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PURPOSE. To introduce an iterative, multiscale procedure that
allows for better reconstruction of the shape of the anterior
surface of the cornea from altimetric data collected by a cor-
neal topographer.

METHODS. The report describes, first, an adaptive, multiscale
mathematical algorithm for the parsimonious fit of the corneal
surface data that adapts the number of functions used in the
reconstruction to the conditions of each cornea. The method
also implements a dynamic selection of the parameters and the
management of noise. Then, several numerical experiments
are performed, comparing it with the results obtained by the
standard Zernike-based procedure.

RESULTS. The numerical experiments showed that the algo-
rithm exhibits steady exponential error decay, independent of
the level of aberration of the cornea. The complexity of each
anisotropic Gaussian-basis function in the functional represen-
tation is the same, but the parameters vary to fit the current
scale. This scale is determined only by the residual errors and
not by the number of the iteration. Finally, the position and
clustering of the centers, as well as the size of the shape
parameters, provides additional spatial information about the
regions of higher irregularity.

CONCLUSIONS. The methodology can be used for the real-time
reconstruction of both altimetric data and corneal power maps
from the data collected by keratoscopes, such as the Placido
ring–based topographers, that will be decisive in early detec-
tion of corneal diseases such as keratoconus. (Invest Ophthal-
mol Vis Sci. 2011;52:4963–4970) DOI:10.1167/iovs.10-6774

There is an increasing need for reliable and precise model-
ing of corneal surfaces, motivated both by technological

and clinical applications. Given the significance of the shape of
the front surface of the cornea to the refraction of the eye1 and
the ability to correct refractive errors by laser ablation of the
front surface of the cornea, a detailed wavefront error analysis
of individual corneal topography data is crucial for clinicians as

a basis for customizing treatment. It has been recognized that
the corneal front surface generally provides the bulk of the
ocular aberrations in the postsurgical or pathologic eye.2

Corneal modeling plays an essential role in diagnosing and
managing keratoconus and other corneal diseases, with the
goal of assessing the suitability of a subject for the treatment
and to prevent improper refractive surgeries.3 Also, the great
role of the reliable visualization tools in clinical practice should
not be underestimated. Modern techniques of design and fit of
soft contact lenses can take into account features of the pa-
tient’s eye, adapting the back surface of a lens to match the
specific elevations of the cornea. These methods require again
a detailed corneal topographic analysis of the anterior face of
the cornea.

With the introduction of high-speed videokeratoscopy4,5 in
the study of the dynamics of corneal surface topography6 and
tear film stability,7 data storage needs have become significant,
motivating another important application of corneal surface
modeling: data compression.8

Nearly all modern corneal topographers collect the data
(elevation, curvature, mire displacement, or others) in a finite
and structured set of data points. The data are contaminated by
errors that stem from several sources, including the natural
device noise, measurement and digitalization errors, algorithm
errors (like those converting the mire displacement in eleva-
tion), rounding errors. Hence, we face the problem of the
parsimonious fit of the actual surface data contaminated by
noise, with a minimum number of coefficients or parameters,
for clinical and technological applications.

The solutions to this problem are usually classified as either
zonal or modal methods. In the former group, the domain
where the data are collected is subdivided into more elemen-
tary subdomains (e.g., triangles), and the surface is approxi-
mated in each subdomain with an additional requirement of
global smoothness.9–11 In the modal methods of reconstruc-
tion, the approximation is found as a (typically linear) combi-
nation of functions from the given set or dictionary, defined by
several parameters. Zonal methods are flexible and accurate,
but they lack the simplicity of the modal approach, they are
substantially more computer-intensive, and they encode the
final shape in a larger amount of data.

Crucial decisions to make in the modal reconstruction are
the set of functions to use, the value of their parameters, and
the number of functions needed to recover the relevant infor-
mation without fitting (at least, in a large scale) the inevitable
error (the so-called model selection problem). A standard func-
tional basis, well-established in ophthalmology for expressing
ocular wavefront error, is given by the Zernike polynomials.12

The coefficients of the expansions can be interpreted in terms
of optical aberrations. As a fitting routine, Zernike polynomials
are not limited to analysis of wavefront error surfaces, but can
be applied to other ocular surfaces as well, including the
anterior corneal surface.13,14 Corneal topography diagnostic
tools can use the Zernike coefficients as inputs into corneal
classification of neural networks,15,16 replacing or supplement-
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ing the currently used corneal indices embedded in many
topography devices.

However, potential limitations in this approach have been
reported in the literature.12,17 There is a growing concern that
the Zernike fitting method itself may be inaccurate in abnormal
conditions. Furthermore, it is very difficult to assess a priori
how many terms are necessary to achieve acceptable accuracy
in the Zernike reconstruction of any given corneal shape.18 It
is known17 that limiting Zernike analysis to only a few orders
may cause incorrect assessment of the severity of the more
advanced stages of keratoconus.1 This information is particu-
larly needed in the discriminant analysis of the disease markers
or when selecting the numerical inputs for neural network–
based diagnostic software, such as corneal classification and
utilities for grading condition severity.

Several alternatives to the modal least-squares fit with
Zernike polynomials have been suggested recently. Some of
them intend to combine the modal and zonal approaches to
preserve the best of both worlds19 or to use nonlinear meth-
ods.8 The possibility of achieving the accuracy and flexibility of
the zonal methods within the framework of the linear modal
approach by means of localized radial basis functions has been
put forward,20 but without development of an actual imple-
mentation or procedure. In this follow-up paper we describe
an adaptive, multiscale working algorithm for the parsimoni-
ous fit of the surface data, based on residual iteration with knot
insertion that allows the adaptation of the number of functions
used in the reconstruction to the conditions of each cornea.

The residual iteration is well known in many branches of
mathematics; it is related for instance to the iterative refinement
methods of solution of systems of linear equations. In the context
of purely radial basis functions, an adaptive greedy approximation
algorithm using interpolation has been proposed by Schaback and
Wendland.21 The adaptive increase in the number of basis func-
tions as a technique used to improve the quality of a given initial
approximation is also standard. (See, for instance, Fasshauer22 for
a general discussion and references.)

The method that we have developed allows building itera-
tively an approximation function as a linear combination of aniso-
tropic Gaussian-basis functions, implementing also a dynamic se-
lection of the parameters and the management of noise. It can be
used to reconstruct altimetric data, corneal power maps, among
other applications. Although it has been tuned for Placido ring–
based keratoscopes, with the data nodes located in almost con-
centric rings, the technique is actually applicable to any scattered
data approximation (Martínez-Finkelshtein A, et al. IOVS. 2010;
51:ARVO E-Abstract 5690).

METHODS

The General Setting
The input data are a 3D cloud (xk, yk, zk), with k � 1, …, N,
corresponding to either elevation or curvature zk at the node Pk of the
anterior corneal surface with Cartesian coordinates (xk, yk). We will
discuss the case in which zk corresponds to elevation. A standard
procedure is to “flatten” the data by fitting it with the best-fit sphere23

of the form S�x, y� � z0 � �R2 � �x � x0�
2 � �y � y0�

2, where R
and (x0, y0, z0) are its radius and the Cartesian coordinates of its center,
respectively.

As a result of the previous step, the residual errors �k
�1� � zk

� S�xk, yk� contain the relevant information at different scales and
noise. Our aim is to fit these residuals by a function E(x,y) in such a
way that an analytic expression for the corneal height is given by

Cornea�x, y� � S�x, y� � E�x, y�, (1)

where S accounts for the global shape of the cornea, while E captures
the small irregularities on the surface. Function E is a linear combina-

tion of n functions from a given dictionary. In an ideal setting, n
depends on the actual data and should be large enough to allow fitting
all relevant information, but not too large to fit pure noise. Here, we
use as basis functions the Gaussians of the form

exp� � �P � Q�A
2�, P � �x, y�T,

where the superscript T denotes the matrix transpose, Q � (Qx, Qy)
T

is a certain point on the plane (“center”), and A is a positive-definite
matrix in �2�2. For such a matrix, the A-norm of a point (column
vector) P in R2 is defined as

�P�A � �PTAP � ��x x2 � �y y2 � 2�xy xy,

for

A � � �x �xy

�xy �y
�

with �x � 0 and �x�y � �xy
2 .

In general, these are anisotropic radial basis functions that boil
down to standard radial basis Gaussian functions (RBGF) when A is a
positive multiple of the identity matrix I2.

Hence, we seek the expression of the form

Cornea�x, y� � S�x, y� � �
j�1

n

cjhj�x, y�,

hj�x, y� � exp� � �P � Q�j��Aj

2 �, P � �x, y�T. (2)

A fitting routine should allow for an adequate selection of all parame-
ters: centers Q(j), shape matrices Aj, scaling factors cj, and number of
terms n in the functional representation.

We propose an iterative algorithm of reconstruction, such that in
each step we fit partially the residual error by one anisotropic radial
basis Gaussian function (A-RBGF and compute the new residuals,
which will become the input for the next iteration (residual iteration
with knot insertion). All the parameters will be chosen dynamically,
depending on the residual data in each step. A key observation is the
possibility of linearizing the problem by using logarithms. We take
advantage of the parallelization that modern hardware allows, as well
as discuss the appropriate stopping criteria. The details are presented
in the following sections.

Description of the Iterative Algorithm

Let Ej�1 be already computed (we take E0 � 0). The input data for j’s
iteration (j � 1, 2, …) is the cloud �xk, yk, �k

� j�� of nodes Pk � (xk, yk)T

and the corresponding residuals �k
� j�, k � 1, 2, … , N; recall that

�k
�1� � zk � S�xk, yk� are the residual errors after the best fit sphere.

We perform the following steps.
Step 1: Selection of the Active Center Q(j). The problem of

the selection of a center of a radial basis function has been discussed
in Jamshidi and Kirby,24 where the criterion of maximum cross-corre-
lation is used to choose the centers. Another criterion is based on the
power function.21,22,25 Both methods, although computationally de-
manding, can be implemented to perform step 1. However, in our
practice, we found the much simpler criterion of the maximal residual
to be as satisfactory, at a minimum cost; it also correlates with the
geometry of the A-RBGF. Hence, we chose Q� j� � �xk0, yk0�

T, where
k0 � arg maxk��k

� j��, and we denote m� j� � �k0

� j�.
Step 2: Dynamic Filtering. Once the center Q(j) has been

selected, we check the number, �k, of nodes Pk lying in the largest disc,
centered at Q(j) and containing only nodes with the residues of the
same sign as m(j). If �k � 20, we consider Q(j) to be an outlier, and it
cannot be chosen as the center at this iteration. This can be done by
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setting �k0

� j� � 0 after which we return to step 1. Otherwise, we
proceed to the next step.

Step 3: Selection of the Shape Parameters. We determine
first the influence nodes �j�s�, defined as the maximal set of, at most, s
nodes Pk closest to Q(j), with residues of the same sign as m(j). It is
convenient to parallelize the subsequent computations for several values
of s: We performed experiments using the vector of values s � [smin, 100,
150, 200, 300], where smin � min��k,50�, with �k defined in step 2.

The interpolating conditions �k0

� j�hj�xk, yk� � �k
� j�, k � �j�s�, are

equivalent to the overdetermined linear system

�x�xk � xk0�
2 � 2�xy�xk � xk0��yk � yk0� � �y�yk � yk0�

2

� log��k0

�j�

�k
�j��, k � �j�s�, (3)

in the three unknown entries of the shape matrix

Aj � � �x �xy

�xy �y
� .

We can solve this system in the sense of weighted linear least
squares (WLS), where the kth equation is multiplied by the weight

�k � �1 � �Pk � Q� j��2��1. This solution is obtained by standard
methods.26 Observe also that

tk � log��k0

�j�

�k
�j��	 0, k � �j�s�.

As an additional step, we examine the matrix Aj built out of the
solution of equation 3. If it is not positive definite, we force hj to be a
standard radial basis function, Aj � �I2. In this case, equation 3 is
reduced to

��Pk � Q�j��2 � tk, k � �j�s�, (4)

the solution of which is computed in the sense of the WLS. An explicit
formula for � can be derived, but it is omitted here for the sake of
brevity.

Step 4: Selection of the Scaling Factor. We can calculate

the coefficient cj from

cj hj�xk, yk� � �k
�j�, k � �j�s�,

FIGURE 1. Comparison of the MSEj for altimetric data reconstruction by Zernike polynomials and by the A-RBGF algorithm. Top left: a synthetic
cornea made of a linear combination of 10 Gaussian functions. Top right: a normal cornea. Bottom row: keratoconic corneas. Arrows: stopping
time of the algorithm according to the criterion described in the section on Stopping Criterion. The horizontal axis (n) indicates the number of
functions used.
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using the WLS with the same weights �j as before. Again, cj is com-
puted by an explicit formula that can be easily derived, and in conse-
quence, the formula is omitted here. It should be noted, however, that
in many cases the simpler interpolation condition ck � m(j) yields
comparable results.

Step 5: Computation of the New Residuals. Having found
the values of cj and Aj, we update

�k
�j�1� � �k

�j� � cj hj�xk, yk�.

As mentioned, all the computations are performed in parallel for
different values of s and hence, different nested sets of influence nodes
�j�s�. We now keep the value of s (and the corresponding values of cj

and Aj) that yields the smallest norm of the residue vector ��k
� j�1��. As

a result, we find the new approximation E � Ej�1 � cjhj. As a final step,
we check the stopping criterion, which will now be discussed. If this
is not satisfied, we return to step 1.

Stopping Criteria

In theory, the algorithm run indefinitely yields an interpolating func-
tion, and in consequence, a 0 residue vector. Measurement errors may
influence the model selection: We want to capture all the relevant
information without fitting the noise. Many solutions to this problem
are described in the literature. The choice of the number of Zernike

polynomials for the modal reconstruction of the altimetric data has
been discussed,27,28 but the suggested algorithms are typically compu-
tationally intensive.28,29

Less demanding methods use information theory criteria, such as
the Akaike information criterion (AIC) or the efficient detection crite-
rion (EDC).30 However, we can gain information analyzing directly the
behavior of the normalized mean square errors MSEj defined by

MSEj �

2

N�
k�1

N

��k
�j��2, 
 � maxk�Pk�. (5)

Typically, these errors start decaying at an exponential rate. After
several iterations, we observe a stabilization in this rate of decay
that becomes linear. This normally happens when the values of
MSEj are between 10�3 and 10�4 �m2. Based on this experience, we
have successfully used the following stopping criterion: We allow
the algorithm to run for up to 50 iterations and calculate the
weighted slopes

�MSEj �
log�MSEj�1 /MSEj�

j
.

The sequence �MSE, although oscillatory, is negative and tends to 0,
and so we find the last iteration 1 
 J1 
 50 when �MSEj 	 �0.02. If

FIGURE 2. Comparison of the reconstruction of a synthetic “scar” (top left) with 20 iterations of the adaptive algorithm (top right) and 36 (bottom
left) and 136 (bottom right) Zernike polynomials.
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MSEj � 10�3 �m, we fix J1 � 1 as the stopping iteration. Otherwise,
we seek the last iteration 1 
 J2 
 50 when �MSEj 	 �0.01, and stop
the algorithm at the (J2 � 1)th iteration.

Experimental Data

The altimetric and curvature data from in vivo corneas used for the
experiments described below were collected by the Placido-based
topography system (CSO, Firenze, Italy), which in ideal conditions digi-
tizes up to 24 rings with 256 equally distributed points on each mire. All
procedures were implemented in commercial software (MatLab 7; The
MathWorks, Natick, MA) and run on standard platforms.

RESULTS

In this section, we present numerical results obtained by our
method and by the standard Zernike reconstruction, applied
both to simulated and real cornea surfaces. The choice of the
Zernike-based method for comparison is motivated by its
modal character and by being a standard de facto in industry
and clinical practice.

We analyze first the global error, measured by MSEj,
which tends to decrease monotonically with the exponen-
tial rate. A typical behavior for the reconstruction of the
altimetric data for both synthetic and real corneas can be
observed in Figure 1. In particular, in all cases we appreciate
the clear transition from an overexponential to a linear rate
of decay, which is used as the stopping criterion. For com-
parison, we have reconstructed the same data with the
Zernike polynomials using linear least squares, which is the
standard procedure in clinical practice, implemented in
most topographers. The MSEj for the Zernike reconstruction
is plotted in the same Cartesian coordinate system, where j
indicates the total number of Zernike polynomials used.
Recall that j varies from 1 to (m � 1)(m � 2)/2, where m is
the maximum radial order used.

Zernike polynomials easily capture the global shape of
the surface, which is expressed in a typical fast decay of the
corresponding error. However, smaller details on the sur-
face (such as areas of localized steepening) are much less
suited for this tool. It explains the saturation observed in the
Zernike error behavior after a few orders, typically, around
25 polynomials. Such saturation is not the case in the recon-

struction with A-RBGF, whose multiscale, adaptive character
allows adjustment of the parameters adequately in each
iteration.

However illuminating these graphs may be, the global error
is not the only way to compare both reconstruction ap-
proaches. Recall that the modal method with Zernike polyno-
mials is tailored precisely to achieve a maximum reduction of
the MSEj for each j, whereas the iterative algorithm presented
here has a totally different goal: locating the most salient
feature of the residual surface and incorporating it into the
analytic expression in equation 1.

This observation can be illustrated by fitting a synthetic
cornea with a simulated scar, used earlier in Martínez-Fin-
kelshtein at al.20 Its contour plot is depicted in Figure 2, top
left. The top right panel shows the contour plot of the
surface reconstructed with the adaptive procedure de-
scribed here using as few as 20 functions. The other two
contour plots correspond to the same surface reconstructed
with 36 (order 
 7) and 136 (order 
 15) Zernike polyno-
mials.

The situation becomes even more apparent if we com-
pare the residual errors along the eighth mire for both
methods (Fig. 3, left). Although the Zernike polynomials work
perfectly on smooth portions of the surface, they find difficul-
ties in adapting to fast varying shapes, whereas the A-RBGF
algorithm uses its multiscale and adaptive character to fit the
surface almost perfectly after a few iterations. It takes a long
time for the MSE errors of Zernike polynomials to progress, as
illustrated in Figure 3, right.

Regarding the stopping criterion, the experiments per-
formed with real and synthetic corneas show that the rea-
sonable number of iterations lies between 20 and 40; there
is no clear correlation between the number of iterations and
the condition of the cornea, as Figure 1 shows. This is why
we consider it appropriate to perform 50 iterations (taking
advantage of the speed of the algorithm) to decide the
correct value for n in equation 2.

However, more correlation exists with the location and
grouping of the centers Q(j). For the normal corneas, the
centers typically cluster at the border of the area, where most
of the oscillations occur, whereas for corneas affected by

FIGURE 3. Left: residual errors along the eighth mire for the synthetic “scar” reconstructed with 20 iterations of the adaptive algorithm (bold
line) and up to 36 Zernike polynomials (dotted line). Right: MSEj for the “scar” reconstruction by Zernike polynomials and by the A-RBGF
algorithm.
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keratoconus, we observe how some centers match the defor-
mation already at the first iterations.

The adaptive algorithm described is suitable for a reliable
reconstruction of any surface for the discrete set of data. In
particular, it is possible also to reconstruct a corneal power
map or the wavefront. Taking into account the typical shape of
such a surface, it is convenient here to skip the fit by a sphere
or Zernike polynomials of a low order, making S 	 0 in
equation 1.

An alternative way of assessing the quality of the approx-
imation rendered by our method is by analyzing the result-
ing point spread function (PSF). Figure 4 shows the effect of
modeling the corneal surface data of a simulated highly
irregular eye on the estimated PSF. The original PSF corre-
sponding to a wavefront described by an expansion in 136
Zernike polynomials, and a corneal diameter of 8 mm is
shown (top left), together with a Zernike polynomial ap-
proximation of radial order 
 5 (top right) and 
 9 (bottom
left) (21 and 55 functions, respectively), and the A-RBGF
approximation with 21 functions (bottom right). Clearly,
the latter leads to a PSF that more closely resembles the
original PSF (capturing some finer features) than that de-
rived from the Zernike polynomials.

DISCUSSION

In this work, we have developed an adaptive fitting method
for corneal data, combining modal simplicity with the ad-
vantages of zonal reconstruction. It consists of a preliminary
fit of the data with a sphere and an iterative procedure that
adds terms to the analytic representation of the corneal data.

Each term consists of a scaled anisotropic radial basis Gauss-
ian function. The coefficients are computed dynamically and
allow fitting the data in each iteration, independent of the
scale. The method comprises also a filtering procedure that
discards the outliers (data clearly corresponding to measure-
ment noise) and a stopping criterion that chooses the final
number of functions in the analytic representation in accor-
dance with the evolution of the residual error.

Although it is computationally more intense in compari-
son with the standard Zernike fit, the numerical implemen-
tation of this algorithm in a standard personal computer is
very fast and its execution times are negligible, as illustrated
by Tables 1 and 2. Experimental results allow us to draw the
following conclusions:

FIGURE 4. Original PSF for a simu-
lated cornea with a pupil size 8 mm
in diameter and high wavefront error
(top left), and the corresponding
PSFs from a reconstruction with first
21 (order 
 5) Zernike polynomials
(top right), first 55 (order 
 9)
Zernike polynomials (bottom left),
and with 21 A-RBGF functions (bot-
tom right).

TABLE 1. Reconstruction Time for the Surfaces in Figure 1

Surface
Top
Left

Top
Right

Bottom
Left

Bottom
Right

Functions used, n 15 28 45 21
Computation time

(A-RBGF), s 0.3169 0.3537 0.4819 0.2671
Computation time

(Zernike), s 0.0632 0.0550 0.1183 0.0373

In each case, the same number of functions is used for the A-RBGF
algorithm and the standard Zernike fitting. This number is of the form
(m � 1)(m � 2)/2, with m natural, and is selected as the closest to the
recommended stopping value, indicated in each figure, with the pur-
pose to include all Zernike polynomials of the maximal radial order.
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● The least-squares approximation by a linear combina-
tion of Zernike polynomials of a radial order up to six
(which is the standard in modern aberrometers31) fits ade-
quately the altimetric data in the case of a normal cornea.
It can be used also to capture the major features of the shape
of the surface. However, for strongly aberrated corneas, the
Zernike-based procedure saturates relatively early, and we
need a high number of terms to achieve the desired accuracy
at regions of localized steepening, at the price of overpa-
rameterizing the model and fitting the measurement
noise.

● In contrast, the iterative method presented herein exhib-
its a steady exponential error decay, independent of the com-
plexity of the cornea. Its actual rate is basically influenced by
the residue distribution. The fast decrease in the first iterations,
when all salient features are reconstructed, is followed by a
stable linear decay, when essentially errors are being fit. This
can be used as a stopping criterion for the iterations. In this
way, the minimal number of functions in the analytic repre-
sentation of the cornea is used.

● Unlike in the case of the Zernike polynomials, the com-
plexity of each term in the functional representation with
A-RBGF is the same, but their parameters vary to fit the current
scale. This scale is determined only by the residual errors and
not by the number of the iteration.

● Because of the localized character of A-RBGF, the position
and clustering of their centers, as well as the size of the shape
parameters, provides an additional spatial information about
the regions of higher irregularity.

The iterative adaptive algorithm for the cornea modeling
proposed here provides a method of obtaining a compact
mathematical description of the shape or power map of the
cornea. All information is ultimately encoded in the follow-
ing set of values: the center and radius of the best-fit sphere,
plus the center locations, shape parameters, and scaling
factors, which, again, need a negligible amount of data
storage space. This description can be used for global visu-
alization of the cornea or of its portions, capturing smaller
details than with standard procedures. It can serve also as
the input data for resampling and computation of some
other relevant values via ray tracing, numerical integration,
and other calculations.
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