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Abstract. Given evidence on a set of variables in a Bayesian network,
the most probable explanation (MPE) is the problem of finding a config-
uration of the remaining variables with maximum posterior probability.
This problem has previously been addressed for discrete Bayesian net-
works and can be solved using inference methods similar to those used
for finding posterior probabilities. However, when dealing with hybrid
Bayesian networks, such as conditional linear Gaussian (CLG) networks,
the MPE problem has only received little attention. In this paper, we pro-
vide insights into the general problem of finding an MPE configuration in
a CLG network. For solving this problem, we devise an algorithm based
on bucket elimination and with the same computational complexity as
that of calculating posterior marginals in a CLG network. We illustrate
the workings of the algorithm using a detailed numerical example, and
discuss possible extensions of the algorithm for handling the more general
problem of finding a maximum a posteriori hypothesis (MAP).

Keywords: MPE inference, Conditional Linear Gaussian networks, hy-
brid Bayesian networks

1 Introduction

Probabilistic graphical models provide a well-founded and principled approach
for performing inference in complex domains endowed with uncertainty. A prob-
abilistic graphical model is a framework consisting of two parts: a qualitative
component in the form of a graphical model encoding conditional independence
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assertions about the domain being modeled as well as a quantitative compo-
nent consisting of a collection of local probability distributions adhering to the
independence properties specified in the graphical model. Collectively, the two
components provide a compact representation of the joint probability distribu-
tion over the domain being modeled.

Given a Bayesian network where a subset of the variables is observed, we may,
e.g., query the network for the posterior marginal distributions of the remaining
variables or for a maximum a posteriori probability configuration for a subset of
the variables. If this subset is a proper subset of the non-observed variables, then
the problem is referred to as a maximum a posteriori (MAP) hypothesis problem
[10]. On the other hand, if the variables of interest correspond to the complement
of the observation set, then the problem is referred to as that of finding the
most probable explanation (MPE) [2, 6]; MPE can therefore be considered a
specialization of MAP.

For Bayesian networks containing only discrete variables, there has been a
substantial amount of work on devising both exact and approximate algorithms
for performing MAP and MPE inference. However, for hybrid Bayesian networks,
with both discrete and continuous variables, these types of inference problems
have received only little attention [12]. In this paper we consider the problem
of performing MPE inference in conditional linear Gaussian networks [7]. We
propose an MPE algorithm based on bucket-elimination, which has the same
computational complexity as that of standard inference for posterior marginals
[8]. In contrast to the proposal in [12], we study the effect of entering evidence
and also avoid the use of piece-wise defined functions by using an auxiliary
tree structure keeping track of the functions used in previous calculations. The
algorithm is illustrated using a detailed numerical example.

2 Preliminaries

Bayesian networks (BNs) [11, 1, 5] are a particular type of probabilistic graphical
model that has enjoyed widespread attention in the last two decades. Attached
to each node, there is a conditional probability distribution given its parents in
the network, so that in general, for a BN with N variables X = {X1, . . . , XN},
the joint distribution factorizes as p(X) =

∏N
i=1 p(Xi|Pa(Xi)), where Pa(Xi)

denotes the set of parents of Xi in the network. A BN is called hybrid if some
of its variables are discrete while some others are continuous.

We will use lowercase letters to refer to values or configurations of values, so
that x denotes a value of X and boldface x is a configuration of the variables
in X. Given a set of observed variables XE ⊂ X and a set of variables of
interest XI ⊂ X\XE , probabilistic inference consists of computing the posterior
distribution p(xi|xE) for each i ∈ I. If we denote by XC and XD the set of
continuous and discrete variables not in {Xi} ∪XE , and by XCi and XDi the
set of continuous and discrete variables not in XE , the goal of inference can be
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formulated as computing

p(xi|xE) =

 ∑
xD∈ΩXD

∫
xC∈ΩXC

p(x,xE)dxC

/ ∑
xDi
∈ΩXDi

∫
xCi
∈ΩXCi

p(x,xE)dxCi

 ,
where ΩX is the set of possible values of a set of variables X and p(x,xE) is the
joint distribution in the BN instantiated according to the observed values xE .

A particularly complex kind of inference in BNs is the so-called maximum a
posteriori (MAP) problem. For a set of target variables XI ⊆ X \XE , the goal
of MAP inference is to compute

x∗I = arg max
xI∈ΩXI

p(xI |XE = xE), (1)

where p(xI |XE = xE) is obtained by first marginalizing out from the joint
distribution p(x) the variables not in XI and not in XE . A related problem is
MPE that stands for finding the most probable explanation to an observation
XE = xE . It is a particular case of MAP, where XI = X \XE . Both MAP and
MPE belong to the class of problems known as abductive inference [4].

2.1 Conditional Linear Gaussian Networks

A Conditional Linear Gaussian Network is a hybrid Bayesian network where the
joint distribution is a conditional linear Gaussian (CLG) [7]. In the CLG model,
the conditional distribution of each discrete variable XD ∈ X given its parents
is a multinomial, whilst the conditional distribution of each continuous variable
Z ∈ X with discrete parents XD ⊆ X and continuous parents XC ⊆ X, is given
by

p(z|XD = xD,XC = xC) = N (z;α(xD) + β(xD)TxC , σ(xD)) , (2)

for all xD ∈ ΩXD
and xC ∈ ΩXC

, where α and β are the coefficients of a linear
regression model of Z given its continuous parents; this model can differ for each
configuration of the discrete variables XD.

After fixing any configuration of the discrete variables, the joint distribution
of any subset XC ⊆ X of continuous variables is a multivariate Gaussian. Hence,
the parameters of the multivariate Gaussian can be obtained from the ones in
the CLG representation. For a set of n continuous variables Z1, . . . , Zn with
a conditionally specified joint density p(z1, . . . , zn) =

∏n
i=1 f(zi|zi+1, . . . , zn),

where the k-th factor, 1 ≤ k ≤ n, is such that

p(zk|zk+1, . . . , zn) = N (zk;µzk|zk+1,...,zn , σzk) ,

it holds that the joint is p(z1, . . . , zn) = N (z1, . . . , zn;µ,Σ) , where µ is the n-
dimensional vector of means and Σ is the covariance matrix of the multivariate
distribution over random variables Z1, . . . , Zn and both µ and Σ are derived
from the parameters in Eq. (2) [9].
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3 MPE Inference in CLG Networks

MPE inference can be carried out by adapting generic inference algorithms like
Bucket Elimination [3]. The choice of bucket elimination as the underlying in-
ference scheme for our proposal is motivated by its simplicity and flexibility, as
well as the fact that it has been successfully employed in the MPE problem for
discrete variables. The bucket elimination algorithm computes the MPE using
local computations. A bucket containing probability functions is kept for each
variable. Initially, an ordering of the variables in the network is established,
and each conditional distribution in the network is assigned to the bucket cor-
responding to the variable in its domain holding the highest rank. Afterwards,
the buckets are processed in a sequence opposite to the initial ordering of the
variables. Each bucket is processed by combining all the functions it contains
and by marginalizing the main variable in that bucket by maximization. The
details of the algorithm are given in Alg. 1.

Function Elim-MPE(X,P ,σ,xE)
Input: The set of variables in the network, X = {X1, . . . , XN}. The distributions in

the network P = {p1, . . . , pN}. An ordering, σ, of the variables in X. Evidence
XE = xE .

Output: xmpe, the configuration for which the posterior density reaches its maximum,
and mpe, the density value at that point.

begin
Initialization:
Partition P into buckets B1, . . . , BN , where Bi contains the conditional distribu-
tions in P whose highest index variable is Xi.
Backward phase:
for p← N to 2 do

if Xp ∈ XE then
Replace Xp by xEp in each h ∈ Bp, and insert the resulting h in the bucket
corresponding to its highest ranked variable according to ordering σ.

end
else

hp ← maxxp

∏
h∈Bp

h
Insert hp in the bucket corresponding to its highest ranked variable.

end

end
Forward phase:
for p← 1 to n do

Let hR(x1,...,xp) denote the restriction of each function h ∈ Bp to the values
(x1, . . . , xp).
xmpe
p ← arg maxxp

∏
h∈Bp

hR(x1,...,xp).

end
return xmpe = {xmpe

1 , . . . , xmpe
N } and mpe = maxx1

∏
h∈B1

h .

end

Algorithm 1: The Bucket elimination algorithm for computing the MPE
as described in [3].

Example 1. Consider the network in Fig. 1 and the ordering 〈Y, S,W, T, U〉.
According to such ordering, the initial setting of the buckets would be BY =
{P (Y )}, BS = {P (S)}, BW = {f(w|Y )}, BT = {f(t|w, S)} and BU = {f(u|w)}.
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The backward phase in Alg. 1 conveys the processing of the buckets as follows.
The first bucket to be processed is BU . It is done by maximizing out u from
f(u|w). As f(u|w) = N (u;w, 1), the maximum is reached at the mean, which
means that U is maximized out by replacing u in f(u|w) by w, which results in
a function hU (w) = 1√

2π
. Hence, the obtained function is in fact a constant, that

is shifted to bucket BW . The next bucket to handle is BT , where T is removed
from f(t|w, S) by replacing t by the mean of the conditional distribution, re-
sulting again in a constant function hT (w, S) = 1√

2π
. After this calculation, hT

is stored in BW , which is itself processed by multiplying f(w|Y ), hT (w, S) and
hU (w) and maximizing out W from the result. Since hT and hU are constant,
we just have to maximize f(x|Y ) and multiply by the constants afterwards. The
result is hW (Y, S) = ( 1√

2π
)3, that is stored in BS . Bucket BS contains P (S) and

hW (Y, S), whose product is equal to 0.1( 1√
2π

)3 when S = 0 and 0.9( 1√
2π

)3 when

S = 1. Hence, maximizing with respect to S yields hS(Y ) = 0.9( 1√
2π

)3, that is

sent to bucket BY . The MPE configuration is actually obtained in the forward
phase of the algorithm, where the bucket processing step is traced back.

Y

W

TU

S

P (Y ) = (0.5, 0.5)

P (S) = (0.1, 0.9)

f(w|Y = 0) = N (w;−1, 1)

f(w|Y = 1) = N (w; 2, 1)

f(t|w, S = 0) = N (t;−w, 1)

f(t|w, S = 1) = N (t;w, 1)

f(u|w) = N (u;w, 1)

Fig. 1. A hybrid Bayesian network with two discrete and three continuous (shaded)
variables.

The example above shows how maximizing out continuous variables is an
easy task if the continuous variables are always removed first, as it just amounts
to replacing the variable being removed by its mode (which in the Gaussian case
is equal to its mean). The price to pay is that, in the worst case, a function
containing all the discrete variables would be created, as is the case of hW (Y, S).
It is an undesirable event, as the size of a probability function of discrete vari-
ables is exponential in the number of variables. This complexity blow-up can be
avoided in many cases by allowing orderings for constructing the buckets where
discrete and continuous variables can be arranged with no restrictions. But then
a new problem arises, as the maximization operation becomes more complex.
Assume, for instance, that we reach a point where Y is maximized out before
W in Fig. 1. This amounts to computing

hY (w) = max
y
{P (Y = y)f(w|Y = y)} = max{0.5N (w;−1, 1), 0.5N (w; 2, 1)}.
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Therefore, hY is not a function with a single analytical expression, but it is piece-
wise defined instead. We show in the next section how it is possible to avoid
piece-wise representations of the result of maximizing out discrete variables.
Instead, we will keep lists of the functions that take place in the max operation.
In other words, the max operation is carried out in a lazy way. The counterpart
is that the forward phase in Alg. 1 requires us to keep track of the operations
carried out over the potentials in the backward phase. We propose to use a tree
structure to keep track of the functions involved in intermediate calculations as
illustrated in Fig. 2 and which corresponds to Example 1.

BY :

BS :

BW :

BT :

BU :

P (Y )

P (S)

f(w|Y )

f(t|w, S)

f(u|w)

hS(Y )

hW (Y, S)

hT (w, S) hU (w)

Fig. 2. Tree structure keeping track of the functions involved in the intermediate cal-
culations performed during the backward phase of the bucket elimination algorithm.

3.1 Entering Evidence

If a variable is observed, no bucket is created for it. Instead, the variable is
replaced by its observed value in every function where it appears. Assume a
continuous variable X that is observed taking on value X = x0. If the parents
of X are Y1, . . . , Yn, replacing variable X by value x0 in its conditional density
results in a function

φ(y1, . . . , yn) =
1

σx
√

2π
exp

{
−

(x0 − (β0 +
∑n
i=1 βiyi))

2

2σ2
x

}
. (3)

Eventually, function φ will be passed to the bucket corresponding to one of its
parents, where it will be multiplied by the parent’s density prior to maximization.
Let Yj be such a parent of X. Its conditional density can be written as

f(yj |Pa(Yj)) =
1

σyj
√

2π
exp

{
−

(yj − µyj |pa(yj))2

2σ2
yj

}
. (4)

Maximizing the product of the functions in Eqs.(3) and (4) with respect to yj
is equivalent to maximizing the sum of their respective logarithms. It is obtained
by solving the equation
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∂

∂yj

(
−

(x0 − (β0 +
∑n
i=1 βiyi))

2

2σ2
x

−
(yj − µyj |pa(yj))2

2σ2
yj

)
= 0, (5)

which simply amounts to maximizing a quadratic function.

4 A numerical example

In this section we illustrate our proposal through a detailed example. Consider
the CLG network illustrated in Fig. 1, where the discrete variables Y and S
are assumed to be binary with states 0 and 1. Assume now that the continuous
variable U is instantiated to 1 and we seek an MPE configuration over the
remaining variables.

For performing MPE inference in this network we proceed with bucket elim-
ination using the order 〈W,T, S, Y 〉. Thus, the buckets are initialized as BY =
{P (Y ), f(w|Y )}, BS = {P (S), f(t|w, S)}, BT = {1}, BW = {f(u = 1|w)}, and
BU = {1}. The first bucket to be processed is BY , which involves maximizing Y
from P (Y )f(w|Y ) and passing the result to bucket BW .

hY1 (w) = max
y

P (y)f(w|y) = max[P (Y = 0)f(w|Y = 0), P (Y = 1)f(w|Y = 1)],

where the super-script Y means that the potential contains two pieces indexed
by Y ; each of them corresponds to a scaled normal distribution (see Fig. 3). From
an operational point of view, we use a list to store the components of hY1 (w).

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 3. The potential h1(w) obtained by maximizing Y out of P (Y )f(w|Y ).

The next bucket to process is BS from which S should be eliminated. This
operation produces the potential

hS2 (t, w) = max
s
P (s)f(t|w, s) = max[P (S = 0)f(t|w, S = 0),

P (S = 1)f(t|w, S = 1)],
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which is passed to BT ; again, the super-script S indicates that hS2 (t, w) is a list
with as many elements as states of S. When processing BT , we maximize out T :

h3(w) = max
t
h2(w, t) = max

t
max
s
P (s)f(t|w, s) = max

s
P (s) max

t
f(t|w, s),

which produces a potential containing a contribution for each state of S. By
following the arguments from Example 1, f(t|w, S = i) is maximized at the
conditional means −w (for S = 0) and w (for S = 1), thus

h3(w) = (
√

2π)−1 max[P (S = 0)σ−1T,S=0, P (S = 1)σ−1T,S=1],

which is a scalar value and constant wrt. W ; since h3(w) contains only one ele-
ment we omit the super-script index previously used. Based on the CLG speci-
fication above, we find that h3(w) = (

√
2π)−1 max[0.1 · 1, 0.9 · 1] = 0.9(

√
2π)−1,

which is passed to BW .
Finally, we eliminate W based on the potentials BW = {h1(w), h3(w), f(U =

1|w)}, but since h3(w) is constant wrt. w we can disregard it during maximization
(algorithmically, we can also detect this from the network structure using d-
separation analysis):

hY4 = max
w

[f(U = 1|w)h1(w)]

= max
w

[f(U = 1|w) max[P (Y = 0)f(w|Y = 0), P (Y = 1)f(w|Y = 1)]]

= max[max
w

f(U = 1|w)P (Y = 0)f(w|Y = 0),

max
w

f(U = 1|w)P (Y = 1)f(w|Y = 1)]].

The two maximizations over w can easily be solved analytically (see the discus-
sion in Section 3.1), since log(f(U = 1|w)P (Y = i)f(w|Y = i)) is quadratic wrt.
w, for i = 0, 1. That is, log(f(U = 1|w)P (Y = i)f(w|Y = i)) is maximized when

∂

∂w

(
−1

2
(1− βUw)2 − 1

2
(w − µW,Y=i)

2

)
= 0,

which is achieved for wmpe
Y=i = (βU +µW,Y=i)/(β

2
U + 1); here βU is the regression

coefficient for U wrt. w, µW,Y=i is the mean of W given Y = i and the constant
1 in (1 − βUw)2 corresponds to the observed value of U . Using the numerical
specification above, we get wmpe

Y=0 = 0 and wmpe
Y=1 = 1.5.

In order to find a full MPE configuration over all the variable (and thereby
also a single MPE value for W ), we need to retrace the maximizing arguments
for the variables on which the current potential depends (a tree structure like the
one displayed in Fig. 2 can be used). This set of variables can be identified from
the functional arguments for the potential in question together with the variables
that index the list structure of this potential (given above by the super-script
indexes). Specifically, for hY4 we see that the potential depends on Y only, hence
we look for the value ympe of Y maximizing P (Y )f(wmpe

Y |Y ) (corresponding to
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hY1 (wmpe
Y )) and we get ympe = 1 since 0.5 · N (1.5; 2, 1) > 0.5 · N (0;−1, 1). We

thus also have wmpe = 1.5.
Next we proceed backwards in the elimination ordering and look for an MPE

value for T . This is achieved by considering the maximizing arguments for h3,
which is the potential obtained when maximizing out T . From the discussion
above we see that these maximizing arguments can immediately be identified as
the conditional means of f(t|wmpe, S = i)) and we therefore find that tmpe

S=0 =
−1.5 and tmpe

S=1 = 1.5. Lastly, we consider S and from the maximizing argument
for hS2 (t, w) (obtained when maximizing out S) with t and w being fixed to
their MPE values (tmpe

S = 1.5 and wmpe = 1.5), we get that smpe = 1, since
0.1 · N (−1.5; 1.5, 1) < 0.5 · N (1.5; 1.5, 1), and thus tmpe = 1.5.

As a final comment, we would like to reemphasize that the MPE inference
scheme as proposed in this paper, and illustrated above, follows the same struc-
ture as standard algorithms for performing, say marginal, inference in CLG
networks. Thus, the algorithms share the same computational complexity. In
particular, in the example above we see that the elimination order is able to
exploit the conditional independencies in the model structure, and we therefore
avoid the computational blow-up of having to consider all combinations of the
discrete variables, cf. the discussion in Section 3. Furthermore, when identifying
MPE configurations for the continuous variables we see that these configurations
can easily be identified as either corresponding to the conditional means of the
densities involved or they can be found by maximizing a quadratic function.

5 Conclusion and future work

In this paper we have discussed the MPE problem in conditional linear Gaussian
networks. The behavior of the proposed algorithm was illustrated with the help
of a small example model, successfully calculating the most probable explanation
over the variables in the domain. The run-time complexity of the proposed algo-
rithm is identical to that of standard probabilistic inference in CLG networks,
and all maximization operations can be done efficiently using analytic solutions.
The key contributor to the complexity is maintaining the list of Gaussian com-
ponents representing the densities of the unobserved continuous variables.

Our next step is to extend our results to the maximum a posteriori (MAP)
problem. This is significantly more difficult than the MPE problem, as we will
have to do both summation and maximization operations over the discrete vari-
ables. Consider again the model in Fig. 1, and assume we are interested in the
MAP configuration over Y and T . Eliminating S (by summation) will result in a
mixture of Gaussians potential, while eliminating T (by maximization) results in
a maximum of Gaussians potential; the two potentials should later be combined.
Maintaining these two separate types of potentials is inconvenient, as they are
not closed under the required operations, something that is highly unsatisfactory
from a computational point of view.

We are currently investigating a technique to approximate the max-potentials
using sum-potentials, see Fig. 4, which will enable us to do the calculations using
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Fig. 4. Left part: Two Gaussian distributions (dashed lines) are shown together with
their point-wise maximization (solid line). Right part: The max-potential is approxi-
mated by a mixture of Gaussians drawn using solid red line.

a single data structure. We are looking into the quality of the generated approxi-
mations, and we are also working towards an implementation of the approximate
inference technique. We are also studying strategies for selecting optimal variable
orders for computing the buckets.

Acknowledgments. This work was performed as part of the AMIDST project.
AMIDST has received funding from the European Union’s Seventh Framework
Programme for research, technological development and demonstration under
grant agreement no 619209.

References

1. Robert G. Cowell, A.P̃hilip Dawid, Steffen L. Lauritzen, and David J. Spiegel-
halter. Probabilistic Networks and Expert Systems. Statistics for engineering and
information science. Springer, 1999. ISBN 0-387-98767-3.

2. A. Philip Dawid. Applications of a general propagation algorithm for a probabilistic
expert system. Statistics and Computing, 2:25–36, 1992.

3. R. Dechter. Bucket elimination: a unifiying framework for reasoning. Artificial
Intelligence, 113:41–85, 1999.
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