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ABSTRACT

The selection of a set of requirements between all those pre-
viously defined by the customers is a very important pro-
cess in software development, that can be addressed using
meta-heuristic optimization techniques. Dependencies or in-
teractions between requirements can be defined to denote
common situations in software development: requirement
that follow an order of precedence, requiments exclusive of
each other, requirements that must be included at the same
time, etc. These interactions add new contraints to the re-
quirement selection problem leading to an adaptation of the
search techniques. This paper studies how requirement in-
teractions affect the search space explored by optimization
algorithms and how to adapt three search techniques, i.e. a
greedy randomized adaptive search procedure (GRASP), a
genetic algorithm (GA) and an ant colony system (ACS),
for the requirements selection problem which includes in-
teraction between requirements. The problem of require-
ment selection, including requirements interactions, is for-
mally introduced. Then, we describe the adaptation of the
three meta-heuristic algorithms to solve this problem. And
finally, we compare the performance of the meta-heuristic
approaches applied by means of computational experiments
conducted on two different instances of the problem, con-
structed from data provided by the experts.
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1. INTRODUCTION

Optimization and meta-heuristic techniques have found
wide application in most areas of engineering. Software en-
gineering is one of such areas in which these techniques have
obtained successful results [17]. Search-based optimization
techniques have been applied across the whole life-cycle of
a software project development, but as Kotonya and Som-
merville [18] suggest “one of the major problems we face
when developing large and complex software systems is the
one related with requirements”.

Requirements problems have a large space of possible so-
lutions, becoming natural candidates for the application of
search based techniques [18, 23]. Berander and Svahnberg
[3] point out “software products are getting complex and
are commonly described by a large number of requirements
that characterize the needs of the product. In most cases,
all these needs cannot be fulfilled within reasonable time
and resource constraints and must hence be limited in some
way”. This limitation is performed by means of the priori-
tization of the candidate requirements and the selection of
the best subset of requirements according to the resources
available. The problem, known as the next release problem
(NRP) [1], has been widely addressed applying some meta-
heuristic optimization techniques [1, 2, 6, 7, 12, 15, 16, 25].

The process of selecting a set of requirements, also called
requirement triage [5, 21] extrapolating the medical vocabu-
lary, is defined by Davis [5], as: “the process of determining
which requirements a software product should satisfy given
the time and resources available”. This process is based
on the prioritization, negotiation, and selection of require-
ments that appears in almost every software project and is
led by financial restrictions and market deadlines. Usually,
the requirements in a software development project present
interactions between each other, for instance, due to tech-
nical or resource related reasons; some requirements must
be implemented before or at the same time than others, or
even being excluded. The fact of considering these interac-
tions or not, has a significant impact on the search space
dimension when then NRP problem is tackled using heuris-
tic techniques. Only a few works in the literature take into
account interactions when solving the requirements selection
problem [1, 16, 24], but none of them study how these de-
pendencies affect to the search process carried out by the
optimization algorithms.

This paper shows how requirement interactions influence
on search techniques tackling the NRP problem. Three dif-
ferent search techniques, i.e. a greedy randomized adaptive



search procedure (GRASP), a genetic algorithm (GA) and
an ant system (AS), have been used for the study of this
issue. Section 2 formally defines the NRP problem includ-
ing interactions. Section 3 describes how interactions be-
tween requirements affect the search space explored by the
optimization algorithms. In Section 4 three meta-heuristic
approaches (i.e. GRASP, GA, and AS) that will be ap-
plied to tackle the NRP problem are described whereas in
Section 5 the performance of these techniques is evaluated
by means of some computational experiments. Section 6
reviews other works which take into account requirements
interactions when addressing the NRP problem. Finally, in
Section 7 the conclusions and future works extended from
this study are presented.

2. PROBLEM DEFINITION

When we face the problem of selecting a requirement to be
included in the next software release, it is assumed that there
are a set of interrelated requirement R = {ri,ra,...,mn}
that are proposed by a set of customers C = {c1,c2,...,cm}.
Customers are not equally important for the company. So,
each customer i will have an associated weight w;, which
measures its relative importance. Let W = {w1, w2, ..., wm}
be the set of customers’ weights. Each requirement r; € R
has an associated development cost e;, which represents the
effort needed in its development. Let £ = {ei,e2,...,en}
be the set of requirements’ efforts. The same requirement
can be suggested by several customers. However, its impor-
tance or priority may be different for each customer. Thus,
the importance that a requirement r; has for customer i is
given by a value v;;. All these importance values v;; can be
arranged under the form of an m X n matrix. The global sat-
isfaction, s;, or the added value given by the inclusion of a
requirement r; in the next release, is measured as a weighted
sum of the its importance values for all the customers and
can be formalized as: s; = > wivi;.

Requirement interactions mean that a set of constraints
has to be considered during the requirement selection task,
since they force us to check whether conflicts are present
whenever we intend to select a new requirement to be in-
cluded in the next software release. Several kinds of depen-
dencies related to this problem are proposed first in [4] and
later in [22]:

o Implication or precedence. r; = rj. A requirement r;
cannot be selected if a requirement r; has not been
implemented yet.

o Combination or coupling. r; ® rj. A requirement r;
cannot be included separately from a requirement 7;.

o FEzxclusion. r; @ r;. A requirement r; can not be in-
cluded together with a requirement r;.

e Revenue-based. The development of a requirement 7;
implies that some others requirements will increase or
decrease their value.

e (ost-based. The development of a requirement r; im-
plies that some others requirements will increase or
decrease their implementation cost.

Thus, the NRP main goal is to search for a subset of re-
quirements I within the set of all subsets of n requirements
p(R). A subset of requirements R can be represented in this

Figure 1: Requirement interactions as a graph

space as a vector x1,T2,...,Zn, where z; € 0,1. If require-
ment r; € }:?,, then z; = 1 and otherwise z; = 0. In this
way, the NRP can be considered as an instance of the 0-1
knapsack problem, and in consequence is a NP-hard problem
[1].

The aim of optimization problems is to search for the best
solution with respect to several objectives. The quality of
a candidate solution with respect to each objective is mea-
sured through the use of a previously fixed evaluation func-
tion. Generally, in order to define the next software release,
the main goal that we pursuit is to select a subset of require-
ments R from the candidate requirement list R, which sat-
isfies customer requests within a given resource constraints
(i.e. availability of resources, interactions between require-
ments). This is achieved by searching for a subset of re-
quirements which maximize satisfaction and minimize de-
velopment effort being considered the constraints defined by
the requirement interactions. The satisfaction and develop-
ment effort of this subset R can be obtained, respectively,
as

sat(R) = (s;), eff(R) = (e;) (1)
JER JER
where j is an abbreviation for requirement r;. As the re-
sources available are limited, then development effort cannot
exceed a certain bound B. Formally,

maximize sat(R) )
subject to eff(R) < B

3. REQUIREMENTS INTERACTION

Requirement interactions can be divided into two groups.
The first group consists of the functional interactions (i.e.
implication, combination and exclusion). The second one in-
cludes those interactions that imply changes in the amount
of resources needed (i.e. revenue and cost-based). The
group of functional interactions contains stronger relation-
ships that cannot be ignored in requirement prioritization.
But, the second group of interactions can be ignored be-
cause they cannot be translated into problem constraints,
and they only cause a variation of the resources used in the
software project. The inclusion of revenue-based and cost-
based interactions to the problem implies the recalculation of
the values associated to each requirement during the search
process, what increases the total time required by the algo-
rithm to solve the problem. These are the main reasons why
we are going only to consider functional dependencies.

Functional dependencies can be represented as a directed
graph G. The nodes of G are individual requirements. Ev-
ery directed arc r; — r; in G represents the existence of
an implication relationship between those requirements (i.e.



r; = r;), whereas every bi-directional arc r; <+ r; represents
the existence of a combination relationship (i.e. r; ® 7).
The exclusion relationship it is not represented on the graph
but has to be taken into account at the time of traversing
the graph. An exclusion relationship r; @ r; implies that
if r; is chosen, the subgraph containing r; would be un-
reachable. For example, the set of functional dependencies
F = {7‘1 = T3, "1 = Te,T2 = 74,72 = T'5,T4 = 76,75 =
r7,73 © ra,74 @ 75} can be represented as the graph shown
in Figure 1 following the above definitions. Therefore, if r4
is selected, due to the exclusion interaction, the nodes rs
and r7 and their edges become unavailable. If the chosen re-
quirement is 75, the nodes r3, r4 and r¢ become unavailable.

When we tackle the requirement selection problem apply-
ing search techniques, the decision of taking into account
dependencies or not has a significant impact on the search
space. Figure 2 represents the search spaces obtained in
both cases for the problem with seven requirements pre-
sented in Figure 1. In order to simplify the representation
of the search space, it has not been considered any con-
straint related to the maximum effort B. Figure 2(a) shows
the situation in which all the requirements are visible and
can be selected by the search algorithm, without taking into
account any interaction between requirements. The solution
for the NRP is built by traversing the search space from the
root to a leaf (note that the same solution can be obtained
performing different traversals). Requirement interactions
have a strong impact on the search space decresing its size
drastically (Figure 2(b)). Now, only r1 and 7 are visible,
since these are the only requirements without any implica-
tion dependence. If r1 is selected first, only 72 will be visible
in the next step (the other requirements require the inclu-
sion of 7"2). In this way, interactions and effort bound limit
the traversal of other requirements.

4. META-HEURISTIC ALGORITHMS FOR
THE NRP

In this section we describe the three algorithms, i.e. greedy
randomized adaptive search procedure (GRASP), a genetic
algorithm (GA) and an Ant Colony System (ACS), used to
solve the NRP, and how they take into account the different
interactions between requirements.

4.1 Greedy Randomized Adaptative Search
Procedure

GRASP was first introduced by Feo and Resende [13].
Survey papers on GRASP include Feo and Resende [14],
Pitsoulis and Resende [19], and Resende and Ribeiro [20].
GRASP proceeds iteratively by building first a greedy ran-
domized solution and then improving it through a local
search. The greedy randomized solution R’ is built from
a list of elements ranked by a greedy function by adding ele-
ments to the problem’s solution set. The greedy function is
in charge of measuring the profit of including an element in
the solution with respect to the cost of its inclusion. In the
case of NRP the list of elements corresponds to the list of
visible requirements. The set of visible requirements given
a subset of requirements R’, denoted by vis(R'), includes
all the r; such that ef f(R') + e; < B, satisfying a given
set of functional interactions between requirements. The
greedy function used, measures the quality of a requirement

r; based on users’ satisfaction with respect to the effort as
g(r) = = 3)
€1
This measure is a productivity metric that weighs the profit
of including a requirement with respect to the resources in-
volved in its development. The local search process, in an
iterative way, tries to replace the current solution by a better
one located in its neighborhood. GRASP terminates when
no better solution can be found in the neighborhood. That
is to say, the current solution is changed by erasing the re-
quirement 7, with least greedy value g(rx) and selecting any
of the other visible requirements. If the solution found R’
is improved in terms of the customers’ satisfaction (this is
the reason why we use satisfaction, sat(R’), as fitness or
evaluation function), then it replaces the old one and the
process starts again. Otherwise, the requirement rj, that
was included in the initial solution, is restored and marked
as explored. The search ends when all the requirements in
the solution have been explored. The number of iterations
of the local search procedure depends on the quality of the
solution received.

The GRASP algorithm receives as input parameters the
number of iterations (each iteration consists of two phases:
construction and local search) and a number in the 0 to 1
range that controls the amount of greediness and random-
ness (values close to zero favor a greedy behavior, whereas
values close to one favor a random behavior).

4.2 Genetic Algorithm

Genetic algorithm is a search technique that emulates na-
ture evolution of individuals through several iterations (i.e.
generations). During each generation, a new population is
constructed by applying some selection, crossover and muta-
tion operators to the existing individuals. A fitness value is
assigned to each individual of the new population according
to an evaluation function (see Eq. 1). Thus, the best solu-
tions have a fitness value greater than others, not as good,
solutions. Individuals represent possible solutions, that is,
an individual is a set of requirements satisfying the restric-
tions of a given NRP. We can represent a subset of require-
ments R in the set of all subsets of n requirements, p(R), as
a vector{x1,x2,...,Zn} , where z; € {0,1}. If requirement
r; € R, then z; = 1 and otherwise x; = 0. Each generation
represents the evolution of the population. The idea is that
through selection, crossover and mutation the new children
and mutated individuals have even better fitness values than
the original ones. Better individuals have a higher proba-
bility of being preserved. In the case of NRP, the crossover
and mutation methods are more specific and difficult than
in other problems because it is necessary to take into ac-
count the resources bound constraint and the requirements’
interactions in order to obtain new valid individuals.

These conditions are not always easy to be achieved by
applying crossover and mutation operators over valid indi-
viduals. Our genetic algorithm for NRP uses a crossover
operator in which the parents are selected applying a tour-
nament selection procedure between two individuals. Then
the crossing is performed by choosing randomly a unique
cross-point and, finally, the gens of the two parents are com-
bined creating two children. In order to apply the crossover
operator, each individual R; is selected to be a parent with
a probability, pr,, proportional to its fitness value in the
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Figure 2: Representation of search spaces

current population, Q. It is defined as
_ sat(R;)
> rreq Sat(R)

Our aim is to choose subsets of requirements with the high-
est satisfaction. The mutation operator tries to mutate the
genes of an individual one by one with a given mutation
probability (for NRP this probability is taken as 1/(10|R])
near to zero where R is the set of all the requirements in-
volved in the problem). That is to say, the mutation op-
erator includes a requirement in the case that it was not
present in the individual or excludes it otherwise. Crossover
and mutation are blind operators in the sense that they do
not guarantee that the solution satisfies neither the capac-
ity restriction nor the functional dependencies of the NRP.
For example, consider a master list of all functionality agreed
with customers and desired in a software product with seven
requirements R = {r1,r2,73,74,75, 76,77} together with the
set of functional dependencies defined in Figure 1 and let
E = {3,4,2,1,4,3,2} be the set of their associated de-
velopment efforts. The development effort bound B is set
to a value of 10. We have two valid requirements subsets
Ry ={r1,r2, 73,74} and Ry = {r2, 75,77}, that can be repre-
sented as binary vectors 1111000 and 0100101, respectively.
Suppose that these subsets have been selected to crossover
and that the crossover point chosen is between the second
and the third bit of the vector representation. As result
we obtain the offspring vectors 1100101 and 0111000, which
correspond to not valid subsets {r1,r2, 75,77} (its develop-
ment effort of 13 overcomes the development effort bounds
B) and {rz,r3,r4} (here the functional dependence r; = r3
is not fulfilled). Now, consider again the subset R; and
suppose that the fifth bit is altered by mutation, obtain-
ing the vector 1111100, which corresponds to the subset of
requirements {r1,r2,7s,7r4,75} that violates the functional
dependence r4 @ r5 and also has an associated development
effort of 14, greater than the fixed effort boundary B. In
order to solve this difficulty a repair method is applied. The
repair procedure removes items from the solution until all
interaction and capacity constraints are fulfilled, trying to
reduce the overall profit as little as possible. The require-

(4)

Pr;

ments are deleted in increasing order of their profit value
g(ri) (see Eq. 3).

4.3 Ant Colony System

Ant Colony Optimization (ACO) is a search technique
that emulates the behavior of ants in their task to find
the shortest path to reach a food source from their nest.
This natural process is led by a chemical substance called
pheromone that ants secrete as they move along the path.
A single ant, when choosing its path, adopts a probabilis-
tic behavior. Thus, at each crossroad, it tends to select the
path with the greatest amount of pheromone. If the existing
concentration of pheromone is not enough for make a choos-
ing, the ant will behave randomly. Over time shortest paths
will be more frequently used by the ants, causing a greater
concentration of pheromone. This positive feedback, carried
out through the pheromone, allows the communication and
cooperation between ants and is called stigmergy. That is
to say, the optimal solution is obtained by the cooperation
of the colony through the capability that has each ant of
the colony to find its own path (i.e. to build its own solu-
tion). Ant System was the first ACO algorithm, proposed by
Dorigo [11], and was applied to determine the shortest path
within graph (traveling salesman problem - TSP). After, sev-
eral ACO algorithms have been developed and applied to a
wide range of different discrete optimization, dynamic short-
est paths and industrial problems, [9]. The overall operation
of the ACS algorithm can be described as follows:

e Initialization of the pheromone trails.

e Selections of a random node (state) as departure point
for each ant in the colony.

e Each ant builds its solution from its initial state. At
each stage, an ant locates a set of neighboring states to
visit (these states must satisfy the restrictions of the
problem). Among all of them selects one in a proba-
bilistic way, taking into account the heuristic informa-
tion and pheromone level.

In ACS algorithm the level of pheromone deposited in an
arc from node ¢ to node j, 7;; is stored in a matrix 7. During



the process of constructing the solution of ant k, the rule
used to select from node 7 the next node j to visit, known
as pseudorandom proportional rule [10], is defined as:

. [ argmazm,c i [[755]% [035)°], it ¢ < qo,
j= i : (5)
u, otherwise.

where ¢ is a random number uniformly distributed in [0, 1];
go € [0,1] is a parameter that determine a trade-off between
exploitation (¢ < qo) and exploration. This rule allows de-
ciding, in parametric form, when there is a greater exploita-
tion of knowledge and when there is a greater exploration
of the search space. The node v € N¥ is randomly selected
applying the next rule [9]:

B 7 77 T S
pi'cj = Zhez\rz!»'[”j]a[mj]ﬁ’ iy e N, (©)

0, otherwise.

where each p is the probability that ant k, positioned in
node ¢ selects the next node j to visit; n represents heuristic
information about the problem which is defined as

k Sj
ko~ 22 7
s = M (7)

a productivity measure for the software development of a
requirement, where g is a normalization factor. NF is the
set of non visited visible nodes in the neighbourhood of node
i by ant k; and parameters a, § reflect the relative influence
of the pheromone with respect to the heuristic information.
For example if a = 0 the nodes with higher heuristic infor-
mation values will have a higher probability of being selected
(the ACS algorithm will be close to a classical greedy algo-
rithm). If 8 = 0 the nodes with higher pheromone value
will be preferred in order to be selected. From these two ex-
amples, it easy to deduce that is needed a balance between
heuristic information and pheromone level. During each it-
eration of the Ant Colony System (ACS) algorithm [9], [10],
each ant builds, in a progressive way, a solution to the prob-
lem. Then, depending on the solution obtained by the ants,
the pheromone matrix is updated in two ways.

e Global update. The ant that has found the best
solution reinforces the amount of pheromone on the
arcs that are part of the best solution, R. This means
that the search is conducted in the neighborhood of the
best solution. The global rule for pheromone updating
of an arc (i,7) included in the best solution is:

Tij = (1 = p) % Tij + pATi; (8)
where
o sat(]%)
Tij = sat(R) ©)

p € [0,1] is the pheromone evaporation rate, sat(R)
is the evaluation of the best solution (see Eq 1) and
sat(R) is the satisfaction of the master list of all func-
tionality agreed with customers and desired in a soft-
ware product.

e Local update. During an iteration of the ACS algo-
rithm, when an ant is building a solution, if it chooses
the transition from node i to j, then it has to update
the pheromone level of the corresponding arc applying
the following rule.

Tij = (1 =) % 75 + AT (10)

where ¢ € [0,1] is the pheromone decay coefficient.
The initial pheromone value of each arc is defined as

7o = 1/sat(R). Each time an arc is visited, its pheromone

level decreases making it less attractive for subsequent
ants. Thus, this local updating encourages the explo-
ration of other arcs avoiding premature convergence.

For example, Figure 3 shows a fully connected directed
graph for a master list (of all functionality agreed with cus-
tomers and desired in a software product) with six require-
ments R = {ri,r2,r3,74,75,76} together with the set of
functional dependencies F' = {ri = r3,r1 = rs,ro2 =
ra,T2 = 15,75 = 16, T3OT4, TaPrs } and let E = {3,4,2,1,4,1},
S ={1,2,3,2,5,4} be the sets of their associated develop-
ment efforts and scores, respectively. The development ef-
fort bound B is set to a value of 11. Figure 3(a) depicts the
steps followed by an ant during an iteration. Initially, (see
Figure 3(b)) the ant chooses randomly a requirement of the
set {r1, 2} that contains the visible requirements (i.e. those
verifying functional dependencies and whose effort limit is
lower than 11). Suppose that it selects r2 as the initial vertex
and adds it to its solution, R’ = {r2}. Then the ant obtain
the set of non visited neighbors nodes from 2 is N§¥ = {r}
and arcs reaching to r2 have been deleted because they could
never been used. In this example we are going to assume
that the ant only uses heuristic information in order to build
its solution R’, so at each step it will chose the vertex with
the highest p;; value from the set of non visited neighbors
nodes. Now the ant adds ri to its solution R’ = {ra,71}
and searches for a new requirement to add from this vertex
as it is depicted in Figure 3(c). In this situation the ant’s
set of neighbors nodes is Nf = {rs — 74,75} and using only
heuristic information the next vertex to travel to is rs — 74
(note that this vertex is consequence of the combination de-
pendence 73 — r4). Finally, Figure 3(d) shows that once the
ant has added 5 — r4 to its solution, R’ = {ra,71,73,74}, it
has to stop because there are not any other visible vertices,
due to the exclusion relationship r4 & 5.

5. EXPERIMENTAL EVALUATION

In this section we describe the data sets used to evaluate
the performance of the three meta-heuristic algorithms ap-
plied to NRP, and the parameters used. Finally, we present
the obtained results by the three evaluated algorithms.

5.1 Datasets

For evaluating GRASP, GA and AS algorithms we have
used two data sets. The first data set is taken from [16]. It
has 20 requirements, 5 customers and the cost boundary is
25. The main reason to use this dataset reside in his widely
use in the evaluation of other studies of distinct instances of
NRP [23, 12, 7] and, as far as we know, the lack of any other
available datasets, due to the privacy policies followed by
software development companies. The second dataset is gen-
erated randomly with 100 requirements and 5 customers, ac-
cording to the NRP model. This dataset was defined because
in real incremental software projects development, in the ini-
tial increments, we are faced with the problem of selecting
requirements from a wider set. Therefore, the number of
requirements has been incremented from 20 to 100, which is
the number of requirements usually found in a small or/to
medium size project. The values for effort were given in the
1 to 20 working days range. The customers’ weights were in-
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Figure 3: Search process in ACS

dicated within the range 1 to 5, following a uniform distribu-
tion (the set of weights used is 2, 5, 3, 3, 3). These values can
be understood as linguistic labels such as: without impor-
tance (1), less important (2), important (3), very important
(4), extremely important (5). The implication dependencies
are shown in Table 1. According to the functionalities to
be included in the next software release we have only used
three depth levels. The set of combinations dependencies is
{(ri6,m17), (r30,731), (r34,735), (r51,752), (Te5,T66), (Ts3,784)}
and the exclusion dependencies are {(r21,722), (733,734),
(ras,Ta9), (res,T69)}. The last two types of dependencies
define different alternatives in the new software version.

Table 1: Implication dependencies in Dataset 2
ri [ {rilri=r i [{rlri=r}
1 25 33 58,59
2 26, 27, 28,29 | 34 60
3 4 38 63
5 6 41 65
8 32 42 67
9 33, 34 45 68
13 | 33, 36, 39,40 || 48 71
15 41, 42 49 73
17 45 55 80
29 51, 52, 53 57 82
29 52 58 83
29 53 59 84
30 54, 55 62 87
30 55 63 87, 88
32 57 67 91

5.2 Methodology

We have tested each algorithm performing 100 indepen-
dent runs for each of the two data sets. We compute, for
the solutions obtained, their mean of satisfaction, effort and
time as measures of tendency, and their standard deviation,
maximum and minimum as measures of dispersion.

5.3 Results

In this subsection we describe the parameters configura-
tion used and compare the results obtained by the three eval-
uated algorithms. In the case of the Greedy Adaptive Search
Procedure (GRASP) we have set the number of iterations
to 100 and a = 0.5 in order to get a balance between greedy
and purely random behavior. The parameters selected for
our elitist Genetic Algorithm (GA) are a population size of
60 (i.e. three times the number of requirements in the prob-
lem), a crossover probability of 0.9. Each execution of the
algorithm computes 160 generations from the initial popula-
tion, so it performs 9600 evaluations of the fitness function.
In order to test our Ant Colony System (ACS) we have con-
sidered a colony with 10 ants (i.e. the half of the number
of requirements in the problem). The colony searches 100
times for a solution and returns the best solution found. We
maintain fixed the pheromone evaporation rate p = 0.1 (we
also set the pheromone decay coefficient ¢ to 0.1) and the
parameter go = 0.9 controlling the relative importance of
exploitation versus exploration in all executions of the al-
gorithm. Also we have set a and 8 parameters to a value
of 1, giving the same relative importance to pheromone and
heuristic information.

Table 2 shows the comparison of the results obtained by
the different algorithms on the two datasets showing the
maximum, minimum and average satisfaction together with
the average effort of the solutions found by GRASP, GA and
ACS. GRASP and ACS found the same solution, although
GRASP execution time is considerably better. GA found
slightly worst solutions in terms of satisfaction but including
more requirements than GRASP and ACS. We believe that
this is an effect of its design nature. Solutions (whether they
are valid or not) are combined by crossover and mutated
(there is not any use of the dependencies nor effort bound of
the problem being solved) and finally the solution obtained is
“repaired” in a greedy way in order to verify all the problem
restrictions.

On the second dataset, GRASP found always the best
solution in terms of satisfaction. It is followed by ACS with
slightly worst solutions; perhaps the results would be closer
to those of GRASP if we had assigned to parameter  a



Table 2: Results obtained for the different DataSets

DataSet 1 DataSet 2
Algorithm #Req Satisfaction | Effort | Time (ms) #Req Satisfaction Effort Time (ms)
GRASP 8+0 757.5+£0 24+0 94.14 £ 6.8 8+0 279+ 0 20£0 782 £+ 30.8
GA 8.27+0.4 | 755.65£2.2 | 244+0 | 201.32+£33.9 | 7.59+£0.5 | 264.7£10.4 | 19.92+ 0.2 | 1702.53 £ 89.6
ACS 8+0 757 +0 2440 | 232.84 £ 36.2 8+0 276.86 £ 1.3 20+0 2785.46 £ 66.8
GRASP: (#iter=100, a = 0.5) ; GA: (#iter=160, pop_size = 60, Peross = 0.9);
ACS: (#iter=100, #ants=10, a =1, 8 =1, p=0.1, p = 0.1, go = 0.9)

higher value reinforcing the greedy behavior of ACS. And,
finally, GA obtains worst solutions (due to the same reasons
argued on dataset 1) but expending less time than any of
the other algorithms.

6. RELATED WORKS

Table 3: Classification of NRP related works
With interactions Without interactions

SA Bagnall et al. [1] Baker et al. [2], del
Sagrado et al. [7]
Greedy Bagnall et al. [1] Baker et al. [2]

GRASP del Sagrado & del
Aguila [6]

GA Greer & Ruhe [16] del Sagrado et al. [7]

NSGA-IT | Zhang & Harman | del Sagrado & del

[24] Aguila [6] , Durillo et

al. [12], Finkelstein
et al. [15], Zhang et
al. [25]

MOCell Durillo et al. [12]

ACS del Sagrado et al. [7],

del Sagrado & del
Aguila [6]

The requirement selection problem has been addressed in
numerous works in the literature. A review of them can
be found in [8]. A wide range of different optimization and
search techniques can and have been used to solve the prob-
lem of selecting requirements to be included in the next soft-
ware release, just defined as NRP. Bagnall et al. [1] formu-
late the problem and show how to apply hill climbing, greedy
algorithms and simulated annealing. Baker et al. [2] demon-
strate that these metaheuristics techniques can be applied to
a real-world NRP out-performing expert judgment. Greer
and Ruhe [16] study the generation of feasible assignments
of requirements to increments taking into account different
stakeholder perspectives and resource constraints. The op-
timization method used is iterative and essentially based on
a genetic algorithm. Del Sagrado et al. [7] adapt ant colony
system to NRP and make a comparative study against sim-
ulated annealing and genetic algorithm. NRP has also been
studied from the multi-objective point of view, applying dif-
ferent techniques such as NSGA-II and MOCell [25, 12, 15]
and ACS [6].

Many of these works have focused their attention on ap-
plying different search techniques and comparing their re-
sults, but only a few of them have taken into account the
interactions between requirements . Table 3 summarizes the

set of techniques applied to NRP, used in these works, clas-
sified into two groups, depending on whether they take into
account dependencies or not. Bagnall et al. [1] only con-
siders implication dependencies between requirements. This
work concentrates on the search for a set of customers in-
stead of a good set of requirements. Once a customer is
selected all of the requirements she/he has proposed are in-
cluded in the set of requirements conforming the solution.

Greer and Ruhe [16] address the requirement selection
problem from a perspective based on incremental software
development, considering implication and combination de-
pendencies. Zhang and Harman [24] study the impact of
the interactions on the set of solutions obtained by NSGA-
II and an archive-based variation of NSGA-II.

7. CONCLUSIONS

In this paper we have studied the impact of taking into ac-
count interactions between requirements on the search space
for NRP. One of the effects of using dependencies is a reduc-
tion of the search space.

It is in this type of problems that the use of meta-heuristics
techniques can be helpful to the experts who must decide
which is the set of requirements to be considered in the next
release when they meet with contradictory goals. Three al-
gorithms have been adapted to solve the NRP problem with
functional interactions (GRASP, GA, ACS). In addition to
the development of our own ant colony system for NRP, we
have applied two other techniques (GRASP, GA) in order
to evaluate our system.

We have shown that ACS is a valid and applicable al-
gorithm for solving NRP problems. We have the feel that
perhaps the results of ACS, on the two experiments carried
out, could be improved by reinforcing its heuristic behavior
(i.e. assigning to parameter 8 a higher value), as GRASP
has obtained the best results in our experiments.

GA has shown the worst performance in our experiments
with NRP, but it would be useful to examine how it be-
haves when using other repair operators (different from the
one we have proposed) designed specifically for this prob-
lem. During the adaptation of GA we have found several
difficulties with crossover and mutation operations due to
the constraints imposed by NRP. Then we have introduced
a repair operator that influences the performance of our GA
because it only tries to recover a valid solution in a greedy
way. It would be useful to examine how GA behaves if we
combine the use of dependencies with the greedy function
during the recovering of valid solutions for the NRP prob-
lem. Also would be interesting the study of other crossover
and mutation operators that take into account the restric-
tions of the problem.

As future lines of work we plan to study the quality of



the solution sets found and improve the model of require-
ments selection between increments in a software develop-
ment project, that is to say, consider dynamic aspects.
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