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Abstract

Mixtures of truncated exponentials (MTEs) are a powerful alternative to discreti-
sation when working with hybrid Bayesian networks. One of the features of the
MTE model is that standard propagation algorithms can be used. However, the
complexity of the process is too high and therefore approximate methods, which
tradeoff complexity for accuracy, become necessary. In this paper we propose an
approximate propagation algorithm for MTE networks which is based on the Pen-
niless propagation method already known for discrete variables. We also consider
how to use Markov Chain Monte Carlo to carry out the probability propagation.
The performance of the proposed methods is analysed in a series of experiments
with random networks.
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1 Introduction

A Bayesian network is an efficient representation of a joint probability dis-
tribution over a set of variables, where the network structure encodes the
independence relations among the variables. Bayesian networks are commonly
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used to make inferences about the probability distribution on some variables
of interest, given that the values of some other variables are known. This task
is usually called probabilistic inference or probability propagation.

Much attention has been paid to probability propagation in networks where
the variables are discrete with a finite number of possible values. Several ex-
act methods have been proposed in the literature for this task [1–4], all of
them based on local computation. Local computation means to calculate the
marginals without actually computing the joint distribution, and is described
in terms of a message passing scheme over a structure called join tree. Also, ap-
proximate methods have been developed with the aim of dealing with complex
networks [5–10].

In hybrid Bayesian networks, where both discrete and continuous variables
appear simultaneously, it is possible to apply local computation schemes sim-
ilar to those for discrete variables. However, the correctness of exact inference
depends on the model.

This problem was deeply studied before, but the only general solution is the
discretisation of the continuous variables [11,12] which are then treated as if
they were discrete, and therefore the obtained results are approximate. Exact
propagation can be carried out over hybrid networks when the model is a
conditional Gaussian distribution [13,14], but in this case, discrete variables
are not allowed to have continuous parents. This restriction was overcome in
[15] using a mixture of exponentials to represent the distribution of discrete
nodes with continuous parents, but the price to pay is that propagation cannot
be carried out using exact algorithms: Monte Carlo methods are used instead.

The Mixture of Truncated Exponentials (MTE) model [16] provide the advan-
tages of the traditional methods and the added feature that discrete variables
with continuous parents are allowed. Exact standard propagation algorithms
can be performed over them [17], as well as approximate methods. In this
work, we introduce an approximate propagation algorithm for MTEs based
on the idea of Penniless propagation [5], which is actually derived from the
Shenoy-Shafer [4] method. We also show how the propagation can be carried
out using the Markov Chain Monte Carlo methodology suggested in [16].

This paper continues with a description of the MTE model in section 2. The
representation based on mixed tress is studied in section 3. Section 4 contains
the application of Shenoy-Shafer algorithm to MTE networks, while in sec-
tion 5 the Penniless algorithm is presented. Section 6 is devoted to explain
how Markov Chain Monte Carlo simulation can be applied to propagate with
MTEs. The performance of the proposed algorithms is analysed through some
experiments in section 7. The paper ends with conclusions in section 8.
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2 The MTE model

Throughout this paper, random variables will be denoted by capital letters,
and their values by lowercase letters. In the multi-dimensional case, boldfaced
characters will be used. The domain of the variable X is denoted by ΩX. The
MTE model is defined by its corresponding potential and density as follows
[16]:

Definition 1 (MTE potential) Let X be a mixed n-dimensional random vec-
tor. Let Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Zc) be the discrete and continuous
parts of X, respectively, with c+ d = n. We say that a function f : ΩX 7→ R

+
0

is a Mixture of Truncated Exponentials potential (MTE potential) if one of
the next conditions holds:

i. Y = ∅ and f can be written as

f(x) = f(z) = a0 +
m
∑

i=1

ai exp







c
∑

j=1

b
(j)
i zj







(1)

for all z ∈ ΩZ, where ai, i = 0, . . . ,m and b
(j)
i , i = 1, . . . ,m, j = 1, . . . , c

are real numbers.
ii. Y = ∅ and there is a partition D1, . . . , Dk of ΩZ into hypercubes such
that f is defined as

f(x) = f(z) = fi(z) if z ∈ Di ,

where each fi, i = 1, . . . , k can be written in the form of (1).
iii. Y 6= ∅ and for each fixed value y ∈ ΩY, fy(z) = f(y, z) can be defined
as in ii.

Definition 2 (MTE density) An MTE potential f is an MTE density if

∑

y∈ΩY

∫

ΩZ

f(y, z)dz = 1 .

In a Bayesian network, two types of densities can be found:

(1) For each variable X which is a root of the network, a density f(x) is
given.

(2) For each variable X with parentsY, a conditional density f(x|y) is given.

A conditional MTE density f(x|y) is an MTE potential f(x,y) such that
fixing y to each of its possible values, the resulting function is a density for
X.
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3 Mixed trees

In [16] a data structure was proposed to represent MTE potentials: The so-
called mixed probability trees or mixed trees for short. The formal definition is
as follows:

Definition 3 (Mixed tree) We say that a tree T is a mixed tree if it meets
the following conditions:

i. Every internal node represents a random variable (either discrete or con-
tinuous).

ii. Every arc outgoing from a continuous variable Z is labeled with an inter-
val of values of Z, so that the domain of Z is the union of the intervals
corresponding to the arcs Z-outgoing.

iii. Every discrete variable has a number of outgoing arcs equal to its number
of states.

iv. Each leaf node contains an MTE potential defined on variables in the path
from the root to that leaf.

Mixed trees can represent MTE potentials defined by parts. Each entire branch
in the tree determines one sub-region of the space where the potential is de-
fined, and the function stored in the leaf of a branch is the definition of the
potential in the corresponding sub-region. An example of a mixed tree is shown
in Fig. 1.

Definition 4 The label of a node in a mixed tree is defined as the random
variable it represents, if it is an inner node, and the MTE potential it contains,
if it is a leaf node.
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Fig. 1. A mixed tree representing an MTE potential.
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The operations required for probability propagation in Bayesian networks (re-
striction, marginalisation and combination) can be carried out by means of
algorithms very similar to those described, for instance, in [12,9]. We refer to
[16] for a formal definition of the basic operations over MTE potentials.

3.1 Implementation of the basic operations over mixed trees

The simplest operation is the restriction. This operation is covered by the
concept of restricted tree, which is defined as follows.

Definition 5 (Restricted tree) Let T be a mixed tree and X a variable of T .

(1) If X is discrete, the restricted tree of T for a value x ∈ ΩX , denoted as
T R(X=x) is the tree obtained from T by replacing each node labeled with
X by its child corresponding to value x.

(2) if X is continuous,the restricted tree of T for an interval (a, b) ∈ ΩX ,
denoted as T R(X∈(a,b)), is the tree obtained from T by repeating the next
procedure for each node labeled with X:
• If there is an outgoing arc of X which labeled with an interval that
contains (a, b), then replace X by the child of X corresponding to that
arc.

• Otherwise, remove all the children of X corresponding to intervals whose
intersection with (a, b) is empty, and replace the labels of the remaining
arcs by their intersection with (a, b).

The combination of two mixed trees can be implemented recursively. The idea
is that the root of one of the trees is taken as root of the new tree, and each
child of this root is replaced by the product of that child and the restriction
of the other tree to the interval associated to child in question. The recursion
continues until the leaves are reached. The details are given in the following
pseudo-code.

COMBINE(T1,T2)

INPUT: Two mixed trees T1 and T2.
OUTPUT: The combination of T1 and T2.

(1) Create a node Tr without label.
(2) Let L1 and L2 be the labels of the root nodes of T1 and T2 respectively.
(3) If L1 and L2 are MTE potentials, make L1 · L2 be Tr label.
(4) If L1 is an MTE potential, but L2 is a variable,

(a) Make L2 be the label of Tr.

5



(b) For each tree T child of the root node of T2,
set Th := COMBINE(T1,T ) as a child of Tr.

(5) If L1 is a variable, let X be that variable.
(a) Make X be the label of Tr.
(b) If X is discrete,

(i) For each x ∈ ΩX ,

• set Th := COMBINE(T
R(X=x)
1 ,T

R(X=x)
2 ) as a child of Tr.

(c) If X is continuous,
(i) For each interval (a, b) belonging to outgoing arcs of X,

• Set Th := COMBINE(T
R(X∈(a,b))
1 ,T

R(X∈(a,b))
2 ) as a child of

Tr.
(6) RETURN Tr.

A variable is marginalised out from a mixed tree by summing over all its pos-
sible values, if it is discrete, or by integrating over its entire domain otherwise,
as stated in the next algorithm.

MARGINALISE OUT(T ,Xi)

INPUT: A mixed tree T and a variable Xi.
OUTPUT: The marginal of T for variables in T exceptXi (i.e.,Xi is marginalised
out from T ).

(1) If Xi is discrete, Tr := SUM OUT(T ,Xi).
(2) Else

Let (a, b) be the range of values of Xi.
Tr := INTEGRATE OUT(T ,Xi,a,b).

(3) RETURN Tr.

Procedure SUM OUT(T ,Xi) recursively searches for Xi, and when it is
found, it is replaced by the sum of its children. The sum of two mixed trees
is exactly the same as the combination, but changing products by sums. The
details are given in the next algorithm.

SUM OUT(T ,Xi)
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INPUT: A mixed tree T and a variable Xi.
OUTPUT: A tree obtained from T removing Xi summing the subtrees corre-
sponding to its children.

(1) Let L be the label of the root node of T , and let X be the variable
corresponding to label L.

(2) If X is discrete,
(a) If X = Xi,

• Let T1, . . . , Ts be the children of the root node of T .
• Tr := T1.
• For i := 2 to s, Tr := SUM(Tr,Ti).

(b) Else
• Create a node Tr with label X.
• For each x ∈ ΩX , set Th := SUM OUT(T R(X=x),Xi) as the
next child of Tr.

(3) If X is continuous,
(a) Create a node Tr with label X.
(b) For each interval (a, b) corresponding to outgoing arcs of X,

• Set Th := SUM OUT(T R(X∈(a,b)),Xi) as the next child of Tr.
(4) RETURN Tr.

In the algorithm above, SUM(Tr,Ti) can be implemented as COMBINE(Tr,Ti),
changing the product in step 2 by a sum. Therefore, we skip the detailed al-
gorithm here.

Finally, the next procedure implements the elimination of a continuous vari-
able through integration. The basis of this algorithm is similar to SUM OUT.
The details are given below.

INTEGRATE OUT(T ,Xi,a,b)

INPUT: a mixed tree T , a variable Xi and two real numbers a and b.
OUTPUT: a tree obtained from T where Xi has been removed integrating
over (a, b).

(1) Let L be the label of the root node of T .
(2) If L is an MTE potential φ, create a node Tr with label

∫ b
a φ(x)dx.

(3) Else, let X be the variable corresponding to label L.
(4) If X is discrete,

(a) Make X be Tr label.
(b) For each child Th of the root node of T ,
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• Make T ′
h := INTEGRATE OUT(Th,Xi,a,b) be a Tr child.

(5) If X is continuous,
(a) If X = Xi,

(i) Label Tr with a null potential.
(ii) For each interval (α, β) corresponding to outgoing arcs of X,

• Make Th be the corresponding tree to that arc.
• (α′, β′) := (α, β) ∩ (a, b).
• If (α′, β′) 6= ∅,

· Tr := SUM(Tr, INTEGRATE OUT(Th,Xi,α
′,β′))

(b) Else
(i) Make X be Tr label.
(ii) For each child Th of the root node of T ,

• make T ′
h := INTEGRATE OUT(Th,Xi,a,b) be a Tr child.

(6) RETURN Tr.

4 Shenoy - Shafer propagation algorithm with MTEs

In [16] it was shown that MTE potentials are closed for restriction, combina-
tion and marginalisation. It means that probability propagation can be carried
out in networks with MTEs using the Shenoy-Shafer algorithm [4], and fur-
thermore, mixed trees can be used as a data structure, since Shenoy-Safer
method can be implemented using the algorithms described in section 3.1.

The Shenoy-Shafer propagation algorithm requires an adequate order of elim-
ination of the variables to get the join tree, since different orders may result
in join trees of distinct sizes, and the efficiency of probability propagation de-
pends on the complexity of the join tree. This problem has been widely studied
for discrete networks [18,19]. Here we propose a one-step lookahead strategy to
determine the elimination order. We will choose the next variable to eliminate
according to the size 1 of the potential associated with the resulting clique.

The decision on which variable to select next time, requires the knowledge
about the size of the clique that would result from combining all the potentials
defined for the chosen variable. In the case of some MTE networks, it is possible

1 The size of an MTE potential is defined as the number of exponentials terms,
including the independent term, out of which the MTE potential is composed. For
instance, the potential represented in Fig. 1 has size equal to 16, because it has 8
leaves, and in each one an independent term, and one exponential term, so 8× (1+
1) = 16.
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to estimate it beforehand. If the MTE potentials are such that for each of them,
the number of exponential terms in each leaf is the same, and the number of
splits of the domain of the continuous variables also coincides, and only one
variable appears in the MTE functions stored in the leaves of the mixed tree
(the rest of the variables are used just to split the domain), as in [16] and [20],
then there is an upper bound on the potential size, which is given in the next
proposition.

Proposition 6 Let T1, . . . , Th be h mixed probability trees, Yi, Zi the discrete
and continuous variables of each of them, and ni the number of intervals into
which the domain of the continuous variables of Ti is split. Let ΩYi be the set
of possible values of the discrete variable Yi. It holds that

size(T1 × T2 × . . .× Th) ≤











∏

Yi∈
h
∪
i=1

Yi

|ΩYi |











×





h
∏

j=1

n
kj
j



×





h
∏

j=1

tj



 ,

where tj is the number of exponential terms in each leaf of Tj, and kj is the
number of continuous variables in Tj.

PROOF. Each discrete variable in a mixed tree, Yi ∈
h
∪
i=1
Yi has as many

children as states. Continuous variables in tree Ti have ni children. Neverthe-
less, when combining the trees we must take into account the intersections of
the intervals in which the same variable is defined in different trees, i.e., the

same continuous variable, Zi ∈
h
∪
i=1
Zi may have different intervals splitting its

domain in each of the trees. On each tree Ti, the joint domain of the con-
tinuous variables, Zi, is divided in n

ki
i pieces, so when combining h trees the

joint domain of the continuous variables will be divided, at most, in
∏h
j=1 n

kj
j

pieces.

When combining discrete and continuous variables, there will be an upper

bound of
∏

Yi∈
h
∪
i=1

Yi

|ΩYi | × |
h
∪
i=1

Zi|
∑

ni leaf nodes in the tree, and each one of

them will be the result of combining the MTE functions defined over the initial

leaves. In Tj these functions have the form k+
tj
∑

i=1
aiexp(bizj) for a continuous

variable Zj and a real number pi, for the discrete variables, so when combining
them the outcome has at most, on each leaf,

∏h
j=1 tj terms.
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5 Penniless propagation with MTEs

Using the Shenoy-Shafer algorithm, it is usual in large discrete networks that
the size of the potentials involved grow so much that the propagation becomes
infeasible. In the case of MTE networks, the complexity is higher, since the
potentials are larger in general.

To overcome this problem in the discrete case, the Penniless propagation al-
gorithm was proposed [5]. This propagation method is based on the Shenoy-
Shafer method, but modifying it so that the results are approximations of the
actual marginal distributions in exchange of lower time and space require-
ments.

The Shenoy-Shafer algorithm operates over the join tree built from the original
network using a message passing scheme between adjacent nodes. Between
every pair of adjacent nodes Ci and Cj there is amailbox for themessages from
Ci to Cj and another one for the messages from Cj to Ci. Sending a message
from Ci to Cj can be considered as transferring the information contained in
Ci that is relevant to Cj. Messages stored in both mailboxes are potentials
defined for Ci ∩Cj. Initially these mailboxes are empty and once a message is
stored it is full. A node Ci is allowed to send a message to its neighbour Cj

if and only if every mailbox for messages arriving to Ci is full except the one
from Cj to Ci.

The propagation is organised in two steps: in the first one, messages are sent
from leaves to a previously selected root node, and in the second one the
messages are sent from the root to the leaves.

The message from Ci to Cj is recursively defined as follows:

φCi→Cj =

{

φCi ·

(

∏

Ck∈ne(Ci)\{Cj}

φCk→Ci

)}↓Ci∩Cj

, (2)

where φCi is the original potential defined over Ci, ne(Ci) is the set of adjacent
nodes of Ci and superscript ↓ Ci ∩ Cj indicates the marginal over Ci ∩ Cj.

The main feature of the Penniless algorithm is that the messages are approxi-
mated, decreasing their size. This approximation [5,7] is performed after every
combination and marginalisation in (2), and also when obtaining the poste-
rior marginals. It consists of reducing the size of the probability trees used to
represent the potentials by pruning some of their branches (namely, those that
are more similar). The same approach can be taken within the MTE frame-
work, with the difference that, instead of probability trees, the potentials are
represented as mixed trees. Let us consider now how the pruning operation
can be carried out over mixed trees.
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5.1 Pruning a mixed tree

The size of an MTE potential (and consequently the size of its corresponding
mixed tree) is determined by the number of leaves it has and the number
of exponential terms in each leaf. Thus, a way of decreasing the size of the
MTE potentials is decreasing each one of these two quantities. However, every
pruning has an error associated with it. We propose to measure it in terms of
divergence between the mixed trees before and after pruning.

Definition 7 (Divergence between mixed trees) Let T be a mixed tree repre-
senting an MTE potential φ defined for X = (Y,Z). Let T ∗ be a subtree of T
with root Z ∈ Z where every child of Z is an MTE potential (i.e. a leaf node).
Let φ1 be the potential represented by T

∗. Let T ∗
P be a tree obtained from T

∗

replacing φ1 by the potential φ2 for which it holds that
∫

ΩZ
φ1dz =

∫

ΩZ
φ2dz.

The divergence between T ∗ and T ∗
P is defined as

D(T ∗, T ∗
P ) = Eφ∗

1
[(φ∗1 − φ∗2)

2] =
∫

ΩZ

φ1(z)

∆
(
φ1(z)

∆
−
φ2(z)

∆
)2dz,

where φ∗i is the normalisation of φi and ∆ is the total weight of φ:

∆ =
∑

Y

∫

ΩZ

φ(y, z)dz.

We have considered three different kinds of pruning that are described in the
next subsections.

5.1.1 Removing exponential terms.

In each leaf of the mixed tree, the exponential terms that have little impact
on the density function could be removed and the resulting potential would
be rather similar to the original one.

Let f(z) = k+
∑n

i=1 aie
biz be the potential stored in a leaf. The goal is to detect

those exponential terms aie
biz having little influence on the entire potential and

to eliminate them. With this aim, a threshold α is established and the terms
with lower absolute weight 2 , |pi| are removed until only α terms remain in
the potential . Whenever a term is removed, the resulting potential is updated
by adding the maximum value of the term to the independent term k, and
finally the potential is normalised in order to make it integrate up to the total
weight of the original potential. The reason why the maximum of the potential

2 The weight of an exponential term is pi =
∫

ΩZ

aie
bizdz.
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is added to the independent term is to avoid negative points in the resulting
potential. Here is the detailed procedure.

PRUNE TERMS(T ,α)

INPUT: A mixed tree T whose children are leaves (i.e. potentials). The max-
imum number of terms (α) in each potential.
OUTPUT: The pruned tree.

(1) Let X be the label of the root node. For each child of X:

(a) Let f(z) = k +
m
∑

i=1
aie

biz be its MTE function.

(b) Let p =
∫

ΩZ
f(z)dz.

(c) Repeat
(i) For i:=1 to no. terms in f , pi =

∫

ΩZ
aie

bizdz.
(ii) Let j = min

i
|pi|.

(iii) k′ := k +max
z∈Z

{aje
bjz}.

(iv) Let fP (z) = k′ +
∑

i6=j
aie

biz.

(v) f := fP .
(vi) Normalise fP to integrate up to p.

(d) Until no. terms in f ≤ α.
(2) RETURN T .

5.1.2 Merging intervals.

Let T be a mixed tree whose root node, X, is continuous, and its children are
MTE functions. The domain of X is divided into intervals, Ij, and for each of

those intervals, a potential fj(z) = kj+
n
∑

i=1
ajie

bj
i
z is defined. If the potentials in

two consecutive intervals are very similar, the intervals could be merged and
therefore the same potential would be defined over the resulting interval with
little loss of information. Two intervals Ij1 and Ij2 are merged by replacing the
potentials fj1(z) and fj2(z) by another potential f(z), defined for over Ij1∪Ij2 .

We propose to compute f(z) as follows. Let pj1 =
∫

ΩZ
fj1(z)dz and pj2 =

∫

ΩZ
fj2(z)dz be the weights of fj1(z) and fj2(z) respectively. The new function

is proportional to

f(z) =
pj1fj1(z) + pj2fj2(z)

pj1 + pj2
.
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Since both functions must integrate up to the same quantity over Ij1 ∪ Ij2 , a
constant K must be found such that

∫

ΩZ
Kf(z)dz = p1 + p2, which implies

that K = (p1 + p2)/(
∫

ΩZ
f(z)dz). The intervals are actually merged if the

divergence between the trees before and after replacing fj1(z) and fj2(z) by
f(z) is lower than a given threshold.

PRUNE MERGE(T ,ε)

INPUT: A mixed tree T whose root node is a continuous variable, whose
children are MTE functions, and a divergence threshold ε.
OUTPUT: The pruned tree.

(1) Let X be the label of the root node.
(2) If X has more than one child:
• Repeat
(a) Let f1(z) and f2(z) be the potentials associated with two consec-

utive children of variable X, defined on intervals I1 and I2 respec-
tively.

(b) Let p1 =
∫

ΩZ
f1(z) and p2 =

∫

ΩZ
f2(z).

(c) Let

f(z) =
p1f1(z) + p2f2(z)

p1 + p2
∀z ∈ I1 ∪ I2 .

(d) Let TP be the tree result of replacing in T these two children of
the root node by a single node with label f(z).

(e) If D(T , TP ) < ε, make T := TP .
• Until every pair of neighbour children of X have been explored.

(3) RETURN T .

5.1.3 Pruning discrete variables.

Assume Y is a discrete variable in a node in a mixed tree, whose children are
leaves. These leaf nodes are real numbers rather than MTE potentials, and
therefore the pruning procedure can be the same as the one used for discrete
networks in [9].

This discrete pruning procedure is carried out as follows. Assume T is a
tree representing a potential φ whose root node is a discrete variable Y , and
its children are real numbers, pi ∈ IR for i = 1, . . . , d. Let p = (

∑

i pi)/d.
Node Y is replaced by p if D(φ, p) < ξ, where ξ represents the threshold for
the divergence increase. In this case, the Kullback-Leibler divergence [21] is
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used. The idea behind this pruning is that distributions which are very close
to the uniform can be replaced by the average value without much loss of
information.

Rather than establishing threshold ξ directly, we think it is more intuitive to
determine it as in [9]. Instead, a value ε < 0.5 is given, which represent the
absolute deviation in probability from a binary uniform distribution. Then, ξ
can be computed as the entropy of the distribution that varies an amount of
ε from the uniform, i.e. ξ = −((0.5 − ε) log(0.5 − ε) + (0.5 + ε) log(0.5 + ε)).
We will call PRUNE DISCRETE(T ,ε) the procedure that carries out the
discrete pruning, which takes as input a tree with discrete root and leaf nodes
as children, and the threshold ε, and returns the pruned tree.

Finally, the global pruning procedure can be described in terms of the three
methods defined above as follows.

PRUNE(T ,α,εjoin,εdis)

INPUT: A mixed tree, T , a threshold weight α, a threshold divergence for
merging intervals, εjoin, and a threshold for discrete pruning, εdis.
OUTPUT: The pruned tree.

(1) Let X be the label of the root node of T .
(a) If the children of X are leaves:

(i) If X is continuous:
(A) T := PRUNE MERGE(T ,εjoin).
(B) T := PRUNE TERMS(T ,α).

(ii) If X is discrete
(A) T := PRUNE DISCRETE(T ,εdis).

(b) Else:
(i) If X is continuous, for each child of X:

• Letmax andmin be the borders of the interval correspond-
ing to this child.

• T := PRUNE(T R(X∈(min,max)),α,εjoin,εdis).
(ii) Else, for each child of X:

• Let a be the value of X for that child.
• T := PRUNE(T R(X=a),α,εjoin,εdis).

(c) RETURN T .
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5.2 The propagation algorithm

In this point we are ready to formulate the Penniless propagation algorithm for
networks with MTEs. Like the Shenoy-Shafer, the algorithm starts selecting
a root node in the join tree, and then in a first stage the messages are sent
from the leaves to the root, and in a second stage the messages are distributed
from the root to the leaves. The pseudo code for the Penniless algorithm is as
follows, where it is assumed that the potentials in the nodes of the join tree
and the messages are represented as mixed trees.

Penniless(J ,α,εjoin,εdis)

INPUT: A join tree J . The pruning parameters α,εjoin,εdis
OUTPUT: The join tree J after propagation.

(1) Choose a root node R.
(2) Initialise the clique potentials as in Shenoy-Shafer propagation.
(3) For each C ∈ ne(R) 3 ,
• PropagateUp(R,C,α,εjoin,εdis).

(4) For each C ∈ ne(R),

• φ :=COMBINE(φR,
(

∏

Ck∈ne(R)\C φCk→R

)

).

• φ:= PRUNE(φ,α,εjoin,εdis).
• For all X not in R ∩ C, φ :=MARGINALISE OUT(φ,X).
• Compute the message φR→C :=PRUNE(φ,α,εjoin,εdis).
• PropagateDown(R,C,α,εjoin,εdis).

(5) RETURN T .

PropagateUp(C1,C2,α,εjoin,εdis)

(1) For each C ∈ ne(C2)\C1,
• PropagateUp(C2,C,α,εjoin,εdis)

(2) φ :=COMBINE(φC2
,
(

∏

Ck∈ne(C2)\C1
φCk→C2

)

).

(3) φ:= PRUNE(φ,α,εjoin,εdis).
(4) For all X not in C1 ∩ C2, φ :=MARGINALISE OUT(φ,X).
(5) Compute the message φC2→C1

:=PRUNE(φ,α,εjoin,εdis).

3 ne(R) denotes the neighbour nodes of R in join tree J .
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PropagateDown(C1,C2,α,εjoin,εdis)

(1) For each C ∈ ne(C2)\C1,

• φ :=COMBINE(φC2
,
(

∏

Ck∈ne(C2)\C1
φCk→C2

)

).

• φ:= PRUNE(φ,α,εjoin,εdis).
• For all X not in C ∩ C2, φ :=MARGINALISE OUT(φ,X).
• Compute the message φC2→C :=PRUNE(φ,α,εjoin,εdis).
• PropagateDown(C2,C,α,εjoin,εdis).

6 Propagation algorithm based on MCMC

The Penniless algorithm is deterministic, which means that, for the same input
parameters, the results are always the same. However, it is very common to
find propagation algorithms with random character, based on Monte Carlo
methods. In this work we have considered how the propagation with MTEs
can be carried out using Monte Carlo simulations. More precisely, we have
used the Markov Chain Monte Carlo (MCMC) algorithm outlined in [16].

Unlike the Penniless algorithm, MCMC proceeds by generating a sample of
the variables in the network, and once the sample is generated, the posterior
distributions are learnt from it. The way in which MTE densities can be
estimated from data has been studied in [16,20,25].

The sample is generated starting from an initial configuration of the variables,
which can be obtained by means of forward sampling [22].

Once this initial configuration has been obtained, a new one is generated
simulating each variable Xi according to its distribution conditional on its
Markov blanket,WXi

, restricted to the values of the current configuration.

The simulation procedure described above can be applied to MTE networks;
the only item to specify is how to simulate a value from an MTE distribution
[16].

16



6.1 Simulating from an MTE distribution

When simulating a variable Xi, from its conditional distribution fi(xi|WXi
)

given its Markov blanket restricted to the values wxi in the current configu-
ration, we are simulating from a distribution depending only on Xi. If Xi is
discrete, it is easy to simulate a value for it: a random number is generated
and the inverse transform method is applied [23].

If Xi is continuous, the inverse transform method is not, in general, valid for
MTE densities, since the inverse of the distribution function cannot be com-
puted. However, the composition method [23] can be applied. The composition
method consists of expressing the target density as a convex combination of
densities for which the inverse transform method, or the acceptance-rejection
technique can be applied.

Assume that the density of the variable to simulate is defined as:

f(x) = fi(x) if αi ≤ x < βi, i = 1, . . . , k ,

where every function fi is like:

fi(x) = a0 + a1e
k1x + a2e

k2x + · · ·+ ane
knx αi ≤ x < βi . (3)

The way to simulate from f(x) using the composition method consists of
choosing one of the functions fi with probability equal to

∫ βi
αi
fi(x)dx and then

simulate a value inside the interval (αi, βi) from a density proportional to fi:

f ∗
i (x) =

fi(x)
∫ βi
αi
fi(x)dx

αi ≤ x < βi ,

which is also a function like (3).

There are two possible scenarios:

• Every ai in (3) is positive. Then the composition method can again be
applied as follows.

(1) The density f ∗
i is decomposed as the following weighted sum of densities.

f ∗
i (x) = p1f

′
1(x) + · · ·+ pmf

′
m(x) (4)

where
∑m

j=1 pj = 1.
(2) Two random numbers u1 and u2 are generated. u1 is used to choose one of

the f ′
j functions with probability pj, and u2 is used to obtain a value for X

applying the inverse transform method to the distribution corresponding
to f ′

j.
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• At least one ai in (3) is negative. In this case, the method proposed in
[24] is used:

(1) Decompose the density f ∗
i as a weighted sum of densities

f ∗
i (x) = p1f

′
1(x) + · · ·+ pmf

′
m(x) (5)

where
∑m

j=1 pj = 1.
(2) Let N be the set of all i such that pi < 0. Then

f ∗
i (x) =

(

∑

i∈N

pi

)(

1
∑

i∈N pi

∑

i∈N

pif
′
i(x)

)

+
∑

i/∈N

pif
′
i(x)

=

(

∑

i∈N

pi

)

g(x) +
∑

i/∈N

pif
′
i(x) .

(6)

(3) Simulate a value x∗ from density g(x) by the inverse transform method.
(4) Generate a random number u.

(5) If u ≤
f ′
i(x

∗)
∑

i∈N pif ′
i(x

∗)
, accept x∗ as the value generated for X, Else repeat

from step 3.
The efficiency [23] of this method is ef = 1/(

∑

i/∈N pi), which means that
each value x∗ generated has a probability ef of being accepted as a value
for X.

The decomposition in (4) and (6) must be such that the inverse of the dis-
tribution function corresponding to each f ′

j can be easily computed. Such a

decomposition can be obtained as follows. Define cj =
∫ βi
αi
ekjxdx, j = 1, . . . , n.

Then,

f ′
j(x) =

1

cj
ekjx, j = 1, . . . , n

is a density function over (αi, βi).

For j = 0, c0 =
∫ βi
αi
dx = βi − αi and hence

f0(x) =
1

c0

is a density over (αi, βi).

So, multiplying and dividing each term by the corresponding cj we get

f ∗
i (x) =

1
∫ βi
αi
fi(x)dx

(

a0c0
1

c0
+ a1c1

1

c1
ek1x + · · ·+ ancn

1

cn
eknx

)

αi ≤ x ≤ βi

so that we can select as weights pj =
ajcj

∫ βi

αi
fi(x)dx

, j = 0, . . . , n, which actually

sum up to one:
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n
∑

j=0

pj =
1

∫ βi
αi
fi(x)dx

(a0c0 + a1c1 + · · ·+ ancn)

=
1

∫ βi
αi
fi(x)dx

(

a0

∫ βi

αi
dx+ a1

∫ βi

αi
ek1xdx+ · · ·+ an

∫ βi

αi
eknxdx

)

=
∫ βi

αi
f ∗
i (x)dx = 1 .

Finally the inverse of the distribution function of each f ′
j is computed. If j = 0,

the distribution function is uniform over (αi, βi). If j > 0, for x ∈ (αi, βi), the
distribution function is

F ′
j(x) =

∫ x

−∞
f ′
j(t)dt =

∫ x

αi

1

cj
ekjtdt =

1

cjkj

(

ekjx − ekjαi
)

.

Hence, given a random number u, 0 < u < 1, its inverse is computed as:

u =
1

cjkj

(

ekjx − ekjαi
)

⇒ ekjx = cjkju+ ekjαi ⇒

kjx = log
(

cjkju+ ekjαi
)

⇒ x =
1

kj
log

(

cjkju+ ekjαi
)

.

So, for j > 0, F ′
j
−1(u) =

1

kj
log

(

cjkju+ ekjαi
)

0 < u < 1.

7 Experimental evaluation of the algorithms

In order to test the performance of the Penniless and the MCMC algorithms,
we have carried out a series of experiments aimed to validate the accuracy of
the proposed algorithms (Penniless and MCMC) and also to show the advan-
tage of the MTE approach versus the alternative of discretising the continuous
variables in order to treat them as discrete. We have used three artificial hybrid
networks, denoted as Net1, Net2 and Net3. Net1 has 42 continuous variables
and 3 discrete, Net2 has 77 and 8 and finally Net3 has 86 and 11.

Three networks have been generated following these restrictions:

(1) The number of parents of each variable follows a Poisson distribution
with mean 0.8. Once that number is determined, the actual parents are
chosen at random.

(2) Discrete variables:
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• Its number of states is simulated from the distribution showed in Table
1.

• The probability value of each state is simulated from a Negative Expo-
nential distribution with mean 0.5.

(3) Continuous variables:
• The number of splits of the variable in a potential is simulated from
the distribution showed in Table 1.

• Every MTE potential has an independent term which is simulated from
a Negative Exponential distribution with mean 0.01 and a number of
exponential terms determined by the distribution showed in Table 1.

• In every exponential term, a exp{bx} the coefficient a is a real number
following a Negative Exponential distribution with mean 1, and the ex-
ponent b is a real number determined by a standard Normal distribution
(mean 0 and standard deviation 1).

After simulating the parameters of the potentials, they are normalised in order
to guarantee that the potentials are density functions.

Table 1
Distributions used for generating the artificial networks
States 2 3 4

Prob. 1/3 1/3 1/3

Splits 1 2 3

Prob. 0.2 0.4 0.4

Exp. terms 0 1 2

Prob. 0.05 0.75 0.20

For each network, the 30% of its variables are observed at random. The cor-
responding evidence is inserted in the network by restricting the potentials to
the observed values.

Table 2
Different pruning parameters evaluated.
Setting A B C D E

εjoin 0 0.005 0.005 0.05 0.05

εdis 0 0 0.01 0 0.01

We have considered five setting of the pruning parameters for thee Penniless
algorithm. These settings are labeled as A,B,C, D and E, and the correspond-
ing values for discrete pruning and merging intervals are shown in Table 2.
We will refer to each setting as Penni A, . . ., Penni E. εjoin is the maximum
error allowed for joining two intervals, while εdisc indicates that discrete dis-
tributions that differ less than the value of the parameter with respect to a
uniform distribution, in terms of entropy, are pruned. The maximum number
of exponential terms is set to 2 in all the cases (i.e. α = 2).

With the aim of comparing the MTE framework with the discretisation, the re-
sults of the propagation are compared with those provided by Shenoy-Shafer
propagation for the discretisation obtained by replacing every MTE poten-
tial f(z) = k +

∑n
i=1 aie

biz by a constant function f ∗(z) = k∗ such that
∫

ΩZ
f(z)dz =

∫

ΩZ
f ∗(z)dz. This method will be denoted as Disc from now on.
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After each propagation, the following statistics are computed:

• The maximum size of the potential needed to compute the marginal dis-
tribution. It is achieved after combining all the messages sent to the clique
that contains the variable in the join tree.

• The error attached to it, according to Definition 7.

For each network, the mean of these quantities is computed for all the unob-
served variables.

Regarding the MCMC algorithm, we have used samples of size 5000, and the
propagation has been repeated ten times for each network. For each sample,
three MTE densities are estimated for each unobserved variable, splitting the
domain of the variable in 2, 3 and 4 pieces. We will denote these alternatives
as MCMC 2, 3, 4. So, given a non-observed variable and the number of splits,
we have ten different errors attached to it (one for each repetition of the
experiment) , and we use the average of these errors as the global error of the
variable for the given number of splits.

The summary of the obtained results is shown in Tables 3 and 4, where the best
result for each network is marked in boldface and the worst result is underlined.
Table 3 contains the average and maximum global error of all the variables in
each network, while Table 4 displays the average and maximum sizes of the
potentials obtained when computing the marginals for each variable. Notice
that Table 4 does not have any entry forMCMC, since this algorithm computes
the marginals directly from a sample and therefore it is not derived from other
potentials.

The results of the experiments show that the use of MTEs instead of discreti-
sation provides more accurate results. It is not surprising, since the discreti-
sation is just a particular case of the MTE framework (a discretised density
is an MTE density with one independent term an none exponential terms).
However, it is important to point out that the increase in space required by
the MTEs is significantly lower than the gain in accuracy, which means that
the tradeoff space/accuracy, according to the evidence provided by the exper-
iments reported here, is favourable to the MTE. The tradeoff between space
and accuracy can be controlled using the pruning parameters, as shown by
the different settings of the Penniless algorithm considered here.

Algorithm MCMC, however, is not competitive attending to the obtained re-
sults. It is not surprising, since the same happens in discrete networks, where
more sophisticated simulation methods, like importance sampling, are used
instead.

Furthermore, the Penniless algorithm is more robust than MCMC and Disc

concerning the variability of the errors for the different variables in a network.
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This claim is clearly supported by the box and whisker charts displayed in
Figures 2, 3 and 4, that provide a representation of the vector of errors for each
algorithm in each network. Notice that the outliers have not been represented
in these charts.

Table 3
Errors in the approximations provided by the tested algorithms.

Net1 Net2 Net3

Mean Max Mean Max Mean Max

Penni A 0.0031 0.0296 0.0079 0.1283 0.0051 0.04137

Penni B 0.0041 0.0326 0.0078 0.0921 0.0071 0.09219

Penni C 0.0042 0.0326 0.0090 0.1176 0.0074 0.1215

Penni D 0.0112 0.0839 0.0235 0.1478 0.0195 0.2564

Penni E 0.0111 0.0804 0.0228 0.1392 0.0188 0.2323

Disc 0.0293 0.3465 0.0410 0.4512 0.0440 0.7509

MCMC 2 0.2654 3.2530 0.4739 17.2756 0.1956 2.7858

MCMC 3 0.2532 3.3459 0.3743 12.6620 0.1664 3.2575

MCMC 4 0.2586 3.4432 0.4060 14.6387 0.1637 3.2730

Table 4
Mean and maximum potential sizes.

Net1 Net2 Net3

Mean Max Mean Max Mean Max

Penni A 41 288 67.5370 432 86.65 1536

Penni B 33 216 32.7592 138 50.2333 477

Penni C 27.8965 144 29.4815 138 49.0833 477

Penni D 26.06897 180 24.90741 108 39.2833 390

Penni E 21.7931 108 21.9630 108 38.1333 390

Disc 14.2759 96 22.7963 144 31.0833 512
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Fig. 2. Box and whisker chart of the errors for Net1
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Fig. 3. Box and whisker chart of the errors for Net2
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Fig. 4. Box and whisker chart of the errors for Net3

8 Conclusions

Previously to this work, some propagation methods had been successfully ap-
plied to MTE networks, for instance Shenoy-Shafer propagation [17], but so
far they were not able to overcome the problem of the exponential increase
of the sizes of the potentials involved in the propagation, specially when evi-
dence is entered. In this paper we have presented a method to apply Penniless
propagation to MTE networks, so that the sizes of the potentials are reduced
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because of the pruning operation.

The performance of the method has been tested on three artificial networks.
The results of the experiments suggest that the Penniless algorithm is appro-
priate for MTE models, since the tradeoff between space requirements and
accuracy is better than the one obtained with the discretisation.

We have also tested the use of Markov Chain Monte Carlo for solving the
propagation problem, but the experiments support the conclusion that this
method is not competitive.

The ideas contained in this paper can be extended to other propagation meth-
ods, specially the Lazy propagation and the class of Importance Sampling
propagation algorithms, since these methods can take advantage of the reduc-
tion of the sizes of the potentials after pruning.
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