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Abstract

In this paper we present a model transformation language based on logic
programming. The language, called PTL (Prolog based Transformation Lan-
guage), can be considered as a hybrid language in which ATL (Atlas Trans-
formation Language)-style rules are combined with logic rules for defining
transformations. ATL-style rules are used to define mappings from source
models to target models while logic rules are used as helpers. The imple-
mentation of PTL is based on the encoding of the ATL-style rules by Prolog
rules. Thus, PTL makes use of Prolog as a transformation engine. We have
provided a declarative semantics to PTL and proved the semantics equiva-
lent to the encoded program. We have studied an encoding of OCL (Object
Constraint Language) with Prolog goals in order to map ATL to PTL. Thus
a subset of PTL can be considered equivalent to a subset of ATL. The pro-
posed language can be also used for model validation, that is, for checking
constraints on models and transformations. We have equipped our language
with debugging and tracing capabilities which help developers to detect pro-
gramming errors in PTL rules. Additionally, we have developed an Eclipse
plugin for editing PTL programs, as well as for debugging, tracing and vali-
dation. Finally, we have evaluated the language with several transformation
examples as well as tested the performance with large models.
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1. Introduction

Model Driven Engineering (MDE) is an emerging approach for software
development. MDE emphasizes the construction of models from which the
implementation is derived by applying model transformations, and provides
a framework to developers for transforming their models. Therefore, Model
Transformation |1, 2, 3, 4, 5] is a key technology of MDE. The Model Driven
Architecture (MDA ) proposed by the Object Management Group (OMG) (6],
distinguishes between Platform Independent Models (PIMs) and Platform
Specific Models (PSMs) as an abstraction mechanism from application do-
mains, programming languages, etc.

A simple definition of a model transformation tool is that it is able to
transform one model into another. We can take as an example of model
transformation the code generation from a visual model for representing the
architecture of a software system. For instance, most of the UML (Unified
Modeling Language) |7| software development tools are able to generate code
from UML class diagrams. In such a model transformation tool, the source
model is the class diagram, and the target model is the code. However,
model transformation is a more general technique for the transformation of
models. In fact, usually Model-to-Model (M2M) and Model-to-Code (M2C)
transformations are considered.

MDA proposes (at least) three elements in order to describe a model
transformation. The first one are the so-called meta-meta-models which are
the basis of the model transformation and provide the language for describing
meta-models. The second one consists in the meta-models of the models to be
transformed. Source and target models must conform to the corresponding
meta-model. Such meta-models are modeled according to the meta-meta-
models. The third one consists in the source and target models. Source and
target models are instances of the corresponding meta-models. Furthermore,
source and target meta-models are also instances of the meta-meta-models.
A model transformation maps the source and target models but the trans-
formation is defined with regard to the source and target meta-models.

In this context, there are several proposals (see [8] for a survey) of lan-
guages whose aim is the specification of transformations. One of the most
relevant is the language ATL (Atlas Transformation Language) |9]. ATL
is a domain-specific language for specifying model-to-model transformations.
ATL is a hybrid language, and provides a mixture of declarative and im-
perative constructors. The declarative part of ATL is based on rules. Such



rules define a source pattern matched to source models and a target pattern
that creates target models for each match. ATL transformations are uni-
directional, operating on read-only source models and producing write-only
target models.

Model transformation languages should be equipped with the following
features.

(a) Firstly, they should be equipped with a well-founded semantics. It is
crucial, from an user’s point of view, for the understanding of language
constructs, enabling a high level and non-procedural interpretation of
the behavior of programs. It is also key from the tool development
point of view, in order to provide foundations to language interpreters
and other tools: compilers, debuggers, etc.

(b) Secondly, they should separate specification from execution, and high-
level specifications of transformations should be independent from im-
plementation, hiding low-level details like control flow and operational
semantics.

(c¢) Thirdly, constraint validation should be specified in a more formal lan-
guage, avoiding procedural mechanisms, and working in a declarative
style.

(d) Finally, high-level information should be provided from debugging and
tracing. Debugging and tracing should focus on meta-models, model
elements and rules, instead of variables values and step by step execu-
tions.

Unfortunately, current model transformation languages do not cover all
these features, and thus, the study of languages covering all of them should
be object of study.

In this paper we present a model transformation language based on logic
programming. The language, called PTL (Prolog based Transformation Lan-
guage), can be considered as a hybrid language in which ATL-style rules
are combined with logic rules for defining transformations. The meta-meta-
model of PTL is the EMF (Eclipse Modeling Framework) ECore meta-meta-
model. PTL works with source and target models of ECore. ATL-style rules
are used to define mappings from source models to target models while logic
rules are used as helpers.

The aim of our work is to provide a framework for model transformation
based on logic programming. From a practical point of view, our proposal



can be seen as an application of logic programming to a context in which rule-
based systems are required. Our language provides the elements involved in
model transformation: meta-models handling and mapping rules. The use of
an ATL-style transformation language combined with Prolog rules enables
logic programming experts to develop transformations with a logic taste. The
hybrid nature of the language (ATL-style and logic rules) makes our language
a suitable framework for Prolog programmers. Thus, we believe that our
contribution can be interesting to the logic programming community. Due
to the wide acceptance of ATL as transformation language, the adoption of a
syntax inspired by ATL to write model transformations makes our language
easier to use and close to other proposals of transformation languages. The
adoption of ATL style syntax facilitates the definition of mappings: basically,
source models are mapped to target models of the given source and target
meta-models.

From a theoretical point of view, we have studied a declarative semantics
for PTL. The declarative semantics interprets meta-models and identifies
models that conform to meta-models, while the interpretation of PTL rules
provides semantics to the main ATL constructs. From a practical point
of view, the proposal has been implemented so that a Prolog program is
automatically obtained from a PTL program. Hence, PTL makes use of
Prolog as transformation engine. The encoding of PTL programs by Prolog
is based on a Prolog library for handling meta-models.

We have also studied how to use our language for model validation, in
particular, how to validate source and target models, and transformations.
Source and target models are validated by considering constraints, and trans-
formations are validated by considering cross constraints on source-target
models. Prolog goals are used with this end.

We have equipped our language with debugging and tracing capabilities,
which help developers detect programming errors in PTL rules. Debugging
permits to detect rules that fail in a certain transformation, and in addition,
debugging is able to locate the point of the rule that makes it fail. The failure
of a rule comes from (g.1) Boolean conditions that cannot be satisfied, and
(g.2) objects of the target model that cannot be created. When a certain
rule fails, a certain target model element could be missing, and therefore the
transformation could be erroneous. The debugger is able to give (g.1) the
name of the rule and the Boolean condition that is false for all the elements
of the source model, and (g.2) the name of the rule in which the target
model cannot be created, and the failed binding. Tracing permits one to
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visualize how a certain target model element is obtained. Tracing shows
all the rules and source model elements that contribute to a target model
element. Debugging is useful when the target models are incomplete while
tracing is useful when the target models are incorrect.

1.1. Structure of the Paper

The structure of the paper is as follows. Section 2 will motivate the use of
Prolog in Model Transformation. Section 3 will summarize the contributions
of the approach according to criteria (a), (b), (c) and (d) of Section 1. Section
4 will introduce PTL, a case study, PTL declarative semantics as well as some
examples of use. Section 5 will describe the implementation of PTL, prove
the soundness and completeness of the implementation, and present the PTL
interpreter. Section 6 will show how to map ATL to PTL and how to carry
out model validation. Section 7 will present the debugger and tracer, the
Eclipse plugin and performance results. Section 8 will review related work.
Finally, Section 9 will conclude and present future work.

2. Model Transformation and Prolog

From the early years of model transformation, Prolog has been present as
a tool to specify simple transformations [10, 11, 12, 13]. Prolog has been also
present in early relevant proposals like VIATRA [14]. Model transformation
experts found in logic programming a resource to implement and experiment
with transformations and techniques related to transformations. With the
development of the technology around model transformation, logic program-
ming is not abandoned [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26|, given
that experts investigate new aspects of model transformation that existent
languages and tools do not cover. Moreover, some authors argue that Prolog
is still suitable to learn about model transformations. For instance, in [27]
they show how to use Prolog for expressing constraints and model-to-model
transformations. They argue that teaching MDE with MDEFELite, a frame-
work which makes use of Prolog as constraint and transformation language,
presents many fewer problems with regard to Eclipse MDE tools. They also
argue that the understanding of what a meta-model/model is, as well as
the specification of transformations with Prolog, is easier from a relational-
based representation of models. Writing transformations with Prolog when
tuples are used becomes a very easy task. In [28], they argue that declara-
tive approaches concentrate on what relationships exist between the source



and target, compared with imperative approaches which concentrate on how
to explicitly transform from the source to the target. Complete and correct
transformations can be more probably obtained from declarative transforma-
tions which do not have to take into account execution order, source traversal
and target creation.

Several works [21, 25, 26| prove that Prolog is useful for the specification
of constraints, a key element of model transformation. Firstly, a meta-model
is usually a class diagram which basically is a graph with two kinds of nodes:
classes and attributes, and two kinds of edges: attribute memberships and
associations. The representation of a graph in Prolog is easy, and most of
graph operations can be specified with little effort with Prolog predicates.
Prolog is untyped and its relational tuple-based structure makes easy the
definition of join-based operations, as well as recursive definitions. The suc-
cess of graph /tuple based languages in constraint specification and validation
demonstrates the need for easy to use constraints languages [29, 30].

In [31], they argue that imperative approaches allow the specification of
complex transformations more easily than declarative approaches, but induce
more overhead code as many issues have to be accomplished explicitly, e.g.,
specification of control flow. They reason why specifications of transforma-
tion are still an error prone tasks as well as tedious: (1) Firstly, languages
as ATL, TGGs and QVT work on a high level of abstraction while execution
engines work on a low level. As a consequence, debugging, which is a also
key element in transformations, is limited to information provided by the en-
gines, which consists of variable values and logging messages. More relevant
information like which parts of the transformation are executed is missing.
Execution engines act as a black-box for the developer hiding the opera-
tional semantics. (2) Secondly, current transformation languages provide a
limited view of the transformation: meta-models, models and transforma-
tion code as well as trace information are scattered across different artifacts.
Normally, current approaches hide the transformation of concrete model ele-
ments. Finally, they argue that Prolog-based approaches do not introduce a
gap between specification and execution. Although ATL offers facilities for
code edition and compilation, when running an ATL program little informa-
tion is provided to the programmer. When something is wrong, for instance,
due to OCL code, information is not provided about where the bug can be
found. Debugging with breakpoints, step-by-step transformation execution,
and variable values is not enough because the first think one wants to know
is which rule is not working, why and where. Debugging support has been



included in some tools: ATL, GReAT, VIATRA, FUJABA, Tefkat but in
[28] they identify several debugging questions to be answered, according to
three groups: logical bugs (violation of a constraint between the source and
target models), well-formedness bugs (violation of a constraint of the target
models) and bug smells (relationship between source, target and transforma-
tion). They also establish 4 groups for tracing: tracing from a target object
to its contributors, tracing from source objects to target objects, source ob-
jects that contributed to the creation of target objects; and source objects
that did not contribute to the creation of a target object.

Finally, Bernhard Schétz [15] motivates that one of the advantages of us-
ing Prolog is its capability to interpret loose characterizations of the resulting
model, supporting the exploration of a set of possible solutions. By using
Prolog backtracking alternative transformation results can be generated, in
order to find an optimized solution, for instance, with respect to a given
metric. Also inversion of transformations and thus, the consideration of bi-
directional transformations [32, 24|, is an open research line in which logic
programming can find an application domain. Although these mechanisms
are out of the scope of the paper, we find that the use of logic programming
for model transformations is hardly a new research line.

3. Contributions of the Approach

PTL tries to cover all the features previously considered (i.e., (a), (b), (c)

and (d) of Section 1).

(a) Firstly, a declarative semantics has been provided to the language.
Meta-model and model semantics are provided, as well as a formal
definition of the PTL constructors in terms of model semantics. Ad-
ditionally, an equivalence result between the declarative semantics and
the operational semantics is proved.

(b) Secondly, specification is separated from execution. Declarative style
is used to express both transformation rules and constraint validation.
OCL is replaced in PTL by Prolog which gives a more declarative taste
to transformation rules and constraint validation. The main purpose
of helpers in ATL is to serve as query language against the source
models. With this aim, OCL is used in helpers code. In our logic pro-
gramming based approach, logic (i.e., Prolog style) rules serve as query
language. PTL adopts Prolog as language for defining helpers. Prolog



is a fully-fledged programming language equipped with a very large li-
brary in many of its implementations (for instance, in SWI-Prolog there
are libraries for the development of Web applications, and libraries of
constraints solvers, among others). Prolog is useful for several tasks,
including search of (optimal) solutions thanks to backtracking and the
use of the so-called logic variables with existential meaning, which can
be bound at run-time. Additionally, Prolog is recursive by nature, and
is able to handle recursive relations in a very simple and effective way.
As an example of use of Prolog for recursive relations, Prolog can be
used for OWL RL reasoning (33, 34]. In the context of model trans-
formation, Prolog can be used for materialization of ontologies, i.e.,
computing all the logic consequences of a given ontology, which is usu-
ally known as ontology reasoning. As far as we know, the handing of
recursion is a limitation of OCL: only well-founded recursive queries
are supported (e.g. transitive closure of non-DAG graphs) [29]. In the
Appendix A we will show an example (Example 3) of materialization.
Additionally, OCL is typed and it limits the number of constraints to
be expressed. OCL requires in some cases to cast from one type to
another. For instance, OCL forces to convert from singleton sets to el-
ements, and back, due to cardinality restrictions. OCL union operators
is also limited to elements of the same type. Thus, the adoption of OCL
by ATL has as consequence that some transformations and constraints
are hard to specify if not impossible.

(c) Thirdly, constraint validation are expressed by Prolog goals making
easy the definition of non-procedural based specifications.

(d) Fourthly, the PTL execution is controlled by Prolog, and debugging
and tracing of executions handle directly meta-models and model el-
ements, as well as Prolog rules, allowing a high-level specification of
debugging as well as tracing. The three methods: debugging, tracing
and validation all together offer a repertoire of tools to detect bugs in
transformations.

Additionally, having Prolog as execution engine provides an opportunity
to develop many of the key elements of model transformation. Prolog has
as advantage that the implementation of debuggers, tracers, test case gen-
erators, constraint validators, etc., is easy. In our approach we have experi-
mented with test case generators in our performance tests of PTL and ATL.
Prolog can be used with little effort to generate random black-box based



test cases. A more elaborated technique for random test cases generation is
considered as future work.

In order to evaluate our approach we have studied how to map ATL to
PTL. We have studied how to map OCL to Prolog. We have detected a
fragment of OCL (an extension of OCL-Lite [35]) for which an encoding by
Prolog goals can be defined. It permits to prove that a subset of PTL is
equivalent to a subset of ATL. In other words, PTL can be seen as an im-
plementation (Prolog-based virtual machine) of a subset of ATL. The subset
of ATL covered by PTL is basically the declarative part of ATL plus a frag-
ment of OCL. Thus, PTL provides a declarative semantics for this subset of
ATL. Additionally, we can see the Prolog encoding of PTL as a Prolog-based
semantics of ATL similar to the proposal of [36] based on Rewriting Logic.
Unfortunately, the subset covered by PTL is not full ATL, but an extension
is considered as future work. Both (i.e., Prolog-based virtual machine and
declarative semantics) can be also seen as a contribution of our work. As
a consequence of the mapping of ATL to PTL we are able to evaluate our
approach with examples of ATL.

We have tested our implementation with transformations on medium-size
models (i.e., thousands of objects), and we have compared execution times
with the ATL/OCL EMF-specific Virtual Machine. We have also compared
execution times for constraints on large modes of standard benchmarking
datasets with Prolog.

We have developed an Eclipse plugin in order to integrate editing of PTL
programs, execution of transformations as well as debugging of code, trac-
ing of executions, and validation of transformations. The plugin allows to
store models and meta-models as well as the source code of transformations
and validation rules. The source code of PTL (interpreter, debugger, tracer
and validator), together with the examples developed in the paper can be
downloaded from!. In this site the Eclipse plugin is also available.

Finally, let us remark that this paper is an extended and improved ver-
sion of our previous work [37], and takes some elements previously studied in
[38, 39]. With respect to [37], a more detailed description of the declarative
semantics of PTL is provided and proofs of soundness and completeness are
included. In addition, a mapping from ATL to PTL, more detailed descrip-
tions of the interpreter, debugger and tracer are given, and the validator is

'http://indalog.ual.es/mdd/pt12



metamodel := metamodel ‘" mm_name ‘|’ definitions ‘| ‘)’

definitions  := definition | definition definitions
definition := class ‘(’ class_name ‘|’ attributes ‘| )’ |
role ‘(" role_name ‘,” class_name ‘,” class_name ¢, lower ¢,” upper [‘,” container]| )’
attributes := attribute name | attribute name ‘,’ attributes
rule := rule rule_name from patterns [where condition | to objects
patterns := pattern | ‘(’ pattern,...,pattern ¢)’
condition := beondition | condition and condition
becondition — := expr == expr | expr =\= | expr |

expr > expr | expr >= expr |
expr < expr \ erpr <= expr

pattern := pattern_name : mm_name ! class_name
objects 1= object,...,object

object := pattern ‘(" binding,...,binding ‘)’

expr := value |

pattern name |

pattern name@attribute name |

pattern name@role name |

pattern name@role name@attribute name |
helper name ‘(’ expr,...,expr )’ |

resolveTemp‘(’ ‘(" expr,...,expr )’ ¢, pattern name‘)’ |
sequence’(’ ‘|’ expr,...,expr ‘| )’
binding := attribute_name <— expr | role_name <— expr

Figure 1: PTL syntax

now included. Finally, the performance evaluation and the description of the
Eclipse plugin is also a new contribution of this paper.

4. Prolog Based Transformation Language (PTL)

In this section, we present the main elements of PTL. Firstly, we will
define the syntax of PTL programs. We will show a case study to illustrate
the language, used in the rest of the paper. Secondly, we will give semantics
to PTL constructors. Finally, we will show some examples of use.

A PTL program consists of (a) meta-model definitions (source and
target meta-models), (b) mapping rules and (c) helpers. Meta-model def-
initions define meta-model elements: class and roles together with attributes
for classes, and the cardinality of roles. Mapping rules have the form:

rule rule name from patterns where boolean condition to objects

Helpers are defined by Prolog rules. The syntax of elements (a) and
(b) is shown in Figure 1, where mm_name, class name, attribute_name,
role_name, rule _name, pattern _name and helper name are user defined
names and value can be any Boolean, integer, string, etc. Lower and upper
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are taken from ‘0’,‘1’,..., and “*’. PTL is an untyped language, the inclusion
of types will be considered in the future.

A mapping rule maps a set of objects of the source models into a set
of objects of the target models. The rule can be conditioned by a Boolean
condition, including equality (i.e. ==) and inequality (i.e. =\=), and the
and operator. The rule condition starts with where. Objects of target models
are defined assigning values to attributes and roles, and they can make use
in their definition of attribute and role values of the source models, together
with resolveTemp, helpers and the sequence construction. The resolve Temp
function permits to assign objects created by another rule. With this aim,
resolve Temp has as parameters: the objects to which the rule is applied, and
the name of the object created by the rule. The sequence construction makes
possible to assign more than one role end to a role.

4.1. Declarative Semantics of PTL

PTL has a declarative semantics whose basis is the encoding of PTL by
logic programming. The declarative semantics is based on the interpretation
of meta-models and PTL rules.

Definition 1 (Metamodel). Assuming a set D of domain values partitioned
into k domains dy,...,dy, then a meta-model MM is a quadruple MM =
(C, A, R, H) where C is a set of class names Cy,...,C,, A is a set attribute
names, R is a set of role names ry,...,r, and H is a set of helper names
hi,...,hs; where each class name C; has an associated set of attribute names
attt, ... ,attlii € A, where l; is the number of attributes of the class C;. In
addition, role names r, have a defined domain (respectively, range), denoted
by domain(r,), (respectively, range(ry)), which is a class name in C. At-
tributes and helpers have also a domain and range, where atté- € A has as
domain C; and as range some domain of D; and hy, : Cy, ...Cy, — Cw<t+1>
where w; € {1,...,n}. Finally, roles 1, have an associated lower and upper
cardinality, lower(r,) € IN and upper(r,) € IN U {oo}.

Definition 2 (Model). A model M is a tuple M = (CM, AM, RM, HM OM),
which instantiates the elements of a meta-model (i.e., interprets a meta-
model), where OM is a domain of object names. C™ is an interpretation
CM, ..., CM of the class names which are disjoint subsets of OM. AM inter-
prets attributes as a set of (partial) functions attjqw’i> from OM to elements
of D, and RM interprets roles as a set of (partial) functions v, ... v from

r'm
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OM to a subset of OM. Finally H™ interprets helpers as (partial) functions
P CMLLLCM M e {1, )

Definition 3 (Conformance). A model M conforms to MM whenever r)(o;)
e CM and lower(r,) < #r:)(0;) < upper(ry), for each rp € R and o; € CM,
where domain(r,) = C; and range(r,) = Cj; att;M’D(oi) € d; for each

0; € CM where domain(att) = C; and range(att}) = d;.

Definition 4 (Union of Models). Given two models My and My of a meta-
model MM, we can build the union of models as follows C*1WM2 = CMi
CM2 for each C € C of MM, AMWM2 RMIOMz g g HMIUM2 gre the union
of the graphs of each function?, and OM1WMz = OMiy OMz,

Let us remark that the union of two models that conform to a meta-
model does not necessarily conform to the meta-model due to cardinality
restrictions. Model unions will be used in the definition of the declarative
semantics of PTL.

Now, we can provide declarative semantics to PTL as follows. Given a
source model M, a PTL program P with rules ry,...,r,, defines the target
model M" = Uy<i<n|ri|™, where [r[™ denotes the model obtained by r from
M, which is defined in Figure 2. The main cases are the following. Case
(Rule) defines the semantics of a PTL rule. The semantics is defined as the
union of the target objects obtained from bindings to source objects that sat-
isfy the Boolean condition. Cases (Pattl) and (Patt2) bind source patterns
to object names of the source model. Cases (Modl) and (Mod2) create the
target object from the target pattern, and attribute and role bindings are
obtained in cases (Mod3) and (Mod4). Cases from (Exprl) to (Expr7) and
from (Booll) to (Bool3) cover with the value of an expression.

Notation:
We have adopted the following notation.

(1) The expression I]e:vprﬂ(‘;nv where (pn,v) = (pni,v1), ..., (Pnn, v,) de-
notes the value of expr in the model M, with respect to the assign-
ments pny — v1,...,pn, — v, of pattern names to object names of

the model M

2 Assuming that at arguments with inconsistent results, the result is undefined.
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(Rule) [ rule rn from ps where bc to obs [M =
U ey vy M _ Jobs|2M___
{veCM (pn,CM)=<<ps>>M Jbc| pn,v is true} (pn,v)
(Pattl) << pnimm!C >>M= (pn,CM) whenever C™ € C
(Patt2) << (psi, ..., psn) >>M= << ps >>M

(ModL) [qnimmlC (bds ., b I = M' Un i Iodi| 200
pn,v - - pn,v
where M’ = ({CM}, {3, {}, {3, {o}),
CM = {0} and 0 = gen_id(7, qn), whenever CM € C
(Mod2) Joy, ..., O"H?:niv) = Ui<i<nloi]
(Mod3) [|att<—expr|](<M’(;> =M,
pn,v

where M’ = ({},{att™'}, {}, {},{}), att™’ (o) = [eapr|M

(pn,v)

NSNS NG N

)

where ([|eatpr1[|%77m1

(Expr7) |sequence([ezpr])]
(Booll) |

(Bool2) [expr;==exprz]
)1

(Bool3

..., lexpra
M

pn,v)
M

pn,v)
if Jexprs|

then true else false

expr; and exprs|

T~

then true else false

(pn,v)
(Mod4) [|7"<—expr|](<ﬂ/17";> =M,
pn,v
where M’ = ({}, {1 -4}, 01, (), ' (0) = leaprt
M —
(Exprl) ﬂfuﬂ(pn’v) =
(EBxpr2) i =,
(Expr3 pni@att[]?:nu = attM(v;)
(Exprd pni@r@attﬂ(pn = attM (rM(v;))
(Expr5) |h(expry, ..., emprn)ﬂ(/\;n’v) = hM(expry ﬂé\;tni,v)’ e I]eacprnﬂf\;ni’v)
(Expr6) |resolveTemp((expry, ..., €xprn), qn)l]?;ln o=
[aEt
= U1gignﬂezp7“iﬂ%7m
if Jexpry ﬂf\:n 5 and ﬂemprgﬂ?;n
?:nﬂz) ¢ ?;nMv) - ﬂemprgﬂ?‘;ﬂv)
expr;= \ =expry l]i(pn,v) if |expry I]i(p,v) = ﬂexprgﬂ(pnﬁv

) then false else true

Figure 2: Declarative Semantics of PTL

<M, 0>

(pn,v)
replacing pny — vy, ...,pn, — v, in M

denotes the value of expr in the object o

(2) The expression |expr]

(3) The expression []bdl]?:n 3 where bd is a binding represents the model

obtained replacing pn; — vy, ..., pn, — v, of pattern names to object
names of the model M

(4) The expression ﬂoﬂz\;n o) where o is an object represents the model
obtained with respect to the assignments pn; — vq,...,pn, — v, of

pattern names to object names of the model M
(5) The expression v € CM denotes the sequence v; € CM, ... v, € CM

(6) The expression << ps >>M denotes the sequence << ps; >>M
<< ps, >>M and represent a sequence of assignments of pattern
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names to class interpretations (pn, CM) = (pny, CiY) ..., (pn,, C;\)

(7) The expression (vq,...,U,) —>Zf o, used in the resolve Temp definition
(case (Expr6)), denotes that a sequence of object names (vy,...,v,),
v; € OM, 1 < i < n, is transformed into the object o of pattern
name p with regard to P, that is, there exists (rule rn from ps where
bc to obs) € P, ps = psi,...,ps, such that << ps >>M= (pn, CM),

v E CM; Hbcué\;n ) is true, and gen_id(f},p) i

(8) Finally, gen_id is a bijective function that takes n object names of M
and a pattern name p and returns an object name of M’. We assume
that rules cannot map the same objects to the same object name (as
usual in ATL).

4.2. Case Study

In this section we would like to summarize the main elements of the model
transformation setting. With this aim, we describe a case study, used in the
rest of the paper.

4.2.1. Source and Target Models

The model A of Figure 3 represents the modeling of a database. We
will call this kind of modeling “entity-relationship” modeling of a database in
contrast to the model B of Figure 4 which will be called “relational” modeling
of a database.

The model A of Figure 3 can be summarized as follows. Data (i.e. entities)
are represented by classes (i.e., Student and Course), including attributes.
Stores are defined for each data (i.e., DB Students and DB_ Courses); stores
are composed of data, therefore specifying a composition relationship be-
tween store and data. Stores are unique for each data. Relations are rep-
resented by associations and relation names are association names. Besides,
roles are defined (i.e., the students, the courses, is_registered and register).
Data attributes are class attributes. Each data has a unique key attribute.
It can be considered as a constraint of the source model of the proposed
transformation. Relations can be adorned with qualifiers and navigability.
Qualifiers are used to specify the key attributes of each data becoming for-
eign keys of the corresponding association. Therefore qualifiers have to be
selected from the key attributes of the corresponding data. Such a require-
ment can be considered as a constraint of the source model of the proposed
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DB_Students DB_Courses

1 1
0..” the_students the_courses 0.7
Student Course
id_student : int id_course : int
name : String id_student :int | is_registered 0. [ ooiren e | title : String
. id_course : int .
age :int 1 L — | credits:float
register

Figure 3: Entity-relationship modeling of the Case Study

<<table>> <<table>> <<table>>
the_students the_courses register
1 1
1
0..* line 0.* line 0..* line
! ! 1 1
—’ <<row>> ‘— <<row>> 1 <<row>>
Student Course registerCourse
1 col col 1
key ] 1 1 ] 1 col 1 foreign
<<column>> <<column>> <<column>> <<column>> <<column>>
id_student name credits title registerCourseid_course
type :int type : String type : float type : String type :int
foreign
1 col 1 key 1
<<column>> <<column>> <<column>>
age id_course is_registeredCourseid_:
type :int type :int type : int

Figure 4: Relational modeling of the Case Study

transformation. The navigability describes which of them can be accessed
and which mapping should be efficiently implemented.

Figure 4 shows the relational modeling of the same database. Such mod-
eling is also defined by a class diagram. In model B, Tables are composed
of rows, and rows are composed of columns. Furthermore, line is the role of
the rows in the table, key is the role of the key attributes in rows, foreign is
the role of the foreign keys in rows, and col is the role of non keys and non
foreign keys in rows. Finally, each column has an attribute called type.
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E Store

= name : EString

1..1 | contained_in

contains | 1.1

*
E Attribute 0-
. E Data
= name : EString attr_of
= type : EString 1 name : EString
= key : EBoolean = container : EString
1.1
is 1.1 | is_data
0..* | role_of
1.1 E Role R E Qualifier
[ Relation Estri is
£ h | 0 name : EString 11 = name : EString
= name : EStrin: as_role ; . .
9 — o = navigable : EBoolean = type : EString
I min : EintegerObject | ;1 5
is_role | max : Eint
has
E Table
1 name : EString
1.1 table
has 1.1
has_col E Row has_foreign
11 = name : EString 1.1
1.1 has_key
is_col | 0..* is_key | 0..* is_foreign | 0..*
E Col E Key E Foreign
= name : EString = name : EString = name : EString
= type : EString = type : EString 1 type : EString

Figure 5: EMF-based Meta-model of the Source/Target Models

4.2.2. Source and Target Meta-models

Figure 5 represents the EMF meta-models A and B of both types of mod-
eling. In the meta-model A, DB_Students and DB_ Courses are instances
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of the class store, while Student and Course are instances of the class data,
and the attributes of class Student and class Course are instances of the class
attribute. Also is_registered and register are instances of the class role, and
id_ student, id_ course of the class qualifier. In the meta-model B, tables and
rows of the target model are instances of the corresponding classes, and the
same can be said about key, col and foreign classes.

4.2.8. Transformation

Now, the problem of model transformation is how to transform a model
of type A (like Figure 3) into a model of type B (like Figure 4). The trans-
formation is as follows.

The transformation generates two tables: the students and the_ courses.
Each table includes three columns that are grouped into rows. The table
the students includes for each student the attributes of Student of Figure
3. The same can be said for the table the courses. Given that the associ-
ation between Student and Course is navigable from Student to Course, a
table of pairs, called register, is generated to represent the assignments of
students to courses, using registerCourse as name of the row. The columns
1s_ registeredCourseid_ student and registerCourseid_ course taken from qual-
ifiers, play the role of foreign keys.

4.2.4. Validation

Now, we show how source and target models are validated by consider-
ing constraints, and transformations are validated by considering cross con-
straints on source-target models. We can see these constraints in Figure 6.
Constraints are specified by PTL programmers and should be checked for
each transformation. Using the Eclipse plugin, constraints can be written in
several files and checked for the transformation. It is worth observing that
constraints about source and target models in isolation are insufficient for
proving the soundness of the transformation. For instance, a target model
can have foreign keys, but a cross constraint is needed: foreign key names are
concatenations of role, role end and key names. We will show in Section 6.1
that such constraints can be expressed by OCL, and how to translate OCL
expressions into Prolog goals.

4.8. PTL Example

Now, we describe how the transformation can be implemented in our
PTL language. PTL consists of meta-model definitions (see Figure 7),
mapping rules (see Figure 8) and helpers (see Figure 9).
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Constraints on Source Models

N N N N N

<

< <

1) All attributes of a data have distinct names
2)  Each data has a unique key attribute

3)  All data have distinct names

4)  All data have distinct containers

5)  All qualifiers are key attributes

6)  All role names of a data are distinct

Constraints on Target Models

7)  All table names are distinct
All row names are distinct

Figure 6: Model validation: constraints

metamodel (er,

[

class (data, [name,container]),
class(store, [namel),

class (attribute, [name,type,keyl),
class(relation, [namel]),

class(role, [name,navigable,min,max]),
class (qualifier, [name,typel),
role(contains ,store,data,"1","1"),
role(contained_in ,data,store,"1","1"),
role(attr_of ,data,attribute ,"0","*"),
role(is,attribute ,data,"1","1"),

role(has_role,role,relation,"1","1"),
role(is_role,relation,role,"0","*x"),
role (has,qualifier ,role,"1","1"),
role(is,role,qualifier ,"1","1"),
role(is_data,role,data,"1","1"),
role(role_of ,data,role,"0","*x")

Figure 7: Example of meta-model definition in PTL

Figure 7 shows the definition of the meta-model A of Figure 5. Classes
and roles are defined together with attribute names and cardinality restric-
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) Row names are either data names or concatenations of role and role ends
) Foreign key names are concatenations of role, role end and key names




rule table2_er2rl from
p:er!role where (p@navigable==true and p@max=="*") to
(t:rlt!table(
name <-p@name ,
has<-r),
r:rl!'row(
name<-concat (p@name ,p@is_data@name) ,
table<-t,
is_foreign<-sequence(
[resolveTemp ((p@is,p),f1),
resolveTemp ((inversel_qualifier (p),inverse2_qualifier(p)),£2)1))
).
rule foreign2_er2rl from
(p:er!qualifier ,q:er!role) where (p@has == g and g@navigable==false) to
(f2:r1!'foreign(
name<-concat (concat (q@name ,q@is_data@name) ,p@name) ,
type<-pQ@type,
has_foreign<-resolveTemp (inverse_row(p),r)

)

Figure 8: Examples of rules in PTL

inverse_row(IdQ,IdRole2):-qualifier_has(er,IdQ,IdRole),
role_has_role(er,IdRole, IdAss),
relation_is_role(er,IdAss,IdRole2),
role_navigable (er,IdRole2,true) .

Figure 9: Example of helper in PTL

tions. The rule table2 er2rlof Figure 8 defines how navigable roles are trans-
formed into tables and rows (in the case study, register and registerCourse).
The name of the table is the name of the role, and the name of the row is
built from the concatenation of the name of the role, and the name of the role
end. Moreover, we have to set the role ends from (to) tables to (from) rows
(i.e., has and table) together with the role is foreign. The role is_foreign
contains a sequence of two elements (is_ registeredCourseid_ student and reg-
isterCourseid_ course). For this reason the sequence constructor is chosen.
Besides, resolveTemp retrieves with two helpers called inversel qualifier,
inverse2 qualifier the elements is_ registeredCourseid_ student and register-
Courseid_ course. The rule foreign2_er2rl of Figure 8 computes the foreign
class is_registeredCourseid_ student, which is computed from roles and qual-
ifiers which are not navigable. The rule also sets the role has foreign with
a helper called inverse_row, which computes the row registerCourse. Figure
9 shows the definition of the helper inverse row. Helpers make use of the
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Prolog meta-model library (see Section 3).

It is worth observing that helpers are defined with the following conven-
tion: helpers can be defined in PTL with several arguments, but the last one
has to be the result of the helper. In other words, predicates associated to
helpers work as functions. The previous convention requires that helpers in
PTL mapping rules have n arguments while code of helpers has n + 1 argu-
ments. The full PTL program of the case study is shown in the Appendix B
and can be downloaded from 3. In the Appendix A we have included a more
complete batch of examples developed with PTL.

5. Encoding with Prolog rules

Now, we show how PTL mapping rules are encoded by Prolog rules.

5.1. Prolog library for meta-models

role_id(er, A) :-role(er, A, [name(_), navigable(_), min(_), max(_)]1).
data_container(er, A, B) :-data(er, A, [name(_), container(B)]).
attribute_type(er, A, B) :-attribute(er, A, [name(_), type(B), key(_)1).
qualifier_has(er, A, B) :-associationEnds(er, has, A, B).
relation_is_role(er, A, B) :-associationEnds(er, is_role, A, B).

Figure 10: Prolog library

For each meta-model definition a Prolog library is automatically gener-
ated. For instance, the Figure 10 contains (some of) the predicates generated
to handle the er meta-model of Figure 7. We have three kinds of predicates:
(a) those for accessing class attributes (for instance, data_ container and at-
tribute_type) (b) those for accessing roles (for instance, qualifier has and
relation_is_role), and (c) a special kind of predicates that retrieve the iden-
tifier of a certain object (for instance, role id). The predicates (a) and (c)
call predicates representing class objects, which are called as the class name,
and they have as arguments: the name of the meta-model, the object identi-
fier and a Prolog list with the attributes: each attribute is represented by a
Prolog term of the form: attribute name(value). The predicates of type (b)
call to a predicate called associationEnds, representing role end objects. The
associationEnds predicate has as arguments: the name of the meta-model,

Shttp://indalog.ual.es/mdd/pt12
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(rl) object(mt;, ct;, Var,Var,[atty(Vary), ..., att,(Varl)],pnt;) : —
rn(Var),
enc(expry, (pns, Var),Vary), ..., enclexpry,, (pns, Var),Varl),
gen_id(Var, pnt;, Var).

(r2) associationObjects(mt;, r;, Var, Var}) : —rn(Var),
enc(expry, (pns, Var), Vary),

object(mt;, ct;, Var,Var, ,pnt;).

(r3) rn(Var) : —csy_id(msy, Vary),...,cs, id(ms,, Vary,),
enc(be, (pns, Var)).

Figure 11: Encoding of PTL

the name of the role, and the identifiers of the role ends. Predicates object
and associationEnds will be stored as Prolog facts representing the elements
of a certain (source and target) model.

5.2. Rules encoding
Given a PTL mapping rule of the form:

rule m from ps where bc to obs

where ps = pns : mslcs and obs = pnt : mt!ct(bd) then the encoding (for
each pnt; : mt;!ct;(bd;)) is defined in Figure 11 where in (r1) att,<—expr, are
the bindings to attributes in bd; and in (12) r; <—expr’; are the bindings to
roles in bd,.

The predicate object encodes the creation of objects of the target model.
The predicate associationObjects encodes the creation of links between ob-
jects of the target model. There are rules object and associationObjects for
each object and each link created by one rule. Hence, one PTL mapping rule
is encoded by a set of Prolog rules, one rule for each object that is created,
and one rule for each role set by the rule. The object predicate generates a
unique identifier for each object of the target model. With this aim, a Prolog
predicate called gen_id is used. The Prolog library for meta-models and the
representation of models by Prolog facts makes possible to encode PTL rules.
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el
e2

(el) expr = v then Var = v

(e2)

(e3) expr = pns;Qatt; then cs; _att;(ms;, Var;, Var)
(e4)

(€5)

expr = pns; then Var = Var;

ed) expr = pns;Qr; then associationEnds(ms;,r;, Var;, Var)

eb) expr = pns;Qr;Qatt; then
assoctationEnds(msj,rj, Var;, Var.),C _att;(ms;, Vare, Var)
whenever range(r;) = C

(e6) expr = h(expr) then
enc(expr, (pns, Var), V), h(Vi,...,Vy, Var)

(e7) expr = resolveT emp(expr, gn) then

enc(expr, (pns, Var),V),object(_, ,Var,V,  qn)

(e8) expr = sequence([expr]) then

enc(expr, (pns, Var), Var)

Figure 12: Encoding of expressions

(bel) expr = expry and expry then
enc(expry, (pns, Var)), enc(expra, (pns, Var))
(be2) expr = expry == exprs then
enc(expry, (pns, Var), Var), enc(expry, (pns, Var), Var)

(be3) expr = expry =\ = exprs then

enc(expry, (pns, Var), Vary), enc(expra, (pns, Var),Vars), Var:\= Vary

Figure 13: Encoding of Boolean expressions

In the previous definition, enc(expr, (pns, Var),Var) is a conjunction of
Prolog atoms, encoding an expression expr in a variable Var, with respect
to an assignment of pattern names to variables pns; — Vary,...,pns, —
Vary,. It is defined in Figure 12. Finally, enc(bc, (pns, Var)) is the encoding
of a Boolean condition with respect to an assignment of pattern names to
variables, pns; — Vary,...,pns, — Var,. It is defined in Figure 13.

For instance, we can see in Figure 14 the encoding of PTL rule for-
eign2_er2rl of Figure 8. The object and associationObjects predicates define
new class objects and role end objects in the target model. They make use
of a predicate called the same as the rule, in this case, foreign2 er2rl. Such
predicate retrieves the objects of the source model and encodes the Boolean
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object(rl, foreign, L, (A, B),[name(X), type(C)], £2) :-
foreign2_er2rl ((A, B)),
qualifier_type(er, A, C),
qualifier_name(er, A, I),
role_is_data(er, B, E),
data_name(er, E, G),
role_name(er, B, F),
concat (F, G, H),
concat (H, I, K),
gen_id ((A, B), f2, L).

associationObjects(rl, has_foreign, C, B) :-
foreign2_er2rl ((A, D)),
qualifier_id(er, A),
inverse_row (A, B),
object (rl, foreign, C, (A, D), _, £2).

foreign2_er2rl ((A, B)) :-
qualifier_id(er, A),
role_id(er, B),
qualifier_has(er, A, B),
role_navigable(er, B, false).

Figure 14: Encoded Rule

condition of the rule.

The encoding has taken into account the declarative semantics defined
for PTL. The following theorem establishes the soundness and completeness
of the encoding.

Given a PTL program P = (MM RP, HF) where MM? are the meta-
model definitions of P, R” the ATL style rules of P and H” the helpers of
P, we denote by enc(P) the encoding of MM?” and R” together with the
rules of H”. Given a model M, we denote by enc(M) the encoding of M
with Prolog facts.

Theorem 1 (Soundness and Completeness). Given a program P, a model
M that interprets the source meta-models of P, and M' = Uj<icp|ri|™,
where RY =ry, ..., 1, then:

— object(mt, ct,o0,7, [atti(ar), ..., atty (am)],q) is a logic consequence of
enc(P) U enc(M) iff there exist v € OM, mt target meta-model of P,
o € ct™ where att (0) = a; and gen_id(v,q) = o

— associationObjects(mt,r;j,0,0;) is a logic consequence of enc(P) U
enc(M) iff there exists mt target meta-model of P and o,0; € oM

where rjw(o) =0
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Proof. We have to prove that a Prolog atom ¢ is a logic consequence of the
program enc(P) U enc(M) in the following cases:

(a) case ¢ = rn(v) iff exists a rule (rule rn from ps where be to obs) € P,
ps = pns :msles such that v € CM, (pns, CM) = << ps >>M and

M .
ﬂbcﬂm is true.

(b) case ¢ = object(mt,ct,o,v,[atti(ay),. .., atty, (am)], pnt;) iff there ex-
ists U € OM, mt target meta-model of P, and a rule (rule rn from ps

where be to obs) € P, ps = pns : mslcs, obs = pnt : mt!ct_(%l), where
att,<—expr,, 1 < p < m are the bindings to attributes in bd; such that
0oe OM o e M, att;\’l/(o) =a,, 1 <p<m, |expr, [ — = a,,

M (pns,v)
I]bC” (pns,v)

is true and gen_id(v,pnt;) = o

(¢) case ¢ = associationObjects(mt,r;,0,0;) iff there exists v € OM, mt
target meta-model of P and a rule (rule rn from ps where be to 0bs) € P,

ps = pns : msles, obs = pnt : mt!ct(bd), where ri<—erpri, 1 <j <k
are the bindings to roles in bd; such that o € O™, o € ct™’', 7”]/-\/‘/(0) =

0j, |expr; H&Tw |]bc|] ) is true and (vi,...,v,) =D, 0
(d) case ¢ = enc(expr, (pns,v),v) iff []expr[](pns 5=
(e) case ¢ = enc(be, (pns,v)) iff [|bc|] is true.

(f) case ¢ = object(_, ,0,v, ,q) iff (vl,...,vn) —ro

Where the cases (b) and (c) correspond with the two cases considered in the
theorem statement. We prove this result by induction on the length n of the
deriwation of ¢ from enc(P) U enc(M).

Case n=0:

They are atoms obtained from cases (el) to (e4) in Figure 12 and therefore
case (d) of the theorem. From the representation of M with Prolog facts,
and by rules from (Exprl) to (Exprd) of Figure 2 we can conclude the result.

Case n>0:
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— In the case (a): rn(v) is obtained from rule (r3) of Figure 11; now,
cs; _id(ms;,v;), 1 <i < n holds iff v e CM, (pns, CM) = << ps >>M
from cases (Pattl) and (Patt2) of Figure 2; by induction hypothesis

enc(be, (pns,v)) is a logic consequence of enc(P)Uenc(M) iﬁﬂbcﬂ&m

1s true, and thus we obtain the result.

— In the case (b): object(mt,ct,o0,v,|atti(ayr),..., atty (an)],q) is ob-
tained from rule (r1) of Figure 11; now, by induction hypothesis rn(v) is
a logic consequence of enc(P)Uenc(M) iff |be|4— is true; in addition,

(pns,v)
by induction hypothesis enc(expr,, (pns,v),a,) is a logic consequence of
enc(P) U enc(M) iff |expry|24— = a,; in addition gen_id(v, pnt;) =

(pns,v)
o. Thus applying cases (Modl), (Mod2) and (Mod3) of Figure 2, we
obtain the result.

— In the case (c) we can reason analogously to the previous case, applying

(r2) of Figure 11, with cases (Modl), (Mod2) and (Mod4) of Figure 2.

— In the case (d): enc(expr,(pns,v),v) and cases from (e5) to (e8) of
Figure 12; we can also reason by induction hypothesis with cases from
(Expr5) to (Expr8) of Figure 2.

— In the case (e): enc(be, (pns,v)); we can also reason by induction hy-
pothesis, from cases from (bcl) to (be3) of Figure 13 and cases from
(Booll) to (Bool3) of Figure 2.

— In the case (f): object( ., 0,0, ,q) is obtained from rule (r1) of
Figure 11. We can conclude the result by induction hypothesis and the
definition (vy,...,v,) =T o.

5.3. PTL interpreter

Now we show how a PTL program is executed. The PTL program has
to include meta-model definitions (i.e., source and target models), and the
set of PTL (i.e., mapping and helper) rules. We have to specify in the PTL
program the location of source and target models with the directives input
and output.

A predicate ptl is called with the file name in which the PTL code is
included, for example: 7- ptl(’er2rl.ptl’). The predicate ptl is defined
in Figure 15.
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ptl(Program):-[Program],
generate_metamodels,
generate_rules,
load_models,
clean_transformation.

load_model (A) :-
object(A, B, C, D, E, F),
assert (objectM(A, B, C, D, E, F)),
fail.
load_model (A) :-
associationObjects (A, B, C, D),
assert (associationObjectsM(A, B, C, D)),
fail.
load_model (_).

Figure 15: PTL interpreter

The ptl predicate automatically generates the Prolog library of the meta-
models defined in the PTL program (predicate generate metamodels), it
encodes PTL rules with Prolog rules (predicate generate rules), and it gen-
erates the target models from the source models (predicate load models).
Since the execution is carried out in main memory, it cleans memory at the
end (predicate clean_transformation).

The previous load models predicate calls to an auxiliary load model
predicate, which at the same time, calls to object and associationObjects
predicates, which encode elements created by the rules, and each element
is asserted into Prolog (main) memory, in the form of a Prolog fact, called
objectM and associationObjectsM, respectively. The code of load_model pred-
icate is shown in Figure 15.

6. Mapping of ATL to PTL

As part of the evaluation of PTL we have considered how to map a frag-
ment of ATL to PTL. In this way, we can align PTL with a standardized lan-
guage, and compare PTL with ATL in expressivity and performance. With
respect to expressivity a subset of PTL is equivalent to a core fragment of
ATL. With regard to performance, we will show in Section 7.4 a comparison
between ATL and PTL, as well as a comparison between OCL and Prolog
as constraint validation languages. PTL has the same syntax as ATL for
declarative mapping rules. The difference from PTL and ATL is the use of
OCL as mechanism to query the source model. PTL uses Prolog instead
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OCL-LiteExpr ::=  PathAttributes | PathObjects SelectExpr |
oclIsTypeOf(mm!C) |
not OCL-LiteExpr |
OCL-LiteExpr and OCL-LiteExpr |
OCL-LiteExpr or OCL-LiteExpr |
OCL-LiteExpr implies OCL-LiteExpr
PathAttributes = PathAttributes
PathAttributes <> PathAttributes

PathAttributes ::= mml!C.att | mm!C.r.att | v.att | v.r.att
PathObjects ::= mm!C.r | mm!C.alllnstances() | v.r
SelectExpr ::= BooleanOp |

— select(v | OCL-LiteExpr) SelectExpr

— collect(v | PathAttributes)
BooleanOp ::= — exists(v | OCL-LiteExpr) |

— forall(v | OCL-LiteExpr) |

— size()>0 | — size()=0 |

— isEmpty() | = notEmpty()

Figure 16: OCL expressions

OCL. Nevertheless, we can still consider a mapping from OCL to Prolog.
This mapping can be defined for a (expressive enough) fragment of OCL.
Therefore, a subset of PTL can be mapped to a subset of ATL (the declara-
tive part of ATL) using the fragment of OCL. Nevertheless, PTL is equipped
with Prolog, which is a fully-fledged programming language and, thus, PTL
is more expressive than the ATL fragment. A mapping for a more rich frag-
ment is considered as future work. Additionally, full ATL includes additional
elements: ECore inheritance, imperative rules, lazy rules, called rules (among
them the entry point), rule inheritance, as well as the ATL refining mode.
In order to incorporate such mechanisms to PTL we should modify not only
the implementation but the semantics. It is also considered as future work.

The fragment of OCL we consider is defined in Figure 16. This is a
modified version of OCL-Lite [35]. We have extended OCL-Lite to include
alllnstances and collect as well as =, <> operators. We have removed
oclAsType and other typing operators because PTL is untyped. Let us
remark that some other OCL expressions can be translated to this OCL
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(ocll) | enc(mm!C.att) = C'_att(mm,D, F)

ocl2) | enc(mm!C.r.att) = C_id(mm,D),C_r(mm,r,D,E),R_att(mm,E,F)
if range(r) = R

(ocl3) | enc(mm!C.r s) = C_id(mm, D), C_r(mm,r,D,E), enc(s,mm!R, (E, F))
if range(r) = R

(ocld) | enc(mm!C.alllnstances() s) = enc(s, mm!C, (D, E))

—~

Figure 17: Encoding of OCL expressions (I)

fragment. This is the case, for instance, of isUnique, one and reject.

The encoding of this fragment of OCL is defined by the function enc(OCL-
LiteExpr) which returns a Prolog goal. The encoding is shown in Figures 17
and 18, where Figure 17 encodes non contextualized expressions (i.e., starting
from mm!C') and the Figure 18, encodes contextualized expressions.

PathObjects are encoded by the library of meta-models (see Figure 17).
For instance, er!data.allInstances() is encoded by data_id(er,A), where
A represents the identifier of the object. PathAttributes are encoded also by
the library of meta-models (see Figure 17). For instance, er!data.name
is encoded by data_name(er,A,B), where A represents the identifier of the
object, and B the name.

Expressions can be contextualized, that is, a given OCL variable can range
from a given model and metamodel. For encoding contextualized expressions
(see Figure 18), we use two Prolog variables that are used as input and output
of the encoded expression. For instance, v.name in the context er!data
is encoded by data_name(er,A,B), where A represents the identifier of the
object, and B the name.

OCL not/and/or/implies/ =/ < > are encoded by Prolog \+/, /; /->/=/\==
(see Figure 18). OCL euxists, select and collect are encoded by Prolog goals,
while OCL forAll is encoded by the negation of the goals. For instance, the
following OCL select subexpression:

er!data.alllnstances () -> select(d | d.attr_of -> exists(a | a.key))

is encoded by:

:-data_id(er,A) ,data_attr_of (er,A,D),attribute_id(er,D),
attribute_key(er,D,B) ,B=true

Analogously, the following OCL collect subexpression:

28



(ocl5) | enc(v,mm!C,A) = C_id(mm,A)

(ocl6) | enc(v.att,mm!C, (A, B)) = C_att(mm, A, B), B = true
if range(att) = Boolean
(ocl7) | enc(v.att,mm!C, (A, B)) = C _att(mm, A, B)

otherwise

(ocl8) | enc(v.r.att,mm!C,(A,B)) = C_r(mm,A,E),D _att(mm,E,B)
if range(r) = R

(ocl9) | enc(v.r s,mml!C,(A,B)) = C_r(mm,r, A, D), enc(s, mm!R, (D, B))
if range(r) = R

enc(oclIsTypeOf (mm!C), mm/IC", (A, B)) = C_id(mm, A)

);
enc(not o,mm!C, (A, B)) = \ + enc(o,mm!C, (A, B))
(4,

(ocl10)
(oclll) (
(ocl12) | enc(ol and 02, mm!C, (A, B)) = enc(ol,mm!C, (A, D)), enc(o2, mm!C, (D, B))
( ) | enc(ol or 02, mm!C, (A, B)) = enc(ol,mm!C, (A, B));enc(02, mm!C, (A, B))
( ) | enc(ol implies 02, mm!C, (A, B)) =

enc(ol, mml!C, (A, D))—> enc(02, mm!C, (D, B)); false

(ocllb) | enc(pl = p2,mm!C, (A, B)) =
enc(pl,mm!C, (A, D)), enc(p2, mm!C, (A, E)),D == E

(ocll6) | enc(pl <> p2,mm!C, (A, B)) =
enc(pl,mm!C, (A,D)) ne(p2, mm!C, (A, E)),D\ == E

(ocll7) | enc(— exists(v|c), mm!C, (A, B)) = enc(v,mml!C, A), enc(c, mm!C, (A, B))

(ocl18) | enc(— forAll(vlc), mm!C, (A, B)) =
\ + (enc(v,mm!C, A),\ + enc(c, mm!C, (A, B)))

(ocl19) | enc(— select(v|o)s,mm!C, (A, B)) =
enc(v,mmlC, A), enc(o,mm!C, (A, D)), enc(s,mm!C, (D, B))

(0cl20) | enc(— collect(v|p), mm!C, (A, B)) =
enc(v, mmlC, A), enc(p, mm!C, (A, B))

(ocl21) | enc(— size() > 0, mm!C, (A, B))=enc(v,mm!C, A)
(0cl22) | enc(— size() = 0, mm!C, (A, B))=\ + enc(v, mm!C, A)
(0cl23) | enc(— notEmpty(), mm!C, (A, B))=enc(v, mm!C, A)
(ocl24) | enc(— isEmpty(), mm!C, (A, B))=\ + enc(v, mm!C, A)

Figure 18: Encoding of OCL expressions (II)

er!data.alllnstances() -> collect(d | d.attr_of)
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enc(er!data.alllnstances() — forAll(d | d.attr _of — exists(a | a.key))) = G
G=enc(— forAll(d|d.attr _of — exists(ala.key))), erldata, (A, B))
enc(— forAll(d|d.attr _of — exists(a|a.key)), erldata, (A, B)) =\ + (G1,\ + G2)
Gl=enc(d, er'data, A)
G2=enc(d.attr _of — exists(a|a.key), erldata, (A, B))
enc(d, erldata, (A, D))=data_id(er, A)
enc(d.attr _of — exists(ala.key), erldata, (A, B))=data_attr _of (er, A, D), G3
G3 = enc(— exists(ala.key), erldata, (D, B))
range(attr _of) = attribute
enc(— exists(ala.key), erlattribute, (D, B)) = G4, G5
G4=enc(a, erlatiribute, D)
Gb=enc(a.key, erlattribute, (D, B))
enc(a, erlattribute, D) = attribute _id(er, D)
enc(a.key, erlattribute, (D, B)) = attribute _key(er, D, B)), B = true

Figure 19: Example of OCL expression encoding

is encoded by:

:-data_id(er,A),data_attr_of (er,A,D)

|

Finally, OCL size>0 (and the equivalent notEmpty()) are encoded the
same as OCL exists, while OCL size=0 (and the equivalent isEmpty()) is

encoded by the negation, thus the same as OCL forAll

Let us see an example of encoding of using the rules of Figures 17 and 18.

Let us suppose the OCL expression:

er!data.alllnstances() -> forAll(d | d.attr_of -> exists(a | a.key))

The encoding is shown in Figure 19, resulting in:

\+ (data_id(er,A), \+ (data_attr_of(er,A,D),attribute_id(er,D),
attribute_key(er,D,B) ,B=true))

6.1. Model Validation with Prolog and OCL

Model validation is carried out with Prolog. Next validation rules of the

constraints expressed in Figure 6 are shown.

vrule (1) : - \+(data_attr_of(er,D,Al1),data_attr_of (er,D,A2) ,A1\==A2,
attribute_name (er ,A1,N1) ,attribute_name (er,A2,N2) ,N1==N2).
vrule (2) : - \+(data_id(er,D),\+ (data_attr_of(er,D,A),
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attribute_key(er,A,true))).

vrule (2) : - \+(data_id(er,D),(data_attr_of (er,D,A),attribute_key(er,A,true),
data_attr_of (er,D,B) ,attribute_key(er,B,true) ,A\==B)).

vrule (3):- \+(data_id(er,D1),data_id(er,D2),D1\==D2,
data_name (er ,D1,N1) ,data_name (er ,D2,N2) ,N1==N2).

vrule (4) : - \+(data_id(er,D1),data_id(er,D2),D1\==D2,
data_container (er ,D1,N1) ,data_container (er,D2,N2),N1==N2).

vrule (5) : -\+(qualifier_id(er,Q) ,\+ (attribute_id (er,A),
qualifier_name (er,Q,N1) ,attribute_name (er ,A,N2),N1==N2)).

vrule (6) :- \+(data_role_of (er,D,R1),data_role_of (er,D,R2),R1\==R2,
role_name (er ,R1,N1) ,role_name (er ,R2,N2) ,N1==N2) .

vrule (7) : -\+(table_id(rl,T1),table_id(rl,T2),T1\==T2,table_name(rl,T1,N1),
table_name (rl,T2,N2),N1==N2).

vrule (8) : -\+(row_id (rl,R1) ,row_id(rl,R2) ,R1\==R2,row_name (rl,R1,N1),
row_name (rl,R2,N2) ,N1==N2).

vrule (9) : - \+(row_id(rl,R),((row_is_foreign(rl,R,F),row_is_key(rl,R,K));
(row_is_foreign(rl,R,F),row_is_col(rl,R,C)))).

vrule (10) : - \+(key_id(rl,K) ,\+(attribute_id(er,A),key_name(rl,K,N1),
attribute_name (er ,A,N2) ,N1==N2)).

vrule (10) : - \+(key_id(rl,K) ,\+(attribute_id(er,A) ,key_type(rl,K,N1),
attribute_type (er,A,N2) ,N1==N2)).

vrule (11) : -\+(table_id(rl,T), \+(data_id(er,D),data_container (er,D,N1),
table_name (rl,T,N2),N1==N2) ,\+ (role_id(er,R),
role_name (er ,R,N1),table_name(rl,T,N2),N1==N2)).

vrule (12) : - \+(row_id(rl1,R), \+(data_id(er,D),data_name(er,D,N1),
row_name (rl,R,N2) ,N1==N2) ,\+ (role_id(er,RL),
data_id(er,D) ,role_name (er ,RL,N1) ,data_name (er,D,N3),
row_name (rl,R,N2),concat (N1,N3,N2))).

vrule (13) : - \+(foreign_id(rl,F), \+(data_id(er,D),data_name(er,D,N1),
role_id(er,R) ,role_name (er ,R,N2) ,key_id (rl,K),
key_name (rl,K,N3) ,foreign_name(rl,F,N4),
concat (N2,N1,AUX),concat (AUX,N3,N4))).

The equivalent OCL expressions are as follows:

(1) er!data.alllnstances()->forAll(d| d.attr_of->isUnique(ala.name))
(2) er!'data.alllnstances()->forAll(d| d.attr_of->exists(ala.key))
(2) er!data.alllnstances()->forAll1(d| d.attr_of->isUnique(ala.key))
(3) er!data.alllnstances()->isUnique(d|d.name)
(4) er!data.allInstances()->isUnique(d|d.container)
(5) er!qualifier.alllnstances()->forAll(q| er!attribute.allInstances ()
->exists(ala.name=q.name))
(6) er!data.alllnstances()->forAll(d|d.role_of->isUnique(r|r.name))
(7) rl'table.alllnstances()->isUnique(t|t.name)
(8) rl!'row.allInstances()->isUnique(r|r.name)
(9) rl'row.alllnstances ()->forAll(r | r.is_foreign->isEmpty ()
or (r.is_key->isEmpty () and r.is_col->isEmpty ()))
(10) rl'key.alllnstances()->forAll(k | er'!attribute.allInstances()
-> exists(a | a.name=k.name))
(10) rl'key.alllnstances()->forAll(k | er'attribute.alllnstances()
-> exists(a | a.type=k.type))
(11) rl'table.allInstances()->forAll(t | (er!data.allInstances ()
-> exists(d | d.container=t.name))
or (er!role.alllnstances()->exists(r | r.name=t.name)))
(12) rl'!'row.allInstances()->forAll(r | (er!data.alllnstances ()
-> exists(d | d.name=r.name)) or (er!data.alllnstances ()
-> exists(d | er!role.alllnstances ()
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->exists(rl | r.name=rl.name+d.name))) )
(13) rl!foreign.allInstances()->forAll(f | er!role.alllnstances ()

-> exists(r | er!data.alllnstances ()
-> exists(d | rl'key.alllnstances ()
-> exists(k | f.name=r.name+d.name+k.name))) )

For validating the constraints on models, we have implemented a pred-
icate called validate to obtain results of validation. For instance, let us
suppose that there are two data called Course, instead of one, then the val-
idator give us the number of the rules that have been violated.

?7- validate(’er2rl.ptl’,’constraints_ptl.pl’).
Validation................

Validation failure on rule: 3

Validation failure on rule: 8

true.

7. Debugging and Tracing

Now, we would like to show how to debug programs and trace executions
in our language.

7.1. Debugging

Debugging is able to find rules that failed, and provides the location in
which the error is found. PTL mapping rules fail due to Boolean conditions
that are not satisfied and target objects that cannot be created. Debugging
also handles helpers failure. Let us suppose that the PTL rule table2 er2ri of
Figure 8 includes p@name=="*"instead of p@maz=="*". This is a typical
programming error and it cannot be detected by the compiler (i.e., the PTL
program is syntactically correct). Now, we find that the target model is

wrong. In such a case we can query the debugger, obtaining:

?7- debug(’er2rl.ptl?’).

DISBTUEEER 0 0 0 0 0 000000000000 0000000000

Debugger: Rule Condition of: table2_er2rl cannot be satisfied.
Found error in: role_name

true.

The debugger shows the name of the PTL rule (i.e. table2 er2rl) that
fail and the error found (i.e. role_name). But the debugger can also detect
that target objects cannot be created, for instance, let us suppose that we
write p@navigable==false, instead of p@navigable==true. Then the debug-
ger answers:
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debug_term(Head):-clause (Head, (C,Condition)),
C=..[Rule,A],
(((findall (A,C,L),L=[])->
(clause(C,Cond),
debug_condition (Rule,Cond,A) ,!);

(findall (A, (C,Condition),L),L=[])->

(C,debug_object (Rule,Condition,A) ,!);
(C,Condition))).

debug_condition (Rule,Cond,A):-
write (’Debugger: Rule Condition of: ),
write (Rule) ,write(’ cannot be satisfied.’),nl,
debug_sequence (Cond ,A) .

debug_object (Rule,Cond ,A): -
write (’Debugger: Objects of: ’),
write (Rule) ,write(’ cannot be created.’),nl,
debug_sequence (Cond ,A) .

debug_sequence ((0,R0) ,A):-!,
((findall(a,0,L),L=[])->
write(’Found error in: ),
0=..[Name|_],write(Name) ,nl;
(0,debug_sequence (RO,A))).

Figure 20: Debugger

?7- debug(’er2rl.ptl’).

MIFFYGEIHR o 0 0 0 0000000000000 0000000000

Debugger: Objects of: table2_er2rl cannot be created.
Found error in: resolveTemp

true.

In this case the objects of the rule table2 er2rl cannot be created, and
the programming error comes from resolve Temp, because the call does not
succeed. In summary, debugging is useful when some elements of the target
model are not created. The PTL interpreter has been modified in order to
cover debugging. The debugger checks PTL rules that fail and prints the
location in which Boolean conditions and object creations fail. The main
predicates of the debugger are shown in Figure 20.

7.2. Tracing

Nevertheless, we can find a programming error due to the opposite case:
a certain target model element is created but it is wrong. In such a case,
we can trace from the wrong target element to find the reason (i.e., ap-
plied rules and source model elements) of the creation of such element. A
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target element can be created from a missing Boolean condition. Let us sup-
pose that in rule foreign2 er2rl of Figure 8 we omit the Boolean condition
q@navigable==false. We review the target model and find a wrong element:
registerCourseid_ course. Now, we can trace the execution from the identifier
of the wrong element, obtaining the applied rules and the identifiers of the
source model elements as follows:

?- trace(’er2rl.ptl’, id74id62f1).
TRACER
Tracing the element:
Traced Execution....
Rule: foreignl_er2rl

id74id62f1

Element:
Id: id62
Role:
Value:

Element:
Role:
Value:
Id: id74
Role:
Value:

Element:
Id: idi18
Role:
Value:

Element:

er:
true

er:

er:
id_course

er:

er:role

navigable

er:qualifier
type

int

name

er:data

name

Course

er:role

Id: id62
Role:
Value:

er :name
register

The trace shows the applied rule (i.e. foreignl er2rl), together with
the source elements. In the case of the tracer, the PTL interpreter is also
modified. The rules are applied backward from the target model element and
each applied rule and source model element is printed. The main predicates
of the tracer are shown in Figure 21.

7.3. Eclipse Plugin

We have developed an Eclipse plugin to integrate editing of PTL pro-
grams, execution of transformations, debugging, tracing, and validations of
models. The plugin calls to SWI-Prolog in order to achieve these tasks. In
each task the user selects the files involved, that is, the source code of PTL
programs. The results of the tasks can be visualized from the Eclipse en-
vironment by inspecting log files generated from SWI-Prolog. The Eclipse
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trace_elem(0):-clause(0,Condition),call(Condition),trace_atoms (Condition),!.

trace_atoms ((0,R0)):-!,(recorded(pattern,0)->write(’Rule: ’),0=..[Namel_],
write(Name) ,nl,trace_elem(0);
(recorded (head,0) ->print_trace(0) ,nl,trace_elem(0);
(0=..[Name|[_,Al_]],class_def (Name,_,_)->
print_trace(0,A) ,trace_elem(0);
(recorded (access ,0) ->trace_elem(0);
(recorded (metamodel ,0) ->true;
(D=objectM(A,B,C,D,E,F)->
trace_elem(object(A,B,C,D,E,F));true)))))),
trace_atoms (RO) .

Figure 21: Tracer
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Figure 22: Eclipse Plugin of PTL

environment can be used by PTL programmers to write PTL and Prolog
code. The Eclipse plugin is equipped with a menu in which the PTL pro-
grammer can select from transformation, validation, debugging and tracing
(see Figure 22). The plugin can be downloaded from?*.

7.4. Performance

We have tested the performance of PTL for (1) the transformation and
the constraints of the case study with medium-size models (from 90 to 9000

‘http://indalog.ual.es/mdd/ptl2
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Figure 23: Comparison of Execution Times of (a) PTL/ATL (case study) and (b) Pro-
log/OCL (constraint (v5)). Expressed in ms.

objects), compared with the ATL/OCL EMF-specific Virtual Machine. We
have implemented a random test case generator in Prolog with this end.
Additionally, we have tested performance of PTL for (2) constraint valida-
tion using the standard benchmarking large model datasets (from 6k (i.e.,
6 thousand) to 1423k (i.e., more that one million) objects) available from?.
We have used a Mac OS X machine with a 1.7 GHz processor Intel Core i7,
8GB 1600 MHz RAM.

With respect to (1) Figure 23 shows the results of execution times. The
times range from 27 ms to 6,905 ms in PTL, and from 12 ms to 14,354 ms
in ATL in the case of transformations. In the case of constraints, the times
range from 2 ms to 11,646 ms in Prolog, and 7ms to 10,971 ms in the case
of OCL. Execution times include loading and writing of the model in the
case of transformations. We can see that we have similar execution times for
constraints, while in the case of transformations we have an improvement.

With respect to (2) Figure 24 shows the results of execution times. We
have tested the execution times of four constraints of the meta-model of
Figure 25. It describes a railway system in which a train route can be defined
by a set of sensors between two neighboring signals. The state of a signal
can be stop (when it is red), go (when it is green) or failure. Sensors are
associated with track elements, which can be a track segment or a switch.
The status of a switch can be left, right, straight or failure. A route can have

Shttp://incquery.net/performance
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Figure 24: Execution Times of Railway Models. (a) and (b) Loading times of models. (c)
and (d) Constraint checking times for Q1 to Q3. (e) Constraint checking times for Q4.
Expressed in ms.

associated switch positions, which describe the required state of a switch
belonging to the route. Different route definitions can specify different states
for a specific switch. The constraints to be checked are the following:
(Q1)-SwitchSensor: Every switch must have at least one sensor connected to

it.
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Q Thing <<enumeration>> <<enumeration>>
# SignalStateKind ‘2 SwitchStateKind

= SignalStateKind_STOP = PointStateKind_FAILURE
= SignalStateKind_FAILURE = PointStateKind_LEFT

= SignalStateKind_GO = PointStateKind_RIGHT
= PointStateKind_STRAIGHT

contains

H signal H switchPosition
T Signal_actualState : SignalStateKind | 1 T SwitchPosition_switchState : SwitchStateKind

ckElgment_sensor

0.* 0.+ Route_routeDefinition

1

Route_entry

Switch_switchPosition 0.+ | Sensor_trackElement

E Trackelement

TrackElement_conhectsTo

SwitchPosition_switch o

1 1 H switch E Segment

SwitchPosition_route ' Switch_actualState : SwitchStateKind ' Segment_length : EInt

Route_switchPgsition

Figure 25: Metamodel of Railway

(Q2)-PosLength: A segment must have positive length.

(Q3)-RouteSensor: All sensors that are associated with a switch that belongs
to a route must also be associated directly with the same route.
(Q4)-SignalNeighbor: A route is incorrect, if it has a signal, and a sensor
connected to another sensor by two track element, but there is no other route
that connects the same signal and the other sensor..

The code in Prolog of the previous queries is shown in the Appendix C.

In Figure 24 we show in (a) and (b) the time required to load models
(from 6k nodes and 24k edges to 88k nodes and 347k edges in (a) and from
176k nodes and 691k edges to 2837k nodes and 11115k edges in (b)), which
range from 395 ms to 47,536,510 ms (approximately 13 hours). In (c¢) and
(d) we show the time required to check the constraints Q1 to Q3 for the same
size of models which range from 5ms (Q3 and the smallest size) to 34,514 ms
(Q1 and the largest model). Q4 is the constraint that taking longest (see (d)
of Figure 24). In fact, we have only obtained execution times for sizes from
6k to 43k nodes. From this size, the constraint checking takes more than two
days. In this case the execution times range from 45,400 ms to 69,278,447
(approximately 19 hours).

To improve performance in both tests we have introduced some optimiza-
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tions. The first optimization is the use of the RDF library of SWI-Prolog
[40] for storing models as triples. It greatly increases the performance. The
second optimization is particular to (1) and (2).

In the case of (1), some optimizations have been carried out in the PTL
interpreter which affects the ordering in which the encoding rules are exe-
cuted. In particular, the execution is divided in three steps: (a) rule condition
evaluation, (b) object creation and (c) association creation. Given that rule
conditions are evaluated for each object created by a rule, (a) rule conditions
are computed before and stored in a cache. After, (b) each object is created
for each rule condition. Finally, (c) associations are created. In particular,
resolve Temp is evaluated at the end, when all the rules have been applied. In
the case of (2), Prolog atom reordering is crucial to get a better performance,
and the use of the RDF library of SWI-Prolog to handle large datasets. In
particular, atom reordering has improved the performance of queries (Q1)
to (Q4) by considering type checking after join (similar to the proposed in
[41, 42|. For instance, the rule:

(Q3) routeSensor (Sen,Sw,Sp,R):-
contains_Route_switchPosition(concept,R,Sp),
contains_SwitchPosition_switch (concept,Sp,Sw),
contains_TrackElement_sensor (concept,Sw,Sen),
’contains_xsi:type’(concept,R,’Concept:Route?’),
’contains_xsi:type’(concept,Sw,’Concept:Switch?’),
contains_xsi:type’(concept,Sp,’Concept:SwitchPosition’),
>contains_xsi:type’(concept,Sen,’Concept:Sensor’),

\+ contains_Route_routeDefinition (concept,R,Sen).

has better performance than:

(Q3) routeSensor (Sen,Sw,Sp,R):-
’contains_xsi:type’(concept ,R,’Concept:Route’),
’contains_xsi:type’(concept,Sw,’Concept:Switch’),
’contains_xsi:type’(concept,Sp,’Concept:SwitchPosition’),
contains_xsi:type’(concept,Sen,’Concept:Sensor’),
contains_Route_switchPosition(concept,R,Sp),
contains_SwitchPosition_switch(concept,Sp,Sw),
contains_TrackElement_sensor (concept,Sw,Sen),
\+ contains_Route_routeDefinition(concept,R,Sen).

The first one executes join before type checking (i.e., ’contains_xsi-
:type’), while the second one checks types before. The improvement is due
to the number of objects to be retrieved which in the first case is lower.
Let us remark that the execution times of Figure 24 have been obtained
without type checking, which is not required in this example because all the
meta-model roles are distinct.

In summary, we have found that PTL works fine for medium-size models,
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and for large models performance is penalized for constraints with multiple
joins. In® there is a complete comparison of execution times of other systems,
for the same kind of constraints, revealing that some of them work better
with large models and multiple joins.

8. Related Work

Model transformation encompasses a variety of technical spaces, includ-
ing model-ware, grammar-ware, and XML-ware, a variety of transformation
representations including graphs, trees, and DAGs, and a variety of transfor-
mation paradigms including rule-based graph transformation, term rewriting,
and implementations in general-purpose programming languages. We con-
centrate here in a comparison with strongly related approaches. Some other
related approaches are summarized in Table 1.

8.1. Model Transformation Languages
D. Varr6 in his Ph.D thesis [14] describes the foundations of VIATRA

and proposes to transform models into a Prolog term representation which is
dynamically stored as facts, modified at run-time. Graph pattern matching
is achieved by unification. VIATRA control structures are implemented as
Prolog predicates. Automated program generation by model transformation
is used to generate a Prolog program that implements a transformation. From
a UML description of the transformation, a Gralra description is obtained
from which a Prolog term based representation is generated. Finally, a Prolog
code tree is handled to obtain a final Prolog program. The similarities with
D. Varrd’s work are obvious. Models are transformed into Prolog terms, and
transformations into Prolog code. However, the context is different. It works
with graph-based transformations while our proposal works with ATL-style
rules and OCL constraints encoded by Prolog rules. VIATRA satisfies the
requirements (a), (b) and (c) of Section 1.

Bernhard Schétz [15] describes also how to define model transformations
by using Prolog and considering models as terms. He represents EMFE ECore-
based meta-models as Prolog terms, and instantiates them to construct mod-
els. Construction predicates to deconstruct and reconstruct a term are pro-
vided. Only two classes of construction predicates are required: the union

Shttp://incquery.net/performance
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Table 1: Related work summary

Language Contribution Cite
Transformation Languages
QVT Standard for model transformation [43, 44]
ATL DSL for M2M transformations [45, 9]
RubyTL OO language, declarative and imperative [46]
MT Declarative and imperative [47]
GReAT Graph transformation language [48]
AGG Graph transformation language [49]
TGG Triple Graph Grammars based transformation language [50]
Logic based Transformation Languages
VIATRA Graph transformation language [14, 51]
PETE EMF transformations [15, 52, 53]
Tefkat Declarative language based on logic programming [13, 12, 54]
JTransformer Model requirements and code generation [20]
Maude Declarative language based on Rewritting Logic [55, 56, 57]
Formula 2.0 Declarative language based on open-world logic programs and  [17]
behavioral types
JTL Bi-directional declarative transformation language based on An-  [24]
swer Set Programming (ASP)
Logic Programming in MDE
MDELite Tool for Model Transformation [27]
Mercury and Mercury and F-Logic logic languages for Model Transformation — [11]
F-Logic
MoMat Prolog for Querying and Verification of Models [18]
Prolog Logic programming based model querying [58]
Abductive logic Reverse Model Engineering [22]
programming
Inductive logic (Semi-) automatic way to derive transformation rules based on  [16]
programming Inductive Logic Programming.
Model Validation
EMF-IncQuery Incremental Model Validation [29, 30, 59]
OCL OCL to other Formalisms [60, 61, 25, 62,
63, 64, 26, 65,
66|
Videas Answer-set programming and Model Validation [19]
Prolog Comparison OCL/Prolog [21]
Prolog Consistence Checking of Sequence Diagrams [23]
ATL/OCL Validation and Verification (67, 68]
Debugging and Tracing
ATL ATL Debugging [69]
- Model Debugging [28]
TNs Model Debugging [31]

and the composition operators. He focuses on graph transformations using
a relational calculus to manipulate nodes (elements) and edges (relations).
He shows how a single and homogeneous mechanism is enough to define
transformations. Debugging is possible in his approach by tracing execution
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and analyzing rule application. With regard to performance, he claims that
transformation of EMF ECore models into their Prolog term representation
leads also to some loss of efficiency. Nevertheless, he shows that experiments
with real-world size models are feasible. He also has studied how to prove
properties from models by using a theorem prover based on high-order logics
[52]. He has developed the PETE transformation framework [53] provided
as an Eclipse plugin. The similarities with Bernhard Schétz’s work fall on
the Prolog term based representation of models. However, he directly works
with Prolog transformations, and Prolog back-tracking is a key tool of his
proposal. In our case, PTL can work non deterministically and can compute
several solutions from a given rule (see examples of Appendix A, Example
3), however the mechanism to compute target models is different. Bernhard
Schitz’s work satisfies the requirements (b), (c) and (d) of Section 1.

The Tefkat language [12, 13] is a declarative language whose syntax re-
sembles a logic language with some differences (for instance, it incorporates
a forall construct for traversing models). In this framework, [54| proposes
meta-model transformations in which evolutionary aspects are formalized us-
ing the Tefkat language. Tefkat has a trace model, which links the target,
source and transformation. A transformation is represented as a model, hav-
ing a meta-model. The trace model references the transformation as well
as the source and target models. Our tracing technique is not based on a
meta-model rather it is based on the backward execution of the PTL pro-
gram. The representation of the program and the execution as models, as
well as to provide meta-models for them, is considered as future work. Again,
evolutionary aspects are out of the scope of this paper, but we believe that
these can be included in our proposal. Tefkat satisfies the requirements (b)
and (d) of Section 1.

In [20], they present a declarative approach for modeling requirements
(designs and patterns) which are encoded as Prolog predicates. A search
routine based on Prolog returns program fragments of the model implemen-
tation. Traceability and code generation are based on logic programming.
They use JTransformer, which is a logic-based query and transformation en-
gine for Java code, based on Eclipse. JTransformer satisfies the requirements
(b) and (d) of Section 1.

FORMULA 2.0 [17] is a formal specification language based on open-
world logic programs and behavioral types. With FORMULA 2.0, models
and their instances can be defined and verified. Transformations can be easily
defined by declarative Prolog-like transformation rules. FORMULA 2.0 sat-

42



isfies the requirements (b) and (c) of Section 1. JTL (Janus Transformation
Language) [24] is a bi-directional declarative transformation language based
on Answer Set Programming (ASP) using the DLV solver to compute source
and target models from a set of atoms representing models, and QVT style
transformation rules. JTL satisfies the requirements (b) and (c) of Section
1.

The rewriting logic has found an application in model engineering. The
Maude language [70] has been chosen in several works about model transfor-
mation. For instance, in [55] models and meta-models have been formalized
in Maude, and the same authors have developed an Eclipse plug-in called
Maudelling that enables the transformation of models and meta-models to
the corresponding Maude specifications. Mova [56] and Moment |[57] are also
Maude-based modeling tools for model verification. In the case of Maude-
based tools, they also have to represent meta-models and models with the
constructions of the language: sorts, classes, etc. The introduction of mod-
els in Maude enables to take profit from many of the tools (model checking,
verification, etc.,) available on Maude. In [36], they have described the en-
coding of ATL with Maude. Basically, ATL is encoded by means of rewriting
logic, the logic foundation of Maude. They make use of Maude for simulating
transformations and reachability analysis.

8.2. Constraint Validation

OCL mappings to equivalent formalisms have been studied in several
works. For instance, from OCL to SQL [60], OCL to first-order logic [61],
OCL to a Prolog-based CSP formalism [25], OCL to equational logic [62, 63],
OCL to Higher Order Logic [64] and OCL to graph patterns |65, 66]. OCL
to Prolog has been studied in [26], where inconsistency rules are translated
to Prolog queries and model construction operations to Prolog facts. The
Prolog engine has been integrated into the modeling environments Eclipse
EMF and Rational Software Architect. In [19] Answer-set programming
facts are used to represent models that are validated against meta-model
constraints. In [21] the authors have compared OCL and Prolog for querying
UML models. They have found that if execution time of queries is linear
then Prolog is faster. In [23] they propose consistency checking of class and
sequence diagrams based on Prolog. Consistency checking rules as well as
UML models are represented in Prolog, and a Prolog reasoning engine is used
to automatically find inconsistencies. There are some works |68, 67| dealing
with the so-called tracts, and contracts for specifying with OCL constraints in
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transformations. The spirit of tracts is the same as our constraints on source
and target models, and cross constraint validation on source-target models.
EMF-IncQuery |29, 30] is a validation language based on graph patterns.
EMF-IncQuery has a syntax similar to Prolog goals to express constraints.
Incremental validation of constraints has been studied for EMF-IncQuery
[59, 71], which is considered as future work.

8.3. Debugging

In [31] they propose Transformation Nets (TNs), a DSL on top of Colored
Petri Nets (CPNs) for developing, executing and debugging model transfor-
mations. The run-time model is specified by a meta-model, and it can be
exploited for model-based debugging by using OCL queries to find the origin
of a bug. OCL is used to define conditional breakpoints. Approaches like VI-
ATRA which produce debug reports that trace an execution, do not provide
interactive debugging facilities. Although the ATL debugger [69] allows the
step-wise execution of ATL byte-code, only low-level debugging information
is provided, e.g., variable values.

9. Conclusions and Future Work

In this paper we have presented a model transformation language based on
logic programming. We have also described a declarative semantics and the
implementation of the language which consists in the encoding of mapping
rules by Prolog rules. Furthermore, we have shown how to debug programs
and trace executions, as well as validate models and transformations. Finally,
we have provided a mapping from ATL to PTL in order to evaluate PTL with
examples and test performance.

As future work we would like to extend our language with the following
elements:

— A type system to be used in compilation: types will be included in meta-
model definitions and used to detect the main programming errors.
Debugging and tracing is still useful in the presence of types. Related
to compilation also rule overlapping detection and cardinality checking
will be also considered.

— Meta-meta-models other than ECore: Other meta-meta-models can be
considered in our language whenever a suitable XML-based serializa-
tion is provided and Prolog predicates to load and write models are
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implemented. For instance, we are interested in transformations of
BPMN (Business Process Modeling Notation) models, for which an
XML serialization, called XPDL is available.

Bi-directional and optimized transformations: Our language is one-
directional. A natural extension of our approach is to consider bi-
directional transformations, where source models are computed from
target models. In this case, Prolog backtracking can be used to gener-
ate several source models from a change of the target model. Also, the
generation of several target models from a source model, and selection
criteria of optimized target models (with respect to a given metric) is
considered as future work.

Debugging: other techniques of debugging can be used in PTL pro-
grams: breakpoints, step-by-step transformation execution, running
transformation to the next breakpoint; visualization of patterns val-
ues, etc.

Tracing: we have considered tracing from the target model to the source
model; however, tracing from source model to target model would also
be possible and interesting, that is, which elements of the target model
are obtained from a given source element and the rules that are used. In
addition, the definition of a meta-model of the trace is also considered
as future work.

Validation: validation can be improved by providing more detailed in-
formation about the violated rules: class and attributes involved, el-
ements that violates the requirements, etc. Incremental validation is
also considered as future work.

Random Test Case Generation: we are also interested in the definition
of a technique for generating random test cases using black and white-
box methods. Test cases can be used for validating PTL as well as
ATL transformations. Automatic mapping of ATL to PTL will be also
useful.

Full ATL: Incorporate other mechanisms of ATL to PTL: ECore inher-
itance, lazy rules, called rules (among them the entry point) and rule
inheritance. A mapping of a richer fragment of OCL to Prolog will be
also considered.
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— Clode generation: we are also interested in the use of our language for
code generation.
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Appendix A

In this Appendix we would like to show some examples of use of PTL. Firstly,
we will show two examples (and three transformations) taken from the ATL
z00’. Next, we will illustrate the advantages of PTL as hybrid language, by
describing an example of transformation in which Prolog rules are used for
the materialization of relations.

Example 1. The first ezample taken from the ATL zoo shows how to trans-
form a set of books. This example consists of two transformations. The first
transformation takes as source model an XML document in which nodes (i.e.,
children) are books and chapters, and transforms the document into a target
model of books and chapters. The second transformation takes as source
model the target of the first transformation and summarizes the content, by
computing the number of pages, and the authors of the book appending the
name of the author of each chapter, obtaining a target model of publications.
In Figure 26 we can see the meta-models of the transformation. An example
of source and target models is as follows:

<root:Root>
<children xsi:type="Element" name="book">

<children xsi:type="Attribute" name="title" value="livre"/>

<children xsi:type="Element" name="chapter">
<children xsi:type="Attribute" name="title" value="chapter 1"/>
<children xsi:type="Attribute" name="nbPages" value="13"/>
<children xsi:type="Attribute" name="author" value="toto"/>

</children>

<children xsi:type="Element" name="chapter">
<children xsi:type="Attribute" name="title" value="chapter 2"/>
<children xsi:type="Attribute" name="nbPages" value="17"/>
<children xsi:type="Attribute" name="author" value="toto"/>

</children>

<children xsi:type="Element" name="chapter">
<children xsi:type="Attribute" name="title" value="chapter 3"/>
<children xsi:type="Attribute" name="nbPages" value="20"/>
<children xsi:type="Attribute" name="author" value="titi"/>

</children>

</children>
</root:Root>

<xmi :XMI>
<Book title="1livre">
<chapters title="chapter 1" nbPages="13" author="toto"/>
</Book>
<Book title="livre">

"http://www.eclipse.org/atl/at1Transformations/.
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Figure 26: Metamodels of Example 1

title="chapter 2" nbPages="17" author="toto"/>

"livre">
title="chapter 3" nbPages="20" author="titi"/>

<xmi :XMI>
<Publication
</xmi : XMI >

title="1livre" authors="toto and toto and titi" nbPages="50"/>

Now, the code of PTL for the first transformations is as follows:

metamodel (xmlf , [
class(children,[’xsi$type’,name,valuel]),
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role(children,children,children,"0","*" , container)]).

metamodel (book, [
class(’Book’,[title]),
class (’Chapter’,[title,nbPages,author]),
role (chapters, ’Book’,’Chapter’,"0","*",container)]).

helper (getTitle).
getTitle(E,Y):- children_name (xmlf ,E,’title’),children_value (xmlf ,E,Y).

helper (getPages) .
getPages(E,Y):- children_name (xmlf ,E, ’nbPages’),children_value (xmlf ,E,Y).

helper (getAuthor) .
getAuthor (E,Y):- children_name (xmlf ,E,’author’),children_value (xmlf ,E,Y).

rule book
from (e:xmlf!children,l:xmlf!children,f:xmlf!children,
g:xmlf!children ,h:xmlf!children ,k:xmlf!children)

where
(e@name == "book" and (e@children == 1 and
(e@children==f and (f@name=="chapter" and

(l@name=="title" and (f@children==g and
(g@name=="title" and (f@children==h and
(h@name=="nbPages" and (f@children==k and
k@name=="author"))))))))))
to
(book:book!’Book’(title <- l@value,
chapters <- resolveTemp((f,g,h,k),chapter))).

rule chapter
from (e:xmlf'!children,f:xmlf'!children,
g:xmlf!children ,h:xmlf!children)

where
(e@name=="chapter" and (e@children == f
and (e@children == g and eQ@children == h)))
to

(chapter:book!’Chapter ’(title<-getTitle (£f),
nbPages <- getPages(g),
author <- getAuthor(h))).

We have defined two rules (i.e., book and chapter) and three helpers (i.e.,
getTitle, getPages and getAuthor ). Helpers make use of the library for the
meta-models. Rule book makes use of resolveTemp to link books to chapters
of the second rule. The code of PTL for the second transformation is as
follows:

metamodel (book, [
class(’Book’,[title]),
class (’Chapter’,[title,nbPages,author]),
role (chapters,’Book’,’Chapter’,"0","*",container)]).

metamodel (publication,[class(’Publication’,[title,authors,nbPages])]).

helper (getAuthors) .
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Figure 27: Metamodels of Example 2

getAuthors (B, Authors) : -bagof (Author ,(C~’Book_chapters ’(book,B,C),
’Chapter_author > (book,C, Author)),L),
concat_atom(L,’ and ’,Authors).

helper (getSumPages) .

getSumPages (B, Total) : - bagof (Pages, (C~SPages~’Book_chapters ’(book,B,C),
’Chapter_nbPages ’(book,C,SPages),
atom_number (SPages ,Pages)) ,LPages),
sumlist (LPages ,Total).

rule book2Publication from
(b:book!’Book’) where (getSumPages(b)>2)
to
(out :publication!’Publication’(title <- b@title,
authors <- getAuthors(b),
nbPages <- getSumPages(b))).

Here, we have used just one rule and two helpers (i.e., getAuthors and
getSumPages). The helpers make use of the library for meta-models and also
use the Prolog built-in bagof for collecting authors and pages of books. They
also use the Prolog built-in predicates concat_atom and sumlist.

Example 2. The second example taken from the ATL zoo is the well-known
transformation Families to Persons. The metamodels are shown in Figure
27. The transformation maps a Family representation to a Male-Female rep-
resentation, according to the relations father, mother, sons and daughters.
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The code of PTL for this transformation is as follows:

metamodel (families, [
class(’Family’, [lastName]),
class (’Member ’,[firstName]),

role(father,’Family’,’Member’,"0","1",container),

role (mother ,’Family’,’Member’ ,"0","1",container),
role(sons, ’Family’,’Member’,"0","*" 6 container),

role (daughters,’Family’,’Member’,"0" ,"*",container)]).

metamodel (persons, [
class(’Male’,[fullNamel),
class(’Female’,[fullName])]).
helper (isMale) .
isMale(X,true):- ’Family_father’>(families,_,X);’Family_sons’(families,_,X).

helper (isFemale) .

isFemale (X, true) : -
’Family_mother > (families,_,X);’Family_daughters’(families,_,X).

helper (familyName) .

familyName (X,Z): -
(’Family_father ’>(families,Y,X),’Family_lastName ’(families,Y,Z));
(’Family_sons ’>(families ,Y,X),’Family_lastName ’(families,Y,Z));
(’Family_mother ’>(families,Y,X),’Family_lastName ’(families,Y,Z));
(’Family_daughters’(families,Y,X),’Family_lastName ’(families,Y,Z)).

rule member2Male

from
s : families!’Member’ where (isMale(s) == true)
to
t : persons!’Male’(
fullName <- concat(concat(s@firstName," "),familyName(s))).

rule member2Female

from
s : families!’Member’ where (isFemale(s) == true)
to
t : persons!’Female’(
fullName <- concat(concat(s@firstName," "),familyName(s))).

Here Prolog is used by the helpers isFemale, isMale and familyName, easy to
specify due to the relational based nature of Prolog. Rules (i.e., member2Male
and member2Female), use helpers in Boolean conditions and object creations.
They also use the Prolog built-in concat. With the previous PTL program,
we can transform the following model:

<xmi : XMI >

<Family lastName="March">
<father firstName="Jim"/>
<mother firstName="Cindy"/>
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Figure 28: Metamodels of Example 3

<sons firstName="Brandon"/>
<daughters firstName="Brenda"/>
</Family>
</xmi : XMI>

into the following one:

<xmi : XMI>
<Male fullName="Jim March"/>
<Male fullName="Brandon March"/>
<Female fullName="Cindy March"/>
<Female fullName="Brenda March"/>
</xmi:XMI>

Example 3. The third example shows the advantages of PTL as hybrid lan-
guage. The example materializes the relationships of the instance of Families.
More concretely, the relations of a Person ancestors, sisters, brothers, aunts
and uncles are materialized. In Figure 28, two metamodels of the transfor-
mation are shown. The first one, the source metamodel, is the same as the
source metamodel of Example 2. The second one, the target metamodel, rep-
resents the materialized relations of each Person. The source model is as
follows:

<xmi :XMI>
<Family lastName="March">
<father firstName="Jim"/>
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<mother firstName="Cindy"/>
<sons firstName="Brandon"/>
<daughters firstName="Brenda"/>

</Family>

<Family lastName="Sailor">
<father firstName="Peter"/>
<mother firstName="Jackie"/>
<sons firstName="David"/>
<sons firstName="Dylan"/>
<daughters firstName="Kelly"/>

</Family>

<Family lastName="Sailor">
<father firstName="David"/>
<mother firstName="Brenda"/>
<sons firstName="Martin"/>
<sons firstName="Robert"/>
<daughters firstName="Mary"/>

</Family >

</xmi:XMI>

and the target model is as follows:

<xmi : XMI >

<Person name="Peter"/>
<Person name="Jackie"/>
<Person

name="David"

ancestor="//@Person.1 //@Person.

brothers="//@Person.3 "

sisters="//@Person.4 "/>
<Person

name="Dylan"

ancestor="//@Person.1 //@Person.

brothers="//@Person.2 "

sisters="//@Person.4 "/>
<Person

name="Kelly"

ancestor="//@Person.l1 //@Person.
brothers="//@Person.2 //@Person.

<Person name="Jim"/>
<Person name="Cindy"/>
<Person

name="Brandon"

ancestor="//@Person.5 //@Person.

sisters="//@Person.8 "/>
<Person

name="Brenda"

ancestor="//@Person.5 //@Person.

brothers="//@Person.7
<Person
name="Martin"

n/>

ancestor="//@Person.l1 //@Person.

//@Person.0 "
aunt="//@Person.4 "
brothers="//@Person.10 "

o

sisters="//@Person.4 //@Person.11

uncle="//@Person.3 //@Person.7

n/>
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<Person
name="Robert"
ancestor="//@Person.l1 //@Person.2 //@Person.5 //@Person.6 //@Person.8
//@Person.0 "
aunt="//@Person.4 "
brothers="//@Person.9 "
sisters="//@Person.4 //@Person.11 "
uncle="//@Person.3 //@Person.7 "/>
<Person
name="Mary"
ancestor="//@Person.l1 //@Person.2 //@Person.5 //@Person.6 //@Person.8
//@Person.0 "
aunt="//@Person.4 "
brothers="//@Person.9 //@Person.10 "
sisters="//@Person.4 "
uncle="//@Person.3 //@Person.7 "/>
</xmi : XMI >

The code of PTL for this transformation is as follows:

metamodel (families ,[class(’Family’, [namel),
role(father,’Family’,’Family’,"0","1"),
role(mother ,’Family’,’Family’,"0","1"),
role(sons,’Family’,’Family’,"0","*"),
role (daughters,’Family’,’Family?,"0","*")]).

metamodel (familiesFull,[class(’Person’, [namel),
role(ancestor ,’Person’,’Person’,"0" ,"*"),
role(sisters,’Person’,’Person’,"0","x"),
role(brothers,’Person’,’Person’,"0" ,"*"),
role(uncles,’Person’,’Person’,"0","*"),
role (aunts,’Person’,’Person’,"0","x")]).

helper (ancestor) .
ancestors(X,Y):-’Family_father ’>(families ,X,Y).
ancestors(X,Y):-’Family_mother ’(families ,X,Y).
ancestors(X,Z):-’Family_father ’>(families ,X,Y) ,ancestors(Y,Z).
ancestors(X,Z):-’Family_mother ’(families ,X,Y) ,ancestors(Y,Z).
helper (sisters) .
sisters(X,Y):-’Family_father ’(families ,X,Z),
>Family_daughters ’(families ,Z,Y),Y\==X.
sisters(X,Y):-’Family_mother ’(families ,X,Z),
’Family_daughters ’(families ,Z,Y),Y\==X.
helper (brothers) .
brothers(X,Y):-’Family_father ’(families ,X,Z),
>Family_sons ’(families ,Z,Y),Y\==
brothers(X,Y):-’Family_mother ’(families ,X,Z),
’Family_sons ’(families ,Z,Y),Y\==X.
helper (uncle) .

uncles(X,Y):- ’Family_father ’>(families,X,Z),brothers(Z,Y).
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uncles(X,Y):- ’Family_mother ’>(families ,X,Z),brothers(Z,Y).
helper (aunt) .

aunts (X,Y):- °’Family_father’(families ,X,Z),sisters(Z,Y).
aunts(X,Y) :- ’Family_mother’(families ,X,Z),sisters(Z,Y).

rule completion from f:families!’Family’ to
(ff:familiesFull!’Person’(name <- f@name,
ancestors <- resolveTemp(ancestors( f ),ff),
sisters <- resolveTemp(sisters( f ),ff),
brothers <- resolveTemp (brothers( f ),ff),
uncles <- resolveTemp (uncles(f),ff),
aunts <- resolveTemp (aunts(f),ff))).

We can see in this example that Prolog is used for computing the relation
ancestors which is the transitive closure of both Family_mother and Fami-
ly_father relations. In addition, uncles and aunts are defined in terms of
brothers and sisters relations, respectively. Thus Prolog makes possible
to handle recursive relations in a very simple way. The program has just
one rule (i.e., completion), which is a recursive rule thanks to the use of
resolveTemp.

We can also specify validation rules for the examples. They are shown
below:

Example 1 (Source Model) All chapters have an author:

:- \+ (children_id(xmlf,A),children_name (xmlf,A,’book’),
children_children (xmlf ,A,B) ,children_name (xmlf ,B,’chapter?’),
\+ (children_children(xmlf ,B,C),children_name (xmlf,C,’author?))).

Example 2 (Source Model) Name of father and mother are distinct:

:- \+ (’Family_father’(families ,A,B),
’Family_mother > (families ,A,C),
’Member _firstName ’(families ,B,E),
’Member_firstName ’>(families,C,F),
E==F) .

Example 3 (Target Model) Uncles are brothers of ancestors.
:- \+ (’Person_uncles’(familiesFull ,A,B),

\+ (’Person_brothers’(familiesFull,C,B),
>Person_ancestors ’>(familiesFull ,A,C))).

Appendix B

In this Appendix we show the full set of rules of the ER2RL example.
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input (’metamodelA’,’root’,er,’object-model-A.xmi’).
output (’metamodelB’, ’root’,rl,’object -model -B.xmi’) .

helper (inversel_qualifier).

inversel_qualifier (IdP,IdQ):-
role_has_role(er,IdP,IdAss),
relation_is_role (er,IdAss,IdRole),
role_navigable (er,IdRole,false),
role_is (er,IdRole, IdQ).

helper (inverse2_qualifier).

inverse2_qualifier (IdP,IdRole):-
role_has_role(er,IdP,IdAss),
relation_is_role(er,IdAss,IdRole),
role_navigable (er,IdRole,false) .

helper (inverse2_row) .

inverse_row(IdQ,IdRole2):-qualifier_has(er,IdQ,IdRole),
role_has_role(er,IdRole, IdAss),
relation_is_role(er,IdAss,IdRole2),
role_navigable (er,IdRole2,true) .

rule tablel_er2rl from
p:er!data to

(t:rl!table(
name <- p@container,
has <- 1),

r:rl!row(
name <- p@name,
table <- t,
is_key <- resolveTemp(pQattr_of ,k),
is_col <- resolveTemp(p@attr_of,c))).

rule table2_er2rl from
p:er!role where (p@navigable==true and p@max=="*") to

(t:rl!table(
name <- p@name,
has <- r),

r:rllrow(
name <- concat(p@name,p@is_data@name),
table <- t,
is_foreign <- sequence([resolveTemp ((p@is,p),fl),

resolveTemp ((inversel_qualifier (p),inverse2_qualifier(p)),£2)]1))).

rule key_er2rl from
p:er!attribute where (pQ@key==true)
to
(k:rl'key(
name <- p@name,
type <- p@type,
has_key <- resolveTemp(p@is,r))).
rule col_er2rl from
p:er!attribute where (pQ@key==false) to
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(c:rl'col(
name <- p@name,
type <- pQ@type,
has_col <- resolveTemp(p@is,r))).

rule foreignl_er2rl from
(p:er'!qualifier ,q:er!role) where (p@has == q and g@navigable==true) to
(fl:rl!foreign(
name <- concat(concat (q@name,q@is_data@name) ,p@name),
type <- p@type,
has_foreign <- resolveTemp(q,r))).

rule foreign2_er2rl from
(p:er!qualifier,q:er!role) where (p@has == q and g@navigable==false) to
(f2:rl!foreign(
name <- concat(concat (q@name,q@is_data@name) ,p@name),
type <- p@type,
has_foreign <- resolveTemp(inverse_row(p),r))).

module er2rl;

create OUT : rl from IN : er;

helper def: inversel_qualifier(r:e!role) : er!qualifier =
r.has_role.is_role->select(r | not r.navigable)->collect(ele.is);

helper def: inverse2_qualifier(r:er!role) : er!role =
r.has_role.is_role->select(r | not r.navigable);

helper def: inverse2_row(q:er!qualifier) : er!role =
q.has.has_role.is_role->select(r | r.navigable)->first();

rule tablel_er2rl {
from
p:er'!data
to
t:rl!table(
name <- p.container,
has <- r),
r:rltrow(
name <- p.name,
table <- t,
is_key <- thisModule.resolveTemp(p.attr_of,’k’),
is_col <- thisModule.resolveTemp(p.attr_of,’c?’))

}
rule table2_er2rl {
from
p:er!role (p.navigable and p.max=5)
to

t:rl!table(
name <- p.name,
has <- r),
r:rllrow(
name <- p.name + p.is_data.name,
table <- t,
is_foreign <-
Sequence{
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thisModule.resolveTemp (
Tuple{pl:er!qualifier=p.is, p2:er'role=p},’f1’),
thisModule.resolveTemp (
Tupleq{
pl:er!qualifier=thisModule.inversel_qualifier(p),
p2:er!role=thisModule.inverse2_qualifier(p)},’£f2°)1})
}

rule key_er2rl {
from
p:er'attribute (p.key)
to
k:rl!lkey(
name <- p.name,
type <- p.type,
has_key <- thisModule.resolveTemp(p.is,’r’))
}

rule col_er2rl {
from
p:er!attribute (not p.key)
to
c:rl!tcol(
name <- p.name,
type <- p.type,
has_col <- thisModule.resolveTemp(p.is,’r?’))

}
rule foreignl_er2rl {
from
p:er!qualifier, q:er!role (p.has=q and q.navigable)
to

fl:rl!foreign(
name <- (q.name + q.is_data.name) + p.name,
type <- p.type,
has_foreign <- thisModule.resolveTemp(q,’r’))

}

rule foreign2_er2rl {
from
p:er!qualifier, q:er!role (p.has=q and not q.navigable)
to
f2:rl!foreign(
name <- (q.name + q.is_data.name) + p.name,
type <- p.type,
has_foreign <- thisModule.resolveTemp(thisModule.inverse2_row(p),’r’))

Appendix C

In this Appendix we show the queries (Q1) to (Q4) in Prolog.

(Q1) switchSensor (Individual):-
’contains_xsi:type’(concept,Individual,’Concept:Switch’),
\+ contains_TrackElement_sensor (concept,Individual,_).
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(Q2) posLength(Source,Target): -
contains_Segment_length(concept,Source, Target),
’contains_xsi:type’(concept,Source,’Concept:Segment’),
atom_number (Target ,D) ,D=<0.

(Q3) routeSensor (Sen,Sw,Sp,R):-
contains_Route_switchPosition(concept,R,Sp),
contains_SwitchPosition_switch (concept,Sp,Sw),
contains_TrackElement_sensor (concept,Sw,Sen),
’contains_xsi:type’(concept,R,’Concept:Route?’),
contains_xsi:type’(concept,Sw,’Concept:Switch’),
’contains_xsi:type’(concept,Sp,’Concept:SwitchPosition’),
’contains_xsi:type’(concept,Sen,’Concept:Sensor’),

\+ contains_Route_routeDefinition(concept,R,Sen).

(Q4) signalNeighbor (R1):-exitSignalSensor (Sigh ,R1,Senll),
connectingSensors (SenlA,Sen24),
rDefinition (R3A,Sen2A),
R3A \== R1,
\+ entrySignalSensor (SigA,_R2A,Sen2i).

exitSignalSensor (Sig,R1,Senl):-exitSignal (R1,Sig),
rDefinition(R1,Senl).

entrySignalSensor (Sig,R2,Sen2):-entrySignal (R2,Sig),
rDefinition(R2,Sen2).

entrySignal(R,Sig):-contains_Route_entry(concept,R,Sig),
>contains_xsi:type’(concept,R,’Concept:Route’),
contains_xsi:type’(concept,Sig,’Concept:Signal’),

exitSignal (R,Sig):-contains_Route_exit (concept,R,Sig),
contains_xsi:type’(concept,R,’Concept:Route?),
’contains_xsi:type’(concept,Sig,’Concept:Signal’).

rDefinition(R,Sen):-contains_Route_routeDefinition(concept ,R,Sen),
’contains_xsi:type’(concept,R,’Concept:Route’),
’contains_xsi:type’(concept,Sen,’Concept:Sensor’).

connectingSensors (Senl,Sen2):-sensorTrackelement (Senl,Tel),
sensorTrackelement (Sen2,Te2),
trackelementConnected (Tel,Te2) .

trackelementConnected (Tel,Te2): -
contains_TrackElement_connectsTo (concept ,Tel,Te2).

sensorTrackelement (Sen,Te) : -
contains_Sensor_trackElement (concept,Sen,Te),
’contains_xsi:type’(concept,Sen,’Concept:Sensor’).
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