for some x ∈ supp(µ), then∫

X
f dµ > 0.

Proof. Consider the set

U =
{
y ∈ X : f (y) >

f (x)
2

}
.

It is clear that U is open, x ∈U and f > f (x)
2 χU . Hence,∫

X
f dµ >

∫
U

f (x)
2

dµ =
f (x)

2
µ(U ) > 0.

The latter holds because if µ(U ) = 0, then it would be contained in the largest open set
having µ-measure zero, in particular x. On the other hand, by definition of supp(µ), it
follows that x < supp(µ), which is a contradiction.



Now it is time to get on with the desired result.

Proposition 2.1. Let µ be a Radon measure on a locally compact Hausdorff topological space
X. Then P (X) is a convex set and

EP (X) = {εx : x ∈ X}.

Proof. First of all, it is clear that P (X) is convex. The previous equality is going to be
checked by double implication.
⇒) Let µ ∈ EP (X). By lemma 2.1 it suffices to show that supp(µ) = {x} for some

x ∈ X. Suppose that there exist x,y ∈ X with x , y satisfying x,y ∈ supp(µ). Since
every compact Hausdorff topological space is normal, there exist U,V ∈ B(X) such
that x ∈ U, y ∈ V and U ∩V = ∅. By Urysohn’s lemma, there exists f ∈ BC(X) such that
f |U = 1 and f |V = 0. Given that f (x) = 1 > 0, lemma 2.2 shows that

0 <
∫
X
f dµ := λ.

Furthermore, it will be shown that λ < 1. For this, note that f ≤ χX−V , which implies

λ ≤ µ(X −V ) = µ(X)−µ(V ) = 1−µ(V ) < 1,

where µ(V ) > 0 since y ∈ supp(µ).
Now set

µ1 =
1
λ
f µ, µ2 =

1
1−λ

(1− f )µ.

Then µ1,µ2 ∈ P (X), µ = λµ1 + (1−λ)µ2 and

µ1(U ) =
1
λ

∫
U
f dµ =

µ(U )
λ

> 0,

µ2(U ) =
1

1−λ

∫
U

(1− f )dµ = 0,

hence µ1 , µ2, which contradicts the fact that µ ∈ EP (X).
⇐) Assume to reach a contradiction that, given x ∈ X, εx < EP (X). Then there exist

µ1,µ2 ∈ BP (X) − {εx} satisfying

εx = tµ1 + (1− t)µ2, 0 < t < 1.

We have
1 = εx({x}) = tµ1({x}) + (1− t)µ2({x}).

Since µ1({x}),µ2({x}) ∈ [0,1] and 0 < t < 1, we must have 1 = µ1({x}) = µ2({x}). But both
are probability measures, which implies that

µ1(X − {x}) = µ2(X − {x}) = 0

and εx = µ1 = µ2.

The extension of proposition 2.1 to signed measures is very natural to obtain, as
long as this result can be understood as the study of a face in the general problem.
Taking into consideration that, if x ∈ EX , then Tx ⊂ EX for every normed space X, a
similar reasoning to the previous proposition brings the following theorem.



Theorem 2.3 (Arens-Kelley). Let C(X) be the space of continuous functions on the compact
Hausdorff space X. For each x ∈ X let δx ∈ C(X)∗ defined by

δx(f ) = f (x), ∀f ∈ C(X).

Then
EC(X)∗ = T{δx : x ∈ X}.

Characterisation of strictly convex spaces by extreme points

Geometrically, a normed space (X,‖·‖) is strictly convex when its unit sphere SX
does not contain segments.

Definition 2.3. Given a normed space (X,‖·‖), it is said to be strictly convex if, for every
x,y ∈ SX with ‖x+ y‖ = 2, it implies that x = y.

Strictly convex spaces have an important characterisation in terms of extreme points,
which is going to be developed in the following lines.

Proposition 2.2. Let (X,‖·‖) be a normed space. Then X is strictly convex if, and only if,
EX = SX .

Proof. ⇒) Let x ∈ SX and suppose that there exist y,z ∈ BX with y , z satisfying x =
1
2(y + z). It is obvious that 2 = ‖y + z‖; furthermore,

1 = ‖x‖ =
1
2
‖y + z‖ ≤ 1

2
(‖y‖+ ‖z‖) ≤ 1

2
2 = 1

⇒ 1 =
1
2

(‖y‖+ ‖z‖)⇒ 2 = ‖y‖+ ‖z‖
⇒ ‖y‖ = 1 = ‖z‖

Hence, by strictly convexity of X, it implies that y = z, which is a contradiction.
⇐) Given x,y ∈ SX , suppose that ‖x+y‖ = 2. Then, the element u = 1

2(x+y) satisfies

‖u‖ =
1
2
‖x+ y‖ = 1,

hence u ∈ EX and x = y.

The previous examples conclude that Lp([0,1]) (1 < p < +∞) are strictly convex
spaces, whereas the rest of them are not strictly convex. It is also important the con-
sideration of the following sufficient condition about this property.

Proposition 2.3. Every normed space (X,‖·‖) satisfying the parallelogram identity is strictly
convex.

Proof. Let x,y ∈ SX with ‖x+ y‖ = 2. Then,

‖x+ y‖2 + ‖x − y‖2 = 2(‖x‖+ ‖y‖)⇒ ‖x − y‖2 = 2(‖x‖+ ‖y‖ − 2).

Since x,y ∈ SX , ‖x‖ = ‖y‖ = 1, hence ‖x‖+ ‖y‖ − 2 = 0, which means that ‖x − y‖ = 0 and
x = y.



2.2 Characterisation of unit balls in normed spaces

As it has been detailed in the introduction of this chapter, the main goal is giving
an algebraic characterisation to a certain subset A ⊂ X of a TVS for being the unit ball
of a seminorm p over X. Since unit balls are one of the most important subsets of a
seminormed space, it would be desirable to have a powerful knowledge of their prop-
erties. In addition, the requirements of the seminorm given by A will be satisfied by
those properties, hence there are more than enough reasons to start with this section.

In order not to lose sight of the main purpose, after the establishment of the results
it is going to be analysed every used property.

Definition 2.4. Let A ⊂ X be a subset of a TVS. A is said to be absorbing if, for every x ∈ X,
there exists r(x) := r ∈ R+ satisfying x ∈ rA. Plus, A is said to be balanced if, for every α ∈K
with |α| ≤ 1, is αA ⊂ A.

The main properties of those kind of sets can be easily checked for the reader,
and it can be also consulted in [6]. One of the most important ones is that every 0-
neighbourhood is absorbing (it will be used in theorem 2.6).

Examples 2.1.

The unit ball BX of any normed space X is balanced, absorbing and convex. In fact,
0 ∈ BX and for any x ∈ X − {0} it can be chosen r(x) = ‖x‖ satisfying x ∈ ‖x‖BX , or
equivalently x

‖x‖ ∈ BX . Furthermore, given α ∈ K such that |α| ≤ 1, it is clear by
definition that αBX ⊂ BX .

The set A = {0} ∪ SX of any normed space X is absorbing but not balanced. Indeed,
a detailed lecture of the previous example shows that x

‖x‖ ∈ SX for any x ∈ X − {0}.
However, for every α ∈K such that 0 < |α| < 1, αA 1 A.

Given x ∈ X with dim(X) > 1, the set S0,x is balanced but not absorbing, since for each
α ∈ K such that |α| ≤ 1, αS0,x = S0,αx ⊂ S0,x so long as αx = (1−α)0 +αx ∈ S0,x and
every segment is convex. Nonetheless, for every y < span({x}), it does not exist r ∈ R
satisfying that y ∈ rS0,x by the own definition of linear span.

To begin with, it can be appreciated that given A ⊂ X a convex absorbing set, the
real number

pA(x) = inf {r ∈ R+ : x ∈ rA} (2.1)

exists for each x ∈ X. In fact, {r ∈ R+
0 : x ∈ rA} is non-empty and 0 is a lower bound for

each x ∈ X. Hence one can define the map pA : X → R+
0 given by the equation (2.1).

The main problem is what kind of properties must A satisfy to make qA a seminorm.

Proposition 2.4. Given the previous real number qA(x) for each x ∈ X and A ⊂ X a convex
absorbing set:

1. The map qA is a quasi-seminorm; i.e.,

qA(tx) = tqA(x)
qA(x+ y) ≤ qA(x) + qA(y)

, ∀x,y ∈ X, ∀t ∈ R+
0 .



2. One has the inclusions

{x ∈ X : qA(x) < 1} ⊂ A ⊂ {x ∈ X : qA(x) ≤ 1}.

3. In addition, if A is balanced, then qA is a seminorm.

The map qA is called the Minkowski fuctional associated to A.

Proof. 1. since A is absorbing, it contains the zero vector, so in fact 0 ∈ λA for all λ ∈ R+

and pA(0) = 0. If t > 0,

pA(tx) = inf {r ∈ R+ : tx ∈ rA} = inf {r ∈ R+ : x ∈ r
t
A} = t inf {r ∈ R+ : x ∈ rA} = tpA(x).

On the other hand, given x,y ∈ X, we only have to check that x+y ∈ (pA(x)+pA(y))A,
but that is clear in light of proposition 1.1, so long as x+y ∈ pA(x)A+pA(y)A = (pA(x) +
pA(y))A when A is convex.

2. To prove the first inclusion, suppose x ∈ X satisfying qA(x) < 1. There exists some
t ∈]0,1[ such that x ∈ tA. In particular, the vector a = 1

t x belongs to A, hence

ta+ (1− t)0 = x ∈ A.

The second inclusion is obvious, so long as the set {t > 0: x ∈ tA} 3 1 for every x ∈ A.
3. Assume A is balanced. Since TA = A, for any x ∈ X, λ > 0 and γ ∈ T one has the

equivalences
x ∈ λA⇔ γx ∈ γλA⇔ γx ∈ λA.

It is clear by definition that

pA(γx) = pA(x), ∀x ∈ X, ∀γ ∈ T.

In addition, since {0} ∪T is absorbing in K, for any α ∈K there exist γ ∈ T and |α| ∈ R+
0

such that α = γ |α|. Finally,

pA(αx) = pA(γ |α|x) = pA(|α|x) = |α|pA(x).

The second part of proposition 2.4 shows that the setAwould be contained between
the open and the closed ball of the seminormed space. The most desirable property
would be the identification of the topological interior (resp. closure) of the set A with
the open ball (resp. closed ball) of that seminormed space. The next proposition will
be provided under the most general circumstances; in particular, the previous remark
holds.

Proposition 2.5. Let A ⊂ X be a non-empty convex absorbing subset of a T V S X. The
following conditions are equivalent:

1. pA is continuous.

2. 0 ∈ int(A).

Under those circumstances, int(A) = {x ∈ X : pA(x) < 1} and A = {x ∈ X : pA(x) ≤ 1}.



Proof. ⇒) Since A is absorbing, in particular 0 ∈ A. In addition, by continuity of pA,
0 ⊂ {x ∈ X : pA(x) < 1} ⊂ int(A).
⇐) If A is a 0-neighbourhood, then εA ⊂ p−1

A ([0, ε]) for every ε ∈ R+
0 , which means

that pA is continuous at 0; i.e., continuous.
Now suppose that pA is continuous. On the one hand, it is clear that {x ∈ X : pA(x) <

1} ⊂ int(A). On the other hand, let x ∈ int(A) and {λn}n∈N be a sequence of numbers
in ]1,+∞[ which converges to 1. Then {λnx}n∈N→ x, hence there exists N ∈ N such as
λNx ∈ int(A) ⊂ A, and pA(x) ≤ 1

xN
< 1.

To verify that A = {x ∈ X : pA(x) ≤ 1}, the inclusion ⊃ is straightforward since A ⊂ A.
Given x ∈ A, there exists {xn}n∈N ⊂ A which converges to x. Hence

pA(xn) ≤ 1, ∀n ∈ N,

and using the continuity of pA it is concluded that pA(x) ≤ 1.

In a nutshell, is has been proved the equivalence of the following statements for
every TVS X and every seminorm p : X→ R+

0 :

1. p is continuous.

2. The set {x ∈ X : p(x) < 1} is open.

3. 0 ∈ int({x ∈ X : p(x) < 1}).

4. p is continuous at 0.

5. There exists a continuous seminorm q : X→ R+
0 such that p ≤ q.

The correspondence between convex balanced 0-neighbourhoods and continuous seminorms
shows the equivalence between locally convex spaces and TVS which topology is asso-
ciated to a family of seminorms.

2.3 Krein-Milman theorem

During the development of the previous chapter, most of the definitions and the
results has been stated without considering the dimension of the vector space X. Nev-
ertheless, some of them required that condition, such as the fact that co(·) maps com-
pact sets into compact sets. This property was of paramount importance in the state-
ment of Carathéodory-Minkowski’s theorem, since it concluded that co(ext(A)) is com-
pact when A ⊂ X is compact.

The previous operator does not have that property in infinite-dimensional spaces,
as the next example shows:

Example 2.1. Consider the TVS `2 of square summable sequences. The set

A = {1
k
e1,k}k∈N ∪ {0}



of sequences defined in subsection 2.1 and its null limit is compact2. The sequence

x =
(
0,

1
2
,
1
1
,

1
22 ,

1
2
, . . . ,

1
2n
,
1
n
, . . .

)
∈ `2

and it is easy to check that

x = lim
n→+∞

 n∑
k=1

1
2k

−1  n∑
k=1

1
2k
e1,k

k

 .
Hence x ∈ co(A), but x < co(A) (since co(A) ⊂ c00 and x has infinite many nonzero values),
so co(A) is not closed (in particular, compact).

However, under some additional restrictions over the compact set it can be obtained
the compactness of co(A).

Proposition 2.6. LetA ⊂ X be a compact subset with a finite number of convex components;
i.e., A = ∪Ni=1Ai with Ai compact and convex for all i = 1, . . . ,N . Then co(A) is compact.

Proof. According to examples 1.1,

co(A) =

 n∑
i=1

λixi : n ∈ N, xi ∈ Ai , λi ∈ R+
0 ,

∑
i

λi = 1

 .
Now one can reduce the result to the application of proposition 1.2 to the map

F : Kn ×Xn −→ X

((λ1, . . . ,λn), (x1, . . . ,xn)) 7−→
n∑
i=1

λixi

For that reason, in the following theorem it will be considered the topological clos-
ure of the convex hull of the extreme points (it was explained in detail after theorem
1.1).

Theorem 2.4 (Krein-Milman). Let X be a locally convex Hausdorff TVS, and ∅ , A ⊂ X a
compact convex set. Then, ext(A) is nonempty and

co(ext(A)) = A.

Proof. Let
F = {B ⊂ A : B is a closed face} .

Notice that A ⊂ F , hence F is nonempty. Defining an order in F as follows

B1 ≤ B2⇐⇒ B2 ⊂ B1,

2In general, it is a basic result from General Topology that, for every countable set {xn}n∈N which
converges to a point x (not necessarily unique), the set A = {xn}n∈N ∪ {x} is compact.



given a chain C = {Bi}i∈I it is clear that ∩i∈IBi ∈ C and Bk ≤ ∩i∈IBi for every k ∈ I . By
lemma 2.1, there exists a maximal element K ∈ F . The next step is proving that K
consists of a single point, which implies that ext(A) , ∅.

Suppose that K consists of multiple points, and let x,y ∈ K with x , y. By theorem
2.2, there exists a lineal functional f ∈ X∗ for which f (x) < f (y). Then let

K1 =
{
x ∈ K : f (x) = max

k∈K
f (k)

}
,

which is also a face of K (proposition 1.4) and by proposition 1.6 a face of A (K1 ∈
F ). But x < K1 so long as f (x) < f (y), hence K1 ⊂ K and K < K1, contradicting the
maximality of K .

Finally, it is going to be checked that co(ext(A)) = A. Since A is compact and con-
vex3, co(ext(A)) ⊂ A. Suppose that there exists x ∈ A − co(ext(A)). Following a similar
strategy, by theorem 2.2 it can be found a linear functional ϕ ∈ X∗ satisfying

ϕ(y) < ϕ(x), ∀y ∈ co(ext(A)). (2.2)

Then define
A1 =

{
a ∈ A : ϕ(a) = max

α∈A
ϕ(α)

}
.

This is a face of A due to proposition 1.4, which is nonempty by continuity of ϕ. Since
A1 is nonempty and convex, it can be selected a1 ∈ ext(A1). Then a1 is also an extreme
point of A by proposition 1.6, in particular a1 ∈ ext(A) ⊂ co(ext(A)) ⊂ co(ext(A)). Using
the equation (2.2),

ϕ(a1) < ϕ(x) ≤max
α∈A

ϕ(α) = ϕ(a1),

which is a contradiction.

Remarks 2.1. Some authors use the the notation co(A) instead of co(A), even if both
are the same subset of X. Indeed, defining co(A) as the least closed convex set which
contains A, the inclusion co(A) ⊂ co(A) is clear by lemma 1.2, and the other inclusion
is a consequence of proposition 1.2.

In the previous theorem, it suffices to consider a TVS X on which X∗ separates points,
since the following result holds:

Lemma 2.3. Suppose X is a TVS on which X∗ separates points. Suppose A, B are
disjoint, nonempty, compact, convex sets in X. Then there exists Λ ∈ X∗ such that

sup
a∈A

Re(Λa) < inf
b∈B

Re(Λb).

It is also known that every locally convex TVS X satisfies that X∗ separates points, so
this is a weaker condition.

The convexity of A was only used to show that co(ext(A)) is compact (see proposition
2.6). It may happen in this situation that co(A) contains extreme points which are not

3Notice that it is the first time it is been used that A is convex.



in A. To give an example (see [6]), considering the Banach space C([0,1]), the element
Λ ∈ C([0,1])∗ given by

Λf =
∫ 1

0
f (s)ds

belongs to ext(X ∩ co(A)), where

A = {δt : t ∈ [0,1]} ⊂ C([0,1])∗, X = span({Λ} ∪A) ⊂ C([0,1])∗, δt(f ) = f (t),

but Λ < A.

The next theorem shows that this pathology cannot occur if co(A) is compact.

Theorem 2.5 (Milman). If A is a compact set in a locally convex t.v.s. X and co(A) is also
compact, then every extreme point of co(A) lies in A.

Proof. Assume that some extreme point p of co(A) is not in A. Then there exists a
convex balanced neighbourhood V of 0 in X such that

(p+V )∩A = ∅. (2.3)

Since A is compact, it can be found {xi}Ni=1 in X satisfying A ⊂
⋃N
i=1(xi +V ). Each set

Ai = co(A∩ (xi +V )), i = 1, . . . ,N , (2.4)

is compact and convex so long as Ai ⊂ co(A) for each i = 1, . . . ,N . In addition, K ⊂
∪Ni=1Ai . Proposition 2.6 shows therefore that

co(A) ⊂ co

 N⋃
i=1

Ai

 = co

 N⋃
i=1

Ai

 ,
but the opposite inclusion holds also, since Ai ⊂ co(A) for each i = 1, . . . ,N . Thus,

co(A) = co

 n⋃
i=1

Ai

 . (2.5)

In particular,

p =
N∑
i=1

λiai = λ1a1 + (1−λ1)
∑N
i=2λiai∑N
i=2 ai

, ai ∈ Ai , ∀i = 1, . . . ,N . (2.6)

The previous equality exhibits p as a convex linear combination of two points of co(A)
by equation (2.5). Since p is supposed to be an extreme point of co(A), is is concluded
from equation (2.6) that p = a1. Thus, for some i = 1, . . . ,N :

p ∈ Ai
eq.(2.4)
⊂ xi +V ⊂ A+V ,

which contradicts equation (2.3).



2.4 Applications of Krein-Milman theorem

Now that it is known Krein-Milman theorem, it would be desirable to know some
applications of it. Even if its beauty can be appreciated on previous sections, the most
powerful tools will be given by applications.

Necessary condition for duality

This result is the one which brings, in particular, a necessary condition to check
whether a TVS is a dual space or not, in terms of the extreme points of the closed unit
ball.

Theorem 2.6. [Banach-Alaoglu] Let X be a TVS and V a neighbourhood of 0. Then the set

K = {Λ ∈ X∗ : |Λx| ≤ 1, ∀x ∈ V }

is ω∗-compact.

Proof. Since V is absorbing, for each x ∈ X there exists r(x) ∈ R such that x ∈ r(x)V .
Hence

|Λx| ≤ r(x), x ∈ X,Λ ∈ X∗.

Let Dx = {α ∈ K : |α| ≤ r(x)} and P =
∏
x∈XDx. Since each Dx is compact, P is compact

with the product topology τP by Tychonoff’s theorem.
The elements of P are functions f on X (linear or not) that satisfy

|f (x)| ≤ r(x), ∀x ∈ X,

thus K ⊂ X∗ ∩ P . It follows that K inherits two topologies, ω∗ and τP . To prove the
theorem it has to be checked that:

K is a closed subset of P with τP -topology: Suppose that f0 is in the τP -closure of
K . To see that f0 is linear, let x,y ∈ X and α,β ∈K. The set

Pf0,ε = {f ∈ P : |(f − f0)(z)| < ε, z ∈ {x,y,αx+ βy}} , ε ∈ R+,

is a τP -neighbourhood of f0, hence there exists f ∈ K ∩ Pf0,ε. Since f is linear,

f0(αx+ βy)−αf0(x)− βf0(y) = (f0 − f )(αx+ βy) +α(f − f0)(x) + β(f − f0)(y)

and then ∣∣∣f0(αx+ βy)−αf0(x)− βf0(y)
∣∣∣ < (1 + |α|+ |β|)ε.

The arbitrariness of ε concludes that f0 is linear. In addition, if x ∈ V and ε > 0,
the same argument shows that there is an f ∈ K such that |(f − f0)(x)| < ε, and
since |f (x)| ≤ 1 by definition of K , it follows that |f0(x)| ≤ 1. Hence f0 ∈ K .

ω∗-topology and τP coincide on K : It has been already proved that K ⊂ P is
compact with τP topology. Now fix Λ0 ∈ K and choose

{xi}ni=1 ⊂ X, δ ∈ R
+, n ∈ N.



Considering the families of sets given by

WX∗,n = {Λ ∈ X∗ : |Λxi −Λ0xi | < δ, i = 1, . . . ,n}
WP ,n = {f ∈ P : |(f −Λ0)(xi)| < δ, i = 1, . . . ,n}

they form a local base for the ω∗-topology of X∗ at Λ0 and a local base for the
τP -topology of P at Λ0 respectively. Since K ⊂ X∗ ∩ P , it concludes that

WX∗,n ∩K =WP ,n ∩K, ∀n ∈ N.

Finally, P is compact and K ⊂ P closed with ω∗-topology (equal to τP -topology on K),
so K is compact with ω∗-topology.

In particular, when X is a normed space and V = BX , which is also a neighbourhood
of 0, it follows that BX∗ is ω∗-compact, hence every normed space in which BX has no
extreme points can not be a dual space. This statement is easily obtained applying
theorem 2.4 to the set K defined in the previous result.

Representation theorem

The following result is an introduction to the integral representation of compact
convex sets (analysed in the next chapter), which contains transcendent results such
as Loewner theorem. Furthermore, it allows to prove some important inequalities in
convex operator theory.

Proposition 2.7. Let F be a compact convex subset of C(R,R) (with the topology of punc-
tual convergence), and suppose that ext(F ) = {hλ : λ ∈ [0,1]}. Then, for every f ∈ F there
exists a probability measure µ defined in [0,1] such that

f (t) =
∫ 1

0
hλ(t)dµ(λ).

Proof. Let f ∈ F . Since F is compact, there exists a net {fi}i∈I which converges to f .
Applying theorem 2.4, each fi is a finite convex linear combination of elements of F ,

fi =
ni∑
k=1

αkhλk , 0 <
ni∑
k=1

|αk |,
ni∑
k=1

αk = 1.

However, since

fi =
n∑
k=1

αkhλk =
∫ 1

0
hλ(t)dµi(λ), where µi(λ) =

{
αk if λ = λk , k = 1, . . . ,ni
0 if λ , λk , ∀k = 1, . . . ,ni

,

it can be considered the net {µI }i∈I ⊂ BP ([0,1]). By Riesz-Markov-Kakutani representa-
tion theorem and theorem 2.6, BP ([0,1]) isω∗-compact, hence there exists a subnet {µσ (i)}
which converges with ω∗-topology to a probability measure µ. In other words, it has
just been verified that

f (t) =
∫ 1

0
hλ(t)dµ(λ).



The Stone-Cech compactification

First of all, it will be recalled the definition of compactification of a locally compact
Hausdorff topological space.

Definition 2.5. Let X be a topological space. A compactification of X is a pair (Y , i), where
Y is a compact Hausdorff topological space and i : X → Y an homeomorphism over i(X)
such that i(X) is dense in Y .

It should be introduced some previous notation to approach the problem. As we
did in section 2.1, if x ∈ X, let δx be defined by

δx : C(X) −→ K
δx(f ) 7−→ f (x)

It is easy to see that δx ∈ C(X)∗ and ‖δx‖ = 1. Now let ∆ be defined by

∆ : X −→ C(X)∗

x 7−→ δx

If {xi}i∈I is a net in X and {xi} → x, then {f (xi)} → f (x) for every f ∈ C(X). This says that

{δxi }
ω∗→ δx in C(X)∗, hence ∆ : X→ (C(X)∗,ω∗) is continuous. Is ∆ a homeomorphism of

X onto ∆(X)?

Proposition 2.8. The map ∆ : X → (∆(X),ω∗) is a homeomorphism if, and only if, X is
completely regular.

Proof. ⇒) Suppose that ∆ is a homeomorphism. Since BC(X)∗ isω∗-compact by theorem
2.6, it is completely regular. Plus, since ∆(X) ⊂ BC(X)∗ , ∆(X) is also completely regular,
hence X is completely regular.
⇐) Assume X is completely regular. If x1 , x2, then by theorem 2.2 there is an

f ∈ C(X) such that f (x1) = 1 and f (x2) = 0; thus δx1
(f ) , δx2

(f ) and ∆ is injective. Now
it only lefts to prove that ∆ is a homeomorphism over its image, and it is going to be
showed appreciating that ∆ is an open map.

LetU be an open subset of X and x0 ∈U . Since X is completely regular, by theorem
2.2 there is an g ∈ C(X) satisfying g(x0) = 1 and g ≡ 0 on X −U . Let

V1 = {µ ∈ C(X)∗ : g(u) > 0}.

Then V1 is ω∗-open in C(X)∗ and V1 ∩∆(X) = {δx : g(x) > 0}. So if V = V1 ∩∆(X), V is
ω∗-open in ∆(X) and δx0

∈ V ⊂ ∆(U ). Since x0 was arbitrary, ∆(U ) is open in ∆(X).

Let X any topological space and consider the Banach space C(X). Unless some
assumption is made regarding X, it may be that C(X) is small. If, for example, it is
assumed that X is completely regular, then C(X) has many elements. The next result
says that this assumption is also necessary in order for C(X) to be large.

Theorem 2.7 (Stone-Cech compactification). If X is completely regular, then there is a
compact space βX such that:

1. There is a continuous map ∆ : X → βX with the property that ∆ : X → ∆(X) is a
homeomorphism.



2. ∆(X) is dense in βX.

3. If f ∈ C(X), then there is a continuous map f β : βX→K such that f β ◦∆ = f .

X
f //

∆
��

K

βX
f β

>>

Moreover, if Ω is a compact space having there properties, then Ω is homeomorphic to βX.

Proof. Let ∆ : X→ C(X)∗ be the map defined by ∆(x) = δx, and let βX be the ω∗-closure
of ∆(X) in C(X)∗. By theorem 2.6 and the fact that ‖δx‖ = 1 for all x ∈ X, βX is compact.
Using proposition 2.8, (1) holds, and part (2) is true by definition, hence it only remains
to show (3).

Fix f ∈ C(X) and define f β : βX→K given by f β(τ) = τ(f ) for every τ ∈ βX. Clearly
f β is continuous and

f β ◦∆(x) = f β(δx) = δx(f ) = f (x),

hence (3) holds.
To show that βX is unique, assume that Ω is a compact space such that:

1. There is a continuous map π : X → Ω with the property that π : X → π(X) is a
homeomorphism.

2. π(X) is dense in Ω.

3. If f ∈ C(X), then there is a continuous map f̃ : Ω→K such that f̃ ◦π = f .

X
f //

π

  

K

Ω

f̃

OO

Define g : ∆(X)→Ω given by g(∆(x)) = π(x), i.e., g = π ◦∆−1. The idea is to extend g to
a homeomorphism of βX onto Ω.

If τ0 ∈ βX, then (2) implies that there is a net {xi}i∈I in X such that ∆(xi)→ τ0 in
βX. Now {π(xi)}i∈I is a net in Ω and since Ω is compact, there is an ω0 ∈Ω satisfying

that {π(xi)}
cl→ω0. If F ∈ C(Ω), let f = F ◦π; so f ∈ C(X) (and F = f̃ ). Also,

{f (xi)}i∈I = {δxi (f )}i∈I → τ0(f ) = f β(τ0),

but it is also true that f (xi) = (F ◦ π)(xi)
cl→ F(ω0). Hence F(ω0) = f β(τ0) for any F ∈

C(Ω). This implies thatω0 is the unique cluster point of {π(xi)}i∈I ; thus {π(xi)}i∈I →ω0.
Let g(τ0) = ω0. It must be shown that the definition of g(τ0) does not depend on the

net {xi}i∈I in X such that {∆(xi)}i∈I → τ0, but that is clear since {π(xi)}i∈I →ω0 for every
net {xi}i∈I in X satisfying {∆(xi)}i∈I → τ0 in βX.



To summarise, it has been shown that there is a function g : βX → Ω such that if
f ∈ C(X), then f β = f̃ ◦ g.

X
f //

∆
��

π

))

K

βX
f β

55

g
//Ω

f̃

OO

To show that g is continuous, let {τi}i∈I be a net in βX such that {τi}i∈I → τ . If F ∈ C(Ω),
let f = F ◦ π; so f ∈ C(X) and f̃ = F. Also, {f β(τi)}i∈I → f β(τ). But {(F ◦ g)(τi)}i∈I =
{f β(τi)}i∈I → f β(τ) = (F ◦ g)(τ). Proposition 2.8 shows that {g(τi)}i∈I → g(τ) in Ω, thus
g is continuous.

To verify that g is injective, it only has to be noticed that ∆−1 and π are homeo-
morphisms (onto their images). Since g(βX) ⊃ g(∆(X)) = π(X), g(βX) is dense in Ω.
But g(βX) is compact, so g is bijective; i.e., a homeomorphism.

The compact set βX obtained in the preceding theorem is called the Stone-Cech
compactification of X. By properties (1) and (2), X can be considered as a dense subset
of βX and the map ∆ can be taken to be the inclusion map. With this convention,
(3) can be interpreted as saying that every bounded continuous function on X has a
continuous extension to βX.

Banach-Stone theorem

In this section it is going to be proved the Banach-Stone theorem, which gives a
characterisation of isometries between C(X) and C(Y ), where X and Y are compact
Hausdorff spaces. It is required for the reader to have a slightly knowledge of adjoint
operators; in order to obtain some useful information, (cf. [6], [12]).

To begin with, note that if X and Y are compact spaces, τ : Y → X is a continuous
map and

Λ : C(X) −→ C(Y )
f 7−→ f ◦ τ

then Λ is a bounded linear map and ‖Λ‖ = 1. In fact, for any f ∈ C(X),

‖Λf ‖∞ = sup
y∈Y
{|Λf (y)|} = sup

y∈Y
{|(f ◦ τ)(y)|} ≤ sup

x∈X
{|f (x)|} = ‖f ‖∞

‖Λ‖ = sup
f ∈BC(X)

{‖Λf ‖∞} ≤ sup
f ∈BC(X)

{‖f ‖∞}

and if f ≡ λ ∈ BK the equality holds. Moreover, Λ is an isometry if and only if τ is
surjective. To check the previous affirmation, it is obvious that the implication (⇐)
holds. The converse follows from the fact that X∗ ⊂ C(X) separates points.

Finally, if Λ is a surjective isometry, then τ is injective; i.e., a homeomorphism.
Indeed, if y0, y1 ∈ Y and y0 , y1, then there exists g ∈ C(Y ) such that g(y0) = 0 and
g(y1) = 1. Let f ∈ C(X) satisfying Λf = f ◦ τ = g. Hence f (τ(y0)) = 0 and f (τ(y1)) = 1,
so τ(y0) , τ(y1).

To summarize, if τ : Y → X is a homeomorphism and α : Y → K is a continuous
function such that α(Y ) ⊂ T, then

T : C(X) −→ C(Y )
f 7−→ α(y)f (τ(y))



is a surjective isometry. The next result gives a converse to this.

Theorem 2.8 (Banach-Stone). If X and Y are compact Hausdorff spaces and T : C(X)→
C(Y ) is a surjective isometry, then there is a homeomorphism τ : Y → X and a function
α ∈ C(Y ) such that α(Y ) ⊂ T and

T f (y) = α(y)f (τ(y))

for all f ∈ C(X) and y ∈ Y .

Proof. The linear map T ∗ : C(Y )∗ → C(X)∗ is readily seen to be a surjective isometry.
Thus, the ω∗ continuity of T ∗4 and theorem 2.6 conclude that T ∗ is a ω∗ homeomorph-
ism from BC(Y )∗ onto BC(X)∗ that distributes over convex combinations. Hence (since T ∗

is linear and isometric)
T ∗(EC(Y )∗) = EC(X)∗ .

By theorem 2.3 this implies that for every y ∈ Y there is a unique τ(y) inX and a unique
scalar α(y) such that |α(y)| = 1 and

T ∗(δy) = α(y)δτ(y).

By the uniqueness, α : Y →K and τ : Y → X are well-defined functions. It only lefts to
prove that α is continuous and τ is a homeomorphism.

To show that α is continuous, let {yi}i∈I a net in Y with {yi}i∈I → y. Then, {δyi }i∈I
ω∗→

δy in C(Y )∗, hence

{α(yi)δτ(yi )}i∈I = {T ∗(δyi )}i∈I
ω∗→ T ∗(δy) = α(y)δτ(y). (2.7)

In particular, {α(yi)}i∈I → α(y).
By equation (2.7), it is clear that given {yi}i∈I a net in Y with {yi}i∈I → y,

{δτ(yi )}i∈I =
{
α(yi)

−1[α(yi)δτ(yi )]
}
i∈I
→ δτ(y),

and using proposition 2.8 this implies that {τ(yi)}i∈I → τ(y), so that τ : Y → X is con-
tinuous.

If y1, y2 ∈ Y and y1 , y2, then α(y1)δy1
, α(y2)δy2

. Since T ∗ is injective, it implies
that τ(y1) , τ(y2) and so τ is one-to-one. If x ∈ X, then the fact that T ∗ is surjective
implies that there is a µ ∈M(Y ) such that T ∗µ = δx. It must be that µ ∈ EM(Y ) so that
µ = βδy for some y ∈ Y and β ∈ T. Thus

δx = T ∗(βδy) = βα(y)δτ(y)⇒
{

β = α(y)
τ(y) = x

Therefore τ is a continuous bijection, Y compact, and X Hausdorff. Hence τ must be a
homeomorphism.

4Note that T ∗(C(Y )∗) ⊂ C(X)∗



Stone-Weierstrass theorem

Last but not least important is this application of Krein-Milman theorem, which
concerns the subalgebras A of CR(X), the real-valued functions on X, which are dense
in ‖·‖∞. Just the existence of extreme points in compact convex sets is powerful. We
now provide a proof of an analytic result that would seem to have no direct connection
to the Krein–Milman theorem. Before the proof of the theorem, recall that CR(X)∗

is the space of real signed measures on X with the total variation norm; that is, for
any µ ∈ CR(X)∗, there is a set unique up to µ-measure zero sets B ⊂ X, so µ ↑ B ≥ 0,
µ ↑ X −B ≤ 0 and ‖µ‖ = µ(B) + |µ(X −B)|.

Theorem 2.9 (Stone-Weierstrass). Let X be a compact Hausdorff space. Let A be a sub-
algebra of CR(X) so that for any x,y ∈ X and α,β ∈ R, there exists f ∈ A so f (x) = α and
f (y) = β. Then A is dense in CR(X) in ‖·‖∞.

Proof. Define
L = {µ ∈ CR(X) : ‖µ‖ ≤ 1, µ(f ) = 0, ∀f ∈ A}

By theorem 2.6 L is a compact (and convex) set.If L , {0}, then L has an extreme point
µ with ‖µ‖ = 1.

The next step is proving that, if g ∈ A∩BCR(X), then g = 0 a.e. dµ or (1− g) = 0 a.e.
dµ. First notice that g dµ ∈ L for any µ ∈ L since∫

f (g dµ) =
∫

(f g)dµ = 0, ∧ ‖g dµ‖ ≤ ‖g‖∞‖µ‖.

If g ∈ A∩BCR(X), then

‖g dµ‖+ ‖(1− g)dµ‖ =
∫
B
g dµ+

∫
B

(1− g)dµ+
∫
X−B

g dµ+
∫
X−B

(1− g)dµ = ‖µ‖,

so µ is a convex combination of elements in L and we have the desired assertion.
The last step consist in showing that supp(dµ) is a singleton. If supp(dµ) has two

points x,y, we can pick f ∈ A wth f (x) = 1 and f (y) = 2. Thus g = f 2

‖f ‖2∞
satisfies

g ∈ A ∩ BCR(X) and g(x) ∈]0, 1
4 [, and so g ∈ 1

4BCR(X) in a neighbourhood U of x. But
µ(U ) , 0, which is a contradiction according to the last paragraph. Finally, µ ∈ L and
f (x) = 0 for all f ∈ A, violating the assumption about f (x) = α can have any real value
α.

This contradiction implies that L = {0} which, by the Hahn-Banach theorem, im-
plies that A is dense.

The Stone–Weierstrass theorem does not hold if CR(X) is replaced by C(X), the
complex-valued function. The canonical example of a nondense subalgebra of C(X)
with the α, β property is the analytic functions on D.
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