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Quantum-information entropies for highly excited states of single-particle systems
with power-type potentials
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The asymptotics of the Boltzmann-Shannon information entropy as well as the Renyi entropy for the
quantum probability density of a single-particle system with a confining~i.e., bounded below! power-type
potentialV(x)5x2k with kPN and xPR, is investigated in the position and momentum spaces within the
semiclassical~WKB! approximation. It is found that for highly excited states both physical entropies, as well
as their sum, have a logarithmic dependence on its quantum number not only whenk51 ~harmonic oscillator!,
but also for any fixedk. As a by-product, the extremal casek→` ~the infinite well potential! is also rigorously
analyzed. It is shown that not only the position-space entropy has the same constant value for all quantum
states, which is a known result, but also that the momentum-space entropy is constant for highly excited states.
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I. INTRODUCTION

The essential reason for the probabilistic character of
quantum theory of physical systems relies upon the un
tainty relation. This relation may be mathematically e
pressed by means of the Boltzmann-Shannon information
tropy ~the entropic uncertainty relation! in a much more
appropriate and accurate way than by the standard devia
~the Heisenberg or standard uncertainty relation! @1,2#. The
quantum single-particle probability densities in position a
momentum spaces are not necessarily Gaussian or q
Gaussian, but they can take an arbitrary shape; so, in gen
the standard deviation is not a useful measure of sprea
@3#. The information entropy is an appropriate measure
spreading, and then of quantum uncertainty, a property
fundamental relevance for the adequate characterizatio
the position and momentum single-particle densities, the
sic variables of the modern density-functional theory@4–6#
in the two complementary spaces. Additionally, these en
pies have been used for numerous practical purposes suc
for example, to measure the squeezing of quantum fluc
tion @7# and to reconstruct the charge and momentum de
ties of atomic and molecular systems@8,9# by means of
maximum-entropy procedures.

The analytical determination of the information entrop
of physical systems is a formidable project which is now
its infancy. This project has been initiated by the consid
ation of simple quantum systems:D-dimensional single-

*Corresponding author. Electronic address: dehesa@ugr.es
†Electronic address: andrei@ual.es
‡Electronic address: VNSORMM@nw.math.msu.su
1050-2947/2002/66~6!/062109~7!/$20.00 66 0621
e
r-

-
n-

on

d
si-

ral,
ng
f

of
of
a-

-
as,
a-
i-

r-

particle systems in central potentials. See Ref.@10# for a
recent survey, where emphasis is laid on the harmonic os
lator and Coulomb potentials.

The Schro¨dinger equation of aD dimensional single-
particle system characterized by the Hamiltonian operatoH
is

HC~ r̄ !5EC~ r̄ !, r̄ 5~x1 ,...,xD!, ~1!

whereC( r̄ ) is the wave function assumed to be normaliz
to unity. Then, the position density of the system isr( r̄ )
5uC( r̄ )u2 and the associated Boltzmann-Shannon inform
tion entropy in position space is defined by

S~r!ª2E r~ r̄ !ln r~ r̄ !dr̄, ~2!

which measures the uncertainty in the spatial localization
the particle@11#. The lower this quantity is, the more con
centrated is the wave function, the smaller is the uncertai
and the higher is the accuracy in predicting the localizat
of the particle. Analogously, in momentum space the norm
ized wave functionĈ(pW ), which is the Fourier transform o
C( r̄ ), and its associated Born probability densityg(pW )
5uĈ(pW )u2 has the following information entropy:

S~g!ª2E g~ p̄!ln g~ p̄!dp̄, ~3!

which measures the uncertainty in predicting the momen
of the particle.

These two physical entropies satisfy the inequality

S~r!1S~g!>D~11 ln p!, ~4!
©2002 The American Physical Society09-1
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which is called by entropic uncertainty relation@11–13#. It
means that the total uncertainty in position and momen
cannot be decreased beyond the given value (11 ln p)D.
Nowadays it is well known that this inequality is strong
than the Heisenberg uncertainty relation; see, e.g., Ref.@11#.

Most efforts have been concerned with one-dimensio
systems (D51) whose Schro¨dinger equation,

2C91V~x!C5EC, ~5!

has a discrete spectrum of eigenvalues,

E0,E1,E2,¯ • ~6!

Then, the information entropy of the corresponding wa
functionsCn(x) satisfying the normalization condition,

E
R
uCn~x!u2dx51, ~7!

will be denoted as

S~Cn!ªE
R
uCn~x!u2 lnuCn~x!u2dx, ~8!

and similarly for the momentum-space information entro
S(Ĉn) of the normalized-to-unity wave function in mome
tum spaceĈn . According to Eq.~4!, the entropic uncertainty
relation for this case reads as

S~Cn!1S~Ĉn!>11 ln p, ~9!

which indicates that the entropy sum is bounded from be
by the value 2.1447... .

Recently, it has been shown@10,14,15# that for the har-
monic oscillator and Coulomb potentials, the function
S(Cn) andS(Ĉn) boil down to the integrals of certain clas
sical orthogonal polynomials~Hermite, Laguerre, Gegen
bauer! given by

S~pn!ª2E pn
2~x! ln@pn~x!#2w~x!dx, ~10!

wherepn(x) are the polynomials orthogonal with respect
the weight functionw(x). These entropylike integrals, whic
are closely related to theLp norm of the involved polynomi-
als @16#, cannot be expressed in a simple form, save for
class of Chebyshev polynomials~which are particular in-
stances of Gegenbauer polynomials! @14,15#. The asymptot-
ics of these integrals, which corresponds to the casen→`, is
of special interest for both mathematical and physical r
sons. Indeed, the asymptotical behavior of theLp norm of
classical orthogonal polynomials is under control@16#. The
computation of the asymptotical values ofS(pn) @10,17#
opens the way to determine the information entropies of
highly excited~quasiclassical! states as well as to gain in
sight into the structure and spectroscopy of the recently p
duced Rydberg atoms@18#.

In this paper, we shall analyze the semiclassical asy
totics of the information entropies in position and mome
06210
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tum spaces of the wave functions of one-dimensional sin
particle systems with power-type potentials; that is, t
eigenfunctions of the wave equation~5! with the potential
V(x) given by

V~x!5Ekx
2k, xPR, kPN, Ek.0 ~11!

in the framework of the semiclassical~WKB! approximation
@19,20#. These potentials, which play an important role
quantum field theory and molecular physics, include as s
cial cases the harmonic oscillator (k51) and the square wel
(k→`). They belong to a subclass of potentialsV(x) with
two turning points, whose position-space information e
tropy has been recently analyzed@21#; therein it is found a
simple relation between the quantum and classical entro
in position space. With an appropriate scaling we may
sume thatEk51 in what follows.

It is well known that the spectrum of these smoothly va
ing potentials consists of a discrete set of eigenvalues~6! for
which nontrivialL2(R) solutionsCn exist. Notice, in addi-
tion, that the Fourier transformĈ of the solution of the
Schrödinger equation of these systems,

2C91x2kC5EC, ~12!

that is, the momentum wave function

Ĉ~p!5
1

A2p
E

R
C~x!e2 ixpdx ~13!

satisfies the equation

~21!kĈ~2k!1p2Ĉ5EĈ. ~14!

We are interested in the behavior whenn→` of the se-
quences of the position-space entropiesSn5S(Cn) and
momentum-space entropiesŜn5S(Ĉn) defined in accord
with Eq. ~8! for the solutionsCn and Ĉn of Eqs. ~12! and
~14!, respectively, keeping in mind the normalization con
tion ~7! for both functions. For this purpose, we shall follo
a two-step procedure that consists in estimating first theLq

norm of the corresponding WKB solution and then using
appropriate limit to arrive at the desired asymptotics@16#.
This is done in Sec. II for the position-space entropySn and
in Sec. III for the momentum space entropyŜn .

It is found that both physical entropies have a logarithm
dependence on the quantum numbern for all the excited
states of the semiclassical region. Also, as an important
product, the extremal casesk51 ~harmonic oscillator! and
k→` ~the infinite well! are considered in Sec. IV; in particu
lar, we find the known asymptotical behavior of the positi
and momentum entropies of the harmonic oscilla
@14,15,17,22# and the position entropy of the infinite we
@21#. The asymptotics of the momentum entropy of the in
nite well potential is also found here without the requireme
to any plausible and/or numerical arguments in contrast
recent work@23#. Finally, let us point out that the asympto
9-2
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ics of the entropy sumSn1Ŝn is explicitly given for the
general case as well as for the two special cases menti
above.

II. ASYMPTOTICS IN THE POSITION SPACE

Here the asymptotic behavior of the position-space inf
mation entropySn5S(Cn) of the WKB solutions of the
Schrödinger equation~10! of the power-type potentialV(x)
5x2k is investigated in detail. For this purpose, we sh
estimate first theLq norm of these WKB solutions.

According to the WKB quantization rule@19,20#, En

5En
appr1o(1), where

1

p E AEn
appr2x2kdx5n11/2, n50,1,2,...

and the integration is overxPR; x2k<En
appr. This relation

becomes exact@24# as n→`. See also Ref.@25#. It is
straightforward to see that

En5xn
2k1o~1!, ~15!

where

xn5S pk

BS 3

2
,

1

2kD ~n11/2!D 1/~11k!

, ~16!

andB(x,y)5G(x)G(y)/G(x1y) is the beta function.
If we denote

f n~x!5Axn
2k2x2k

and

Fn~x!5E
x

xn
f n~ t !dt, 2xn,x,xn ,

then the WKB solution of Eq.~5! has the form

Cn~x!5Cn

cos$Fn~x!2p/4%

Af n~x!
1o~1!, ~17!

where Cn is a normalization constant. Let us compute t
L2q norm to the power 2q of this function,

Nn~q!5E
R
uCn~x!u2qdx.

From Eq.~17! it is easy to obtain that

Nn~q!;E
2xn

xn UCn

cos$Fn~x!2p/4%

Af n~x!
U2q

dx

52Cn
2qxn

12kqE
0

1

ucos@Fn~xnt !2p/4#u2q

3~12t2k!2q/2dt, ~18!
06210
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where the definition off n and the substitutionx°xnt have
been used. Here and below we write thatan;bn when an
5bn@11o(1)#, n→`.

The function

w~ t !5
1

n11/2
Fn~xnt !

is continuous and monotone ontP@0,1#, and w(t)
P@0,p/2#. Thus, the inverse functionv5w21 on @0, p/2#
exists and the integral in Eq.~18! is

E
0

p/2

ucos@~n11/2!w2p/4#u2q@12v2k~w!#2q/2uc8~w!udw.

We can use the analog of the Fejer’s lemma, establishe
Lemma 2.1 of Ref.@16#, by which this integral tends to

E
0

p/2

ucoswu2qdw
2

p E
0

1

~12t2k!2q/2dt.

Thus, by Eq.~18!,

Nn~q!;
xn

pk
$Cn

2xn
2k%qN* ~q!,

where

N* ~q!5BS q1
1

2
,
1

2DBS 12
q

2
,

1

2kD . ~19!

Taking q51 and keeping in mind thatNn(1)51, we get

1;
B„1/2,1/~2k!…

2k
xn

12kCn
2,

from where the asymptotics ofCn follows. Finally, we arrive
at

Nn~q!;
xn

pk H 2k

xn

1

B„1/2,1/~2k!…J q

N* ~q!. ~20!

It is known and easy to verify that the entropySn is related
@16# to the normNn(q) by

Sn5S~Cn!52
]

]q
Nn~q!U

q51

52
]

]q
ln Nn~q!U

q51

.

Thus,

2Sn5 lnH 2k

xn

1

B„1/2,1/~2k!…J 1x1o~1!,

where

x5
]

]q
ln N* ~q!U

q51

.

We have
9-3
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x5H FcS q1
1

2D2c~q11!G
1

1

2 FcS 11
1

2k
2

q

2D2cS 12
q

2D G J U
q51

5
1

2 FcS 1

2
1

1

2kD2cS 1

2D G2Fc~2!2cS 3

2D G ,
wherec(x)5G8(x)/G(x) is the digamma function. With ac
count of Eq.~16!,

Sn5
1

11k
ln~2n!2

1

2

1

11k
ln Ek1

k

11k
ln

B„1/2,1/~2k!…

2k

1
1

11k
lnS p

4

k11

k D2x1o~1!.

Since c(2)2c(3/2)52 ln 221, we finally obtain the fol-
lowing asymptotics for the position-space entropy of
single-particle system submitted to the potentialV(x)5x2k,
kPN,

Sn5
1

11k
ln~2n!1sk1o~1!, n→`, ~21!

where

sk5
k

11k
lnH 1

2k
B„1/2,1/~2k!…J 1

1

11k
lnS p

4

k11

k D12 ln 2

212
1

2 FcS 1

2
1

1

2kD2cS 1

2D G . ~22!

III. ASYMPTOTICS IN THE MOMENTUM SPACE

Here, we shall discuss in detail the asymptotics of
momentum-space information entropy of the WKB mome
tum wave functions of single-particle system with the pow
type potentialV(x)5x2k, kPN. Once again, we use th
WKB method, looking for the solution in the form

Ĉ~p!5A~p!eiS~p!.

Direct substitution yields that in the first approximation,

~S8!2k5E2p2,

A8

A
52

2k21

2

S9

S8
.

Thus,

S8~p!5~E2p2!1/2k, A~p!5~E2p2!2~2k21!/4k.

Denote

gn~p!5~En2p2!1/2k, pn5AEn.
06210
e
-
-

Then the oscillating part ofĈ is

Ĉn~p!5Cn

cos$Fn~p!2p/4%

gn~p!~2k21!/2 1o~1!,

where

Fn~p!5E
p

pn
gn~ t !dt.

The eigenvalueEn is obtained from the Bohr-Sommerfel
quantization rule,

E
0

En
gn~ t !dt5

p

2 S n1
1

2D ,

so that

En5S p~n11/2!

BS 1

2k
11,

1

2D D 2k/~11k!

1o~1!,

which agrees with Eq.~15!. Now we estimate the norm

Nn~q!5E
R
uĈn~p!u2qdp

;E
2pn

pn UCn

cos$Fn~p!2p/4%

~pn
22p2!~2k21!/~4k!U2q

dp.

Proceeding as in Eq.~18! we get

Nn~q!;2Cn
2qpn

12q~2k21!/kQn~q!, ~23!

with

Qn~q!5E
0

1

ucos@Fn~pnt !2p/4#u2q~12t2!2q~2k21!/~2k!dt

5E
0

p/2

ucos@~n11/2!v2p/4#u2q

3@12t2~v!#2q~2k21!/~2k!ut8~v!udv,

where the substitutionv5Fn(pnt)/(n11/2) has been used
Again, by Lemma 2.1 in Ref.@6#, the last integral tends to

E
0

p/2

ucosvu2qdv
2

p E
0

1

~12t2!2q~2k21!/~2k!dt

5
1

2p
BS q1

1

2
,
1

2DBS 12q
2k21

2k
,
1

2D .
9-4
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Thus,

Nn~q!;
1

p
Cn

2qpn
12q~2k21!/kBS q1

1

2
,
1

2D
3BS 12q

2k21

2k
,
1

2D .

Using the normalization conditionNn(1)51, we obtain as
above the asymptotics forCn ,

Cn;
2pn

~k21!/k

BS 1

2k
,
1

2D .

Finally,

Nn~q!;
1

p H 2

BS 1

2k
,
1

2D J q

pn
12qBS q1

1

2
,
1

2D

3BS 12q
2k21

2k
,
1

2D .

It remains to recall that

Ŝn5S~Ĉn!52
]

]q
ln Nn~q!U

q51

,

from where it is straightforward to obtain the asymptotics
the entropy in the momentum space,

Ŝn5
k

11k
ln~2n!1

1

11k
lnH 2BS 1

2k
,
1

2D J
1

k

11k
ln@~k11!p#21

1
2k21

2k FcS 1

2kD2cS 1

2k
1

1

2D G1o~1!. ~24!

Finally, we can gather the results~21! and~24! in order to
find the following estimate for the entropy sumS(Cn)
1S(Ĉn):

S~Cn!1S~Ĉn!5 ln~2n!222
g

2
1 lnH p

k11

k
BS 1

2k
,
1

2D J
1S 12

1

2kDcS 1

2kD2S 3

2
2

1

2kDcS 1

2k
1

1

2D
1o~1!, ~25!

~where g50.5772 . . . is theEuler’s constant! which cer-
tainly fulfils the entropic uncertainty relation~9!.

We notice that both position-space and momentum-sp
entropies as well as their sum increase logarithmically w
the quantum numbern of the state. The latter is most inte
esting because of the invariance property of the entropy
under uniform scaling of the coordinates. Our results sh
06210
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that the level ordering of the power-type potentials is exac
identical for the entropy sum and the single-particle ener

IV. SPECIAL CASES: HARMONIC OSCILLATOR AND
INFINITE WELL

In this section we particularize the preceding results
the extremal cases: the harmonic oscillator (k51) and the
infinite well (k→`).

For the harmonic oscillator, one obtains from Eqs.~21!

and ~24! that both entropiesS(Cn) and S(Ĉn) asymptoti-
cally behave as

1
2 ln~2n!1 ln p21, ~26!

so that its sum is given by

S~Cn!1S~Ĉn!; ln~2n!2212 lnp ~27!

for high values of the quantum numbern. These results were
previously calculated by use of the entropylike integrals
Hermite polynomials@14,15,17# and by the WKB approxi-
mation applied to a general one-dimensional potential w
two turning points@21#; see also Ref.@22#.

Let us now consider the infinite well potential. In th
case, the potentialV(x) in Eq. ~5! becomes

V~x!5H 0 if uxu,1

1` if uxu.1.
~28!

Now Eq.~5! describes the motion of a particle confined to
infinite potential well,

2C9~x!5EC~x!, uxu<1, C~61!50.

The solution of this problem is well known,

En5S pn

2 D 2

, nPN,

and

Cn~x!5H cosS pnx

2 D if n is odd

sinS pnx

2 D if n is even.

~29!

The corresponding entropy is also easily computed; fon
even,
9-5
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S~Cn!52E
21

1

sin2~pnx!ln@sin2~pnx!#dx

52
2

p E
0

p

sin2 w ln~sin2 w!dw

52
2

p H 2
p

2
ln 41

1

2i R
uzu51

3S 12
z

2
2

1

2zD ln~12z!
dz

z J
52

2

p H 2
p

2
ln 41

p

2 J
52 ln 221.

The same result is obtained for the odd values ofn. Then, the
position-space entropy of a particle submitted to an infin
well potential does not depend on the quantum numben;
that is, it has the same value for all quantum states of
system as already shown@21,26#. Therein, it is shown tha
this quantity is given by

S~Cn!5 ln~4a!21 ~30!

for an infinite well potential defined on the interval2a<x
<a.

We should point out that the entropy for the infinite we
case cannot be computed taking formal limit in formulas~21!
and~24!, because there theo(1) term actually depends onk.
Nevertheless, it is interesting to observe that the cons
termsk in Eq. ~22! tends to 2 ln 221 ask→1`, giving the
right answer in the position space.

In the momentum space the wave functions are also w
known. Indeed, taking the Fourier transform of Eq.~29! we
obtain that

Ĉn~p!

5H ~21!~n11!/2A2p
n/2

p22p2n2/4
cosp if n is odd

~21!n/2

i
A2p

n/2

p22p2n2/4
sinp if n is even.

The entropy in the momentum space for evenn ~the same
result is obtained for the odd values ofn! is

S~Ĉ2n!52E
R
uĈ2n~p!u2lnuĈ2n~p!u2dp

52E
R
Fn~x!lnS 1

pn
Fn~x! Ddx,

where the Fejer-type kernel

Fn~x!5
2

p2n

sin2~pnx!

~x221!2
06210
e
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tends to the half sum of Dirac deltas atx561. Hence, the
momentum-space entropy of a particle in the infinite w
potential on the interval21<x<1 has the value

S~Ĉn!5 ln~2p!1o~1!. ~31!

Notice that the result~31! is not recovered by a formal limi
k→` in Eq. ~24!. For completeness, let us mention that t
recent computation of this quantity by Majerniket al. @23#
uses an interchange of the order of operations limit and
tegration@see Eq.~17!, p. 2212 of Ref.@23#!. As the authors
recognize, this is not justified for their integral with Feje
type kernel and variable limits of integration; in fact, th
procedure leads to a wrong value of the entropy.

Finally, let us remark that the entropy sum for the infin
well is

S~Cn!1S~Ĉn!;3 ln 2211 ln p>11 ln p,

in compliance with the entropic uncertainty relationship~9!
which is valid for any wave function of one-dimension
systems.

V. SUMMARY, OPEN PROBLEMS, AND CONCLUSION

We have calculated the position and momentum inform
tion entropies for the highly excited states of the power-ty
potentialV(x)5x2k with integerk by means of the semiclas
sical ~WKB! approximation. Our results show that the po
tion entropy grows as (k11)21 ln n and the momentum en
tropy increases ask(k11)21 ln n when the quantum numbe
n characterizing the state tends to infinity. Since the entro
sum is invariant under uniform scaling of the single-partic
coordinates, it is most interesting to realize that this quan
which has the net information content of the system, a
increases logarithmically as the quantum number grows. A
consequence, the ordering of the quantum levels is exa
identical for the entropy sum and the single-particle ener
This property of the entropy sum is shared by other phys
systems of different dimensionalities such as the tw
dimensional harmonic oscillator@27# and circular membrane
@28#, and the neutral atoms@29,30#. Then, our results suppor
the idea to develop a new maximum entropy procedure ba
on the maximization of the entropy sum subject to so
known position and momentum constraints, which would e
tend the Jaynes’ maximum entropy method to the case
volving constraints in the two complementary spaces. T
procedure has been already proposed@31#, but still remains
largely unexplored.

It is well known that the entropic uncertainty relation~4!
is stronger than the Heisenberg uncertainty relation@11#,
which is closely connected to the fact that the entropic m
sure of dispersion expresses more adequately the intu
concept of uncertainty than the variance@32#. Nevertheless,
it would be an interesting open problen to calculate
Heisenberg position and momentum uncertaintiesDx and
9-6
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Dp, and to contrast their behaviors with the aforemention
logarithmic growth of the information entropy in correspon
ing spaces. On the other hand, we are still looking fo
measure that allows us to explain the qualitative property
increasing concentration of the wave function on class
periodic orbits as excitation grows. Which is the measure
concentration which decreases as the quantum numbn
grows? Might Fisher’s measure be a good candidate?

Finally, as a subproduct, we have found the aforem
tioned entropic quantities for the harmonic oscillator whi
had been previously calculated by other mea
@14,15,17,21,22#, which confirms our results at the extrem
casek51. In addition, we have determined for the infini
well potential ~casek→`) not only the position entropy
producing the previously known value@21,26# but also the
s

es

.

ad

06210
d

a
f
l
f

-

s

momentum entropy which up to now was not rigorous
known in spite of some efforts based on some plaus
and/or numerical arguments@23#. Needless to say, that th
entropy sum~which is a joint measure of the position
momentum uncertainty! fulfills the entropic uncertainty rela
tionship~9! for all the systems considered in this work, wh
is a further check of our calculations.
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