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Calculating through-focus characteristics of the human eye from a single objective measurement of wavefront
aberration can be accomplished through a range of methods that are inherently computationally cumbersome.
A simple yet accurate and computationally efficient method is developed, which combines the philosophy of the
extended Nijboer-Zernike approach with the radial basis function based approximation of the complex pupil
function. The main advantage of the proposed technique is that the increase of the computational cost for
a vector valued defocus parameter is practically negligible in comparison to the corresponding scalar valued
defocus parameter.
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1. INTRODUCTION

Calculating through-focus characteristics of the human
eye’s optical system has a wide variety of important ap-
plications including assessing the efficacy of intraocular
lenses [1–3], studying the depth-of-field and the sensitiv-
ity to optical blur [4–6], assessing the role of higher order
aberrations [7, 8], assessing the optical changes induced
by a refractive surgery [9], and studying the role of reti-
nal image quality in refractive error development [10].

The results of the assessment of the depth-of-field
strongly depend on the measurement methodology and
whether it is performed subjectively or objectively [5,
11]. Also, the procedures are lengthy, tedious, and
require a certain degree of cooperation from the mea-
sured subject, as it is the case in the assessment of just
detectable image blur. On the other hand, an objec-
tively measured wavefront aberration contains informa-
tion from which one can derive through-focus character-
istics of the eye’s optical system through the so-called
virtual refraction paradigm [12, 13] and derive the diop-
tric estimate of the depth-of-field using an appropriately
selected threshold to a through-focus characteristic func-
tion of the retinal image quality [4, 14–16].

In the virtual refraction paradigm a through-focus
characteristic is sequentially evaluated by adding or
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subtracting various amounts of spherical or cylindri-
cal wavefronts to the measured aberration. This can
be achieved by either varying the quadratic component
of the Zernike polynomial expansion using the diop-
tric equivalent of defocus [17] or the so-called paraxial
curvature matching, which include higher than the sec-
ond order Zernike polynomial terms [18]. Alternatively,
one can employ the concept of Zernike refractive power
polynomials [16, 19] or the Zernike radial slope poly-
nomials [20] and perform the arythmetics in the refrac-
tive power domain. All of those numerical procedures
are computationally cumbersome and require substan-
tial computational resources.

Ideally, a closed-form expression of the optical char-
acteristic of the eye’s optical system as a function of
defocus should be devised. Such attempts have been
made with the introduction of the defocus transfer func-
tion [21–23] and the extended Nijboer-Zernike (ENZ)
approach [24, 25]. Although both methodologies are at-
tractive for man-made optical systems, they have sub-
stantial limitations when it comes to utilizing them to
study the eye’s optical system because the defocus trans-
fer function is limited to circularly symmetric aberra-
tions while the ENZ approach is valid only for the even
terms of Zernike polynomial expansion. The latter is
related to the specific way the even-term Zernike poly-
nomial expansion of the wavefront error leads itself to
a Bessel-series representation of the diffraction integral.
A way to deal with this problem is to seek alternative
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wavefront error representations that, on one hand, fully
describe the optical aberrations of the human eye and,
on the other hand, would lead to computationally simple
mathematical expressions.

To overcome the limitations described above we have
developed a technique for calculating through-focus
characteristics of the human eye by combining the phi-
losophy of the ENZ approach with the flexibility of the
radial basis functions approximation, in which the com-
plex pupil function containing both amplitude apodiza-
tion and phase wavefront components is described by a
series of Gaussian radial basis functions. As a result, we
obtain a simple expression for the diffraction integral in
terms of a very rapidly converging power series. This
allows a parallel implementation of the computation of
the through-focus characteristics.

2. METHODS
The complex-valued pupil function P (ρ, θ), which indi-
cates the relative change in amplitude and phase of the
light wave transmitted through the pupil, is an essential
element in describing the eye’s optical system. For a
circular pupil, normalized polar coordinates in the pupil
plane are used, 0 ≤ ρ ≤ 1, 0 ≤ θ < 2π, in which a pupil
function is expressed as

P (ρ, θ) = A(ρ, θ) exp (iΦ(ρ, θ)) , (1)

where the factor A(ρ, θ) is the apperture or apodization,
and Φ(ρ, θ) is the real-valued phase describing the wave-
front error. More precisely, function Φ(ρ, θ) is equal to
the wavefront error W (ρ, θ) times the constant 2πn/λ,
where n is the refractive index and λ stands for the wave-
length of the light.

According to Fourier optics, the complex-valued
point-spread function of such a system is given by the
diffraction integral [25]

U(r, φ; f) =
1

π

∫ 1

0

∫ 2π

0

[
exp(ifρ2)P (ρ, θ)

× exp ((2πiρr cos(θ − φ))] ρdθdρ (2)

where f is the defocus parameter and (r, φ) denote the
polar coordinates in the image plane. This function is
also related to the monochromatic point spread function
(PSF), defined as PSF = |U |2. The defocus parameter
f can be related to a wavelength dependent defocus mea-
sured in diopters, D(λ), as f = πD(λ)/1000λ, provided
that ρ and λ are given in mm [23].

Our main goal is to develop a new approach to an
effective (i.e., fast and reliable) computation of these
diffraction integrals. It involves approximation by Gaus-
sian radial basis functions (GRBF), which are a standard
tool in the solution of a variety of practical purposes,
ranging from engineering to numerical analysis of partial
derivative equations. Recently, they also found applica-
tion in the context of ophthalmic optics [26]. A more
general version of this type of functions (using the so-
called anisotropic radial basis functions) was developed
for fitting corneal elevation data [27, 28].

Each GRBF is determined by its center, given by polar
coordinates (q, α), and by its shape parameter L > 0;
the expression which evaluates it at a point with polar
coordinates (ρ, θ) is

GRBF(ρ, θ) = exp {−L(q2 + ρ2 − 2ρq cos (θ − α))}.

Thus, as a first step we fix a number of centers,
{(qk, αk) : k = 1, . . . , N}, (qk ≥ 0, 0 ≤ αk ≤ 2π) and
a common value of the shape parameter L > 0, and fit
the complex pupil function (1) by a linear combination
of GRBF (see Appendix A), obtaining an expression of
the form

P (ρ, θ) =

N∑
k=1

ck exp {−L(q2k + ρ2 − 2ρqk cos (θ − αk))},

(3)
where for each k = 1, . . . , N , ck are complex coefficients.
Clearly, it is an approximate formula, but we will con-
tinue using the sign “=” instead of “≈”, assuming that
the complex pupil function is actually given by the right
hand side of this formula.

By introducing expression (3) in the diffraction inte-
gral (2), an analytic closed form expression for U can be
obtained in the following way:

U(r, φ; f) =

N∑
k=1

ck Uk(r, φ; f), (4)

where Uk is the contribution of each GRBF to U . Simple
calculations show that it is explicitly given by

Uk(r, φ; f) = exp {−Lq2k}
∞∑
s=0

Ωs

(s!)2
ms(if − L), (5)

with

Ω =ΩL(r, φ, qk, αk)

=L2q2k + 2πirLqk cos(φ− αk)− π2r2,
(6)

and ms(ξ) being the moments of the positive function
eξρ on [0, 1]:

ms(ξ) =

∫ 1

0

ρseξρdρ, s = 0, 1, . . . . (7)

Coefficients ms(ξ) satisfy the following recurrence for-
mulas,

m0(ξ) =
eξ − 1

ξ
, ms+1(ξ) =

eξ − (s+ 1)ms(ξ)

ξ
. (8)

Observe that Ω does not depend on the defocusing pa-
rameter f , while the sequence ms(if − L) is indepen-
dent from the centers (qk, αk) and evaluation coordinates
(ρ, θ).
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Formulas above can be combined into a single analytic
explicit expression for U :

U(r, φ; f) =

N∑
k=1

ck exp {−Lq2k}

×
∞∑
s=0

ms(if − L)

(s!)2
(
L2q2k + 2πirLqk cos(φ− αk)− π2r2

)s
.

(9)

By the observation above, coefficients ms(if−L) need to
be evaluated only once, as they do not depend on the in-
dividual parameters of each GRBF, and the cost of their
computation is independent of the number of functions
N in the expansion of the complex pupil function (3).
Moreover, due to the presence of the square of a facto-
rial in the denominator, the series in (9) converges very
quickly, so that only a small number of terms are needed
in practice for its evaluation. Coefficients ms(if−L) can
be efficiently computed in many ways: by definition (7)
(using FFT or quadratures) or by the recurrence (8).
This last method is very fast, but can show numerical
instability for large values of f .

The formulas above remain valid if a different shape
parameter is taken for each GRBF, i.e., substituting L
by Lk in the expressions. However, for most practical
applications a single value L can be chosen for all GRBF
and this assumption has been made for the sake of sim-
plicity.

The final step for the efficient implementation of these
formulas is based on the observation that ΩL in (6)
can be easily evaluated by vector-vector multiplication
if both the evaluation point and the center of the GRBF
are given in the Cartesian coordinates. Moreover, all
the computations can be vectorized and parallelized, al-
lowing for a fast evaluation of the diffraction integral
simultaneously in a grid of points in the image domain,
and for an array of values of the defocus parameter f .

3. COMPARISON OF PROCEDURES

Since the closed analytic expression for a Fourier trans-
form type integral (2) is possible only for most elemen-
tary pupil functions P , for its computation we must rely
either on numerical or on semi-analytical methods (or
analytical approximations). In the first group we find
different direct numerical procedures in which the in-
tegration over a 2D domain is replaced by evaluation
of a discrete sum, with the particular challenge of inte-
grating a highly oscillatory function. In the best known
implementation this leads to the bi-dimensional discrete
Fourier transform (we will refer to it as the FFT2-based
approach), calculated via the Fast Fourier Transform al-
gorithm. Its efficiency can be substantially enhanced us-
ing the fractional Fourier transform [29] or a “butterfly
diagram” ideas [30], see also [31].

In the second group we can include the so-called Ex-
tended Nijboer–Zernike (ENZ) theory [24, 25], based on
an observation that the main component of (2) for many

Zernike polynomials can be expressed as series of Bessel
functions.

In this section, these alternatives are discussed and
compared with our method, paying special attention to
their computational complexity, precision, accuracy and
speed. We use the “naive” notion of complexity, un-
derstanding by this the number of real floating point
operations (flops) needed to run the algorithm. Since
the exact number of flops is in general difficult or not
feasible to calculate, the leading term for large values of
the parameters is used.

A comparison between two methods is a delicate task
due to their different inherent characteristics. Thus, we
tried to make the analysis based on some reasonable as-
sumptions and estimates.

Recall that we want to evaluate U in (2) in a grid of
points (either in polar or cartesian coordinates) and for
a vector of values of the defocus parameter f . All three
approaches are inexact in nature and contain some kind
of approximation step.

In the FFT2-based scheme, the value of U(r, φ; f) is
computed by means of the bi-dimensional fast Fourier
transform. The crucial step is the substitution of the
double integral in (2) by a discrete sum. Additionally,
this method presents some other drawbacks. First, each
new value of the defocus parameter f obliges to calculate
the values of U completely, at a computationally high
cost. Second, the use of the FFT requires re-sampling
the wavefront at a regular Cartesian grid covering the
pupil; for convenience, the length of the grid M should
be an integer power of 2 in each direction.

Another remarkable problem of the FFT2 scheme are
numerical issues, especially the aliasing. Figure 1 (lower
left) shows the aliasing, a typical phenomenon that ap-
pears when a careless FFT approach is used. In order to
prevent this, the pupil must be small in comparison with
the sampled area (or in other words, we must extend the
pupil to a larger region, setting the pupil function to zero
in the complementary domain), resulting in a large area
where U(r, φ; f) is negligible [31]. Thus, a big portion of
the computational load of this scheme is useless, and in
general the spatial resolution needed with this method
will be much higher than that required for explicit ex-
pressions like (9). This is the common approach used in
commercial ray tracing packages, such as Zemax or Code
V. The minimal estimated computational complexity of
this method for a single value of f , even for optimal im-
plementation, is of O(M2 log(M)), which corresponds to
the cost of the FFT, the most computationally demand-
ing part.

The advantage of the semi-analytic approaches, such
as the ENZ theory or the method proposed here, is that
they reduce the computation of U in (2) to evaluation
of more or less complex explicit expressions in terms of
some elementary or special functions. One of the ben-
efits of having these formulas is a better control of the
image domain being computed, increasing the precision.
However, the real advantage of a formula like (9) or the
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Gaussians ENZ

FFT2 Analytic

Fig. 1. PSF with perfect wavefront, given by formula (10),
calculated by each method.

ENZ-based equivalent is the huge boost in performance
gained when a parallelization of calculations is done for
multiple values of the defocus parameter f .

The ENZ-theory, although representing a big step for-
ward, has some limitations that must be taken into ac-
count. The obvious one is the use of only even terms
in the Zernike expansion of the complex pupil func-
tion, which restricts it to the symmetric wavefront er-
rors. Some other, less evident, problems lie in the core
of the mathematical properties of the ENZ explicit for-
mula for U(r, φ; f). This is an infinite series of terms,
each of them a finite linear combination of Bessel func-
tions, and each new Zernike term added to the expansion
of the pupil function (1) increases the complexity of the
terms. The series is slowly convergent, especially for
larger values of f , requiring a truncation with a large
number of terms depending on f (it is recommended to
use 3|f |+ 5 terms, according to [24, 25]).

Another issue in evaluating the ENZ expressions is
the accuracy. The terms of the infinite series with even
and odd orders form sign-changing sequences, which in-
creases the risk of the cancellation errors. This phe-
nomenon can be illustrated by the following experi-
ments: in the case when the wavefront is given only
by a positive Z2

2 horizontal astigmatism, the evaluation
of, say, the imaginary part of U at a point with radial
coordinate r = 0.9 consists in adding a finite alternat-
ing sequence, with two dominant terms of approximately
0.423, but whose absolute values differ in 3×10−5. This
shows that these calculations, if not well organized, can
yield a loss of precision in about 5 significant digits. Last

Table 1. Estimates of the minimal computational complexity
of the methods when evaluating U at an M×M grid of nodes
for F values for the defocus parameter f , using N functions
in the corresponding series expansions (for ENZ and GRBF).

Method Complexity (single f ) Complexity (vector of f)

FFT2 O(M2 log(M)) O(FM2 log(M))

ENZ O(M2N + MN3/2) O(M2F + M2NF + MN3/2)

GRBF O(M2N) O(M2F + M2N)

but not least, the ENZ formulas contain binomial num-
bers that must be evaluated with care in order to avoid
overflow.

In comparison, in expression (9) based on GRBF an
infinite series appears, but its convergence is extremely
fast, and only a few terms are required for a precise
evaluation. Indeed, since |ms| ≤ 1 for all s, and also
|Ω|2 ≤ L2 + π2 ≤ 15 for any reasonable value of the
shape parameter of the Gaussian RBFs. Thus, the s-
th term in the series in (9) is bounded by (15)s/(s!)2,
independently of the value of f . This shows that, in the
worst case scenario, we need at most N = 15 terms to
achieve accuracy of about 10−7. In practice, the value
of N can be taken significantly smaller.

The complexity of the evaluation is also constant for
each new Gaussian function added, as they are obtained
by the shift of the same base function. We have esti-
mated that with the rest of parameters fixed, the cost
of evaluating U with a total of N Zernike polynomials
using the ENZ theory grows as O(N3/2), while for the
new scheme with GRBF, with N Gaussian functions,
the cost is O(N).

We summarize the computational cost for each
method in Table 1 showing the leading terms in the ex-
pression of the estimated complexity. Comparison be-
tween rows two and three shows that the GRBF ap-
proach is much more efficient than the ENZ theory, es-
pecially for a large amount of values for f . The FFT2-
based method seems to be of similar complexity with re-
spect to GRBF, but in practice the value of M for FFT2
will be much larger than that required for GRBF, and
the number of functions N will be small (as maximum,
400).

The reader should bear in mind that the complexity
estimates give only a rough idea of the computational
demand of a method. In general, the execution time is a
simpler and a more informative tool. Thus, we run the
ENZ and GRBF algorithms evaluating U at an 100×100
mesh of nodes for a single value of the parameter f ,
recording the execution time in dependence of the value
N of functions used in the corresponding series expan-
sions. Figure 2 shows the results, along with the cor-
responding regression lines. The values of the slopes of
these lines are approximately 0.021 seconds/function for
ENZ and 0.0028 seconds/function for GRBF. This gives
a ratio of about 7.5 times faster for the GRBF approach,
with the same number of functions, or reversely, one can
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Fig. 2. Dependence of the execution time from the num-
ber of functions used in the description of the complex pupil
function.

use 7.5 times more functions in the GRBF scheme, for
the same execution time. For comparative purposes, the
execution time to evaluate function U numerically mak-
ing use of the two-dimensional fast Fourier transform
was of approximately 0.25 seconds, matching the execu-
tion time for ENZ using about 12 Zernike terms, or for
GRBF with approximately 90 Gaussian RBFs.

In another experiment we compared the execution
time of the three methods as a function of the length of
the vector of defocus parameters. The number of func-
tions is fixed to N = 400 for the GRBF approach and to
N = 45 for ENZ-theory (8th order polynomials). The
evaluation of U is made at an 100 × 100 mesh of nodes
for the two semi-analytic methods, and at an 512× 512
mesh for the FFT2-approach (this is a realistic size to
overcome aliasing and obtain accurate results). Then,
the execution time of each method is measured, as the
length of the vector of values for the defocus parame-
ter f grows. The results appear in Figure 3, along with
the regression lines for each scheme. The values of the
slopes are approximately 0.24 for FFT2, 0.16 for ENZ
and 0.003 for GRBF, all in seconds per value of f . This
means FFT2 is about 75 times slower than GRBF when
calculating U for many of values of f at the same time,
and ENZ is about 50 times slower than GRBF too, even
when the number of Gaussian functions used (N = 400)
is much higher than the number of Zernike polynomials
(N = 45).

From the experiments above we can conclude that,
roughly speaking, the efficiency of GRBF is at least one
order of magnitude higher than of ENZ.

In order to assess accuracy, we first calculated U for
the ideal wavefront (Φ ≡ 0) and zero defocus (f = 0), in

0 10 20 30 40 50 60
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GRBF−based formula
FFT2−based scheme

Fig. 3. Execution time according to the number of different
defocus parameters used in the complex pupil function. A
fixed number N of functions (N = 400 for GRBF and N = 45
for ENZ) was used for each value of f .

which case the closed analytic expression is known,

U(r, φ; 0) =
J1(2πr)

πr
, (10)

where J1 is the Bessel function [32, Ch. 10]. Figure 1
shows the PSF = |U |2 for each of the methods discussed
here, as well as the one given by the closed formula. Vi-
sually, the two semi-analytic methods perform similarly.
In order to support this impression quantitatively, we
calculated also the root mean square (RMS) for each
approach, which renders approximately 2.5 × 10−8 for
GBRF, 2.5× 10−17 for ENZ, and 7.6× 10−3 for FFT2.
We observe that in this ideal situation the number of
accurate digits for GRBF is about a half of those given
by ENZ, but still of order of 8 digits, which is usually
sufficient for applications. However, GRBF calculations
are done at a much lower cost: the computation times
were approximately 1.53 seconds for GBRF vs. almost 52
seconds for ENZ. This interval includes obviously both
steps: fitting the wave front or the pupil function and
the subsequent calculation of U at a grid of 128 × 128
nodes.

In another experiment we used a synthetic wavefront
(see Figure 4) described by a combination of Zernike
polynomial terms and exponentials

Φ(ρ, θ) =− 0.5Z4
4 (ρ, θ) + 0.3Z3

5 (ρ, θ) + 0.3Z5
5 (ρ, θ)

+ 3 g(ρ cos θ, ρ sin θ; 0.5, 0.3, 5)

+ 3 g(ρ cos θ, ρ sin θ; 0.5,−0.3, 5)

+ 0.2 g(ρ cos θ, ρ sin θ;−0.3, 0, 15),

(11)

where Zmn are the (orthonormal) Zernike polynomials
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Fig. 4. 3D plot of the synthetic wavefront function defined
in (11).

Table 2. Maximum absolute error and root-mean-square er-
ror corresponding to the PSF residual distributions shown in
Figure 6.

Metric GRBF ENZ FFT2

Max. error 5.00× 10−4 0.42 0.14

RMS error 6.92× 10−5 0.07 0.02

and

g(x, y; a, b, L) = exp {−L[(x− a)2 + (y − b)2]}.

For this wavefront we calculated the diffraction inte-
gral (2) for different values of f by quadrature using
the scientific software Mathematica with extended pre-
cision (with the options PrecisionGoal set to 8 and
WorkingPrecision to 16). These values of U (regarded
as “exact”) were compared with the calculations per-
formed by FFT2 and by two semi-analytic approaches
discussed here. For the ENZ we fitted the pupil func-
tion using the first 200 Zernike polynomials, while for
the GRBF the approximation was performed by the lin-
ear combination of 20× 20 Gaussian functions, with the
parameter L = 16. Then the diffraction integral was
evaluated by all methods in a grid of 256× 256 equally
spaced points in the square [−2, 2]× [−2, 2].

In order to assess accuracy, we computed for each
method the real-valued point-spread function PSF =
|U |2 taking first f = 0. Figure 5 shows the density
plot of the normalized PSF calculated by quadrature
and using the three alternative methods (FFT2, ENZ
and GRBF). The corresponding absolute errors with re-
spect to the computation by quadratures is depicted in
Figure 6. More quantitative comparison was made using
several quality of approximation metrics, such as those
gathered in Table 2.

With the purpose of comparing performance of the
computation methods for different values of the defo-
cus parameter f we plot in Figure 7 the values of the

GRBF ENZ

FFT2 Quadratures

Fig. 5. PSF of the wavefront (11) with f = 0, calculated
by each method. In the first row, from left to right, using
GRBF and ENZ. Second row: by FFT2 and quadrature.

GRBF
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2.5

4.5

x 10
−4 ENZ

 

 

0.1

0.25

0.4

FFT2

 

 

0.02

0.07

0.12

Fig. 6. Absolute error in the PSFs of Figure 5 for each
method, with respect to the solution by quadratures.

normalized PSF along the horizontal line (φ = 0, π and
r ∈ [0, 1]).

As a partial conclusion we see that for the simulated
wavefront (11) the GRBF method outperforms the other
two in several significant digits.
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Fig. 7. Values of the normalized PSFs of Figure 5 along
the horizontal diameter of the unit disk, calculated for each
method, for f = 1 (top), f = 3 (middle) and f = 10 (bot-
tom).

4. CONCLUSIONS

A new formula for computing the diffraction integral
with variable defocus has been developed. The proposed
approach has been compared with the two existing pro-
cedures, i.e., the bi-dimensional fast Fourier transform
and the extended Nijboer-Zernike theory. The former is
a standard numerical procedure, and the latter provides
also analytical formulas to evaluate the diffraction inte-
gral. The results of the comparison show that the new
scheme is very competitive, providing higher accuracy
and speed. The main advantage of the new approach is

that the increase of the computational cost for a vector
of values of the defocus parameter is practically negligi-
ble, providing a substantial increase in the performance
with respect to the other techniques. This is a reliable
and efficient way of obtaining the through-focus char-
acteristics of the eye at higher resolutions in reasonable
time.

Additionally, the GRBF approach allows for a
straightforward implementation of the multi-resolution
scheme. Since each function used for approximation of
the pupil function enters the final expression linearly,
and taking into account the computational speed of the
method, one can use two or more layers of GRBF to
fit the residual error consecutively using different sets of
centers and different shape parameters in order to im-
prove the accuracy of the results. This idea being cur-
rently tested is beyond the scope of this paper and will
be discussed in a future paper.

In the virtual refraction paradigm [12, 13], the pro-
posed GRBF approach allows calculating through-focus
characteristic of the human eye at a very low compu-
tational cost for an arbitrarily selected set of the defo-
cus parameters, making it particularly attractive in the
studies of dynamic wavefront aberrometry and accom-
modation.

APPENDIX A: OBTAINING THE PARAMETERS IN
(3)

The goal is expressing the complex pupil functions as
a linear combination of GRBF functions, to obtain a
expression of the type of (3). Suppose that the wavefront
values are known in a discrete and finite set of points at
the unit disk (if they are in a bigger disk, they may be
rescaled easily). Hence, we have the data set (xj , yj , wj),
j = 1, . . . ,M , with wj = W (xj , yj). Values wj can
be directly measured or obtained from another set of
functions, such as the Zernike polynomials.

Choosing the basis

A GRBF can be expressed in Cartesian coordinates
as gk(x, y) = exp {−Lk[(x− ak)2 + (y − bk)2]}, where
(ak, bk) are the Cartesian coordinates of its center, and
Lk > 0 is its shape parameter, which sets the “scale” of
the function gk (and is directly related to the variance
of the Gaussian distribution). Transforming it to polar
coordinates yields the set of basis functions

gk(ρ, θ) = exp {−Lk(q2k + ρ2 − 2ρqk cos (θ − αk))},
(12)

with (qk, αk) being the polar coordinates of the corre-
sponding centers; ak = qk cos (αk) and bk = qk sin (αk).
Thus, we fix this basis, {gk}Nk=1, choosing the param-
eters ak, bk and Lk, or equivalently, qk, αk and Lk, for
each 1 ≤ k ≤ N .

Choosing the same shape parameter L > 0 for all ba-
sis functions simplifies the computations greatly, so we
will follow this convention, which can be modified for a
multi-resolution scheme, as explained above. We can use
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some statistical criteria for its selection, such as cross-
validation, or even trial and error [33]. In practice, a
value between 1 and 20 is satisfactory. Then, taking
N = r2, we create a grid of r × r GRBF centers cover-
ing the unit disk. Usually, a regular grid on the square
[−1.2, 1.2]2 yields good results. This square covers the
unit disk and some peripheral area, which can smooth
the Gibb’s phenomenon at the boundary of the disk.

Computing the coefficients

For a fixed set of GRBF functions the purpose is to
compute coefficients ck in such a way that their linear
combination reproduces the complex pupil function

N∑
k=1

ckgk(xj , yj) ≈ P (xj , yj) = A(xj , yj) exp {iwj}.

Notice that the fitting procedure is in practice unavoid-
able regardless the used approach. It should be pointed
out however that the problem of computation of U is
ill-conditioned: the values of U are highly sensitive to
small oscillations in Φ, so the quality of approximation
of the pupil function is critical. The standard procedure
is the linear least-squares fit (with complex values), see
e.g. [34].

This idea can actually be applied to any set of func-
tions, so the complex pupil function can be expressed
in a similar way as a linear combination of other basis
functions (for instance, the Zernike polynomials).

APPENDIX B: DERIVATION OF (9)

Expression (2) shows that U is linear for P , so that it is
sufficient to find an analytic expression for U when the
pupil function is

P (ρ, θ) = exp {−L(q2 + ρ2 − 2ρq cos (θ − α))}.

From a direct substitution in (2) we see that we need to
calculate integrals of the form

I =

∫ 2π

0

exp(2Lρq cos(θ − α)) exp(2πiρr cos(θ − φ))dθ,

which can be evaluated analytically:

I = 2πI0

(
2
√

Ωρ
)
,

where I0 is the modified Bessel function [32, Ch. 10],
and

Ω = L2
kq

2
k + 2πirLkqk cos(φ− αk)− π2r2. (13)

It remains to use the series expansion for I0 to arrive at
(5)–(6), and in consequence, at (9).
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