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Abstract. In the paper ecological interaction chains of the type resource – producer – 11 

primary user – secondary consumer are considered. The dynamic behaviour of these 12 

four-level chains is modelled by a system of differential equations, the linearization of 13 

which is a verticum-type systems introduced for the study of industrial verticums. 14 

Applying the technique of such systems, for the monitoring of the considered ecological 15 

system, an observer system is constructed, which makes it possible to recover the whole 16 

state process from the partial observation of the ecological interaction chain.  17 

 18 
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type system, observer design  20 

 21 

1. Introduction 22 

 23 

Monitoring of ecosystems and management of renewable natural resources are key 24 

issues of sustainable human activity. Methodologically both problems can be naturally 25 

related to basic concepts of mathematical systems theory such as observability and 26 

controllability. The basic theory concerning these concepts was developed in [1] for 27 

linear systems (a more recent reference is [2]), however, even the simplest ecosystem 28 

models incorporating interacting populations are nonlinear. The corresponding concepts 29 

and theorems have been extended with local character to nonlinear systems in [3], but 30 

found applications to population systems only recently, see e.g. [4]-[10]. These papers 31 

either deal with the theoretical problem of observability or, if also observers are 32 

constructed, the results concern only Lotka-Volterra-type population systems.  33 
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 1 

In the present paper, observer design for non Lotka-Volterra-type ecosystems will be 2 

presented. The ecological model considered in this paper differs from the classical 3 

Lotka-Volterra system because of the presence of the dynamics for the resource (or 4 

nutrient).  5 

 6 

Until now in [5], only observability results have been obtained for a trophic chain of 7 

resource – producer – primary consumer type. (For a general stability study of multi-8 

level trophic chains see e.g. [11]). In our paper, on the one hand, we extend and modify 9 

this model, to deal with a four-level ecological interaction chain of type resource – 10 

producer – primary user – secondary consumer. Here the term primary user refers to 11 

the fact that an animal species is in commensalism with the plant, rather than consuming 12 

it. On the other hand, we not only find sufficient conditions for observability, but by the 13 

construction of an observer system, we also estimate the state process. From 14 

methodological aspect, it will be seen, that the linearization of this four-level ecological 15 

interaction chain is a verticum-type system. Systems-theoretical study of such systems 16 

was carried out in Molnár [12]-[19], Molnár and Szigeti [20].  17 

 18 

The present paper is organized as follows. In Section 2 the dynamic model of the 19 

considered four-level ecological chain is set up and its positive equilibrium is 20 

calculated. In Section 3 a sufficient condition for the stable coexistence of the 21 

ecosystem is proved. Section 4 is devoted to the problem of observability and observer 22 

design for the considered ecosystem. The method is also illustrated with a numerical 23 

example. In Section 5 a discussion of the results is given. Finally, in the Appendix some 24 

basic concepts and results concerning verticum-type systems are shortly recalled.  25 

 26 

2. Description of the model and existence of an equilibrium 27 
 28 

As a modification of the well-known three-level trophic chain consisting of resource – 29 

producer – primary consumer considered in [5], we consider the following four-level 30 

ecological interaction chain:  31 

level 0: a resource; 32 
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level 1: the producer is a plant, supposed  to die out without the resource, and the 1 

positive effect of the latter is proportional to the quantity of the resource present 2 

in the system;  3 

level 2: the primary user (instead of consumer), i.e. a commensalist animal, making use 4 

of the plant as part of its habitat without harming it (e.g. an insect species hosted 5 

by the plant), displaying a logistic dynamics in absence of the plant and the 6 

secondary consumer; 7 

level 3: the secondary consumer is a monophagous predator of the primary user (e.g. an 8 

insectivorous singing bird species), with intraspecific competition.    9 

(For more details on the role of commensalism in ecological communities, we supposed 10 

between the producer and the primary user, see [21]).  11 

For a dynamical model let 0x  be the time-dependent quantity, with a constant supply Q  12 

of the resource present in the system, 1x , 2x  and 3x  the time-varying population size 13 

(biomass or density) of the producer,  the primary user and the secondary consumer, 14 

respectively. Assume that a unit of biomass of the plant consumes the resource at 15 

velocity 00 x ; however, it increases the biomass of the plant at rate 1k . The relative 16 

rate of increase in biomass of the primary user, due to the presence of the plant is 12xk . 17 

While the plant population is supposed to die out exponentially in the absence of the 18 

resource, with Malthus parameter 1m , the primary user displays a logistic growth with 19 

Malthus parameter 2m  and is limited by a carrying capacity 
2

2


m

. Furthermore, the 20 

secondary consumer would die out at rate 1m , without the presence of the primary user, 21 

and there is an intraspecific competition among predators with rate 3 . We will 22 

consider a partially closed system, where the dead plants may be recycled into nutrient 23 

resource with rate 1 . Then with parameters 24 

  0,,,,,,,, 32321210  mmmQ ;  [1,0[  [;1,0],, 1321  kkk , 25 

we have the following dynamic model for the considered interaction chain:  26 
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Our purpose now is to find sufficient conditions for the existence of an ecological 2 

equilibrium of dynamic system (2.1)-(2.4), where all components are present. The right-3 

hand side of the system is given by the following function:  4 
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 6 

Then a vector 0, *4*  xRx  is an equilibrium for the dynamical system (2.1)-(2.4) if 7 

and only if, .0)( * xf  From (2.2) we obviously get 8 

 9 
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Since [1,0]1 k  and [1,0[1  , from (2.1) we obtain  11 
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From (2.3) and (2.4), we have  13 

 14 
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 16 

It is easy to see that the latter inequality holds, whenever for the model parameters we have 17 

                             
2321

231




kkk

mm
Q  .                              (2.6) 18 

Indeed, by [1,0]1 k  and [1,0[1  , from (2.6) we get 19 

 20 



Verticum-type ecological systems  

 

 5















)1()1( 111

1
2223

111

2321

1

2321
32 km

Qk
kmk

km

Qkkk

m

Qkkk
m







 . 1 

 2 

Finally, under condition (2.6), the positivity of *
3x  implies 3 

0
23

*
333*

2 






k

xm
x . 4 

 5 

Therefore, we can state that if (2.6) holds then system (2.1)-(2.4) has a positive 6 

equilibrium.  7 

 8 

3. Asymptotic stability of the equilibrium  9 

 10 

For the analysis of stability for the above calculated ecological equilibrium *x , let us 11 

linearize system (2.1)-(2.4) near *x , obtaining 12 

 13 
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 15 

Let us calculate the characteristic polynomial of this matrix: 16 
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where 19 

 
.))((

))(()(

)()(

1

*
3

*
2

*
111

*
003

2
232100

11
*
00

*
33

*
221

*
3

*
23

2
232

*
101

*
33

*
22111

*
010

*
10

*
3

*
23

2
2322

*
33

*
22

*
103

4

xxxmxkka

mxxxkxxkxa

xxmkxkxxxka

xxxa

a



















 20 

 21 



Verticum-type ecological systems  

 

 6

Now the well-known Routh-Hurwitz criterion (see e.g. [2]) can be applied: all roots of 1 

the polynomial 4
4

3
3

2
210)(  aaaaap   have negative real parts if and 2 

only if 3 

 4 

4123;4,...,1,00 aaaaiai   and 2
3041231 )( aaaaaaa  .                (3.2)                              5 

 6 

For this polynomial we clearly have that 4,...,1,00  iai  since [1,0]1 k  and 7 

[1,0[1  , moreover, 4123 aaaa   can be written as 8 
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 9 

 10 

where again by [1,0[, 11 k  we have that 4123 aaaa  >0. Finally, under condition 11 

2
101 2mQk   we have 0)( 2

3041231  aaaaaaa , therefore all inequalities in (3.2) 12 

hold.  13 

Now, the above reasoning can be summarized in the following result. 14 

Theorem 3.1. Let us suppose that for given biological parameters, the resource supply 15 

is high enough,  16 

 17 
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 19 

 Then, both the open ( 01  ) and the partially closed ( 01  ) ecological chains stably 20 

coexist in the sense there exists a positive equilibrium *x  of system calculated in 21 

Section 2, which is asymptotically stable.  22 

 23 

Remark 3.1.  The conditions of Theorem 3.1 can also be formulated conversely: Given 24 

a resource supply Q, biological parameters satisfying conditions (3.3) imply the stable 25 

coexistence of the considered ecological chain.  26 

 27 

 28 
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4. Observability and observer design 1 

 2 

In this section, in order to address the monitoring problem of the considered ecosystem, 3 

first we find sufficient conditions for the observability of the system, reducing the 4 

problem, by linearization to the observability of a verticum-type system. Then observer 5 

design is used for the asymptotic estimation of the unknown state process, on the basis 6 

of a partial observation of the ecosystem.   7 

 8 

4.1 Observability of the ecological chain 9 

Let us consider now the following two auxiliary 2-dimension systems  10 

)( 001111

1111000

xkmxx

xmxxQx










            (4.1) 11 

and 12 
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          (4.2) 13 

In ecological terms (4.1) is a subsystem of the original chain (2.1)-(2.4), while in (4.2) 14 

the positive effect of the plant on the animal species 2 appears with the equilibrium 15 

value *
1x  of the plant. We note that by setting 0:2 k  (i.e. considering the original 16 

system without commensalisms), the original ecological chain is split up into two 17 

components without interaction.  18 

 19 

Remark 4.1. The biological interpretation of system (4.2) is the following: Suppose that 20 

system (2.1)-(2.4) is in equilibrium, and the two animal species, by an external 21 

disturbance, deviate from their equilibrium densities. Then the resource-primary 22 

consumer subsystem can maintain its equilibrium, and the predator-prey subsystem will 23 

be governed by system (4.2).  24 

Continuing the study of systems (4.1) and (4.2), we can easily check that they have 25 

respective equilibria ),(: *
1

*
0

*
0 xxw   and ),(: *

3
*
2

*
1 xxw  . For system (4.1) with notation 26 

),(: 100 xxw  , let us consider observation function 27 

*
0010000 :),()( xxxxhwh  .                                         (4.3) 28 
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This means that the deviation of the resource from its equilibrium value is observed.   In 1 

order to check local controllability, we calculate the linearization of system (4.1) at 2 

equilibrium *
0w :  3 

 4 
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 6 

Hence we easily calculate  7 
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provided 01  . From the classical sufficient condition for the local observability of 9 

nonlinear systems, [3], we obtain the local observability of system (4.1) near the 10 

equilibrium, with observation (4.3). 11 

Similarly, suppose that in system (4.2) the deviation of the density of the prey from 12 

its equilibrium value is observed, i.e., with notation ),(: 321 xxw   we consider the 13 

observation function  14 

*
2211 :)( xxwh  .                                                (4.5) 15 

The linearization of system (4.2) at equilibrium *
1w  is 16 
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Checking again the rank condition, by 02   we get 18 
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implying local observability of system (4.2), (4.5) near *
1w .  20 

Now, let us observe that with definition  21 
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define a verticum-type linear observation system in the sense defined in the Appendix. 2 

Applying Theorem A.1 of the Appendix, we obtain that the linear observation system  3 

Aww                                                       (4.7) 4 

Cwy                                                       (4.8)  5 

is observable. Since A   is just the Jacobian of the righ-hand side of system (2.1)-(2.4) 6 

calculated in (3.1), therefore (4.7) is just the linearization system (2.1)-(2.4). 7 

Furthermore (4.8) is the linearization of observation function  8 

),(:)( *
22

*
00 xxxxcolxh                                           (4.9) 9 

which can be associated with system (2.1)-(2.4). Finally, applying again the classical 10 

rank condition of [3], we can summarize the reasoning of this subsection in the 11 

following theorem.  12 

Theorem 4.1.  Let us suppose that ecological chain (2.1)-(2.4) is partially closed 13 

( 1 >0).Then with observation function (4.9), system (2.1)-(2.4) is locally observable 14 

near equilibrium *x  calculated in Section 2.  15 

 16 

4.2. Construction of an observer system 17 

 18 

Following the procedure of Sundarapandian [22], let us first determine conditions for 19 

the construction of observers for systems (4.1) and (4.2), with respective observation 20 

functions (4.3) and (4.5). 21 

For matrices 00A  and 0C , figuring in (4.4), we have to find a matrix 22 

),(: 01000 hhcolH   such that  23 

 24 
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 25 

 26 

is a Hurwitz matrix, i.e. all roots of the characteristic polynomial 0p  of matrix 27 

0000 CHA   have real negative parts. It is easy to check that the latter condition is 28 

satisfied if and only if the following inequalities hold: 29 

*
1000 xh       (4.10) 30 
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*
10101 xkh  .      (4.11) 1 

Simple sufficient conditions for (4.10) and (4.11) are 000 h  and 001 h , respectively. 2 

By the Theorem of Sundarapandian [22], the observer for system (4.1) with observation 3 

function (4.3) can be determined. 4 

Similarly, for matrices 11A  and 1C , figuring in (4.6), we need to find a matrix 5 

),(: 13121 hhcolH   such that all roots of the characteristic polynomial 1p  of matrix  6 
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 7 

have real negative parts. 8 

Now a straightforward checking shows that the latter condition is satisfied if and only if 9 

1312 and hh  satisfy the following inequalities: 10 

 11 
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 14 

Similarly to the previous case, in order to satisfy conditions (4.12) and (4.13), it is 15 

sufficient to set 012 h  and 013 h , and again by the Theorem of Sundarapandian [22], 16 

the observer for system (4.2) with observation function (4.5) can be determined. 17 

Finally, based on the above reasoning, it will be easy to prove the following result:  18 

Theorem 4.2. Given 19 
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with 0, 1200 hh  and 0, 1301 hh , and function f  defined in (2.5) system 21 

))(()( zhyHzfz   22 

is a local exponential observer for system (2.1)-(2.4) with observation equation 23 

)(xhy  , where h  is defined in  (4.9). 24 

Proof.  Let p  be the characteristic polynomial of matrix A-HC with 25 

 26 
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)(: xhC . 1 

 2 

Then, it is easy to see that 21 ppp   and therefore, from conditions (4.10)-(4.13) we 3 

can conclude that A-HC is a Hurwitz matrix and by the Theorem of Sundarapandian 4 

[22] the proof is complete.  5 

 6 

Example 4.1. We consider the following system 7 

 8 
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   (4.14) 9 

 10 

System (4.14) has a positive equilibrium )3.7,41.10,3.5,38.2(* x , which is 11 

asymptotically stable, because conditions of Theorem 3.1 are satisfied. In Fig. 1 it can 12 

be seen how, e.g. from initial condition )5,9,6,1(:)0( x  near the equilibrium, the 13 

solution x  of system (4.14) tends to this positive equilibrium, see Fig. 1. 14 

 15 

Fig. 1. Solution of system (4.14) with initial condition )5,9,6,1()0( x  16 

 17 

Consider now system (4.14) with observation 18 
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satisfies the conditions of Theorem 4.2, we can construct the following observer 6 

 7 
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  9 

Solving (4.15) with initial condition )7,7,4,2()0( z  near to the equilibrium, we can 10 

check how this solution tends to recover the corresponding solution of system (4.14), 11 

see Fig. 2. 12 

 13 

Fig. 2. Solutions of system (4.14) and (4.15) with the respective initial 14 

conditions )5,9,6,1()0( x  and  )7,7,4,2()0( z  15 

 16 

 17 

 18 
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5. Discussion 1 

 2 

From the ecological point of view, in comparison to the existing results, the novelty of 3 

the paper consists in extending the state estimation (monitoring) from three-level 4 

trophic chains to four-level ecological chains, where, a non-trophic interaction (namely 5 

commensalism) also takes place. From the methodological aspect, this the first time 6 

that by the linearization of the underlying nonlinear dynamic ecosystem model, the 7 

technique  of verticum-type linear systems (developed for the investigation of industrial 8 

systems) is applied to the monitoring of specially structured (chain-type) ecosystems. 9 

Finally, we note that the proposed method can be extended to a longer, five-level 10 

ecological chain by adding a tertiary consumer (a top predator, e.g. a predator bird 11 

consuming the singing bird) to the model.    12 

 13 

The considered model can be extended by adding a tertiary consumer (a top predator, 14 

e.g. a predator bird consuming the singing bird).   15 
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Appendix 14 

 15 

In this section, based on [18], we summarize some concepts, notation and a basic 16 

sufficient condition for observability of verticum-type systems, in a simplified form 17 

used in the present paper. Let Νii rnk ,,   ki ,0  and assume that 18 

,, 0000
000

nrnn RCRA      (A.1) 19 

and for all ki ,0  20 

iiiiii nr
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xCy

xAx




 23 

and for all ki ,1  24 

 (Vi)    
ii

iiiiiii

xCy

xAxAx


  11

. 25 
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Denoting  


k

i
i

k

i
i rrnn

00
:,: , define the matrices nrnn RCRA   , as follows: 1 














































kkkk

kk

AA

A

AA

AA

A

A

,1,

1,1

2221

1110

00

...000

0...000

......

......

......

0...0...0

0...0...0

0...0...00

 2 


























kC

C

C

C

0

0

2

1

. 3 

Definition A.1. System 4 

 (V)    
Cxy

Axx




 5 

is  said to be of verticum type.  6 

 Given the verticum-type system (V), using the above notation, let kji ,0,   with 7 

jj  , and define system  8 

 (Vij)    
),  if ,,1(           11 jijilxAxAx

xAx

lllilll

iiii







 9 

with observation matrix  10 




























j

i

i

ij

C

C

C

C

0

0

:
1

. 11 

Remark A.1. Intuitively, a verticum-type system consists of a finite series of 12 

“subsystems” where each “subsystem” is connected only with the previous one.   13 
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Theorem A.1. For given ks ,1 , let kji pp ,0,   with pp ji    ),1( sp , and suppose 1 

that all systems 
pp jiV  with observation matrix 

pp jiC  are observable. Then the verticum-2 

type system (V) is also observable.  3 


