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Abstract

In this work, in terms of the model parameters, sufficient conditions are established
to construct a sequence of approximate observers for a two-species competitive
Lotka-Volterra system. This iterative approach makes it possible to localize the
solution of the system, and reveal its long-term behaviour. The main results are
also illustrated by numerical simulations.
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1 Introduction

As a classical description of a simple population system, the first continuous-
time deterministic model of a predator-prey interaction was proposed by Lotka
(1925) and Volterra (1931). This model explained certain qualitative features
of the behaviour of predator-prey systems that had been observed empirically
(such as the periodic change of densities with a certain delay; or the increase
and decrease in the time-mean density of predator and prey fish populations,
respectively, due to harvesting activity.) In Volterra (1931) a first detailed sta-
bility analysis of a generalized n-species model was given for the basic classes
of conservative and dissipative systems. Later on, the study was extended to
non Lotka-Volterra type population systems. On the other hand, in a large
number of papers, in-depth analysis of particular types Lotka-Volterra sys-
tems were given. For a collection of other classical works on the subject we
refer the reader to Scudo and Ziegler (1978). For further references see e. g.
Freedman (1980) and Yodzis (1989).
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In this work, the Lotka-Volterra model of two competing species will be con-
sidered. For some classical results on such systems see e.g. Freedman (1980).
As a more recent development, in Tineo (1996) an iterative scheme has been
proposed for the study of competitive systems, see also Gámez (1999), Tineo
(2001) and Carreño et al. (2002). Now we shall apply a similar iterative scheme
for the construction and analysis of approximate observers for the monitoring
of the state process in a two-species competitive system.

Considering a two-species competitive Lotka-Volterra model with a partially
monotonous observation, first we find sufficient conditions which make it pos-
sible to construct an observer for each member of the sequence of simple aux-
iliary observation systems, applying the result recalled from Sundarapandian
(2002). For earlier applications of observers to systems of population biology
see López et al. (2007a,b,c).

Finally, we shall present results and numerical calculations for a concrete two-
species competitive system. The simulation results provide a ”stripe” between
two functions that is attractive for the original system in the sense that any
positive solution of the latter tends to this stripe. This fact also makes it
possible to make predictions on the long-term behaviour of the population
system, such as coexistence (persistence) or extinction of one of the species.

2 Preliminaries

In this section we introduce some notation and recall some known concepts
and results to be used in the paper.

2.1 Sub-and supersolutions

For the construction of the iterative scheme we shall use the following concepts
and results. Let us consider system

x′ = f(t, x), (2.1)

where f : W → Rn, is a locally Lipchitzian and continuous function in x, with
an open subset W of R× Rn.

Definition 2.1 A continuously differentiable function u : [a, b] → Rn is called
supersolution (respectively subsolution) of system (2.1) if (t, u(t)) ∈ W and
u′(t) ≥ f(t, u(t)) (respectively u′(t) ≤ f(t, u(t))) for all t ∈ [a, b]. (Here ≤ and
≥ mean inequalities by coordinates.)

Now we recall a lemma of technical character for the scalar case.

Lemma 2.2 (Gámez, 1999, Corollary 1.3.8). Let u, v : [a, b] → R be con-
tinuously differentiable functions such that u (respectively v) is a subsolution
(respectively supersolution) of(2.1) for n = 1. If u(a) ≤ v(a) then u ≤ v.
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2.2 Construction of local observers

Given positive integers m, n, we suppose that the following functions

F : Rn → Rn, H : Rn → Rm

are C1 and for some x∗ ∈ Rn we have that F (x∗) = 0 and H(x∗) = 0. We
consider the following observation system

x′ = F (x) (2.2)

y = H(x) (2.3)

where H is called observation function.

Definition 2.3 A matrix A ∈ Rn×n is said to be stable, if all its eigenvalues
have negative real parts.

In case of 2 × 2 matrix the general Routh-Hurwitz criterion (see e.g. Chen
(2004)) reduces to the following simple conditions, given in terms of the char-
acteristic polynomial coefficients.

The Routh-Hurwitz criterion for n = 2: Let λ2 + a1λ + a2 be the charac-
teristic polynomial of A ∈ R2×2. Then A is stable if and only if a1, a2 > 0.

Now, the construction of an observer system will be based on Sundarapandian
(2002).

Definition 2.4 A C1 dynamical system described by

z′ = G(z, y), (z ∈ Rn) (2.4)

is called a local asymptotic (respectively, exponential) observer for observa-
tion system (2.2)-(2.3) if the composite system (2.2)-(2.3),(2.4) satisfies the
following two requirements.

i) If x(0) = z(0), then x(t) = z(t), for all t ≥ 0.
ii) There exists a neighborhood V of equilibrium x∗ such that for all x(0), z(0) ∈

V , the estimation error z(t)−x(t) decays asymptotically (respectively, ex-
ponentially) to zero.

Theorem 2.5 (Sundarapandian, 2002). Suppose that the observation system
(2.2)-(2.3) is Lyapunov stable at equilibrium, and that there exists a matrix
K such that matrix A − KC is stable, where A := F ′(x∗) and C := H ′(x∗).
Then dynamic system defined by

z′ = F (z) + K[y −H(z)] (2.5)

is a local exponential observer for observation system (2.2)-(2.3).

Remark 2.6 It is known (Sundarapandian, 2002) that under the condition

rank[C|CA|CA2| . . . |CAn−1]T = n
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for local observability, the existence of such an observer is guaranteed. The
above theorem provides an efficient method to construct this observer.

3 Iterative scheme

We shall consider a so-called competitive Lotka-Volterra system

x′i = xi


ai −

2∑

j=1

bijxj


 =: xifi(x1, x2), i = 1, 2 (3.1)

with ai, bij > 0 for all i, j = 1, 2, satisfying condition,

a1b22 − b12a2 > 0 ; a2b11 − b21a1 > 0 ; b11b22 − b21b12 > 0. (C1)

Let h : IR2 → IR be a locally bounded function with partial derivatives hxi
> 0

for i = 1, 2, defined and continuous in IR2. Let us consider the following
observation system

x′1 = x1(a1 − b11x1 − b12x2)

x′2 = x2(a2 − b21x1 − b22x2)

y = h(x1, x2)− h(x∗1, x
∗
2).

(3.2)

A straightforward calculation shows that under condition (C1), system (3.1)
has an asymptotically stable positive equilibrium x∗ = (x∗1, x

∗
2) (see e.g. Freed-

man, 1980).

Our objective is to determine sufficient conditions, in order to find a sequence
of observation systems, which provides a long-term upper and lower estimation
of the solutions of system (3.1). To this end, let us introduce the following
concepts and notation. Given a natural number N, let x∗i be the positive
equilibrium of system

x′1 = x1f1(x1, x
∗(i−1)
2 )

x′2 = x2f2(x
∗(i−1)
1 , x2)

i = 1, 2, . . . , N (3.3)

with x∗0 = (0, 0). For i = 1, 2, . . . , N we define, the following observation
systems (OSi):

x′1 = x1f1(x1, x
∗(i−1)
2 )

x′2 = x2f2(x
∗(i−1)
1 , x2)

yi = hi(x1, x2) := h(x1, x2)− h(x∗i1 , x∗i2 ).

(OSi)

We note that here and throughout the paper, upper indices are not exponents.
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Proposition 3.1 Given k1, k2 > 0 we have

0 < U2 ≤ U4 ≤ . . . ≤ U2N ≤ U2N−1 ≤ . . . ≤ U3 ≤ U1, (3.4)

where UN (N ∈ N) is the solution of the initial value problem

z′1 = z1f1(z1, x
∗(N−1)
2 ) + k1(y

N − hN(z1, z2))

z′2 = z2f1(x
∗(N−1)
1 , z2) + k2(y

N − hN(z1, z2))

z0 = (z0
1 , z

0
2).

(3.5)

Proof. We shall follow an inductive process:

Step 1. In system (3.1), we set x2 := 0 in f1 and x1 := 0 in f2, and consider
the observation system (OS1)

x′1 = F 1
1 (x) = x1f

1
1 (x1, x2) := x1f1(x1, 0) = x1(a1 − b11x1)

x′2 = F 1
2 (x) = x2f

1
2 (x1, x2) := x2f2(0, x2) = x2(a2 − b22x2)

y1 = h1(x1, x2) := h(x1, x2)− h(x∗11 , x∗12 )

(3.6)

where x∗11 =
a1

b11

; x∗12 =
a2

b22

. It is easy to check that x∗1 > x∗. Now, with

matrices

A1 :=
∂F 1

∂x
(x∗1) =




a1 − 2b11x
∗1
1 0

0 a2 − 2b22x
∗1
2




C1 = (c1
1, c

1
2) :=

(
∂h1

∂x1

(x∗1),
∂h1

∂x2

(x∗1)

)

and K = col(k1, k2) we calculate the characteristical polynomial of the aux-
iliary matrix A1 −KC1:

p1(λ) = λ2 + (a1 + a2 + k1c
1
1 + k2c

1
2)λ + (a1 + k1c

1
1)(a2 + k2c

1
2)− k1k2c

1
1c

1
2

= λ2 + (a1 + a2 + k1c
1
1 + k2c

1
2)λ + a1a2 + a1k2c

1
2 + a2k1c

1
1.

As hxi
> 0 for i = 1, 2 and a1, a2, k1, k2 > 0 we obtain that

a1 + a2 + k1c
1
1 + k2c

1
2 > 0 ; a1a2 + a1k2c

1
2 + a2k1c

1
1 > 0

therefore, according to the Routh-Hurwitz criterion, matrix A1−KC1 is stable,
and by Theorem 2.5 we can construct the observer of system (3.6) in the
following way:

z′1 = z1(a1 − b11z1) + k1(y
1 − h1(z))

z′2 = z2(a2 − b22z2) + k2(y
1 − h1(z))

. (3.7)
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Given an initial condition z01 = (z01
1 , z01

2 ) near x∗1, we can find a solution of
(3.7) denoted by U1.

Step 2. Now, in system (3.1), we set x2 := x∗12 in f1 and x1 := x∗11 in f2,
defining observation system (OS2)

x′1 = F 2
1 (x) = x1f

2
1 (x1, x2) := x1f1(x1, x

∗1
2 ) = x1(a1 − b11x1 − b12x

∗1
2 )

x′2 = F 2
2 (x) = x2f

2
2 (x1, x2) := x2f2(x

∗1
1 , x2) = x2(a2 − b21x

∗1
1 − b22x2)

y2 = h2(x1, x2) := h(x1, x2)− h(x∗21 , x∗22 )

(3.8)

where x∗21 =
a1 − b12x

∗1
2

b11

> 0 ; x∗22 =
a2 − b21x

∗1
1

b22

> 0, which are positive by

(C1), moreover, inequalities x∗1 > x∗ > x∗2 hold.

Again, with matrices

A2 :=
∂F 2

∂x
(x∗2) =




a1 − 2b11x
∗2
1 − b12x

∗1
2 0

0 a2 − b21x
∗1
1 − 2b22x

∗2
2




C2 := (c2
1, c

2
2) :=

(
∂h2

∂x1

(x∗2),
∂h2

∂x2

(x∗2)

)
,

if we calculate the characteristical polynomial of A2 −KC2,

p2(λ) = λ2 + (b11x
∗2
1 + b22x

∗2
2 + k1c

2
1 + k2c

2
2)λ+

+b11b22x
∗2
1 x∗22 + b11x

∗2
1 k2c

2
2 + b22x

∗2
2 k1c

2
1

by Routh-Hurwitz criterion, we again have that A2 − KC2 is stable and we
can construct the observer of system (3.8)

z′1 = z1(a1 − b11z1 − b12x
∗1
2 ) + k1(y

2 − h2(z))

z′2 = z2(a2 − b21x
∗1
1 − b22z2) + k2(y

2 − h2(z)).
(3.9)

Now, for an initial condition z02 = (z02
1 , z02

2 ) near x∗2 with z02 ≤ z01, we find
a solution U2 of (3.9). Moreover, by the partial monotony of h, we have

y1 − h1(z) > y2 − h2(z)

which permit us to compare the solution of systems (3.7) and (3.9) with initial
conditions z02 ≤ z01. Hence we get

U2 ≤ U1.
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Step 3. In system (3.1), we set x2 := x∗22 in f1 and x1 := x∗21 in f2. Hence we
obtain observation system (OS3)

x′1 = F 3
1 (x) = x1(a1 − b11x1 − b12x

∗2
2 ) = x1f1(x1, x

∗2
2 )

x′2 = F 3
2 (x) = x2(a2 − b21x

∗2
1 − b22x2) = x2f2(x

∗2
1 , x2)

y3 = h3(x1, x2) := h(x1, x2)− h(x∗31 , x∗32 )

(3.10)

where x∗31 =
a1 − b12x

∗2
2

b11

> 0 ; x∗32 =
a2 − b21x

∗2
1

b22

> 0, which are positive by

(C1), moreover, inequalities x∗1 > x∗3 > x∗ > x∗2 are verified.

If we calculate the characteristic polynomial of matrix A3 −KC3 with

A3 :=
∂F 3

∂x
(x∗3) =




a1 − 2b11x
∗3
1 − b12x

∗2
2 0

0 a2 − b21x
∗2
1 − 2b22x

∗3
2




C3 := (c3
1, c

3
2) :=

(
∂h3

∂x1

(x∗3),
∂h3

∂x2

(x∗3)

)
,

according to the Routh-Hurwitz criterion we get that A3 − KC3 is stable,
therefore we can construct the observer of system (3.10) in the following way:

z′1 = z1(a1 − b11z1 − b12x
∗2
2 ) + k1(y

3 − h3(z))

z′2 = z2(a2 − b21x
∗2
1 − b22z2) + k2(y

3 − h3(z)),
(3.11)

and for an initial condition z03 = (z03
1 , z03

2 ) near x∗3, such that z02 ≤ z03 ≤ z01,
we can find a solution denoted by U3. Moreover, again by the strict partial
monotony of h we have

y1 − h1(z) > y3 − h3(z) > y2 − h2(z).

Now comparing the solutions of systems (3.7), (3.9) and (3.11), we obtain

0 < U2 ≤ U3 ≤ U1.

The process can be continued in an iterative way, which completes the proof.

From the above construction we have two sequences (U2N−1) and (U2N) for
N ∈ N that are monotonous and bounded, therefore, convergent point-wise.
Hence, for each t ∈ R, we define:

U(t) = lim
N→+∞

U2N−1(t) , U(t) = lim
N→+∞

U2N(t). (3.12)
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Moreover, as

(UN
1 )′ = UN

1 (a1 − b11U
N
1 − b12x

∗(N−1)
2 ) + k1(y

N − hN(UN))

(UN
2 )′ = UN

2 (a2 − b21x
∗(N−1)
1 − b22U

N
2 ) + k2(y

N − hN(UN)),
(3.13)

and h is bounded on compact sets, sequence ((UN)′) is uniformly bounded
on compact sets. Applying the Ascoli Theorem to a fixed compact subset of
[0, +∞), this sequence has a uniformly convergent subsequence denoted in the
same way. By (3.4) we conclude that the convergence expressed in (3.12) is
uniform on compact sets of R.

On the other hand, the idea developed in the above iterative process, also
applies to a positive solution of (3.1). In this way we can also establish a
relation between the two iterative schemes and as a result, we shall conclude
that every solution of system (3.1) is attracted by the “stripe” [U,U ].

Indeed, let u = (u1, u2) be the positive solution of system (3.1), satisfying the
initial condition x0 > 0, near x∗. Define x∗02 := 0 and substitute it as x2 in
f1(x1, x2) of system (3.1), to obtain

x′1 = x1(a1 − b11x1) x1(0) = x0
1.

This initial value problem has a solution u1
1 defined and bounded in [0, +∞).

Moreover, by the monotony of f1, we have f1(x1, u2) ≤ f1(x1, 0) implying u1
1

is a supersolution of x′1 = x1f1(x1, u2), and by Lemma 2.2 we have u1 ≤ u1
1.

We define x∗01 := 0 and substitute it as x1 in f2(x1, x2) of system (3.1) to obtain

x′2 = x2(a2 − b22x2) x2(0) = x0
2

which has a solution u1
2 defined and bounded in [0, +∞). Moreover, by the

monotony of f2, we have f2(u1, x2) ≤ f2(0, x2), therefore u1
2 is a supersolution

of x′2 = x2f2(u1, x2), and by Lemma 2.2, we obtain u2 ≤ u1
2.

Now we take x∗12 defined in (3.3) and substitute it into f1(x1, x2), obtaining
the initial value problem:

x′1 = x1(a1 − b11x1 − b12x
∗1
2 ) x1(0) = x0

1,

which has a solution u2
1 defined and bounded in [0, +∞). Moreover, by the

monotony of f1, we have f1(x1, u2) ≥ f1(x1, x
∗1
2 ), therefore u2

1 is a subsolution
of x′1 = x1f1(x1, u2), and by Lemma 2.2, we have u1 ≥ u2

1. If we take x∗11 defined
in (3.3), and substitute it into f2(x1, x2), we get the initial value problem

x′2 = x2(a2 − b21x
∗1
1 − b22x2) x2(0) = x0

2,

which has a solution u2
2. Now, similarly to the reasoning made for u2

1, we obtain
u2 ≥ u2

2. Therefore,

u2(t) ≤ u(t) ≤ u1(t), ∀t ≥ 0.
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If we continue the process, we get a sequence of solutions, that in general
terms we can express by the following iterative scheme:

(uN
1 )′ = uN

1 (a1 − b11u
N
1 − b12u

∗(N−1)
2 ) uN

1 (0) = x0
1

(uN
2 )′ = uN

2 (a2 − b21u
∗(N−1)
1 − b22u

N
2 ) uN

2 (0) = x0
2

(3.14)

with N ∈ N and u∗01 = u∗02 = 0. Moreover, it is easy to check that the following
monotony conditions are satisfied,

0 ≤ u2 ≤ u4 ≤ . . . ≤ u2N ≤ u ≤ u2N−1 ≤ . . . ≤ u3 ≤ u1.

From the definition of observer, we immediately obtain

Proposition 3.2 Given N ∈ N, for uN , UN defined in the iterative schemes
(3.14) and (3.5), we have

uN(t)− UN(t) → 0 when t → +∞.

Remark 3.3 Although from the iterative scheme Ascoli’s Theorem provides
only a sequence (UN) uniformly convergent on compact sets, our simulation
results suggest that this convergence is uniform on [0, +∞), too. As a matter of
fact, as we illustrate in the next section, we also observe that if u is a positive
solution of system (3.1), then for all ε > 0 there exists t0 ≥ 0 such that

U i(t)− ε ≤ ui(t) ≤ U i(t) + ε i = 1, 2; t ≥ t0.

4 Example

For system (3.1) we consider the observed function h : IR2 → IR defined by
h(x1, x2) = x1 + x2, which is increasing in x1 and x2. Therefore, if we take
k1, k2 > 0, the hypothesis of Proposition 3.1 is verified and the inequalities of
(3.4) hold. We take the observation system

x′1 = x1(1− 0.9x1 − 0.5x2)

x′2 = x2(1− 0.5x1 − 0.7x2)

y = h(x1, x2)− h(x∗1, x
∗
2),

(4.1)

where x∗ = (x∗1, x
∗
2) is the equilibrium of system

x′1 = x1(1− 0.9x1 − 0.5x2)

x′2 = x2(1− 0.5x1 − 0.7x2).
(4.2)

For k1 = k2 = 0.5 > 0 and z0 = (1. 4, 3. 9), we solve numerically observation
systems OSi for i = 1, . . . , 4, observing how inequalities of (3.4) hold (see
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Figures 1-2) , that is
U1 ≥ U3 ≥ U4 ≥ U2.

Moreover, as we have mentioned in the previous section, we can check that
from certain t ∈ R+ we have that the solution u of system (4.2) verifies

U1 ≥ U3 ≥ u ≥ U4 ≥ U2.

0 20 40 60 80 100 120 140 160
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

U U U U u 
1 1 1 1 1 

1 3 4 2 

Fig. 1. Iterative scheme for z0 = (1. 4, 3. 9)

If we solve the above observation system numerically for any other positive
initial condition and arbitrary coefficients from the parameter space of the
model, we obtain the same convergence result.
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1
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2.5
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3.5
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time

U U U U U u 
2 2 2 2 2 

1 3 4 2 

Fig. 2. Iterative scheme for z0 = (1. 4, 3. 9)

5 Discussion

The sufficient conditions we proposed in the paper make it possible to develop
an iterative scheme for a competitive Lotka-Volterra system, providing a se-
quence of observer systems for the localization of the solution of the original
system. Although theoretically only a convergence on compact intervals can
be guaranteed, the numerical simulations confirm convergence on infinite time
intervals, as well. Hence, in practice, by this method the long-term behaviour
of the population system can also be analyzed.

Since the condition of partially monotony of the observation function is also
fulfilled for phenotypic observation of genetic processes, calculated in terms
of the Hardy-Weinberg proportions (see López et al. 2007a), an extension of
the above methodology to frequency-dependent models of population genetics
may be straightforward.
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