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Abstract. In this paper we propose a method for scaling up filter-
based feature selection in classification problems. We use the con-
ditional mutual information as filter measure and show how the re-
quired statistics can be computed in parallel avoiding unnecessary
calculations. The distribution of the calculations between the avail-
able computing units is determined based on balanced incomplete
block designs, a strategy first developed within the area of statis-
tical design of experiments. We show the scalability of our method
through a series of experiments on synthetic and real-world datasets.

1 INTRODUCTION

For datasets with a high number of variables, a key step in develop-
ing classification models is to determine the most informative vari-
ables for the model and exclude the less informative ones. Further-
more, some of the variables may be redundant in the context of oth-
ers. Learning classifiers with an excessive number of variables may
yield models overfitting irrelevant aspects of the data, and therefore
showing a poor predictive power. Also, the complexity of learning
usually grows with the number of variables, and hence the compu-
tational cost of learning with all the available variables may become
infeasible.

Feature selection methods can be grouped into three main blocks,
wrapper, filter, and embedded methods [17, 19, 1]. There are also
mixed filter-wrapper approaches, some of which are able to operate
in high dimensional domains [5, 4].

Wrapper methods [15] explore the space of possible feature sub-
sets, optimizing some model-dependent metric like accuracy. It
means that for each explored feature subset, a model is learnt and
evaluated. Traditional wrapper approaches for feature selection are
often time consuming, and therefore not viable within the context
of learning from large amounts of data or in high dimensionality
domains. Embedded methods [18] are also model-dependent. They
use some specific property of the target model to guide the search
procedure. On the other hand, filter methods [10] are independent
of the underlying model, and can be seen as a pre-processing step
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performed before model learning. Univariate filters use some score
function to produce a ranking of the features. Sometimes a threshold
is defined and the features that score below it are discarded, other
times a maximum number of features could be retained. There are
also methods based on multivariate filters, which attempt to asses the
goodness of a feature subset rather than a single feature [24].

In this paper we focus on univariate filter methods, as their low
computational complexity, compared to wrapper schemes, make
them appropriate for problems involving a high number of variables.
We propose a method for scaling up filter-based feature selection in
classification problems. We use the conditional mutual information
as filter measure and show how the required statistics can be com-
puted in parallel avoiding unnecessary calculations. The distribution
of the calculations between the available computing units is deter-
mined based on balanced incomplete block designs, a strategy first
developed within the area of statistical design of experiments.

2 FILTER-BASED FEATURE SELECTION

Some of the most outstanding filter methods are based on the use
of information-theoretic score functions, all of them related to the
concept of entropy [8]. Throughout this paper we shall assume a set
of discrete variables X = {X1, . . . , Xn} and a class variable C.
The entropy of a discrete variable X ∈X is

H(X) = −
∑

x∈ΩX

p(x) log p(x).

The entropy measures the uncertainty in the distribution of X . Given
two variables Xi, Xj ∈ X , the conditional entropy of Xi given Xj

is

H(Xi|Xj) = −
∑

xj∈ΩXj

p(xj)
∑

xi∈ΩXi

p(xi|xj) log p(xi|xj),

and it quantifies the uncertainty that remains in the distribution of Xi

after observing Xj .
The amount of information shared by two variables Xi, Xj ∈ X

can be measured by their mutual information [25, 8]:

I(Xi, Xj) = H(Xi)−H(Xi|Xj).

Note that the mutual information is symmetric, I(Xi, Xj) =
I(Xj , Xi). It can be interpreted as the amount of uncertainty in Xi

that is removed after observing Xj . Similarly, given Xi, Xj , Xk ∈
X the conditional mutual information between Xi and Xj given Xk

can be defined as
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I(Xi, Xj |Xk) = H(Xi|Xk)−H(Xi|Xj , Xk).

Alternatively, the conditional mutual information can be written as

I(Xi, Xj |Xk) =
∑

xi,xj ,xk

p(xi, xj |xk) log
p(xi, xj |xk)

p(xi|xk)p(xj |xk)
.

The mutual information is defined analogously in the multivariate
setting for random vectors Xi,Xj and Xk as

I(Xi,Xj |Xk) =
∑

xi,xj ,xk

p(xi,xj |xk) log
p(xi,xj |xk)

p(xi|xk)p(xj |xk)
.

A thorough analysis of information-theoretic filter methods for
variable selection is reported in [6]. The analysis is based on the con-
ditional likelihood of the class variable given S (features included
in the model) and τ (parameters of the distributions involved in the
model) for a data set D = {(xi, ci), i = 1, . . . , n}, defined as

L(S, τ |D) =
n∏

i=1

q(ci|xi, τ ),

where q is the learnt model. It is shown in [6] that the conditional
likelihood is maximized by minimizing I(X \ S, C|S). In other
words, the conditional likelihood is maximized when the mutual in-
formation between the class and the features not included in the
model, given the variables actually included, is minimized.

A general framework for filter-based feature selection can be es-
tablished by making two technical assumptions about the indepen-
dence structure of the domain [6]: For Xi, Xj ∈ S, Xk ∈ X \ S
it holds that Xi and Xj are conditionally independent both when
conditioning on Xk and on {Xk, C}. The framework is based on
selecting features greedily, using a filter measure defined as

Jcmi(Xi) = I(Xi, C|S), (1)

where Xi is the candidate variable to include in the model.
Utilizing the assumptions mentioned above, Jcmi(Xi) can also be

calculated as

Jcmi(Xi) = I(Xi, C)−
∑

Xj∈S

(
I(Xi, Xj)− I(Xi, Xj |C)

)
. (2)

The advantage of the definition in Equation (2) compared to Equa-
tion (1) is that the former does not require the computation of the
conditional mutual information over multi-dimensional random vari-
ables. Several existing filter-based methods can be shown to be re-
lated to Equation (2). A remarkable example is the joint mutual in-
formation filter measure [28], defined as

Jjmi(Xi) =
∑

Xj∈S

I({Xi, Xj}, C)

= I(Xi, C)− 1

|S|
∑

Xj∈S

(
I(Xi, Xj)− I(Xi, Xj |C)

)
, (3)

whose relation to Equation (2) is clear. Among the measures tested
in [6], Jjmi is the one showing the best accuracy/stability tradeoff, and
is therefore the one we utilize in the following. Note, however, that
our approach works equally well for other measures, like Jcmi (when
calculated using Equation (2)).

2.1 Scaling up filter based feature selection

Filter methods usually rank the features independently from each
other. This is the approach taken in [22], where vertical paralleliza-
tion is used. By vertical parallelization we mean distributing the
variables among the computing units, corresponding to splitting the
dataset by columns, while horizontal parallelization refers to split-
ting the dataset by rows and including all the variables in each
split. In [22] different subsets of candidate variables are distributed
through the available computing units, where the feature selection fil-
ters are actually applied. The selection is carried out through a voting
process, where first the features that are discarded in each computing
unit receive one vote, after which the features that have received the
most votes are excluded from the final model.

The approach we adopt in this paper is different, as we propose to
filter the variables globally and ensure scalability by distributing the
calculations between the available computing units. More precisely,
we follow the filter procedure described in Algorithm 1. It is based
on a greedy strategy intended to select the feature that maximizes the
joint mutual information measure in Equation (3). The filter measure
is based on the mutual and conditional mutual information of each
pair of features, computed in Steps 3 to 9. The variables are then
included one by one (Steps 12 to 19) until a given maximum number
of features have been selected.

1 Function Filter(X ,C,M )
Input: The set of features, X = {X1, . . . , XN}. The class

variable, C. The maximum number of features to be
selected, M .

Output: S, a set of selected features.
2 begin

3 for i← 1 to N do

4 Compute I(Xi, C);
5 for j ← i+ 1 to N do

6 Compute I(Xi, Xj |C);
7 Compute I(Xi, Xj);
8 end

9 end

10 X∗ ← argmax1≤i≤N I(Xi, C);
11 S ← {X∗};
12 for i← 1 to M − 1 do

13 R←X \ S;
14 for X ∈ R do

15 Compute Jjmi(X) as in Equation (3) using the
statistics computed in Steps 4, 6, and 7;

16 end

17 X∗ ← argmaxX∈R Jjmi(X);
18 S ← S ∪ {X∗};
19 end

20 return S;
21 end

Algorithm 1: Filter-based feature selection based on condi-
tional likelihood maximization.

Our proposal for scaling up Algorithm 1 consists of paralleliz-
ing Steps 4 to 9, which involve the calculation of the (conditional)
mutual information between each pair of variables. These steps are
also the most computationally demanding when the probabilities in-
volved in the computations are estimated from data. An immediate
approach for scaling up the algorithm could be to simply generate
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one computing thread for each pair of variables and then process the
threads in parallel. However, with n variables this approach would
require accessing the underlying database

(
n
2

)
times, inducing a sig-

nificant overhead in terms of disk/network access. Alternatively, one
might group the variables in blocks so that each block only accesses
the data a single time in order to calculate the sufficient statistics re-
quired for estimating the (conditional) mutual information between
all pairs of variables within the block. A key issue here is finding an
appropriate block size and at the same time ensure that the blocks,
in combination, guarantee that all pairs of variables are considered
exactly once. This is the idea we propose.

To get an intuitive understanding of this process we can as an anal-
ogy consider the organization of the Speedway World Championship
(SWC). After the initial pre-qualifying rounds for the SWC, the re-
maining 16 highest ranked riders should be compared to each other
to obtain a final ranking of the riders. One approach to achieve this
would be to pair-up the riders so that each rider will participate in
15 races, yielding a total of 120 rounds with two riders competing
in each round. This setup would put a strain on the riders and not
use the full capacity of the speedway track, which is designed to ac-
commodate four riders simultaneously. Instead, the SWC employs
a heat-system ensuring that each of the 16 riders will meet each of
the other riders at some time during the competition. Specifically,
the heat-system consists of 20 heats with four riders in a heat. Each
rider participates in only five heats, and within a single heat all riders
compete jointly, thereby meeting each other. After completing the 20
heats, all pairs of riders will have met exactly once. This can also
be seen by labeling the riders {0, . . . , 15} and constructing these
heats: H1 = {3, 6, 12, 15}, H2 = {4, 5, 10, 13}, H3 = {0, 4, 6, 7},
H4 = {0, 10, 11, 15}, H5 = {7, 10, 12, 14}, H6 = {0, 8, 9, 14},
H7 = {0, 1, 3, 13}, H8 = {1, 6, 8, 10}, H9 = {7, 9, 13, 15},
H10 = {1, 5, 14, 15}, H11 = {8, 11, 12, 13}, H12 = {5, 6, 9, 11},
H13 = {1, 4, 9, 12}, H14 = {3, 5, 7, 8}, H15 = {3, 4, 11, 14},
H16 = {2, 6, 13, 14}, H17 = {1, 2, 7, 11}, H18 = {0, 2, 5, 12},
H19 = {2, 4, 8, 15}, and H20 = {2, 3, 9, 10}.

Returning to the (conditional) mutual information calculations, the
16 riders correspond to variables and each heat represents a block
consisting of four variables to be pairwise compared. Thus, rather
than handling pairs of variables independently and having to make
data access

(
16
2

)
= 120 times, we can instead make 20 blocks/heats

of four variables each and thereby only having to access the data 20
times. Note that with the particular setup above, we are guaranteed
not to make redundant calculations as the scores I(Xi, Xj |C) and
I(Xi, Xj) are computed exactly once for all 1 ≤ i, j ≤ n.

This approach of distributing features/riders into blocks/heats is
an instance of a so-called balanced incomplete block (BIB) design; in
fact the heat-system configuration employed by the Speedway World
Championship correspond to a (16, 4, 1)-BIB design (see Defini-
tion 2). BIB designs have already been used in related contexts like
edge labeling of the spanning tree associated to TAN classifiers [20]
and organizing the conditional independence tests in the PC algo-
rithm for learning the structure of a Bayesian network [21]. In the
following sections, we will give a more detailed specification of the
approach and demonstrate how it can be used to ensure the scalability
of Algorithm 1.

As a final note on computational efficiency, we would like to high-
light that the filter approach in Algorithm 1 is especially appropriate
for Bayesian classifiers and, in particular, for the Naive Bayes classi-
fier, where the probability distribution of the class variable given the

features is modeled as

p(c|x1, . . . , xN ) ∝ p(c)
N∏

i=1

p(xi|c).

For this model we see that all the required distributions have already
been estimated when computing the conditional mutual information
in Step 6. It means that some of the calculations carried out during
the feature selection phase can be re-used when learning the model
parameters. The same result also applies to TAN classifiers [12]. Fur-
thermore, from the perspective of scalability, it is also worth pointing
out that the information-theoretic score functions employed above
can be efficiently updated after the arrival of new data if the distribu-
tions involved belong to the exponential family. It is enough to store
a set of sufficient statistics corresponding to the parameters of the
model, which are just counts for discrete variables.

2.2 Balanced incomplete block designs

The use of block designs dates back to the statistical theory of design
of experiments [11], motivated in its origin by agricultural experi-
ments. In this scenario the goal was to compare the yield of different
plant varieties, considering that the yield could be significantly af-
fected by the environment, i.e., the conditions under which the plants
are grown. The idea was to compensate for the effect of the environ-
ment by setting up blocks of land small enough to assume uniform
environmental conditions inside a block, and distribute the plant vari-
eties among them. With space limitations inside each block, one may
not be able to fit sufficient replications of all plant varieties inside a
single block, and therefore rather required that each pair of plant va-
rieties would be allocated at least once to the same block to facilitate
a fair comparison between them. The relation to both the SWC and
our calculation of (conditional) mutual information is evident.

BIB designs [26] can be applied to efficiently divide the compu-
tation of the (conditional) mutual information between all the pairs
of features among a set of, for instance, threads on a shared memory
system or processes on a distributed memory system. This section
provides the necessary background information on BIB designs to
follow the presentation of the method proposed. For ease of presen-
tation, we focus on a shared memory system using threads to achieve
parallelization.

Definition 1 (Design [26]) A design is a pair (X,A) s. t. the follow-
ing properties are satisfied:

1. X is a set of elements called points, and
2. A is a collection of non-empty subsets of X called blocks.

In this paper, we only exploit cases where each block is a set, and not
a multi-set (i.e., we do not allow multiple instances of the same ele-
ment in the set). Nevertheless, some definitions will consider multi-
sets. A BIB design is defined as follows:

Definition 2 (BIB design [26]) Let v, k and λ be positive integers
s. t. v > k ≥ 2. A (v, k, λ)-BIB design is a design (X,A) s. t. the
following properties are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

The number of blocks in a design is denoted by b. Property 3 in
the definition is the balance property that we will exploit. In Steps 6
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and 7 of Algorithm 1, we want to compute the (conditional) mutual
information between each pair Xi, Xj exactly once and therefore
require λ = 1. A BIB design is symmetric when the number of blocks
equals the number of points. This will not be the case in general.

Example 1 Consider the (7, 3, 1)-BIB design. The blocks are (one
out of a number of possibilities):

{1, 2, 3}, {1, 4, 5}, {0, 1, 6}, {2, 4, 6}, {0, 2, 5}, {0, 3, 4}, {3, 5, 6}.
This BIB design is symmetric as the number of blocks equals the
number of points.

There is no single efficient method to construct all BIB designs.
First, it is important to know that they do not exist for all combina-
tions of v, k, and λ. Second, the problem of finding a BIB design is
NP-complete [7]. To efficiently utilize them we have therefore pre-
calculated a number of BIB designs, and utilized those at run-time.
Instead of storing the full designs, it is sufficient to store difference
sets that can be used to generate some symmetric BIB designs:

Definition 3 (Difference Set [26]) Assume (G,+) is a finite group
of order v in which the identity element is 0. Let k and λ be positive
integers such that 2 ≤ k < v. A (v, k, λ)-difference set in (G,+) is
a subset D ⊆ G that satisfies the following properties:

1. |D| = k,
2. the multi-set [x− y : x, y ∈ D, x 	= y] contains every element in

G \ {0} exactly λ times.

In our case, we are restricted to using (Zv,+), the integers modulo
v. If D ⊆ Zv is a difference set in group (G,+), then D + g =
{x + g|x ∈ D} is a translate of D for any g ∈ G. The multi-set of
all v translates of D is denoted Dev(D) and called the development
of D [26, page 42].

Theorem 1 ([26], Theorem 3.8 p. 43) Let D be a (v, k, λ)-
difference set in an Abelian group (G,+). Then (G,Dev(D)) is a
symmetric (v, k, λ)-BIB design.

Example 2 The set D = {0, 1, 3} is a (7, 3, 1)-difference set in
(Z7,+). The blocks constructed by iteratively adding one to each
element of D (modulo 7) are:

{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}.
Notice that the ith element of each block is unique across all blocks.
This property will be used to assign blocks to threads in Section 2.3.
This was not the case for the blocks presented in Example 1.

The concept of a difference set can be generalized to the concept
of a difference family. A difference family is a set of base blocks. A
difference family can be used to generate a BIB design similarly to
how difference sets are used. Table 1 shows a set of difference fam-
ilies for BIB designs on the form (q, 6, 1), which we will use later.
Base blocks for generating BIB-designs are tabulated, e.g., [27], but
can also be found computationally. The base blocks in Table 1 have
been generated using SageMath9. The value k = 6 is chosen for
practical reasons: First, difference families for generating the blocks
need to be known to exist; second, we need to be able to store the
count tables representing the joint distribution of the class and all
the variables in a block in memory. The main idea for parallelization
considered in this paper is to use the (q, 6, 1) design to distribute the
computations of the scores over a set of computing units such that
each score is computed exactly once from a smaller intermediate ta-
ble over six variables.
9 www.sagemath.org

2.3 Computing the (conditional) mutual
information

The computation of the mutual and conditional mutual information
scores I(Xi, Xj) and I(Xi, Xj |C) for all pairs of features Xi, Xj

should be divided into tasks of (approximately) equal size such that
the score for each pair Xi, Xj is computed exactly once. This is
achieved using BIB designs of the form (q, 6, 1) where q is at least
the number of features. That is, q is selected as the smallest value
larger than the number of variables such that a (q, 6, 1) BIB design
is known to exist. The blocks of the BIB design are generated using
a difference family (e.g., Table 1). Each block is used to compute
the marginal counts of the features represented in the block (and the
class variable). If all features have the same state space size, then the
count tables will be of equal size.

The computation of the mutual and conditional mutual informa-
tion scores is parallelized assigning blocks to the computing units
available (we assume threads) as each thread can compute the scores
corresponding to a block in parallel with other threads. Blocks are
assigned to threads using the unique rank of each thread. A thread
with rank r iterates over the block array and considers only blocks
where the array index modulus t equals r where t is the number of
threads (the uniqueness means that there is no need for synchroniza-
tion). When a thread has selected a block, it computes the scores
for all the pairs of features using a (3, 2, 1)-BIB design where the
6-block is marginalized to three blocks with four features each (in
this case each point corresponds to two features). The tables of four
variables are marginalized down to all pairs for computing the score
where the first pair is ignored producing a total of

(
6
2

)
= 15 scores

to be computed.
Figure 1 illustrates this principle, assuming an example with

q = 31 features labelled as X0, . . . , X30. The first block (sec-
ond row in the figure) is {X1, X2, X7, X19, X23, X30}, corre-
sponding to the difference family for design (31, 6, 1), as given
in Table 1. The second block would be obtained by adding 1
to the index of the variable in each coordinate, modulo 31, i.e.,
{X2, X3, X8, X20, X24, X0}. According to the same procedure, the
third block would be {X3, X4, X9, X21, X25, X1} and so on.

Taking the first block, we form three pairs of features, P1 =
{X1, X2}, P2 = {X7, X19} and P3 = {X23, X30} and compute
the blocks of a (3, 2, 1) design, where each block has two pairs.
These blocks are actually all the possible pairings of P1, P2 and P3,
namely {P1, P2}, {P2, P3} and {P3, P1}, placed on the third row
of Figure 1. It can be seen that every three pairings we come up with
5 × 3 = 15 pairs of features for which the mutual and mutual in-
formation score is computed. In fact, each block corresponding to a
pairing {Pi, Pj} yields 6 pairs of features, but the first one is dis-
carded in order to avoid repetitions. In Figure 1 it is indicated by
marking both variables in red on the lower row.

Notice that k = 6 represents 15 pairs and the number of times we
count is reduced by a factor of 15, but each count is a factor three
more expensive (as we are counting six variables instead of two vari-
ables). In addition, there is the task of marginalizing the count tables
to pairs. If the number of states for some features is high, then it may
be more efficient to compute the score directly from the dataset in-
stead of creating an intermediate table. More precisely, the table can
become larger than the original dataset meaning that we would be
computing counts from a table that is larger than the original dataset.
In this case we may not obtain a time performance improvement.
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Table 1. Examples of difference families for a set of (q, 6, 1)-BIB designs.

BIB design Difference family #(base blocks) b = v ·#(base blocks)

(31,6,1) {(1, 2, 7, 19, 23, 30)} 1 31
(91,6,1) {(0, 1, 3, 7, 25, 38),

(0, 5, 20, 32, 46, 75),
(0, 8, 17, 47, 57, 80)}

3 273

(151,6,1) {(1, 32, 118, 7, 73, 71), . . .} 5 755
(211,6,1) {(0, 1, 107, 55, 188, 71), . . .} 7 1477
(271,6,1) {(1, 242, 28, 9, 10, 232), . . .} 9 2439

X0 X1 X2 · · · X7 · · · X19 · · · X23 · · · X30 · · · Xn

X1 X2 X7 X19X23X30 X2 X3 X8 X20X24 X0 X3 X4 X9 X21X25 X1 · · ·

X1 X2 X7 X19 X7 X19X23X30 X23X30 X1 X2 · · ·

X1 X2 X1 X7 X1 X19 X2 X7 X2 X19 X7 X19 · · ·

Figure 1. Example illustrating the use of (q, 6, 1) and (3, 2, 1) designs.

3 RESULTS

This section reports on the results of an empirical evaluation of the
proposed parallel filter-based feature selection method based on BIB
designs. The main focus of the empirical evaluation is to investigate
the time performance improvement offered by the use of BIB de-
signs to compute the score used by Algorithm 1. We consider the
implementation of the proposed method on a shared memory com-
puter with multiple cores such that threads can be used to achieve
parallelization. This means that the entire dataset is loaded into the
main shared memory of the computer where the process of the pro-
gram is responsible for creating a set of POSIX threads to achieve
parallelization.

Table 2. Networks from which datasets used in the experiments are
generated.

Dataset |X | |E| Total CPT size
Munin1 [3] 189 282 19,466
Diabetes [2] 413 602 461,069
Munin2 [3] 1,003 1,244 83,920
SACSO [13] 2,371 3,521 44,274

The evaluation is performed using a total of fifteen datasets where
twelve datasets are generated by sampling from known Bayesian net-
work models [23, 9, 14, 16] and three are subsets of a real-world
dataset over 1,823 variables from a Spanish bank. Random samples
of data were generated from the four Bayesian networks of different
sizes listed in Table 2 where |X | denotes the number of variables and
|E| denotes the number of edges in the Bayesian network. For each
network a single variable is selected as target variable. Three datasets
were generated at random for each network with 100,000, 250,000,
and 500,000 cases. In addition, three samples from the bank dataset
have been used. All datasets used are unless otherwise stated com-
plete, i.e., there are no missing values in the data.
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Figure 2. Munin1 with 100,000 cases.

The empirical evaluation is performed on a desktop computer run-
ning Red Hat Enterprise Linux 7 with a six-core Intel (TM) i7-5820K
3.3GHz processor and 64 GB RAM. The computer has six physical
cores and twelve logical cores. For this reason, the number of threads
used by the program is in the set {1, 2, 3, 4, 6, 8, 10, 12} where the
case of one thread is considered the baseline and corresponds to a
sequential program.

The average computation time is calculated over ten runs with the
same dataset. The computation time is measured as the elapsed (wall-
clock) time of the algorithm. This means that other users of the com-
puter may potentially impact the results. The speed-up factor is com-
puted relative to the case of one thread.

Figures 2, 3, and 4 show the time performance and resulting speed-
up factor achieved on the Munin1 dataset with 100,000, 250,000 and
500,000 cases, respectively.

The three performance figures for the Munin1 datasets clearly
show an improvement in time performance as the number of threads
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Figure 3. Munin1 with 250,000 cases.
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Figure 4. Munin1 with 500,000 cases.

used increases. The highest speed-up factor of approximately five is
obtained using twelve threads and 500,000 cases. The most signifi-
cant speed-up is obtained when going from one to two threads where
the speed-up factor is close to two. After six threads there is in Fig-
ure 4 a small drop in performance. This is most likely related to the
number of physical cores in the computer. Recall that the computer
used in the test has six physical cores and twelve logical cores. We
believe this is the explanation for the drop in performance going from
six to eight threads.

Due to space restrictions, we do not show the time performance
graphs for all tests. Instead we show the graphs for the largest
datasets.

Figures 5, 6, and 7 show the time performance and resulting speed-
up factor achieved on the Munin2 dataset with 500,000 cases, Bank
with 500,000 cases, and SACSO with 500,000 cases, respectively.

The three performance graphs for Munin2, SACSO and Bank
shown in Figures 5, 7, and 6, respectively show similar time perfor-
mance improvements as Munin1. A highest speed-up factor of ap-
proximately six is obtained for all three networks.

Figure 8 shows the time performance and resulting speed-up factor
achieved on the Diabetes dataset with 100,000 cases.

In this figure, we notice that the performance starts to deteriorate
after six threads. Diabetes is a time-sliced model with a number of
variables in each time slice having up to 21 states. This means that
the use of (q, 6, 1) designs could produce intermediate tables that are
as large as or even are larger than the original dataset and the work
could be unevenly distributed as a result of different table sizes.
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Figure 5. Munin2 with 500,000 cases.
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Figure 6. Bank with 500,000 cases.
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Figure 7. SACSO with 500,000 cases.

A. Salmerón et al. / Parallel Filter-Based Feature Selection Based on Balanced Incomplete Block Designs748



 0

 100

 200

 300

 400

 500

 600

 700

 0  2  4  6  8  10  12

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

A
v
er

ag
e 

ru
n
 t

im
e 

in
 s

ec
o
n
d
s

A
v
er

ag
e 

sp
ee

d
-u

p
 f

ac
to

r

Number of threads

Time

Speed-up

Figure 8. Diabetes with 100,000 cases.

Figure 8 shows the time performance and resulting speed-up factor
achieved on the Diabetes dataset with one incomplete and 100,000
complete cases.
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Figure 9. Diabetes with 100,000 complete and one incomplete cases.

Adding an incomplete case to the dataset means that (q, 6, 1) de-
signs are not used and the scores are computed directly from the
original dataset. In this case, time performance is significantly better
than in the case of complete data and the speed-up factor improves
as the number of threads increases. Figure 10 shows the performance
graphs for the Bank dataset with 100,000 complete cases while Fig-
ure 11 shows the performance for 100,000 complete cases and one in-
complete case. It is clear from the two figures that the use of (q, 6, 1)
designs improves time performance significantly.

4 DISCUSSION

The results of the empirical evaluation reported in Section 3 demon-
strates the scalability of the proposed approach to parallel filter-based
feature selection using BIB designs. On the test computer the time
performance clearly improves as the number of threads increases up
to the number of physical cores. Thereafter, there is in some cases a
minor drop in performance.

The proposed method uses BIB designs in two steps in order to
ensure that the score is computed for each pair exactly once and such
that the workload can be evenly distributed over the available com-
puting units without any synchronization. In the first step a (q, 6, 1)
design is applied to create intermediate tables that are marginalised
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Figure 10. Bank with 100,000 complete cases.
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Figure 11. Bank with 100,000 complete and one incomplete cases.
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to two or three variables to compute the score using a (3, 2, 1) design.
That is, the (q, 6, 1) design is used to create intermediate tables from
which the scores for a specific set of pairs are calculated. In some
cases, when variables have a high number of states as in the Diabetes
network, the size of the intermediate tables may become too large
to manage efficiently and performance can deteriorate. We can avoid
this step by determining all pairs directly from the entire set of fea-
tures. This would mean that the scores for each pair are computed
over the entire dataset. A upper limit equal to the size of the original
dataset could be put on the size of the intermediate tables.

If data has missing values, then we cannot exploit the (q, 6, 1) de-
signs as an intermediate table for the variables with missing values
and would compute the counts for each pair directly from the origi-
nal dataset ignoring cases with missing values. The performance im-
provement offered by the intermediate tables creating using (q, 6, 1)
designs is in most cases substantial.

Future work includes horizontal parallelization of the algorithm
where each computing unit holds a subset of the data over all vari-
ables and is responsible for computing partial counts over the data
it holds. This will support parallelization on a distributed memory
system.

5 CONCLUSION

In this paper, we have proposed a method for scaling up filter-based
feature selection in classification problems using parallelization. The
principal idea is to use the conditional mutual information as a filter
measure distributing the computation of the required statistics over a
set of computing units. The distribution of the computations is man-
aged using BIB designs requiring no synchronization and ensuring
that each score is computed exactly once. We have demonstrated
the scalability of the proposed method using both synthetic and real-
world datasets.
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