
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.2306

Toward the adaptation of component-based architectures by model
transformation: behind smart user interfaces

Javier Criado*,†, Diego Rodríguez-Gracia, Luis Iribarne and Nicolás Padilla

Applied Computing Group, Department of Informatics, University of Almería, Spain

SUMMARY

Graphical user interfaces are not always developed for remaining static. There are GUIs with the need of
implementing some variability mechanisms. Component-based GUIs are an ideal target for incorporating
this kind of operations, because they can adapt their functionality at run-time when their structure is updated
by adding or removing components or by modifying the relationships between them. Mashup user interfaces
are a good example of this type of GUI, and they allow to combine services through the assembly of graphical
components. We intend to adapt component-based user interfaces for obtaining smart user interfaces. With
this goal, our proposal attempts to adapt abstract component-based architectures by using model transforma-
tion. Our aim is to generate at run-time a dynamic model transformation, because the rules describing their
behavior are not pre-set but are selected from a repository depending on the context. The proposal describes
an adaptation schema based on model transformation providing a solution to this dynamic transformation.
Context information is processed to select at run-time a rule subset from a repository. Selected rules are used
to generate, through a higher-order transformation, the dynamic model transformation. This approach has
been tested through a case study which applies different repositories to the same architecture and context.
Moreover, a web tool has been developed for validation and demonstration of its applicability. The novelty
of our proposal arises from the adaptation schema that creates a non pre-set transformation, which enables
the dynamic adaptation of component-based architectures. Copyright © 2014 John Wiley & Sons, Ltd.

Received 6 February 2014; Revised 17 November 2014; Accepted 19 November 2014

KEY WORDS: component-based architectures; run-time adaptation; model transformations; higher-order
transformations; mashup user interfaces; smart user interfaces

1. INTRODUCTION

Software systems and applications dealing with user interaction need UI to achieve the communi-
cation. The most widely used UIs are the GUI, regardless of the platform utilized for accessing. As
other existing software artifacts, many GUIs are not intended to remain static from the moment they
are designed. On the contrary, these GUIs implement in their behavior some variability mechanisms
(e.g., execution alternatives), configuration operations (e.g., settings), or an external system that is
in charge of modifying their internal structure (e.g., varying the code of non-compiled GUIs).

The case of the web platform is a frequently changing domain and thus web UIs are subject to
constant variations associated with the resources or services which are accessed. For this reason,
this kind of UIs benefit from a dynamic behavior. In this sense, mashup UIs are a good example of
combining services with the aim of composing a single interface to interact with them [1]. There-
fore, the customization of these UIs through the configuration of the services that the user wants to
visualize is an issue that has been addressed in the literature [2].

Mashup UIs are built from graphical components of medium and high granularity (not simple text
fields or buttons) that encapsulate some functionality. This kind of GUIs can be used in different

*Correspondence to: Javier Criado, Applied Computing Group, Department of Informatics, University of Almería, Spain.
†E-mail: javi.criado@ual.es

Copyright © 2014 John Wiley & Sons, Ltd.



J. CRIADO ET AL.

domains. For example, in geographic information systems, these interfaces allow us to exploit infor-
mation from different maps, geospatial services, or other geographic data resources [3]. In enterprise
resource planning applications, each user profile can be related with a specific UI structure and with
the UI pieces that are available to perform either different or common tasks [4]. Other examples
are dashboard UIs, which bring together different graphical components from different sources [1].
These components have many different purposes (e.g., RSS, social networks, weather information,
activity of a web site, etc.), and the UIs can be used by individual users or a group of them, as
implemented in Netvibes, MyYahoo, or Ducksboard.

Nevertheless, the current proposals of these GUIs built from pieces could be improved in some
ways. First, the different components of the interface are isolated and there are no dependencies
between them. Therefore, the interaction in one component has no impact on other components.
Otherwise, the re-configuration of the GUIs not only depends on the manual setting by the users
(customization perspective) but can also be interesting performing an automatic adaptation from
the system decisions (proactive perspective) [5]. An example of the second possibility may occur
if two users are working together to solve a common task. Then, at a certain moment in the task, it
becomes necessary to communicate with each other. The system detects this action, and their UIs
can self-adapt (without being requested by the actor), incorporating a new chat component (i.e., to
their inner architectures) that allows them to interact [6].

1.1. Solution overview

Previous aspects motivate us to study the run-time adaptation of component-based GUIs. Actually,
this is an open research topic included in two projects of the Spanish Ministry and the Andalusian
Government. Our main interest in this domain is due to the trend toward the GUI Social Semantic
Web or Web 3.0 [7, 8], a mixture of Social Web [9] and Semantic Web [10] topics. Under this trend,
UIs make use of technologies to favor information exchange within the Web community, such as
the social networks; they also incorporate certain intelligence capabilities that allow users to share
common purposes to cooperate and integrate data by means of standards, which allow more open
applications. Under this context (SSW-based systems), we know that it could be useful in this kind
of systems because it is possible to define ‘component-based UIs’ that can self-adapt their structure
depending on the run-time circumstances. Thus, these interfaces will offer new functionalities or
will hide others in order to fit the requirements (Figure 1). As a final goal, we intend to establish the
infrastructure for obtaining ‘smart GUIs’ or what we call SmartGUI (SUI), intelligent UIs which
learn from the interaction of/with the user or group of users, re-configuring their components (i.e.,
their inner architecture).

Consequently, our approach is not valid for all sorts of GUI. Our proposal requires that the UI
has to be defined as an architectural model, in which each component of the architecture represents
an individual UI component. We follow a bottom-up perspective for the (re)building (at run-time) of
the structure of the UI from those GUI components fulfilling the requirements of the architecture,
available in one or more third party repositories. In our methodology, UI components are called
COTSgets [11], a combination of the terms commercial off-the-shelf (COTS) [12] and widget (which
is how this type of UI component is usually known). Unlike other ‘widget-based UI’ proposals, our
UI components may have interdependencies which may affect the system behavior. The adaptation
process therefore changes the structure of the UI based on the transformation of its associated archi-
tectural model. The adaptation is determined by changes in the context at run-time, for example, the
user interaction, changes in the system requirements, and time events.

Therefore, it is necessary to provide these architectures with certain adaptation mechanisms to
evolve its behavior automatically, making use of concepts related with self-adaptive systems (SAS)
[13]. Component-based software engineering can be of assistance in developing a self-adaptive
system. It provides certain advantages in SAS [14], for instance, the modularization and reuse of
software components, or the use of component models is well-suited for dynamic incorporation of
new services [15]. New proposals arise through the track of self-adaptive software and the goal
of overcoming the limitations of static system models, attempting to adapt the software system

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Figure 1. GUI adaptation.

Figure 2. Model-driven methodology.

automatically by manipulating the models of the system [16]. This new vision makes use of model-
driven engineering (MDE) concepts and adds functionalities for adapting the models at run-time.
In the particular domain of component-based software systems, the use of MDE techniques can
facilitate the design and development of architectures, for example, for defining their structure,
the behavior of their components and relationships, their interaction, or their functional and non-
functional properties [17]. Furthermore, the manipulation of architectural models at run-time makes
it possible to generate different software systems based on the same abstract definition, adapting,
for example to user interaction, component status, or execution platform [18].

In the proposed methodology, the life cycle for developing component-based architec-
tures is structured on four levels of abstraction, inspired by the Cameleon reference
framework [19] which is also based on the Object Management Group (OMG) model-
driven architecture (MDA) specification [20] (see Figure 2): (i) tasks and concepts,
which corresponds to the computation independent model level of MDA and represents
the tasks that must be performed to meet the system requirements; (ii) abstract archi-
tectural model, which corresponds to the platform independent model (PIM) level and
represents the architecture in terms of what type of components it contains and their rela-

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

tionships; (iii) concrete architectural model, which corresponds to the platform specific model
(PSM) level and describes what concrete components comply with architectural abstract defini-
tion; and (d) the final software architecture, which represents the source code that will be executed
or interpreted.

1.2. Technological and conceptual context

The adaptation of the architectures is done based on processes executed on the abstract and concrete
architectural levels [21, 22]. On the abstract level, model-to-model (M2M) transformation processes
[23] are executed to change and adapt the abstract architectural models to the changes in context.
However, the concrete architectural models are realized by a trading process [12], calculating the
configurations of concrete components that best meet the abstract definitions. This provides the
possibility of generating different software architectures based on the same abstract definition, for
example, so it can be executed on different platforms.

This methodology isolates the abstract GUI model (PIM view) from the device (PSM view).
Therefore, this schema facilitates the adaptability of GUIs not only regarding behavior and function-
ality but also for different devices (PC, SmartPhone, tablet, SmartTV, etc.) by solving the concrete
model based on the abstract one. Furthermore, we think that this proposal could be useful in a
diversity of component-based systems, for example, smart home applications [24, 25], smart TV
[26], smart cars [27], smart buildings (or intelligent buildings) [28], smart cities [29], robotics
[30, 31], communication network infrastructures [32], and UIs [33]; in summary, any component-
based software that must be adapted at run-time and whose components are interrelated.

For this reason, this paper is aimed at describing the adaptation process in a generalist way, that
is, defining the architectures and the rest of involved elements regardless of the domain chosen as a
case study for its application. Within the complete adaptation methodology, we want to remark that
this paper focuses only on the adaptation performed on the abstract level (PIM perspective), but not
on the trading process that obtains the concrete architectures (PSM), that is, the transformation step
in Figure 2. Similarly, this paper does not discuss synchronization issues between abstract models
and final architectures or how the changes in the models affect the executing architecture. However,
we understand that our proposal is more than a rule-based approach for dynamic adaptation. Some
of the adaptation operations are performed on an abstract level instead of running systems. But
these operations make sense because then, at the concrete level, our trading process will choose
different concrete components from the abstract definition of the architecture, making possible that
this trading process (in the future) will be able to choose a concrete component or another depending
on the platform (PSM perspective) and other aspects such as concrete component properties. The
proposal presented in this article has been developed based on the concepts established in [22], and
it significantly improves the adaptation process described in [34].

On the abstract level, M2M transformations are used to adapt the architectural models dynam-
ically. Traditionally, the M2M transformation logic is static, described a priori by rules that are
embedded in the code. This behavior impedes models from adapting to the requirements that were
not taken into account in the system design stage. Our proposal is intended to make the transforma-
tions dynamically, so they also change, adapting to the new requirements and variations in context.
Therefore, transformations are built at run-time, selecting from a rule repository those transforma-
tion rules that are suitable to the current situation. Inspired by the idea of co-evolution [35], in which
the changes in the metamodels defining the system provoke the corresponding adaptation in the
models they define, our proposal refactors [36] M2M transformations that adapt the architectural
models at run-time. This process, which we call co-transformation of the M2M processes that adapts
the architectures, has been implemented following a higher-order transformations (HOT) perspec-
tive [37]. It is a HOT-type transformation because it generates as output a new M2M transformation,
which is responsible for adapting the architectural models.

The rest of the paper is organized as follows. Section 2 describes the goals and fundamentals and
defines the main concepts of our proposal. Section 3 defines the adaptation process formalisms and
the adaptation schema. Section 4 explains in-depth the adaptation methodology, and it also provides
an example of the aforementioned process using a case study. Section 5 shows the validation and

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

evaluation processes performed on our proposal and discusses the benefits and shortcomings of the
approach. Section 6 presents the related work, and finally, Section 7 gives some conclusions and
future work.

2. ESSENTIALS OF ADAPTATION PROCESS

In this section, we attempt to explain the principles on which our proposal is based. The first sub-
section enumerates the intended goals. In the following subsections, the key pieces in our approach
are presented, that is, how we define our architectures, how the components are described, what role
the models play in defining the architectures at design-time and adapting them at run-time, how we
have defined and how we execute our adaptation, and how we achieve this adaptation by making
use of model transformations.

2.1. Contributions of the proposal

As we introduced, we thought that our approach could be generalized to any type of software archi-
tecture with component interdependencies not just to component-based UIs. Therefore, the general
goals pursued and the contributions of this approach are the following:

— Define our software architectures by means of a component-based representation.
— Develop an adaptation process for architectures which is not static, that is, one that is flexible

and has an adaptive logic that can dynamically change.
— Define the logic of rule-based adaptation that achieves a dynamic adaptive process by varying

the rules that can be applied depending on the system context.
— Establish a representation for the adaptation rules so that these rules can be stored in a

repository and subsequently, managed and selected for their application.
— Define a mechanism for selecting the adaptation rules at run-time depending on the

information from the context and the system requirements.
— Define an adaptation engine to apply the rules selected, thereby changing the structure of the

architecture.

The aforementioned goals cover some basics of traditional software architectures processes [38],
such as design, representation, and a purpose for future realization. Nevertheless, other features
more related to self-adaptive software (e.g., definition of changes, reconfiguration options, or trans-
formation alternatives) [39] are also addressed. In this sense, with these overall goals, we are able
to adapt component-based software architectures at run-time. Furthermore, the process that adapts
these architectures is not pre-set but dynamically ‘constructed’ based on the rules selected according
to the state of the context, the system requirements, and the adaptation purpose. This makes it possi-
ble for the architecture to be adapted by updating or changing the rule repository. As stated in [39],
the ability to select different types of transformations provides expressiveness to adaptive systems.
The mentioned goals will provide our approach with a constrained selection process from a pre-
defined set of rules, which are stored in the repository. Nevertheless, our system is ready to perform
an unconstrained selection process because we will add and remove rules of/from the transformation
rule repository.

2.2. Components

As mentioned in the introduction, the component-based software architectures in our system are
defined on two levels: abstract and concrete. However, the approach described in this article is
focused only on adaptation on the abstract level, so whenever we refer to architectures or compo-
nents in the following text, they are on the abstract level. The following definition defines what an
abstract component is.

Definition 1 (Abstract component)
An abstract component is the type of component that forms part of the abstract architecture. That
is, it contains the definition of the component based on its functional and non-functional properties.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Recorder

recording~ 

video 

functional_properties 
provided_interfaces: recording 
required_interfaces: video 

non_functional_properties 
output_format: FLV 
resolution_width: 800 
resolution_ height: 600 
resolution_unit: px 

Figure 3. An example of abstract component.

Functional properties refer to the component ports which require or provide a series of interfaces.
Non-functional properties describe component characteristics that are not related directly to the
services they offer or that are required for their functioning but provide solutions for component
search, evaluation, and selection activities.

For example, as shown in Figure 3, the abstract component named as Recorder contains two
ports in its functional part. One port corresponds to the provided interface, recording, whereas
the other implements the required interface, video. The provided interface identifies the services
offered by the component, whereas the required interface defines the service this abstract com-
ponent requires to function. The component has four properties in the non-functional part: one
for the output video format (output_format), which must be FLV, one for the video cap-
ture resolution (resolution_unit), which is px, and two properties that describe the width
(resolution_width) and height (resolution_height) of the recording resolution.

2.3. Architectures

This subsection illustrates the difference between the abstract and concrete levels. The following
definition describes what an abstract architecture is.

Definition 2 (Abstract architecture)
An abstract architecture defines the set of abstract components which are in (or should be in) the
architecture to function properly. An abstract architecture also contains information about how the
component ports are interconnected.

For instance, at the top of Figure 4, there is an example of abstract architecture describing a UI
comprised of four components: a Chat component type, an Audio component type, a Video
component type, and a Recorder component type, which requires the interface provided by video
(in order to capture images) to work. These four components are contained in the GUI component
type. At the bottom of the same figure, there is a concrete architecture corresponding to the afore-
mentioned abstract definition. A concrete architecture describes the concrete components that best
meet the abstract definition and have been selected from among all the candidates. For further details
on the concrete level of architectures, see [22, 40]. In this case, the JSP_Container concrete
component is selected to resolve the GUI component type. Otherwise, four concrete components
are selected to realize the rest of the abstract definitions: JABBERChat, DirectShowAudio,
VISCOMVideo, and VISCOMRecorder.

2.4. Models

Our proposal is based on MDE, so models are an essential element in our research work. In the first
place, our architectures are defined by means of models. Although there is a large number of archi-
tectural description languages, for our system, we preferred to construct our own domain-specific

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Video

Audio

Chat

GUI 

Recorder

Abstract Level 

Concrete Level 

Video
VISCOM

JSP_Container

Chat
JABBER

Recorder
VISCOM

Audio
DirectShow

Connector

Required port 

Provided port 

Simple component 

Complex component 

Abstract Architecture

Concrete Architecture

Figure 4. An example of abstract and concrete levels of our architectures.

Figure 5. Architectural metamodel.

language (DSL). There are numerous advantages of using metamodeling in design and implementa-
tion of component-based systems [41]. The main reason is that our DSL defines exactly the elements
we need to manage our system and simplifies manipulation and operations with our architectural
models. For example, in our architectures, each component port is related only with one interface.
This decision was made for two reasons: (i) we need component ports to manage the addressing
of its interfaces; and (ii) because the new architectures are created at run-time, the easiest way to
generate new ports is performing a one-to-one correspondence with the interfaces. Moreover, each
component of the architecture has a reference to a component model describing this particular ele-
ment. In our case, our components are described by using functional and non-functional properties,
inspired by the commercial off-the-shelf component model [12]. These features encourage us to
create our own architectural and component metamodels, which will be described as follows.

Construction of the DSLs in our system was done following the meta-object facility standard [42]
using the eclipse modeling framework (EMF) [43]. This way, the constructed metamodels provide
the expressiveness necessary to define the architectural elements. Figure 5 shows the metamodel

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

for defining abstract architectures. An architectural model is comprised of a container as the
root element. This container is a ComplexAbstractComponent, which in turn is composed
of elements that can be simple or complex. Components have ports that implement Provided or
Required interfaces. The related interface of each port is defined by the interface reference.
These ports are connected by Connector elements contained in the complex component which is
the parent of the components it connects. Connections represent the dependencies between compo-
nents; therefore, component A depends on another component B when there is a connection between
a required port of the first component and a provided port of the second one. Finally, the architectural
components have a reference to the model that defines them in component_definition_ref.

The reference named component_definition_ref, included in the architectural meta-
model, relates each component in the architectural model with the definition of this component in a
repository of components. Similarly, the interface reference links each Port from the architec-
tural model to the corresponding component Interface. Both references have been depicted in
Figure 5 as an EObject element for representing the link with the respective element of the model
describing the repository. This repository and its components were also constructed using metamod-
eling. Figure 6 shows the metamodel for defining the components of the system. Each component
has a Functional part and optionally, a NonFunctional part. The first contains the functional
system properties, which are distinguished between provided and required. These functional proper-
ties correspond to the provided and required ports mentioned earlier, which are used to represent the
dependencies between the components of an architecture. The second contains non-functional prop-
erties of the component. Apart from the models used to represent the architectures and components,
in our system, the models participate in the definition of other important parts.

! Description of the context information observed as input for the adaptation process (from now
on called observer model).
! List of adaptation operations found to be necessary after context information processing (called

adaptation operation model).
! Definition of the rules that are run to adapt the architectural models (stored in the rule

repository model and the selected rule model).

In addition to the architectural and component models, these models are also an indispensable
part of the system. All of the models together determine system functioning, as the different views
used in orthographic software modeling [44] do. This division in system definition, also inspired
by the concept of Megamodels [45], facilitates management of models and their relationships in

Figure 6. Component metamodel.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Adaptation Process 

Adaptation 
rules 

Selected
rules 

Selection
process

Adapted architectureInitial architecture 

Context 
processing 

Adaptation 
requirements 

Context information 

(c) 

(a) 

(c) 

(b) 

Adaptation 

Figure 7. Adaptation rules.

adapting the system at run-time [46]. Because of space constraints, we are not able to show all
the metamodels involved in our proposal. Nevertheless, metamodel definitions and some model
examples are available in our website [47]‡.

The use of models in the definition of the parts of the system allows us to formally describe the
syntax and semantics of the elements involved in our adaptation process. Moreover, the description
of the models according to their metamodels using EMF, allows us to define constraints using object
constraint language (OCL) [48]. This feature enables us to perform validation operations checking
that the OCL constraints and the structural definitions specified in the metamodel are fulfilled.

2.5. Adaptation rules

Traditional proposals for M2M transformation define the transformation logic by means of rules
that are hard-coded [23]. Nevertheless, there are some model transformation languages and some
approaches with mechanisms for model transformation reuse, such as rule-based modularization
[49] or module composition [50]. In contrast, the actions that adapt our architectures are collected in
a repository to make adaptation more dynamic. The purpose of this rule repository, which is defined
by a model as mentioned in Section 2.4, is to assemble the set of possible operations that can be
executed. Each adaptation rule has an associated action, a weight, and a Boolean attribute that shows
its priority, in addition to other attributes. This way, a selection process can be constructed based on
these attributes and the adaptation necessary at any given instant by choosing the rules that best meet
the purpose of adaptation. Figure 7 shows a schematic diagram of how this selection process works.

Representing our adaptation rules this way and defining the selection process provides a mech-
anism for variability that can obtain different adapted architectural models from the same starting
architectural model. The resulting adapted model depends on (i) the context information that influ-
ences determination of system adaptation requirements; (ii) the repository of adaptation rules; and
(iii) the logics defined in rule selection and context processing. The first approach to the proposal,
in which we considered fixed and invariable rule repository, selection logic, and context processing,
resulted in an adaptation process that generated different architectural models depending on the sys-
tem context information. However, in the second and improved version, the rule repository could
change, and given identical adaptation requirements, the system could generate different architec-

‡In this web page, we included all the material developed for this contribution: models, metamodels, source code of
model transformations, and the extraction process, http://acg.ual.es/isoleres/adaptation.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

http://acg.ual.es/isoleres/adaptation


J. CRIADO ET AL.

tural models depending on the adaptation rule repository. This made it possible to modify, add,
and erase repository rules to get different adaptive behaviors. In the third approach, the logic of
rule selection and the logic determining adaptation requirements can vary, making adaptation more
dynamic (and itself more adaptable) at run-time.

The purpose of this article is to describe this approach for architectural model adaptation up to
the second version, that is, the selection logics and context processing are predefined. Therefore, the
context information and the rule repositories are modified in order to show the variability achieved
and possible future improvements in adaptation.

2.6. Model transformation

Our goal is to adapt software architectures that are described by models, therefore, there must be a
mechanism that can execute operations adapting these models. This mechanism is well represented
by model transformation, in particular, by M2M transformation. Model transformation is an essen-
tial part of MDE, because it makes it possible to manipulate models based on their definition and the
restrictions imposed on them [51]. In an M2M transformation, model A is transformed into model
B based on certain mapping relationships among its elements or other operations as described by
the transformation behavior itself [52].

Our proposal adapts a starting architectural model (AMA) into another adapted architectural
model (AMB ), both defined by the same architectural metamodel AMM , based on these trans-
formation processes. To do this, we defined an M2M transformation containing a series of model
transformation rules. In a later adaptation step, due to certain changes in the context or system
requirements, model AMB will have to be transformed into a new architectural model AMC . The
behavior of this new model transformation may be the same as in the previous step, similar or
completely different, so there are two possibilities: (i) define all the possibilities for adaptation
model transformation existing a priori, for example, using state machines [21] or describing dif-
ferent transformation alternatives [53]; or (ii) transformation behavior is not pre-set and can be
defined dynamically depending on the system requirements. This article concentrates on defin-
ing an adaptation schema that provides a solution for the second option. Figure 8 shows an
adaptive transformation with behavior that is not always the same and varies to generate different
architectural models.

Apart from this, our use of model transformation is not limited to adapting architectural models.
As all the pieces that participate in the adaptation schema can also be found in the field MDE, all
their elements are defined and represented by models, and all the operations that are executed on
them are done by M2M transformations.

Admittedly, it is not indispensable to use model transformations techniques for performing trans-
formation operations to be responsible for adapting component-based systems. However, we want
to apply MDE techniques to these systems, as model transformations allow us to formally build
output elements that conform to the output metamodel, generate traceability information about the
performed operations, and include operations for validating and checking the consistency within
the model transformation. Therefore, we can use these techniques to ensure the generation of
architectural models that comply properly with their definition.

AMM

AMA AMB AMCM2M M2M 

Adaptive
Transformation

Figure 8. Adaptive model transformation.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

3. ADAPTATION PROCESS

Our proposal attempts to achieve adaptation of architectural models at run-time. In the beginning,
these models are defined at design-time and have to change to adapt to later changes in system
context. The models generated at design-time are static artifacts so there must be a mechanism for
transforming them. In our case, we follow an MDE methodology not to generate the final static code
based on models but to represent our architectural models and adapt them at run-time.

This adaptation of the architectural models is done by M2M transformation. In fact, our adapta-
tion process is, schematically, a sequence of transformations. As all the elements that participate in
the transformation sequence have similar characteristics, we were able to develop a DSL to define
the adaptation abstraction based on the established principles. In this section, we first describe an
overview of the entire process, then we formalize the description of the elements that compose
it. Finally, we define the relationships between these elements through the previous formalization,
resulting in our adaptation schema. Furthermore, for the explanation of the performed process, our
methodology is described in Section 4 through a running example.

3.1. Adaptation schema

With the aim of showing an overall view of the transformation sequence, Figure 9 shows each of
the elements (models, metamodels, transformations, extractions, and relationships) involved in the
adaptation process. To summarize, our proposal could be described as a technique made up of M2M
transformations which start out from a starting architectural model, generating a new one at run-time
that seeks the most suitable adaptation for the variations in the system context.

The adaptation process consists of detecting and storing variations in the system context (in the
Oi ). These variations start the adaptation process in which the first step is to decide which operations
have to be executed on the architectural model to achieve the adaptation (C). Once these actions have
been identified, it proceeds to locate the right transformation rules to execute (RR) from the rule
repository (Rr ). When these rules have been located and rated, they are selected (RS) and a new
model is generated with the rules to be executed (Rs). Then, the repository is updated, generating
information on the history of the transformation rule use and updating their rates (RL).

Figure 9. Adaptation schema.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

By applying a HOT-type M2M transformation (RT ) followed by a textual concrete syntax (TCS)
extraction (TA), the ATLAS transformation language (ATL) transformation code called abstract
model transformation (AMT) AMT i is generated from the selected rules. This M2M process,
which is not pre-set and has been performed dynamically, transforms the starting architectural model
(Ain) into the adapted architectural model (Aout ). This model transformation contains the transfor-
mation rules that were selected after processing the context information and according to the rules
in the repository. The generation of the adapted architectural model carries an implicit validation of
the model generated in the AMT i transformation process.

3.2. Adaptation abstraction

The design of this process through different pieces, as well as the existence of common types
of elements, resulted in the conceptualization of this process from a more abstract level. Thus,
if the adaptation process is defined abstractly, it can be changed or improved by constructing
a different transformation schema based on the metamodel that describes it. Furthermore, this
‘modularization’ provides it with certain flexibility when each model and transformation that partic-
ipates in the process is developed. This metamodel (see Figure 10) was constructed using EMF. A
TransformationSchema is comprised of metamodels, models, transformations, and TCS [54]
extractions. TCS extractions represent processes that generate concrete textual syntax. The generic
purpose of these processes is to generate text from reading a source model and another defining the
correspondence between the first one and a textual syntax.

In our case, the TCSExtractions are used to generate the M2M transformation code from
reading a source model in the adaptation schema in the transformation language defined by the
concrete_syntax model. To be more precise, we use these processes to dynamically gener-
ate the code written in ATL [52] for the M2M transformations that adapt the architectural models
based on the adaptation rules that have been selected for a given instant in the system. Each Model
in the schema identifies and defines each model in the system, which is constructed according
to its Metamodel. The M2M elements identify the M2M transformations that take place dur-
ing adaptation. These transformations generate one or more output models based on one or more
input models.

3.3. Adaptation schema definition

Starting from the previous metamodel, we are able to formally describe the process shown in
Figure 9. Therefore, the adaptation schema (SA) is defined in the following manner: SA D
¹M;M;M; T ; I; O; C º. Thus, SA is comprised of a set of models M , a set of metamodels M , a
set of M2M transformations M, a set of TCS extractions T , a set of input relationships I , a set
of output relationships O , and a set of model-metamodel conformance relationships C . The set of
metamodelsM in the adaptation schema is defined asM D ¹A;O;Op;R;ATL; TCSº, whereA is
the architectural metamodel, O the observer metamodel, Op the adaptation operations metamodel,

Figure 10. Adaptation process abstraction.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

R the rule metamodel, ATL is the ATL metamodel, and TCS the TCS metamodel. The set of mod-
els at any given instant i is defined as M D ¹Ain; Aout ; Oi ; Opi ; Rr ; Rs; Ti ; TCSAº, where Ain
is the input architectural model, Aout is the output architectural model, Oi is the observer model at
instant i ,Opi is the adaptation operations model, Rr the rule repository model, Rs the selected rule
model, Ti the transformation model, and TCSA the TCS model for the ATL language.

In the case of M2M transformations, M is defined as M D ¹C;RR;RS ;RL;RT ;AMT iº. C
identifies the transformation process that calculates the adaptation operations that must be carried
out (Opi ) by processing the context information provided by the input architectural model (Ain)
and by the observer model (Oi ). Process RR is in charge of rating the repository rules (Rr ) based
on operations selected (Opi ) and the properties of the context given by the observer model (Oi ).
RS represents the M2M process that generates the selected rule model (Rs) from rule repository
(Rr ) according to the operations indicated by Opi . RL is the transformation process that updates
the attributes of rule repository Rr for the following adaptation process based on the selected rules
Rs . RT corresponds to the M2M transformation that generates the transformation model (Ti ) from
the selected rules Rs . Finally, AMT i represents the transformation process that adapts the input
architectural model Ain into output Aout . The TCS extractions in our adaptation schema are defined
as T D ¹TAº. That is, our adaptation schema is comprised only of a TCS extraction called TA,
which reads the transformation model (Ti ) and the TCS model for ATL (TCSA) and generates the
ATL code for the AMT i transformation.

For the description of the set of input relationships I , an input operator
in#!, which is applied

to elements in M , M, and T , is defined as follows: I D
²
m

in#! p =m !M; .p !M/ _ .p ! T /;
M \ T D ;º. This set describes all the relationships that originate in a model and have either an
M2M transformation or TCS extraction process as their destination. Therefore, the set of input

relationships I is comprised of the following:
²
Oi

in#! C; Ain
in#! C; Oi

in#! RR; Opi
in#! RR;

Rr
in#! RR; Opi

in#! RS ; Rs
in#! RL; Rr

in#!RL; Rs
in#!RT ; Ti

in#!T ; Ain
in#!AMT i

³
. For the

description of the set of output relationships O , an output operator
out##! that is also applied

to the elements in M , M, and T must be defined in the following manner: O D
°
p

out##! q =

.p !M ^ q !M/ _ .p ! T ^ q !M/;M \ T D ;º. Therefore, set O is comprised of those rela-
tionships that originate in an M2M transformation and have a model as their destination and of
those that originate in a TCS extraction and have an M2M process as their destination, that is,°
C
out##!Opi ;RR

out##!Rr ;RS
out##!Rs;RL

out##!Rr ;RT
out##!Ti ; TA

out##!AMT i ;AMT i
out##!Aout

±
.

Finally, to describe set C , the conformance operator Ü, which is applied between elements
of sets M and M , is defined as C D

®
mÜ mm=m !M; mm !M

¯
and represents the set of

conformance relationships between the models (M ) and metamodels (M ) that participate in the
adaptation schema (SA). Therefore, C D

®
AinÜ A;AoutÜ A; OiÜ O; OpiÜ Op;

Figure 11. Adaptation schema operators.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

RrÜ R; RsÜ R; TiÜ ATL; TCSAÜ TCS
¯
. Figure 11 shows the main sets of the

adaptation schema, some examples of the set elements, and how they are related through the
described operators.

Definition of the adaptation schema as a transformation sequence facilitates modularization of
adaptation and its division into subprocesses with isolated behaviors and their independent man-
agement. In our adaptation schema, six subprocesses are identified: context processing (C), rule
repository rating (RR), rule selection (RS), repository update (RL), transformation of the rule
model into an M2M process (RT C TA), and architectural model adaptation (AMT i ). This modu-
larization provides certain flexibility for changing adaptation behavior or improving transformation,
because transformation A can be changed into another, A0, without varying the adaptation schema,
as long as they are interchangeable. Two transformations are said to be interchangeable and are des-
ignated as A $ A0 when the same number and type of models are received as input and generated
as output: A $ A0 , 8 ¹x ! Aº ! I;8 ¹A! yº !O; 9 ¹´! A0º ! I; 9 ¹A0 ! wº !O =x D
´; y D w I x; y; ´; w !M I A;A0 !M. This does not mean that these transformations are equivalent
and have the same behavior, but it represents the ability of our proposal to exchange transformation
modules within the adaptation schema. To make it easier to follow the elements in the adaptation
schema, Table I shows the equivalence between the symbols defined and their meaning. This formal
notation is used throughout the rest of the article to refer to each element of the adaptation schema
and for the algorithms of the described subprocesses.

Table I. Equivalence of symbols in adaptation process.

Symbol Description and alt. nomenclature Symbol Description and alt. nomenclature

M Set of models Aout Output architectural model
M Set of metamodels O Observer metamodel
M Set of M2M transformations Opi Adaptation operation model
T Set of TCS extractions Rr Rule repository model
I Set of input relationships Rs Selected rule model
O Set of output relationships Ti Transformation model
C Set of conformance relationships TCSA TCS model for ATL language
A Architectural metamodel C M2M transformation for processing context

information

O Observer metamodel RR M2M transformation for rule repository rating
Op Adaptation operation metamodel RS M2M transformation for rule selection
R Rule metamodel RL M2M transformation for updating the Rr values
ATL ATL language metamodel RT HOT M2M tranformation for generating Ti
TCS TCS language metamodel AMT i M2M transformation for adapting architectural

models
Ain Input architectural model TA TCS extraction for generating the AMT i

transformation

M2M, model-to-model; TCS, textual concrete syntax; ATL, ATLAS transformation language; HOT, higher-order
transformation; AMT, abstract model transformation.

Table II. Summary of the process.

Subsection Subprocess In Out

4.2 Processing the context (C) Oi , Ain Opi
4.3 Rating the rules (RR) Oi , Opi , Rr Rr
4.4 Selecting the rules (RS ) Opi , Rr Rs
4.5 Updating the rule repository (RL) Rs , Rr Rr

4.6 Transforming the rules (RT ) Rs Ti
Extracting the rules (TA) Ti , TCSA AMT i

TCS, textual concrete syntax; AMT, abstract model transformation.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

The following section describes in detail the adaptation methodology developed by using the
adaptation process. With this aim, each subsection focuses on each of the subprocesses in the
adaptation schema, as summarized in Table II.

4. ADAPTATION METHODOLOGY

Once the formal definition of the adaptation process has been presented, it is necessary to describe
each of the subprocesses involved. For this purpose, first, we will set up an adaptation scenario and
then we will explain the behavior of each module through its application in a common case study
provided by this scenario.

4.1. Adaptation scenario

Regarding our application domain, our proposal is intended to adapt component-based GUIs. There-
fore, some of the subprocesses in the adaptation schema explained in the succeeding text must be
constructed specifically for this domain. In particular, the behavior of C and RR processes depend on
the execution domain. The scenario is the following. A system user is interacting with a mashup GUI
which contains the following components: an e-mail service (Email), a chat (Chat), an audio com-
ponent (Audio), a low-quality video (VideoLQ), a high-quality video (VideoHQ), a file exchange
component (FileSharing, e.g., Dropbox type), and a shared blackboard (Blackboard).

The system takes the following context status variables into account: available bandwidth (band-
width), available free memory (sysPerformance), average size of shared files (averageFileSize), and
the profile of the user interacting with the interface (userProfile). The profile of the user who is inter-
acting with the interface affects the components that will be offered. In this scenario, a normal user
will not have the available file sharing and blackboard components, in contrast to the other two pro-
files (technician and politician). Otherwise, the technician profile will not have the available high
quality video component.

The adaptation process determines what changes must be made in the architecture configuration
representing the UI depending on the values of the context variables. Thus, components are inserted
or deleted according to the context status and the current state of the architecture. According to
the scenario, the system manages a starting GUI having four components: Email, Chat, Audio,
and VideoLQ (low-quality video). In this case, GUI is a complex component containing the afore-
mentioned four simple components, and the transformation rules related to these components must
incorporate some operations to manage this containment relationship. The corresponding architec-
tural model is shown in Figure 12. Because changes in the context variables show that there has
been an increase in bandwidth and available memory and that the user is sharing a large number of
large-sized files over the chat component, the adaptation component will make a decision to recon-
figure the UI by deleting the low-quality video and inserting a high-quality video component and a
file sharing component.

Next, we will describe how this adaptation is achieved. In addition, the case study will use two
different rule repositories so that the difference in the results can be observed. The two repositories
illustrating the adaptation are called RA as shown in Table III, and RB , made up of rules from the

GUI 

Chat 

VideoLQ Audio

Email 

BlackBoard Audio 

Email Chat VideoHQ

Adaptation 
Process FileSharing 

context variables 

GUI 

Figure 12. Adaptation scenario.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Table III. Rule repository model A (RA).

Rule Action p b s w

Insert_Email InsertEmail t 10 10 30
Insert_Chat InsertChat f 20 40 40
Insert_Audio InsertAudio f 30 50 21
Insert_Video1 InsertVideoHighQ f 80 80 14
Insert_Video2 InsertVideoLowQ f 40 60 15
Insert_Video3 InsertVideoHighQ f 100 120 40
Insert_Blackboard1 InsertBlackboard f 100 50 22
Insert_Blackboard2 InsertBlackboard f 80 70 10
Insert_FileSharing InsertFileSharing f 300 100 9
Delete_Email DeleteEmail t — — 30
Delete_Chat DeleteChat t — — 30
Delete_Audio DeleteAudio t — — 30
Delete_VideoHighQ DeleteVideoHighQ t — — 30
Delete_VideoLowQ DeleteVideoLowQ t — — 30
Delete_Blackboard DeleteBlackboard t — — 30
Delete_FileSharing DeleteFileSharing t — — 30

Table IV. Extra rules in rule repository model B (RB ).

Rule Action p b s w

Insert_Recorder InsertVideoHighQ t 200 200 0
Connect_RVHQ InsertVideoHighQ t — — 0
Delete_Recorder DeleteVideoHQ t — — 0
Delete_Connect_RVHQ DeleteVideoHighQ t — — 0

first repository adding the rules shown in Table IV. The headings p, b, s, and w in the tables represent
the is_priority, bandwidth, sysPerformance, and weight attributes, respectively.

In order to illustrate the rule actions on the tables, we take as an example the rules
Insert_Video1, Insert_Video3, Insert_Recorder, and Connect_RVHQ. These
rules are responsible, respectively, for inserting a high quality video component, inserting a record-
ing component, and connecting the ports of both components. The reason why the four rules are
related with the same action (InsertVideoHighQ) is because that is precisely the mechanism (adap-
tation polymorphism) that our proposal provides to select multiple adaptation rules associated with
the same adaptation operation (see Section 4.4).

4.2. Processing the context

The first step toward adaptation according to our proposal (Figure 9) is to decide what actions must
be executed depending on the system context status and the current state of the system architecture.
That is, the system must adapt to any variation in its context, modifying the configuration of its
architecture, if necessary. At any given instant (t D i ), the system context status is reflected in
the observer model (Oi ), and the current state of the architecture is determined by the architectural
model (Ain). Thus, the context processing is done by an M2M transformation called C; this uses
input from the observer model Oi and the architectural model Ain to generate the operations that
must be executed to adapt the starting architectural model according to the variations in the system
context, following a certain logic defined a priori. These operations are stored in the architectural
adaptation operations model (Opi ).

As a practical validation of our adaptation proposal, we have selected the component-based UI
domain. We have therefore implemented the C model transformation with the decision logic of
operations to be applied to that concrete domain with some specific preconditions. Table V summa-
rizes this logic. The first column describes the variables in the system environment: the bandwidth
(bandwidth, b) and the main memory (sysPerformance, s) available to the system, in addition to
the size of the files shared (averageFileSize, a). The values of these variables determine the adap-

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Table V. Processing the context (C).

System context state u Components

b 2 Œ0; bandChat.// U, T, P E
s 2 Œ0; sysChat.//
b 2 ŒbandChat./; bandAudio.// U, T, P E, C
s 2 ŒsysChat./; sysAudio.//
b 2 ŒbandAudio./; bandV ideoL.// U, T, P E, C, A
s 2 ŒsysAudio./; sysV ideoL.//
b 2 ŒbandV ideoL./; bandF ileShar.//

U, T, P E, C, A, VLs 2 ŒsysV ideoL./; sysF ileShar.//
a < si´eF ileSharing./
b 2 ŒbandF ileShar./; bandV ideoH.// U E, C, A, VL
s 2 ŒsysF ileShar./; sysV ideoH.// T E, C, A, VL, F
a > si´eF ileSharing./ P E, C, A, VL, F
b 2 ŒbandV ideoH./; bandBlackb.// U E, C, A, VH
s 2 ŒsysV ideoH./; sysBlackb.// T E, C, A, VL
a < si´eF ileSharing./ P E, C, A, VH
b 2 ŒbandV ideoH./; bandBlackb.// U E, C, A, VH
s 2 ŒsysV ideoH./; sysBlackb.// T E, C, A, VL, F
a > si´eF ileSharing./ P E, C, A, VH, F
b > bandBlackb./ U E, C, A, VH
s > sysBlackb./ T E, C, A, VL, B
a < si´eF ileSharing./ P E, C, A, VH, B
b > bandBlackboard./ U E, C, A, VH
s > sysBlackboard./ T E, C, A, VL, F, B
a > si´eF ileSharing./ P E, C, A, VH, F, B

Figure 13. Example of selecting adaptation operations algorithm.

tation operations to be performed to maximize system efficiency. For this, thresholds have been
defined using ATL helpers that represent the resources that require the components to work prop-
erly. For example, bandChat() represents the bandwidth necessary for the chat component,
and sysBlackboard() represents the available main memory that the blackboard component
requires. In addition, sizeFileSharing() is the file size threshold that must be exceeded for
the file sharing component to be inserted. Thus, the action or actions to be executed are determined
by whether or not the values of context variables are within the intervals defined by these thresholds.

The second column describes context information related to the profile of the user who is inter-
acting with the architecture. Depending on his knowledge and interaction with the system, this
variable, (userProfile, u) may be user (a U), technician (T), or politician (P). The third column shows
the components necessary for adaptation, which may be Email (E), chat (C), audio (A), low quality
video (VL), high quality video (VH), file sharing (F), and blackboard (B). The logic must take into
account components that are already in the starting architectural modelAin (Figure 12) to determine
the adaptation operations that must be executed by the adaptation process, as shown in Figure 13.
This fragment of the process shows a case in which high-quality video must be inserted. If there is
already a low-quality video component in the architecture, it must be deleted (lines 2 to 4), and if the
high-quality video component is already in the architecture, the insertion operation is not included
(lines 5 to 7).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Figure 14. Adaptation operations.

It should be mentioned that Table V shows the simplified process logic, and therefore, there are
combinations of context variables that are not shown. For example, one of the variables meets the
condition for interval (b 2 ŒbandAudio./; bandV ideoL.//), whereas the other one does not
(s … ŒsysAudio./; sysV ideoL.//). If the variable that does not meet the condition is over the
threshold for the interval, the operations selected are the same as for the affirmative case. If, on the
contrary, it is below it, the operations selected are those that meet the condition immediately below
the values in the table, keeping in mind the restriction just explained. To summarize, the purpose of
C transformation is to select the adaptation operations that make the system most efficient for the
state of its context. This is accomplished by offering the right components depending on their use
of available resources and the defined profile for adapting the system to the context. The complete
source code of the C transformation process is available on our website [47] (in the Sources section).

Focusing on the case study scenario, let us suppose that circumstances exogenous (state of con-
text) to the system are reflected in the observer model (Oi ) in the following manner: the available
bandwidth (bandwidth) is 2000 Kbps, the main memory available (sysPerformance) is 4000 MB,
the average file being shared (averageFileSize) is 300 MB, and the profile of the user interact-
ing with the interface is ‘politician’. We also assume the following thresholds for the helpers used
in C: bandBlackboard() = 1750 (Kbps), sysBlackboard() = 3500 (MB), and sizeFileSharing() =
200 (MB). Keeping in mind the context variable values and the initial architectural model, the
operations model to be performed Opi will have the values shown in Figure 14. Following the
C logic, we find that bandwidth >D 1750 (Kbps), sysPerformance >D 3500 (MB), and
averageF ileSi´e >D 200 (MB), and because the Email, Chat, and Audio components are
already in the architecture, it is unnecessary to reinsert them. And as the VideoHQ component
is among those selected by the logic, this implies deleting the VideoLQ component (operation
DeleteVideoLowQ) in the initial architectural model (Ain).

4.3. Rating the rules

According to our proposal, the rules in the rule repository (Rr ) must be rated at run-time so that the
rules with a higher numerical value in a certain attribute will be those run in later processes. This
transformation rule attribute is called the mark. The M2M transformation in charge of this rate is
called RR, whose source code is available on the aforementioned website [47]. The input to this
process is the architectural adaptation operations model (Opi ), the transformation rule repository
model (Rr ), and the observer model (Oi ), as shown in Figure 9, steps (3) and (4).

The Opi model is used to indicate the adaptation operations that have been calculated by C as
explained in Section 4.2. The adaptation operation associated with each of the rules and a set of
context variables on which that rule has a repercussion are defined in the Rr . The values of this set
are used to calculate the rule’s mark. Each rule is rated independently and it is worth mentioning
that in our proposal, we do not rate the possible configurations of the architecture, but we evalu-
ate each repository rule (which acts on the components of the architecture). For example, the rule
InsertAudio defines two variables in this set bandwidh D 30 and sysPerformance D 50,
which mean that the selection of this rule implies the use of a 30-Kbps bandwidth and 50-MB main
system memory, because as a result of its inclusion, an audio component is added. Oi contains the
information on which context variables participate in the execution of the adaptation process.

As output, the RR transformation modifies the rules in theRr rule model using a metric that rates
the rules with action coinciding with any of the operations included in operations model Opi . This
rate is reflected in the rule attribute mark. The attribute mark represents the value of a simplified

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Table VI. Rating rule repository model A.

Rule Action b s mark

Insert_Video1 InsertVideoHighQ 80 80 0.00625
Insert_Video3 InsertVideoHighQ 100 120 0.00455
Insert_Blackboard1 InsertBlackboard 100 50 0.00667
Insert_Blackboard2 InsertBlackboard 80 70 0.00667
Insert_FileSharing InsertFileSharing 300 100 0.0025
Delete_VideoLowQ DeleteVideoLowQ — — 0.0

Table VII. Rating rule repository model B.

Rule Action b s Mark

Insert_Video1 InsertVideoHighQ 80 80 0.00625
Insert_Video3 InsertVideoHighQ 100 120 0.00455
Insert_Recorder InsertVideoHighQ 200 200 0.0025
Connect_RVHQ InsertVideoHighQ — — 0.0
Insert_Blackboard1 InsertBlackboard 100 50 0.00667
Insert_Blackboard2 InsertBlackboard 80 70 0.00667
Insert_FileSharing InsertFileSharing 300 100 0.0025
Delete_VideoLowQ DeleteVideoLowQ — — 0.0

utility function which maximizes system performance for the context variables at any given instant,
in our case study, by minimizing the use of both the bandwidth (bandwidth) and the main memory
(sysPerformance). Therefore, the value of the score (markr ) calculated for a rule whose adaptation
operation coincides with any of those present in the Opi is inversely proportional to the sum of the
attributes bandwidth and sysPerformance: markr D 1 = .r:bandwidthC r:sysPerformance/.

This formula is implemented as part of the model transformation and it is written in ATL code.
This code and the complete RR process are available on the mentioned web page with the M2M
transformation sources. It is true that C and RR may be executed together in a single transformation.
The purpose of separating them is to make it easier for modification of the adaptation logic to
distinguish between (i) calculation of the target adaptation operations and (ii) criteria for calculating
the rule repository mark. We are aware that the method of calculating the scores of the rules is
simple, but it is an example of fitness function to evaluate the adaptation rules. On the other hand, it
is important to note that the dependencies between components also affect non-functional properties,
but this is already covered in the values of the rules that are related to the context variables, which
are set at design-time by an expert.

Applying this scoring process to our case study, the rule repositories shown in Tables VI and VII
are obtained. There are shown only the rules that have been affected by the process. That is, those
whose action coincides with any of the adaptation operations in the adaptation operations model
Opi . For example, the mark in Insert_Video1 is the result of the operation 1=.80 C 80/ D
0:00625, whereas the mark of the rule Connect_RVHQ is 0.0, because that rule does not have the
goal to add a component that influences the use of system resources.

4.4. Selecting the rules

After the rules in the rule repository model Rr have been rated, continuing the adaptation schema in
our proposal (Figure 9, steps (5) and (6)), the next step for run-time adaptation is to select the right
subset of rules. The M2M transformation process in charge of making this selection is called RS .
Its input is the transformation rule repository model Rr and the adaptation operations model Opi ,
and it generates the selected transformation rules model (Rs). The pseudocode for this process can
be seen in Figure 15, and the corresponding ATL code can be found on the web page [47].

This process filters the rule repository, so it starts from the complete rule set (line 1) and removes
those rules that will not be selected (lines 4, 8, and 9). This algorithm deletes the transformation
rules in the Rr rule repository whose attribute action does not coincide with any of the operations

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Figure 15. Rule selection algorithm (RS process).

included in the adaptation operations model Opi (lines 3 and 4). Those rules marked as priorities
(is_priori ty D t rue) are always selected (line 6). The one with the highest mark is selected from
among those that are non-priority (lines 7 and 8), because it is the one that best meets the require-
ments for the adaptation operation to be performed. If two or more rules meet the requirement and
have the same mark, the one with the highest weight is chosen (lines 10 and 11), because it is the
one that has been used the most, which shows that, a priori, it is the one that adapts the most to the
operation to be performed and to the system requirements. Further details on updating rule weight
are given in Section 4.5. The function isBiggestWeight.Rr Œn"/ is in charge of calculating if this
rule is the one with the biggest weight among all with the same action, as isBiggestMark.Rr Œn"/
does with regard to the mark attribute. The following excerpt shows the corresponding ATL code.

helper def: isBiggestWeight(checked_rule : RMM!Rule) : Boolean = not(RMM!Rule ->

allInstances() -> select(r | (r.rule_name <> checked_rule.rule_name) and

(r.action = checked_rule.action) and (r.mark = checked_rule.mark)) ->

exists(r | r.weight > checked_rule.weight));

The selection loop does not ensure that there are no rules which could be applied to the same
element of the input architectural model. This means that there could be some conflicts between the
selected rules. In ATL, as in other transformation languages with declarative behavior, it will cause
a run-time error when the transformation tries to apply two (or more) different rules to the same
element. Therefore, our selection process executes a filter loop to check and remove the conflictive
rules (lines 17 to 21 of Figure 15). The criteria implemented for resolving these conflicts are selected
to the rule with the shortest rule name. More implementation details about this filter process are also
available on the web containing the M2M transformation sources.

In the proposed scenario, the selected rule model (Rs) generated is different depending on which
repository is used. If RA is used (i.e., Rr D RA), the list of rules selected is Insert_Video3,
Insert_Blackboard1, Insert_FileSharing, and Delete_VideoLowQ. The first rule
is selected because it is the rule with action equal to InsertVideoHighQ, which has the highest rating.
The second rule is selected because, although the two rules whose action is InsertBlackboard have
the same rating, the one selected is the one that has the highest weight. The other two rules are
selected because they are the only ones in the repository with that action.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

If the repository RB (i.e., Rr D RB ) is used, the rules selected are the following:
Insert_Video3, Insert_Blackboard1, Insert_FileSharing, Delete_VideoLQ,
Insert_Recorder, and Connect_RVHQ. The reason for selecting the first four rules is the
same as for RA. The last two rules in the list (Insert_Recorder and Connect_RVHQ)) are
selected because their action is listed in the adaptation operations model (Opi ), and although they
do not have the highest rating, their is_priority attribute is true, so they are selected.

4.5. Updating the rule repository

In our proposal, the transformation rules in the rule repositoryRr must be modified such that the use
frequency of the rule (during all system executions) is recorded. This numerical value is reflected by
the rule attribute weight, because, as explained in Section 4.4, it may be necessary for RS to use this
attribute to generate the right adaptation rule subset Rs . The M2M model transformation process in
charge of this task is called RL. The input to this process is the transformation rule repository Rr
and the selected rule model Rs generated by RS , and it updates the transformation rule repository
model using the weight attribute of the transformation rules modified according to their use in the
adaptation stage at instant i (Figure 9, steps (7) and (8)).

The logic for updating the repository rules is explained as follows and shown as pseudocode in
Figure 16. Otherwise, the corresponding ATL code is available on the web [47]. The run counter
(run_counter) of the rules, whose action coincides with any action of the rules that have been
selected, is increased whether or not it was selected (lines 3 and 9 of Figure 16). In the Rr , if
the repository rules coincide with the transformation rules (Rs) generated by RS , the attribute that
shows that the rule has been used for adaptation (selection_counter) is updated (line 4). The use
frequency (ratio) is updated for all the rules in which any counter has been changed (lines 5 and
10). The weight of the repository rules that coincides with the rules selected is updated by applying
a bonus based on the ratio (line 6). The weight of those whose actions coincide with any of those
selected but were not selected themselves is decreased (line 11). The coefficients of bonus and
penalty are set a priori and are used to influence the weight of the rule positively or negatively,
depending on whether or not it is among those selected. The mark of the rules is reset to zero for the
next adaptation process (line 14).

In the research and development of an algorithm for updating the rules after each step of the
adaptation process, we tried to implement a weight-based mechanism which allows us to establish
and modify the weight associated with a rule. This attribute would indicate the ‘importance’ of a
rule compared with the other rules of the same type. Then, these weights could be used to influence
the selection. Building on multiplicative weight methods [55], the rules can be selected randomly
with probability proportional to the weights. We rely on this type of work to incorporate the weight
attribute with the goal of having a mechanism to be able to perform different selection processes.

Figure 16. Updating rule repository algorithm (RL process).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Table VIII. Updating RA and RB .

Rr Rule Weight Ratio Run_c Selec_c

A and B Insert_Video1 14!11 0!0.5 0!1 0
A and B Insert_Video3 40!44 0!1.0 0!1 0!1
B Insert_Recorder 0!4 0!1.0 0!1 0!1
B Connect_RVHQ 0!4 0!1.0 0!1 0!1
A and B Insert_Blackboard1 22!26 0!1.0 0!1 0!1
A and B Insert_Blackboard2 10!7 0!0.5 0!1 0
A and B Insert_FileSharing 9!13 0!1.0 0!1 0!1
A and B Delete_VideoLowQ 30!34 0!1.0 0!1 0!1

In our case, the weight is used to select between rules which have the same mark. As these
methods state, there are many options to update the weight value in order to be able to modify
the selection operation. For example, the expert could manually modify them, or it is possible to
develop an automatic process based on the impact caused by the selection of a specific rule or based
on the use frequency. We decide to update the rules by storing some information about the use
frequency and also to modify their weight from this data. We utilize bonus and penalty coefficients
to enhance the speed with which the weights of the rules are changed. Moreover, these coefficients
do not multiply directly the value of the ratio and we add a unit, because values between zero and
one would reduce the impact of the variation. When the RL transformation process is applied to
our case study scenario, we obtain the updated values for both repositories RA and RB , which are
shown in Table VIII.

4.6. Transforming the selected rules into the AMT i
When the subset of rules selected has been found for the context conditions indicated by the
observer model, according to the initial architectural model, the subprocess in charge of translat-
ing the selected rule model into ATL code is run. This code makes up the M2M transformation
named as AMT i (from AMT), which adapts the starting architectural model Ain into the adapted
architectural model Aout (see Figure 9). This translation is done in two steps.

1. The M2M transformation called RT , which is in charge of translating the selected rule model
into the ATL transformation model, is run.

2. The TCS extraction called TA, in charge of generating the ATL code from the transformation
model obtained in the last step, is run.

The RT process is a HOT-type M2M transformation, because its input is the selected rule model
Rs and it generates a transformation model Ti as output, which is constructed according to the
ATL definition language (ATL). The rule metamodel R, with which both the selected rule models
and the rule repository are defined, is a simplification of the ATL metamodel. Thus, the transfor-
mation rules that are stored in the repository may be constructed more conveniently than if the
ATL metamodel was used. So, their manipulation (insertion or modification of rules) is easier,
and furthermore, attributes associated with the rules can be defined (such as the mark, weight, and
action attributes). These attributes provide additional information that is used by the context pro-
cessing logic for rating and selecting the rules and so on and in general, information used by the
adaptation process.

The complete code of the HOT process is available on the web [47]. Next, we present an excerpt
from the code which shows an example of the RT process in charge of translating the deletion
rules, defined according to the R rule metamodel, into ATL rules. This rule is run for rules that have
to be run in refining mode (is_refining = true), whose target element is called ‘drop’.
This target name converts it into a deletion rule. In addition, the ATL refining mode [56] allows
transformation rules to be defined that affect only those elements which change from the source
model to the destination.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

rule CalledRuleDrop{

from rm: RMM!CalledRule(

rm.is_refining = true and rm.to_elements

->first().element_name = ’drop’

)

to

atl: ATLMM!CalledRule(

name <- rm.rule_name,

outPattern <- out_pattern

),

out_pattern: ATLMM!OutPattern(

dropPattern <- drop_element

),

drop_element: ATLMM!DropPattern

}

Then the TA process generates the ATL code with the transformation rules in charge of adapting
the architectural model. This process is executed as a TCS extraction§, which takes as input the
transformation model found in the previous step and the TCS model which relates each element in
the transformation model to its corresponding ATL code (see the section Sources in the web page
[47]). For example, the following excerpt from the code shows two rules. The function of the first
rule is to delete the existing low-quality video component (VideoLQ) from the UI. The second rule
is responsible for connecting the Recorder and the VideoHQ components from binding its ports.

rule DeleteVideoLowQ{

from

f : AMM!SimpleAbstractComponent(

f.component_name = ’VideoLQ’

)

to

drop

}

rule ConnectRVHQ{

from

f : AMM!SimpleAbstractComponent(

f.component_name = ’Recorder’

)

to

t : AMM!SimpleAbstractComponent(

component_name <- f.component_name,

component_parent <- f.component_parent,

ports <- f.ports

),

c : AMM!Connector(

connector_parent <- f.component_parent,

end_A <- (thisModule.getSimpleComponent(’Recorder’).ports)->

select(p | p.port_name = ’Recorder_video’)->first(),

end_B <- (thisModule.getSimpleComponent(’VideoHighQ’).ports)->

select(p | p.port_name = ’VideoHighQ_video ’)->first()

)

}

§TCS Extractor library—org.eclipse.m2m.atl.drivers.emf4atl.tcs.extractor.TCSExtractor.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

org.eclipse.m2m.atl.drivers.emf4atl.tcs.extractor.TCSExtractor.


J. CRIADO ET AL.

Figure 17. Abstract model transformation.

The code of two ATL model transformation processes that are executed sequentially is gener-
ated. The former transformation contains the rules that are executed in the ‘normal mode’ of ATL
semantics; on the other hand, the latter is composed of the rules that are executed in ‘refining mode’
(Figure 17). The reason for separating the two kinds of rules is that they affect different sets of the
input model: ‘normal mode’ rules are used to generate each of the expected target model elements,
and ‘refining mode’ rules affect only those elements which change from the source model to the des-
tination [56]. In our case, model transformations are used to adapt component-based system and, for
example, a rule for deleting a component must necessarily be executed in refining mode, whereas a
rule that inserts a new component must be defined to run in normal mode.

In order to get this distinction, our repository rules have an attribute indicating if the rule must
be executed in refining mode or not and, consequently, RT and TA processes will generate the two
model transformations that together make up the AMT i . As a consequence, our proposal relies on
this particular execution mode of ATL and it cannot operate properly without it. Without this mode,
the final transformation that handles the refactorization and adaptation of the model would have to
rebuild from scratch all the elements by modifying only the parts that are changing. This option
would imply worse execution times, and therefore, it has been discarded.

Otherwise, the selected rules (Rs) always contain a subset of helpers rules that allows the model
transformation to check (using OCL operations) that the resulting elements in the target model have
been properly managed and generated. Next, we will show two examples.

helper def: getSimpleComponent(c_name : String) : AMM!SimpleAbstractComponent =

AMM!SimpleAbstractComponent-> allInstances()->select(c|c.component_name =

c_name)->first();

helper def: checkRequiredPorts() : Boolean =

AMM!Required->allInstances()->forAll(p | p.connector_parent.oclIsUndefined()

= false);

The previous excerpt from the code shows two rules. The first one is in charge of getting a com-
ponent from its name, and the goal of the second rule is to check that all required ports have a
connector with another component of the model, that is, the dependencies of all components are
solved by the architecture. An example of an AMT i process can be found on the web page [47].

4.7. Obtaining the adapted architectural model

The last step in the process is to run the abstract model transformation (AMT i ), which has been
dynamically constructed and is in charge of adapting the architectural model that represents the
UI. Figure 18 shows the result of applying our adaptation process by using the two repositories
described in the case study.

Therefore, if RA is used, the result is that the low-quality video component is replaced by a
high-quality video component, and the blackboard and file-sharing components are inserted. On the

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Audio

Initial User Interface Adapted User Interface A

Initial Architectural Model

Adapted Arch. Model A

Adaptation
Process

Email Chat

Audio VideoLQ

Email Chat

Audio VideoHQ

Blackboard FileSharing

ChatEmail

VideoLQ

Adapted User Interface B

Adapted Arch. Model B

using 

using 

GUI

Email
Chat

Audio

Blackboard

FileSharing

Recorder

VideoHQ

Figure 18. Adaptation variability.

Figure 19. Mashup GUI example.

contrary, ifRB is used, the video component insertion is accompanied by the addition of a recording
component which is related to the first one. This relationship is described in the architectural model
through a connection between their interfaces and it is also represented by a link in the adapted UI
(Figure 18).

As we have stated, the AMT i transformation generated by the adaptation process contains a
subset of helpers rules that ensure that the resulting elements in the target model have been prop-
erly generated. Furthermore, we assume that the initial model has been constructed correctly, and
the rules in the repository perform consistent actions. Therefore, we can be sure that the adapted
architectural models will be generated conforming the architectural metamodel. Nevertheless, at the
end of the adaptation process, the system performs a validation of the resulting model. This val-
idation checks that the OCL constraints and the structural definitions specified in the metamodel
are fulfilled.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Figure 19 shows an example of the final GUI. It is the real UI application that is generated from
the abstract representation of an architectural model, and it corresponds to the initial UI of Figure 18.
We show this GUI for illustrative purposes, because this paper does not describe the realization
process from which the final GUI is generated. Nevertheless, it is important to observe an example
of the software obtained at the end of each step of the adaptation process. This GUI is available on
the web [47].

5. IMPLEMENTATION AND ASSESSMENT

In this section, we describe the implementation developed with the aim of validating our approach
and the experiments performed to evaluate the execution times. Moreover, the benefits and
shortcomings of our proposal are discussed.

5.1. Validation and evaluation

To validate our proposal, we have developed a tool that enables us to execute the adaptation process
on the architectural models that take part in the described case study scenario. It was implemented
by using the Eclipse EMF, ATL, and TCS libraries and was deployed in a three-tier server architec-
ture so that it can be tested from any platform without having to install any application or plugin.
In this sense, a GUI is deployed in an Apache (httpd.apache.org) server to perform the functions
of the tool’s front-end (Figure 20). Otherwise, a Tomcat (tomcat.apache.org) server deploys the

Figure 20. Validation tool.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

httpd.apache.org
tomcat.apache.org


TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

ATL and TCS libraries and offers the model transformation services. In addition, another Tomcat
server deploys the EMF libraries to provide model validation services. More information about the
adaptation scenario and the tool is available in the adaptation tool section of the web page [47].

This tool (through the mentioned front-end) enables us to test input of different context variable
values (A) and see how this variation affects the architectural model that is obtained at the end of the
adaptation process (C). In addition, the tool shows information on the repository rules that are being
used by the adaptation process (B). Furthermore, it makes it possible to select the rule repository
that is going to be used from a series of predefined models or else provide our own repository
of transformation rule models (D). When the adaptation process has been started, log information
on the rules, run in the M2M transformations of the adaptation schema, is shown at the bottom
of the tool (E). This information provides traceability, in addition to checking that the process is
working properly.

To test and evaluate that the proposed adaptation process meets assumable run-times for our
application domain (adaptation of component-based UIs), an experiment was developed. The exper-
iment was run within the Eclipse helios-SR2 framework in a machine with a 3.33 GHz Intel(R)
Core(TM) i5 processor and 4 GB main memory. About 1000 iterations of the adaptation process
were run in which the context variable values were changed at random. Execution time of each sub-
process in the adaptation schema was measured, and the set of iterations was averaged in ms for each
iteration. The experiment was done for different sizes of input models in the adaptation process: the
rule repository model (Rr ), the observer model (Oi ), and the initial architectural model (Ain). In
order to create these models, we randomly generated the required elements before launching each
simulation of the experiment.

When we refer to random generation, it means that we implemented a test process that generates
random values between all the possible values that the elements could have. This operation has been
performed making use of the Java model code generated from the EMF metamodels [43]. Therefore,
the models conform to the corresponding metamodel and contain valid values. Because of this,
we do not need to accomplish any special operation to perform test oracles. In the case of models
with ‘extra’ elements (i.e., elements which are created to increase the size of the input models), we
generate model instances with variables or attributes that are not changing the adaptation behavior
but are taken into account in the process algorithms and allow us to evaluate their performance. The
evaluation process does not only take into account models with the size of the presented case study,
this is because, now, we manage some example scenarios, with few context variables, not many
components in the architecture and small rule repositories but there could be some other scenarios
with a lot of context variables, a large amount of components and bigger rule repositories.

Figure 21 shows the results of the experiment using models from 100 to 10,000 elements. As
described in the legend of the figure, the normal line shows the times when we change the size of
Rr , the dashed line shows the times when we modify the size of Oi , and the dotted line shows
the corresponding times for Ain. It is important to note that compilation times of the ATL file
(ASM compilation) have been omitted because they are constant 120 ms, but these times have been
considered to calculate the total execution times of the adaptation process (Figure 21g).

If we focus on the variation in the size of the repository of rules, we can observe that execution
time of the transformation in charge of context processing (C) increases proportionally to the number
of elements of Rr , but it is below 100 ms for 10,000 elements. Otherwise, the rule transformation
process (RT ), the ATL code extraction (TA), the architectural model adaptation (AMT i ), and the
validation processes do not depend on the size of Rr and they generate execution times about 30,
40, 10, and 20 ms, respectively. However, time consumed by processes manipulating the repository
(RR, RS and RL) increases proportionally to the number of rules. It may be observed that for
repositories with over 4500 rules, the total adaptation processing time surpasses 1000 ms and is
up to 2.5 s for repositories with 10,000 elements. Nevertheless, our adaptation rule repository does
not have more than 1000 elements because the transformation rules can be generalized to keep
a reasonable number of rules. Therefore, execution times required for the adaptation process are
within assumable times for our purpose, because 1 s is not an excessive delay for adapting our
component-based UIs.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

150

200

250

300

350

0

50

100

100 1200 2300 3400 4500 5600 6700 7800 8900 10000 100 1200 2300 3400 4500 5600 6700 7800 8900 10000

100 1200 2300 3400 4500 5600 6700 7800 8900 10000

100 1200 2300 3400 4500 5600 6700 7800 8900 10000

100 1200 2300 3400 4500 5600 6700 7800 8900 10000

100 1200 2300 3400 4500 5600 6700 7800 8900 10000

100 1200 2300 3400 4500 5600 6700 7800 8900 10000

(a)

0

100

200

300

400

500

600

700

800

900

(b)

30

40

50

60

0

10

20

(c)

30

40

50

60

0

10

20

(d)

200

250

300

350

400

450

500

0

50

100

150

(e)

150

200

250

300

350 Validation

0

50

100

(f)

1000

1500

2000

2500 TOTAL

0

500

(g)

Legend/Key of the graphics

x-axis number of elements of the input model 

y-axis time (in milliseconds) 

represents the times varying the size of 

represents the times varying the size of 

represents the times varying the size of 

(h)

Figure 21. Execution times varying Rr , Oi , and Ain.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Figure 22. Summary of execution times.

Regarding the execution times varying the number of elements of the Oi (card.Ain/ D 100
and card.Rr / D 100), we can observe that the only affected subprocess is the one in charge of
processing the context information (C). Therefore, the total execution time depends linearly on the
Oi cardinality. Nevertheless, the resulting times are between 300 and 600 ms, what are assumable
times considering that our observer models never reach such high sizes. When we vary the size
of the Ain (card.Oi / D 10 and card.Rr / D 100), we can observe that three subprocesses of
the adaptation schema are affected: processing the context (C), validating the architectural model,
and performing the architectural model transformation (AMT i ). The first is linearly affected with
a low gradient, whereas the other two processes strongly depend on the Ain cardinality, with a
gradient close to 1. This causes that the total execution time also depends linearly on the number of
elements of the initial architectural model. The resulting times of this experiment are between 300
and 1200 ms, what are assumable times (as in the previous case) taking into account that the size of
our architectural models will not exceed 100 elements.

Figure 22 summarizes the execution times generated by each of the subprocesses of the adaptation
schema. It represents the maximum times for the aforementioned experiment and the average time
for executions from 100 to 10,000 for the size of the input model. In this figure, one can observe
the influence of each input model on each subprocess. C transformation depends on the three input
models, but the size of Oi is the factor that has more impact. The size of Rr model is the one that
has more influence on the total execution time, as we can see for RR, RS , and RL subprocesses.
On the other hand, RT , TA, and ASM compilation subprocesses are not influenced by the size of
the models. Finally, the architectural model transformation and the validation subprocesses depend
only on the Ain, as it is logical. Some other information about the results of the execution times of
previous implementations is also available on the web [47].

5.2. Discussion

The adaptation proposal described in this article is based on a series of assumptions. The adaptation
target system must be represented in the form of a component-based architecture. These compo-
nents together describe the system’s functionality and are not independent of each other but have
dependency relationships in which the behavior of one can affect the rest of the components in the
architecture. Furthermore, variations in system context may make it necessary to adapt the archi-
tecture, for example, by modifying the connections between components, inserting new ones or
deleting existing components, among others. With the idea that adaptation is not static, that is, that
the same adapted architecture is always generated by the same changes in context, the adaptation
process and its logic must be dynamic and adaptable in order to generate new architectural models
that had not been pre-established when the system was designed.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Applying the proposal to a case study, we have chosen GUIs, due to the trend toward Social
Semantic Web or Web 3.0, in which UIs make use of technologies to favor exchange of informa-
tion within the Web community and incorporate capacities that allow users to cooperate and share
information. We also intended to achieve smart GUI (SUI), which learn from interaction with the
user or group of users, changing and evolving their behavior. Therefore, GUIs are described by
means of architectural models containing the specification of UI components, and they can adapt
their functionality due to certain changes in the context.

Following these premises, an adaptation schema has been developed based on model transforma-
tion, in which both architectures representing system and context information are represented by
models. Furthermore, the rules that represent the adaptation operations (e.g., insert component X,
delete component Y, connect components X and Y to Z) are also described in models and stored
in a rule repository. The sequence of the adaptation schema manipulates these three key pieces
by processing the context information, determining the adaptation operations, rating, selecting,
and updating the repository rules, and finally constructing an M2M transformation that adapts the
starting architectural model at run-time.

All the subprocesses in the adaptation schema were implemented as M2M transformations (using
ATL) or TCS extractions, and some generate intermediate elements (such as the subset of selected
rules) that are represented in the form of models. These particularities in defining the elements and
functioning of our adaptation proposal provide the following benefits.

b#1 System adaptation is dealt with on a high level of abstraction because of the use of models.
b#2 The models and the OCL restrictions formally define the syntax and some part of the static

semantics of the system elements.
b#3 MDE techniques and tools make model manipulation simple.
b#4 Proper construction of elements can be checked by applying validation techniques and model

checking.
b#5 The use of model transformation techniques makes it possible to generate well-constructed

output models in conformance with their metamodel.
b#6 Traceability information is generated and it can be used for the maintenance and improve-

ment of the adaptation process.
b#7 By separating adaptation rules in a repository, new unforeseen adaptation situations can be

solved by modifying the repository.
b#8 Modularization of the different transformation processes in the adaptation schema makes

their independent modification possible without having to change the rest of the processes.
b#9 Run-time construction of the transformation that adapts the architectural models makes

possible dynamic adaptation that can evolve.

This last benefit is achieved through the use of HOTs, which allow us to convert any rule selected
from the repository into executable ATL code. Therefore, a fixed set of parameterizable adaptation
rules is not able to obtain the same flexibility as our adaptation schema. This is because in a fixed
set, you cannot define a priori all the possible adaptation rules (even using parameters). It is true
that a component-based architecture definition is simple enough to define all the possible rules
based on insertion, deletion, connection, and modification operations. However, sometimes, it is not
equivalent to execute a rule that includes a number of operations or to execute one rule for each
operation. For example, a rule which is in charge of inserting two new components and connecting
them it is not exactly the same as three separated and parameterized rules, two for inserting and one
for connecting. First, the three separate rules depend on the order, because the components cannot be
connected until they are inserted; and second, this separated execution generates worse performance
results. Moreover, if the architectural metamodel changes, the parameterized rules and the way to
build them must be modified, whereas in our proposal, only the rule repository must be updated (or
expanded). In addition, this repository mechanism allows to dynamically add the new rules from the
expert (manually) or from the system (automatically).

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

5.3. Threats to validity

The usage of an MDE approach to the field of adaptation and in particular our proposal definition
presents a number of shortcomings or threats to validity which must also be discussed. Even though
the adaptation process implements a mechanism for rule conflict resolution, we are not dealing with
goal dependencies. Goal conflict resolution requires a new proposal for the representation and the
management of the objectives (for example, goal models) and it is not addressed in the proposed
adaptation schema. Otherwise, direct manipulation of the models for their modification, manage-
ment or validation operations makes it necessary to consider the computation load. Furthermore, the
MDE model transformation techniques operate on a very abstract level in the definition of system
elements, and the tools and libraries currently available to implement these techniques also add a
considerable load to computation time.

Regarding the drawbacks highlighted in [57], even we have not represented our possible config-
urations as states and the reconfiguration operations as transition between states, there is also an
explosion in the number of M2M rules that the adaptation process executes. The growing number
of rules executed is not directly related to the final transformation adapting the architectural model
but affects the processes that are responsible for managing the context information and the rules.
This proportional increase depends on the number of context variables and the number of adaptation
rules that exist in the rule repository, as shown in Figures 21 and 22. The second flaw of adaptive
systems based on MDE is the evolution of the system. In our case, this evolution involves dynami-
cally changing the behavior of our adaptation process. The modular nature of our adaptation schema
allows us to address this change independently on each subprocess. However, in the current state
of the proposal, it is only possible to modify at run-time the repository of adaptation rules, allow-
ing different behaviors to the same inputs. The logics of the subprocesses (which manage context
information) and rules are pre-set and their evolution will be addressed in future work.

Otherwise, even though the syntactic information is represented in the models and some parts
or the semantics could be checked through the OCL restrictions, some other semantic information
about the architectural models is implicit in the proposed methodology (e.g., in the model transfor-
mations) or is addressed in the subsequent process which is responsible for resolving the concrete
models from the abstract definition. The first fact could represent a problem for getting a complete
overall idea of the whole process, and we attempted to solve it by explaining each step separately.
The second fact implies that this paper addressed only the generation and validation of the abstract
representation of the architectural models, and the validation of the final component-based system
(in the case study, the final UI) is postponed for the later processes.

Another important threat to be taken into account is the management of the composition rela-
tionship. In the paper, the example scenario is simple, having few components in the initial and the
adapted models. Nevertheless, from our point of view, this simple case study covers all the pos-
sibilities that the architectural metamodel offers: simple components, complex components, and
connections between components. It is possible to observe that in ATL code generated from the rules
of the repository, the management of the containment relationship is accomplished (through the
’component_parentÂt’ attribute). Therefore, the management of components’ inside components is
managed by the transformation rules in the same way, and we understand that it is not necessary
to show more containment examples (regardless of the depth level) in order to better understand
the process. Regarding the instantiation of the child and parent components, we must remark that
our process manages the adaptation at the PIM level of the architectures; for this reason, the imple-
mented mechanism of the child instantiation will be managed at the PSM level. Therefore, our rule
repository and our adaptation process are not intended to manage this situation. We reviewed other
possible example scenarios, with more components and more containment and connection relation-
ships, but we believe that they will not provide a more illustrative scenario, and in contrast, it will
add more complexity to show and explain the adaptation process. Otherwise, it is important to clar-
ify that our proposal is oriented to software architectures built from components with medium or
high granularity. Therefore, the final architectures and the final GUIs do not usually contain a large
number of components, and the number and the depth level of composition relationships will not
be high.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

As we explained earlier and along the paper, the proposed adaptation process is applied at the
abstract level of the representation of the software architectures (i.e., at the PIM level). Conse-
quently, it is necessary to complete some additional steps in order to reach the final software (the
final UI in the domain studied). Therefore, when the abstract architectural model is obtained at the
end of the adaptation process, we make two major assumptions: the realization process is able to
resolve a valid configuration of concrete components (i.e., a PSM representation) that fulfills the
abstract definition, and these concrete components have their corresponding operations available to
instantiate them for building the final software. These assumptions can be considered as limitations
of the proposal.

Furthermore, our proposal needs to execute some transformation rules in refining mode and there-
fore it relies on this configuration of ATL. This mode is necessary to avoid the final transformation
which handles the adaptation of the model that has to build all the elements from an empty model
by modifying or removing only the parts that are changing. This fact implies that the adaptation
schema cannot be executed properly without this refining mode.

In addition, for validation and evaluation purposes, it is necessary to carry out some experiments
with different sizes of input models and with a large number of these models. Generating all these
models by hand is not feasible. For this reason, we programmatically created the required models
before launching each experiment. We implemented a process that generates elements with random
values between all the possible values that the elements could have. It is not the ideal way to build
the test scenarios but it is the only suitable way to construct a wide experiment with a large number
of models with a large number of elements with different values.

6. RELATED WORK

As we addressed the adaptation process from a generalist perspective, the works reviewed are related
with the adaptation of component-based architectures. Regarding the architectural specifications,
the paper developed in [39] shows a survey of self-management dynamic software systems. This
work establishes the main elements that a component-based system should have to be considered
‘self-managed’ or ‘self-adaptive’: (i) there is a change that starts the change of the system or its
adaptation; (ii) a selection process for architectural transformation is performed; (iii) reconfiguration
operations are implemented; and (iv) final architecture is evaluated after reconfiguration. Our pro-
posal meets these requirements and it is interesting to compare it with the main aspects highlighted
in [39] of other approaches (Table IX). We can see that our proposal meets the main aspects and
offers some improvements because it is based on MDE. In addition, our proposal provides greater
flexibility because each subprocess is encapsulated in an M2M transformation and it is possible to
add new elements to the adaptation schema.

In this regard, it is interesting to compare our proposal with other MDE approaches dealing with
dynamic adaptation of software systems to execution context. The rainbow framework [32] provides
mechanisms for adapting and updating architectural models to system requirements. Like our pro-
posal, it uses abstract architectural models to monitor, evaluate, and adapt the configurations that
are later transferred to the system being run, but these operations are not done using MDE model
transformation techniques. This implies that this approach is not benefited from the simplicity of
managing the models through the use of a model transformation language. In [58], authors present
a proposal for the adaptation of component-based systems where reconfiguration operations and
rules are established at design-time using state machines. In our case, reconfiguration operations
are selected at run-time from a rule repository. Therefore, this approach cannot easily modify the
adaptation logic and this modification has to be done at design-time.

The MADAM/MUSIC approach [59, 60] uses architectural models to describe variability, that
is, the models themselves contain the information and criteria for selection so that middleware can
derive the adaptation to the context at run-time. This joint representation of the architecture and
variability impairs the modification of both elements, thus decreasing its flexibility. In our case, we
separate the adaptation logic from the architectural models, and it is represented in model trans-
formations rules in a repository. In [61], variability models are defined to describe the adaptation

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Ta
bl

e
IX

.
C

om
pa

ra
tiv

e
w

ith
ot

he
ra

rc
hi

te
ct

ur
al

ap
pr

oa
ch

es
.

Fo
rm

al
sp

ec
ifi

ca
tio

n
C

ha
ng

e
in

iti
at

io
n

Ty
pe

s
of

ch
an

ge
s

Se
le

ct
io

n
M

an
ag

em
en

t

L
e

M
ét

ay
er

G
ra

ph
In

te
rn

al
an

d
ex

te
rn

al
B

as
ic

re
co

nfi
gu

ra
tio

n
C

on
st

ra
in

ed
fr

om
C

en
tr

al
iz

ed
op

er
at

io
ns

pr
e-

de
fin

ed
se

t
C

O
M

M
U

N
IT

Y
G

ra
ph

In
te

rn
al

an
d

ex
te

rn
al

B
as

ic
an

d
co

m
po

si
te

C
on

st
ra

in
ed

fr
om

C
en

tr
al

iz
ed

re
co

nfi
gu

ra
tio

n
op

er
at

io
ns

pr
e-

de
fin

ed
se

t
C

H
A

M
G

ra
ph

In
te

rn
al

an
d

ex
te

rn
al

B
as

ic
an

d
co

m
po

si
te

C
on

st
ra

in
ed

fr
om

C
en

tr
al

iz
ed

re
co

nfi
gu

ra
tio

n
op

er
at

io
ns

pr
e-

de
fin

ed
se

t
D

yn
am

ic
W

ri
gh

t
Pr

oc
es

s
al

ge
br

a
In

te
rn

al
B

as
ic

an
d

co
m

po
si

te
C

on
st

ra
in

ed
fr

om
C

en
tr

al
iz

ed
re

co
nfi

gu
ra

tio
n

op
er

at
io

ns
pr

e-
de

fin
ed

se
t

D
ar

w
in

Pr
oc

es
s

al
ge

br
a

In
te

rn
al

A
dd

co
m

po
ne

nt
s

Pr
e-

de
fin

ed
C

en
tr

al
iz

ed
or

di
st

ri
bu

te
d

L
E

D
A

Pr
oc

es
s

al
ge

br
a

In
te

rn
al

A
dd

co
m

po
ne

nt
s

an
d

C
on

st
ra

in
ed

fr
om

C
en

tr
al

iz
ed

or
co

nn
ec

to
rs

pr
e-

de
fin

ed
se

t
di

st
ri

bu
te

d
Pi

L
ar

Pr
oc

es
s

al
ge

br
a

In
te

rn
al

B
as

ic
an

d
co

m
po

si
te

Pr
e-

de
fin

ed
di

st
ri

bu
te

d
re

co
nfi

gu
ra

tio
n

op
er

at
io

ns
G

er
el

L
og

ic
In

te
rn

al
an

d
ex

te
rn

al
by

a
B

as
ic

an
d

co
m

po
si

te
Pr

e-
de

fin
ed

to
ol

or
in

fr
as

tr
uc

tu
re

re
co

nfi
gu

ra
tio

n
op

er
at

io
ns

C
en

tr
al

iz
ed

A
gu

ir
re

-M
ai

ba
um

L
og

ic
In

te
rn

al
B

as
ic

re
co

nfi
gu

ra
tio

n
Pr

e-
de

fin
ed

C
en

tr
al

iz
ed

op
er

at
io

ns
Z

C
L

L
og

ic
In

te
rn

al
B

as
ic

re
co

nfi
gu

ra
tio

n
Pr

ed
efi

ne
d

C
en

tr
al

iz
ed

op
er

at
io

ns
R

A
PI

D
E

X
/O

pe
n

la
ng

ua
ge

In
te

rn
al

B
as

ic
re

co
nfi

gu
ra

tio
n

C
on

st
ra

in
ed

fr
om

C
en

tr
al

iz
ed

or
op

er
at

io
ns

pr
e-

de
fin

ed
se

t
di

st
ri

bu
te

d
O

ur
ap

pr
oa

ch
M

od
el

-b
as

ed
In

te
rn

al
(s

en
so

ra
nd

tr
ig

ge
rs

)
M

D
E

op
er

at
io

ns
al

lo
w

al
l

C
on

st
ra

in
ed

fr
om

C
en

tr
al

iz
ed

,e
ac

h
an

d
ex

te
rn

al
(u

se
r

ty
pe

s
of

ch
an

ge
s

th
at

pr
e-

de
fin

ed
se

t.
R

ea
dy

to
be

ar
ch

ite
ct

ur
e

co
ul

d
re

pr
es

en
t

in
te

ra
ct

io
n)

st
or

ed
in

ge
ne

ra
te

a
co

rr
ec

tm
od

el
un

co
ns

tr
ai

ne
d

ad
di

ng
an

d
th

e
su

bs
ys

te
m

of
a

pa
rt

ic
ul

ar
ob

se
rv

er
m

od
el

de
le

tin
g

re
po

si
to

ry
ru

le
s

at
us

er
w

ith
in

a
co

lla
bo

ra
tiv

e
ru

n-
tim

e.
sy

st
em

M
D

E
,m

od
el

-d
riv

en
en

gi
ne

er
in

g.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

logic and thereby separate it from the system functioning. In this case, the adaptation logic is sepa-
rated from the architectural models but it is neither intended nor defined to be changed at run-time,
as our proposal. As a consequence, the adaptation logic is static and cannot be modified at run-
time if, for example, new components are incorporated to the system or new adaptation alternatives
are discovered.

There are also other approaches dealing with software adaptation that use other MDE techniques,
such as graph-based model transformations. In [62], authors describe an approach to develop rule-
based refactorings of models. It uses graph-based transformations instead of ATL language and this
approach does not manage a rule repository as we do. The authors in [46] present an approach for
the adaptation of architectural model based on graph-based model transformations. It describes a
metamodel for software systems based on EJB components, so that it addresses adaptation at PSM
level. The adaptation is achieved by applying triple graph grammar rules. In contrast, we performed
our adaptation at the PIM level of the component-based systems and we have developed a repository
of ATL transformation rules from which we built at run-time our model transformation.

In [63], the authors propose implementing the adaptive system control loop as a component-
based system that can also be adapted. This sort of control loop can be reconfigured at run-time
to incorporate new knowledge dynamically. Our final purpose is to achieve a similar system, in
which the logic of adaptation changes according to the knowledge acquired from execution. At
this time, our adaptation process can be dynamically adapted by varying the rule repository used.
Otherwise, Ramirez et al. [64] deal with the important aspect of uncertainty in adaptive systems
that can affect requirements, design, and execution stages. In our proposal, as we have constructed
the adaptation process in modules and separated the adaptation rules in a repository, we have an
updating mechanism available at run-time to improve those aspects that were not detected in ear-
lier stages and without updating affecting other process modules or producing a strong impact
on the system.

Another type of adaptive system is dynamic software product line. These systems are similar
to the traditional software product lines but variability is linked to run-time [65, 66]. In [24], the
authors apply its use to the domain of smart homes. In their proposal, they use variability models to
activate or deactivate characteristics at run-time, thus complying with context conditions. Therefore,
this approach only uses MDE for representation issues, it is not benefited from model transforma-
tions and does not provide flexibility mechanism to modify the adaptation operations. In [57, 67],
the authors describe a dynamic software product line support architecture controlling the number
of variants the system may have. They combine aspect-oriented and model-driven techniques to
adapt the models by model-weaving. However, this approach lacks some mechanism to modify the
adaptation logic. Instead, we define the variability of our system in the model transformation pro-
cesses and the repositories that define the adaptation rules. Table X shows the most significant MDE
approaches for architectural adaptation that most closely resemble our proposal. Therefore, it sum-
marizes the contributions and differences with our proposal and shows whether they contain the
elements that we consider most important in relation to our work.

Some proposals for adaptive systems make use of high-level programming languages for their
evolution. Irmert and Fischer [68] and Serral et al.c [69] propose implementations based on Java,
which is executed in an OSGi platform [70] to adapt the software at run-time. Contrary to our
proposal, programs written in programming languages present some lacks related to the structure
and type definition, and therefore, programmers have more challenges to write complex adaptation
frameworks. However, the use of MDE provides strong typing mechanisms (due to metamodel
definitions) which facilitate the implementation of dynamic adaptation solutions.

Concerning the dynamic composition of model transformation, some studies have proposed incre-
mental updating of transformation processes and their dynamic construction from a set of rules [71].
This approach uses selective linear definite resolutions to build a transformation tree to transform
a source model. It calculates new target models from the modification of the facts associated to the
source model and its corresponding modification in the transformation tree. Therefore, this approach
does not change the rules within the transformation process as we do.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

Ta
bl

e
X

.
C

om
pa

ra
tiv

e
w

ith
ot

he
rM

D
E

ap
pr

oa
ch

es
.

R
ul

e/
go

al
D

yn
am

ic
D

yn
am

ic
R

ul
e

co
nfl

ic
t

ad
ap

ta
tio

n
m

od
el

D
iff

er
en

ce
s

w
ith

ou
r

R
un

-t
im

e
re

po
si

to
ry

re
so

lu
tio

n
lo

gi
c

tr
an

sf
.

A
da

pt
at

io
n

m
ec

ha
ni

sm
M

ai
n

co
nt

ri
bu

tio
ns

pr
op

os
al

an
d

ot
he

rr
em

ar
ks

R
ai

nb
ow

Y
es

N
o

G
oa

ls
N

o
N

o
A

da
pt

at
io

n
st

ra
te

gi
es

A
da

pt
at

io
n

an
d

up
da

tin
g

N
o

us
e

of
M

D
E

m
od

el
[3

2]
(c

on
ce

rn
s)

co
ns

tr
ai

ne
d

by
pr

op
er

tie
s,

ar
ch

ite
ct

ur
al

m
od

el
s

to
sy

st
em

tr
an

sf
or

m
at

io
n

te
ch

ni
qu

es
.N

o
in

va
ri

an
ts

,a
nd

op
er

at
or

s
re

qu
ir

em
en

ts
.A

bs
tr

ac
t

be
ne

fit
ed

fr
om

th
e

si
m

pl
ic

ity
im

pl
em

en
te

d
in

Ja
va

.
ar

ch
ite

ct
ur

al
m

od
el

s
to

m
on

ito
r,

of
m

an
ag

in
g

m
od

el
s

th
ro

ug
h

ev
al

ua
te

,a
nd

ad
ap

tt
he

so
m

e
tr

an
sf

or
m

at
io

n
la

ng
ua

ge
.

co
nfi

gu
ra

tio
ns

.
A

U
T

O
SA

R
Y

es
N

o
N

o
N

o
N

o
D

es
ig

n
of

al
te

rn
at

iv
e

R
ec

on
fig

ur
at

io
n

op
er

at
io

ns
an

d
R

ec
on

fig
ur

at
io

n
op

er
at

io
ns

ar
e

[5
8]

ar
ch

ite
ct

ur
al

m
od

el
s

an
d

ru
le

s
ar

e
es

ta
bl

is
he

d
at

fix
ed

an
d

ar
e

no
tv

ar
ia

bl
e

at
pa

rt
s

of
th

ei
rb

eh
av

io
ra

s
de

si
gn

-t
im

e
us

in
g

st
at

e
ru

n-
tim

e.
C

an
no

te
as

ily
st

at
e

m
ac

hi
ne

s.
m

ac
hi

ne
s.

m
od

if
y

th
e

ad
ap

ta
tio

n
lo

gi
c

(a
nd

it
m

us
tb

e
do

ne
at

de
si

gn
-t

im
e)

.
M

A
D

A
M

Y
es

N
o

N
o

N
o

N
o

Pl
at

fo
rm

in
de

pe
nd

en
t

A
rc

hi
te

ct
ur

al
m

od
el

s
to

de
sc

ri
be

A
da

pt
at

io
n

lo
gi

c
is

no
t

/M
U

SI
C

se
rv

ic
es

fo
rm

an
ag

in
g

va
ri

ab
ili

ty
.T

he
m

od
el

s
co

nt
ai

n
se

pa
ra

te
d

fr
om

th
e

[5
9,

60
]

ap
pl

ic
at

io
ns

,c
om

po
ne

nt
s

th
e

in
fo

an
d

cr
ite

ri
a

fo
r

ar
ch

ite
ct

ur
al

m
od

el
s.

T
hi

s
an

d
co

m
po

ne
nt

in
st

an
ce

s.
al

te
rn

at
iv

es
an

d
se

le
ct

io
n.

jo
in

tr
ep

re
se

nt
at

io
n

im
pa

ir
s

th
ei

rm
od

ifi
ca

tio
n,

de
cr

ea
si

ng
th

e
fle

xi
bi

lit
y.

D
iV

A
[6

1]
Y

es
Y

es
R

ul
es

an
d

N
o

N
o

A
sp

ec
t-

or
ie

nt
ed

m
od

el
in

g
V

ar
ia

bi
lit

y
m

od
el

s
to

de
sc

ri
be

A
da

pt
at

io
n

lo
gi

c
is

se
pa

ra
te

d
G

oa
ls

an
d

dy
na

m
ic

w
ea

vi
ng

th
e

ad
ap

ta
tio

n
lo

gi
c.

fr
om

th
e

ar
ch

ite
ct

ur
al

m
od

el
s

te
ch

ni
qu

es
.

Pr
op

er
ty

-b
as

ed
po

lic
ie

s
to

bu
ti

s
ne

ith
er

in
te

nd
ed

no
r

m
an

ag
e

th
e

co
ns

tr
ai

ns
an

d
th

e
de

fin
ed

to
be

ch
an

ge
d

at
ru

le
s

an
d

to
se

le
ct

th
e

ru
n-

tim
e.

T
hi

s
lo

gi
c

ca
nn

ot
be

co
nfi

gu
ra

tio
n.

m
od

ifi
ed

if
ne

w
co

m
po

ne
nt

s
ar

e
m

an
ag

ed
or

ne
w

ad
ap

ta
tio

n
al

te
rn

at
iv

es
ar

e
di

sc
ov

er
ed

.
M

oR
E

[2
4]

Y
es

N
o

N
o

N
o

N
o

O
SG

if
ra

m
ew

or
k

to
D

SP
L

an
d

va
ri

ab
ili

ty
m

od
el

s
to

A
da

pt
at

io
n

lo
gi

c
is

fix
ed

in
im

pl
em

en
tr

ec
on

fig
ur

at
io

n
ac

tiv
at

e
or

de
ac

tiv
at

e
va

ri
ab

ili
ty

m
od

el
s.

T
he

op
er

at
io

ns
.

ch
ar

ac
te

ri
st

ic
s

at
ru

n-
tim

e.
ap

pr
oa

ch
is

no
tb

en
efi

te
d

fr
om

m
od

el
tr

an
sf

or
m

at
io

ns
an

d
do

es
no

tp
ro

vi
de

an
y

m
ec

ha
ni

sm
to

m
od

if
y

th
e

ad
ap

ta
tio

n
op

er
at

io
ns

.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

Ta
bl

e
X

.
C

on
tin

ue
d.

R
ul

e/
go

al
D

yn
am

ic
D

yn
am

ic
R

ul
e

co
nfl

ic
t

ad
ap

ta
tio

n
m

od
el

D
iff

er
en

ce
s

w
ith

ou
r

R
un

-t
im

e
re

po
si

to
ry

re
so

lu
tio

n
lo

gi
c

tr
an

sf
.

A
da

pt
at

io
n

m
ec

ha
ni

sm
M

ai
n

co
nt

ri
bu

tio
ns

pr
op

os
al

an
d

ot
he

rr
em

ar
ks

M
od

el
s@

Y
es

N
o

N
o

N
o

N
o

A
sp

ec
t-

O
ri

en
te

d
M

od
el

in
g

D
SP

L
ar

ch
ite

ct
ur

e
co

nt
ro

lli
ng

A
da

pt
at

io
n

lo
gi

c
is

fix
ed

in
R

un
.ti

m
e

an
d

dy
na

m
ic

w
ea

vi
ng

th
e

nu
m

be
ro

ft
he

va
ri

an
ts

.
va

ri
ab

ili
ty

m
od

el
s.

T
he

[5
7,

67
]

te
ch

ni
qu

es
.

A
sp

ec
t-

or
ie

nt
ed

an
d

pr
op

os
al

la
ck

so
m

e
m

od
el

-d
riv

en
te

ch
ni

qu
es

ar
e

m
ec

ha
ni

sm
to

m
od

if
y

th
e

co
m

bi
ne

d
to

ad
ap

tt
he

m
od

el
s.

ad
ap

ta
tio

n
lo

gi
c.

O
ur

Y
es

Y
es

R
ul

es
Y

es
Y

es
M

2M
an

d
H

O
T

(D
es

cr
ib

ed
al

on
g

th
e

pa
pe

r)
ap

pr
oa

ch
tr

an
sf

or
m

at
io

ns
us

in
g

A
T

L
.

D
SP

L
,d

yn
am

ic
so

ft
w

ar
e

pr
od

uc
tl

in
e;

M
2M

,m
od

el
-t

o-
m

od
el

;H
O

T,
hi

gh
er

-o
rd

er
tr

an
sf

or
m

at
io

n.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

In [49], an approach to transformation composition in ATL is proposed, and it justifies the use of a
hybrid transformation language as ATL facilitates the development of adaptive changes because the
invocation and definition of the rules are not based only on the explicit call of the rules. In contrast
to our proposal, this approach does not represent the rules through models, so that we are able to
manage the rules using MDE techniques and we use HOT transformations to generate dynamically
the model transformation.

In [72], the author presents a proposal using the QVT transformation language. It describes the
mechanisms that this language provides to perform fine-grained and coarse-grained compositions
of the transformations. The fine-grained operations allow extracting and reusing the code of the
rules existing in the transformations. In contrast, we model the rules in an abstract way and store
them in a repository that could be managed by using MDE techniques. In addition, this allows us to
incorporate to the rules some attributes and descriptive information that help us in the rule selection
process. The article in [50] describes the ATL property to perform rule module superimposition.
This mechanism allows to superimpose multiple transformations in a single one, generating as a
result a model transformation with the union of all the rules (carrying out overwrite, replacement,
and inheritance operations). Our proposal does not apply superimposition mechanisms but the reuse
of the rules, and the obtaining of the objective model transformation is based on the selection of
rules from a repository to dynamically generate the transformation through the use of a HOT.

Other studies, such as [73, 74], propose updating transformations for refactoring models to adapt
them at run-time, but do not try to refactor the transformation itself. One of the purposes of refactor-
ing M2M transformations is to improve or adapt their behavior to the system context by restructuring
or adding new rules or helpers [36]. Following an MDE approach, such refactoring can be imple-
mented as model transformations in which the transformation itself participates as input and/or
output of the transformations, as it occurs in HOT [37, 75]. An interesting proposal for the semi-
automatic development of model transformations using HOT transformations is shown in [76]. It
describes the MeTAGeM framework, which uses different levels of abstraction to represent the
transformations with the goal of building specific M2M processes in different languages at design-
time (i.e., as a tool for software engineers). In our case, we make use of HOT to dynamically generate
the M2M transformations at run-time for adapting our architectural models.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented, explained, and validated our proposal for run-time adaptation of
component-based software architectures. In this proposal, the adaptation of these architectures is not
a static process implemented a priori, but it is dynamically constructed from transformation rules
selected from a repository. The subset of selected rules can vary according to context information,
the current state of the architectures, the adaptation logic implemented to meet the requirements,
and the rule repository used.

As the application domain of our proposal, we have selected component-based GUIs that make
use of Social Semantic Web technologies. This type of UI favors information sharing within the
Web community and incorporates intelligence capacities that allow cooperation among users who
share common goals. Our definition of the UI can adapt its functionality to the state of the context,
obtaining intelligent interfaces or SmartUIs that are able to learn from interaction with users and
whose behavior evolves. A tool has also been designed to test and validate the adaptation process
applied in a possible scenario within the domain of UIs.

The adaptation process has been abstracted by developing a DSL which models the structure of an
adaptation schema based on manipulation of models by M2M transformation. Thus, the adaptation
schema can be changed in turn (to improve it and update it) by implementing a new model that fits
the adaptation metamodel. In our adaptation schema, we have developed a transformation process
called C, whose purpose is to determine the optimal adaptation operations from changes in the
system context. This is followed by a RS process that selects the most appropriate rules according to
the adaptation operations needed, based on the information described by the rules in the repository.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

To update the information in the rules, we have developed two model transformation processes:
(i) one that is in charge of rating the rules (RR) and (ii) another that updates the values of their
attributes depending on the selection process (RL). Both update the rules at run-time. The difference
is that the modifications generated by the former are not permanent but are a mark that is given and
disappears when the adaptation process ends. However, the modifications generated by the latter
are persistent, thereby making it possible to make use of the information related to the utilization
of the repository rules. This information is currently used by the process selecting rules from the
repository. In an upcoming version, we will use it to provide our proposal with a decision-making
system whose heuristics will use this traceability information. These data, reflected in the adaptation
rules along with the context processing logic and the rule selection logic, define the critical points
in the adaptability of our proposal. Therefore, the capacity for system adaptation depends on the
behavior defined in both logics, in addition to the capacity for updating the rule repository according
to events in the system. Finally, once the repository rules have been selected, they are converted
into ATL code by applying a HOT-type M2M transformation followed by a TCS extraction. This
code constitutes the M2M transformation in charge of adapting the initial architectural model into
an adapted architectural model.

We think that our proposal is more than a rule-based approach for dynamic adaptation. Adap-
tation operations are performed on the abstract level instead of running systems. These operations
perform structural modifications on the architecture, for example, inserting a new component, delet-
ing an existing one, and reconnecting some ports of the architecture. Then, at the concrete level, we
will develop as future work a trading process that will choose different concrete components from
the abstract definition of the architecture, generating the PSM model from the PIM definition, and
making possible that it will be able to choose a concrete component or another depending on the
system platform.

As previously mentioned, our proposal contains a mechanism for rule conflict resolution. How-
ever, it is only in charge of avoiding that the set of selected rules causes a run-time error in the
transformation (i.e., there is more than one adaptation rule matching the same element). Therefore,
the adaptation goal conflict resolution and the process to check the coherence of the selected rules
are to be addressed in future work. Otherwise, our rule selection process makes it possible for the
transformation in charge of adapting the architectures to be constructed at run-time based on context
and system requirements, that is, not pre-set. In a later stage, we will intend to provide our proposal
with a decision-making proposal that will make it more adaptable. Our goal will be to modify the
existing transformation rules in the repository or even insert new transformation rules in the system.
We are also considering the possibility of improving the description of our components by making
use of ontologies. This can assist in the managing of abstract components and concrete component
selection (e.g., in the domain of UI components) based on abstract components [77].

In summary, the main contributions of the methodology presented in this paper are the following:

1. The methodology allows us to represent the component-based architectures in an abstract
level, both the adaptation rules and the remainder elements of our adaptation schema (context
information, intermediate structures, etc.) through models by using MDE.

2. It also provides the definition of all the operations that manage these models through MDE
techniques (i.e., through model transformations).

3. It allows us to not have pre-set any final model transformation that is in charge of adapting the
architectural model that represents the initial component-based system.

4. It defines a modular adaptation process that obtains this final model transformation.
5. It selects at run-time the appropriate adaptation rules from a rule repository by using the

variations of the context information.
6. It updates the repository from the subset of selected rules for next adaptation executions.
7. It makes use of HOTs model transformations to generate at run-time the final model

transformation that is in charge of adapting the initial architectural model to the adapted one.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

ACKNOWLEDGEMENTS

This work was funded by the EU ERDF and the Spanish Ministry of Economy and Competitiveness
(MINECO) under Project TIN2013-41576-R, the Spanish Ministry of Education, Culture, and Sport
(MECD) under a FPU grant (AP2010-3259), and the Andalusian Regional Government (Spain) under
Project P10-TIC-6114.

REFERENCES

1. Daniel F, Matera M, Yu J, Benatallah B, Saint-Paul R, Casati F. Understanding ui integration: a survey of problems,
technologies, and opportunities. IEEE Internet Computing 2007; 11(3):59–66. DOI: 10.1109/MIC.2007.74.

2. Hoyer V, Fischer M. Market overview of enterprise mashup tools. In Service-Oriented Computing (ICSOC’2008),
Springer-Verlang, Berlin, Heidelberg, 2008; 708–721. DOI: 10.1007/978-3-540-89652-4_62.

3. Batty M, Hudson-Smith A, Milton R, Crooks A. Map mashups, Web 2.0 and the GIS revolution. Annals of GIS 2010;
16(1):1–13.

4. Beier B, Vaughan MW. The bull’s-eye: a framework for web application user interface design guide-
lines. In Proceedings of the SIGCHI conference on Human factors in computing systems, ACM, 2003;
489–496.

5. Galitz WO. The Essential Guide to User Interface Design: An Introduction to GUI Design Principles and Techniques.
John Wiley & Sons: New York, NY, USA, 2007.

6. Iribarne L, Padilla N, Criado J, Padilla N, Vicente-Chicote C. Metamodeling the structure and interaction
behavior of cooperative component-based user interfaces. Journal of Universal Computer Science 2012; 18(19):
2669–2685.

7. Gruber T. Collective knowledge systems: where the social web meets the semantic web. Web Semantics: Science,
Services and Agents on the World Wide Web 2008; 6(1):4–13. DOI: 10.1016/j.websem.2007.11.011.

8. Mikroyannidis A. Toward a social semantic web. Computer 2007; 40(11):113–115.
9. O’Reilly T. What is Web 2.0: design patterns and business models for the next generation of software. Communica-

tions and Strategies 2007; 1(65):17–37.
10. W3C. W3C Standards: Semantic Web 2010.
11. Iribarne L, Criado J, Padilla N, Asensio J. Using COTS-widgets architectures for describing user interfaces of

web-based information systems. International Journal of Knowledge Society Research 2011; 2(3):61–72. DOI:
10.4018/ijksr.2011070106.

12. Iribarne L, Troya JM, Vallecillo A. A trading service for COTS components. Computer Journal 2004; 47(3):
342–357. DOI: 10.1093/comjnl/47.3.342.

13. Cheng BHC, de Lemos R, Geise H, Inverardi P, Magee J. Software Engineering for self-adaptive systems: a research
roadmap. In In Software Engineering for Self-Adaptive Systems, Vol. 5525, Cheng BHC (ed.). LNCS, Springer-
Verlang: Berlin, Heidelberg, 2009; 1–26. DOI: 10.1007/978-3-642-02161-9_1.

14. Salehie M, Tahvildari L. Self-adaptive software: landscape and research challenges. ACM Transactions on
Autonomous and Adaptive Systems 2009; 4(2):1–42. DOI: 10.1145/1516533.1516538.

15. Sadjadi SM, McKinley PK. ACT an adaptive CORBA template to support unanticipated adaptation. In Proceedings
of the International Conference on Distributed Computing Systems (ICDCS’2004), Tokyo, Japan, 2004; 74–83. DOI:
10.1109/ICDCS.2004.1281570.

16. Blair G, Bencomo N, France RB. Models@run.time. Computer 2009; 40(10):22–27. DOI: 10.1109/MC.2009.326.
17. Crnkovic I, Sentilles S, Vulgarakis A, Chaudron MRV. A classification framework for software component models.

IEEE Transactions on Software Engineering 2011; 37(5):593–615. DOI: 10.1109/TSE.2010.83.
18. Bencomo N, Blair G. Using architecture models to support the generation and operation of component-based adaptive

systems. In In Software Engineering for Self-Adaptive Systems, Vol. 5525, Cheng BHC, de Lemos R, Geise H,
Inverardi P, Magee J (eds). LNCS, Springer-Verlang: Berlin, Heidelberg, 2009; 183–200. DOI: 10.1007/978-3-642-
02161-9_10.

19. Calvary G, Coutaz J, Thevenin D, Limbourg Q, Bouillon L, Vanderdonckt J. A unifying reference framework
for multi-target user interfaces. Interacting with Computers 2003; 15(3):289–308. DOI: 10.1016/S0953-5438(03)
00010-9.

20. OMG. MDA Guide, Version 1.0.1 2003.
21. Criado J, Vicente-Chicote C, Iribarne L, Padilla N. A model-driven approach to graphical user interface runtime

adaptation. In Proceedings of the 5th International Workshop on Models@run.time, 2010; 49–59.
22. Iribarne L, Padilla N, Criado J, Asensio J, Ayala R. A model transformation approach for automatic composition of

COTS user interfaces in web-based information systems. Information Systems Management 2010; 27(3):207–216.
DOI: 10.1080/10580530.2010.493816.

23. Czarnecki K, Helsen S. Classification of model transformation approaches. In Proceedings of the 2nd OOPSLA
Workshop on Generative Techniques in the Context of the Model Driven Architecture, 2003; 1–17.

24. Cetina C, Giner P, Fons J, Pelechano V. Autonomic computing through reuse of variability models at runtime: the
case of smart homes. Computer 2009; 42(10):37–43. DOI: 10.1109/MC.2009.309.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

25. Seinturier L, Merle P, Rouvoy R, Romero D, Schiavoni V, Stefani JB. A component-based middleware platform for
reconfigurable service-oriented architectures. Software: Practice and Experience (SPE) 2012; 42(5):559–583. DOI:
10.1002/spe.1077.

26. Gui N, De Florio V, Holvoet T. Transformer: an adaptation framework supporting contextual adaptation behavior
composition. Software: Practice and Experience (SPE) 2013; 43(8):937–967. DOI: 10.1002/spe.2137.

27. Sun J, Zhang YP, Fan J. Towards a context-aware middleware in smart car space. In Proceedings of he 4th Interna-
tional Conference on Genetic and Evolutionary Computing (ICGEC’2010), Shenzhen, China, 2010; 276–279. DOI:
10.1109/ICGEC.2010.75.

28. Fouquet F, Morin B, Fleurey F, Barais O, Plouzeau N, Jezequel JM. A dynamic component model for cyber physical
systems. In Proceedings of the 15th Symposium on Component Based Software Engineering (CBSE’2012), ACM,
Bertinoro, Italy, 2012; 135–144. DOI: 10.1145/2304736.2304759.

29. Pantsar-Syvaniemi S, Simula K, Ovaska E. Context-Awareness in Smart Spaces: Riccione, Italy, 2010.
30. Edwards G, Garcia J, Tajalli H, Popescu D, Medvidovic N, Sukhatme G, Petrus B. Architecture-driven self-

adaptation and self-management in robotics systems. In Proceedings of ICSE 2009 Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’2009), Vancouver, Canada, 2009; 142–151. DOI:
10.1109/SEAMS.2009.5069083.

31. Inglés-Romero JF, Vicente-Chicote C, Morin B, Barais O. Towards the automatic generation of self-adaptive
robotics software: an experience report. In Proceedings of the 20th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE’2011), IEEE, Paris, France, 2011; 79–86. DOI:
10.1109/WETICE.2011.54.

32. Garlan D, Cheng SW, Huang AC, Schmerl B, Steenkiste P. Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer 2004; 37(10):46–54. DOI: 10.1109/MC.2004.175.

33. Grundy J, Hosking J. Developing adaptable user interfaces for component-based systems. Interacting with Computers
2002; 14(3):175–194. DOI: 10.1016/S0953-5438(01)00049-2.

34. Rodríguez-Gracia D, Criado J, Iribarne L, Padilla N, Vicente-Chicote C. Runtime adaptation of architectural
models: an approach for adapting user interfaces. In Proceedings of the 2nd International Conference on Model
and Data Engineering (MEDI’2012), Vol. 7602, LNCS, Springer-Verlang, Berlin, Heidelberg, 2012; 16–30. DOI:
10.1007/978-3-642-33609-6_4.

35. Cicchetti A, Di Ruscio D, Eramo R, Pierantonio A. Automating co-evolution in model-driven engineering. In
Proceedings of the 12th International IEEE Enterprise Distributed Object Computing Conference (EDOC’2008),
Munich, Germany, 2008; 222–231. DOI: 10.1109/EDOC.2008.44.

36. Wimmer M, Martínez S, Jouault F, Cabot J. A catalogue of refactorings for model-to-model transformations. Journal
of Object Technology 2012; 11(2):1–40. DOI: 10.5381/jot.2012.11.2.a2.

37. Tisi M, Jouault F, Fraternali P, Ceri S, Bézivin J. On the use of higher-order model transformations. In
Proceedings of the Fifth European Conference on Model-Driven Architecture Foundations and Applications
(ECMDA-FA’2009), Vol. 5562, LNCS, Springer-Verlang, Berlin, Heidelberg, 2009; 18–33. DOI: 10.1007/978-3-642-
02674-4_3.

38. Kruchten P, Obbink H, Stafford J. The past, present, and future for software architecture. IEEE Software 2006;
23(2):22–30.

39. Bradbury JS, Cordy JR, Dingel J, Wermelinger M. A survey of self-management in dynamic software architecture
specifications. In Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems (WOSS’2004), ACM,
Newport Beach, CA, USA, 2004; 28–33. DOI: 10.1145/1075405.1075411.

40. Criado J, Iribarne L, Padilla N, Troya J, Vallecillo A. An MDE approach for runtime monitoring and adapting
component-based systems: application to WIMP user interface architectures. In Proceedings of the 38th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA’2012), Izmir, Turkey, 2012; 150–157. DOI:
10.1109/SEAA.2012.27.

41. Hnětynka P, Plášil F. Using meta-modeling in design and implementation of component-based systems: the SOFA
case study. Software: Practice and Experience (SPE) 2011; 41(11):1185–1201. DOI: 10.1002/spe.1036.

42. OMG. Meta-object facility (MOF) specification, v2.4.1 2011.
43. Steinberg D, Budinsky F, Merks E, Paternostro M. EMF: Eclipse Modeling Framework. Addison-Wesley: Longman,

Amsterdam, 2008.
44. Atkinson C, Stoll D. Orthographic modelling environment. In Proceedings of the 11th International Conference on

Fundamental Approaches to Software Engineering (FASE’2008), Springer-Verlang, Berlin, Heidelberg, 2008; 93–96.
DOI: 10.1007/978-3-540-78743-3_7.

45. Vogel T, Seibel A, Giese H. The role of models and megamodels at runtime. In Proceedings of
the MoDELS 2010 Workshops, Vol. 6627, LNCS, Springer-Verlang, Berlin, Heidelberg, 2011; 224–238.
DOI: 10.1007/978-3-642-21210-9_22.

46. Vogel T, Giese H. Adaptation and abstract runtime models. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS’2010), Cape Town, South Africa, 2010; 39–48. DOI:
10.1145/1808984.1808989.

47. Criado J, Rodrguez-Gracia D, Iribarne L, Padilla N. Towards the adaptation of component-based architectures by
model transformation (website). http://acg.ual.es/isoleres/adaptation.

48. Cabot J, Gogolla M. Object constraint language (OCL): a definitive guide. In Formal Methods for Model-Driven
Engineering (SFM’2012) Bernardo M, Cortellessa V, Pierantonio A (eds)., Vol. 7320, LNCS, Springer-Verlang,
Berlin, Heidelberg, 2012; 58–90. DOI: 10.1007/978-3-642-30982-3_3.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe

http://acg.ual.es/isoleres/adaptation


TOWARD THE ADAPTATION OF COMPONENT-BASED ARCHITECTURES

49. Kurtev I, van den Berg K, Jouault F. Rule-based modularization in model transformation languages illustrated with
ATL. Science Computer Programming 2007; 68(3):138–154. DOI: 10.1016/j.scico.2007.05.006.

50. Wagelaar D, Van Der Straeten R, Deridder D. Module superimposition: a composition technique for rule-based model
transformation languages. Software and Systems Modeling 2010; 9(3):285–309. DOI: 10.1007/s10270-009-0134-3.

51. Warmer JB, Kleppe AG. The Object Constraint Language: Getting Your Models Ready For MDA. Addison-Wesley:
Boston, MA, USA, 2003.

52. Jouault F, Allilaire F, Bézivin J, Kurtev I. ATL. A model transformation tool. Science of Computer Programming
2008; 72(1):31–39. DOI: 10.1016/j.scico.2007.08.002.

53. Insfran E, Gonzalez-Huerta J, Abraho S. Design guidelines for the development of quality-driven model transforma-
tions. In Proceedings of the 13th International Conference on Model Driven Engineering Languages and Systems
(MoDELS’2010), Springer-Verlang, Berlin, Heidelberg, 2010; 288–302. DOI: 10.1007/978-3-642-16129-2_21.

54. Jouault F, Bézivin J, Kurtev I. TCS: a DSL for the specification of textual concrete syntaxes in model engineering. In
Proceedings 5th International Conference on Generative Programming and Component Engineering (GPCE’2006),
ACM, Portland, Oregon, USA, 2006; 249–254. DOI: 10.1145/1173706.1173744.

55. Arora S, Hazan E, Kale S. The multiplicative weights update method: a meta-algorithm and applications. Theory of
Computing 2012; 8(1):121–164.

56. Jouault F, Kurtev I. Transforming Models with ATL. In Proceedings of model transformations in practice workshop
at MoDELS’2005, Springer-Verlang, Berlin, Heidelberg, 2006; 128–138. DOI: 10.1007/11663430_14.

57. Morin B, Barais O, Jézéquel JM, Fleurey F, Solberg A. Models@run.time to support dynamic adaptation. Computer
2009; 42(10):44–51. DOI: 10.1109/MC.2009.327.

58. Becker B, Giese H, Neumann S, Schenck M, Treffer A. Model-based extension of AUTOSAR for architec-
tural online reconfiguration. In Proceedings of the 2nd International Workshop on Model Based Architecting and
Construction of Embedded Systems, Springer-Verlang, Berlin, Heidelberg, 2009; 83–97. DOI: 10.1007/978-3-642
-12261-3_9.

59. Floch J, et al. Playing MUSIC – building context-aware and self-adaptive mobile applications. Software: Practice
and Experience (SPE) 2013; 43(3):359–388. DOI: 10.1002/spe.2116.

60. Rouvoy R, Eliassen F, Floch J, Halssteinsen S, Stav E. Composing components and services using a planning-based
adaptation middleware. In Software Composition Pautasso C, Tanter (eds)., Vol. 4954, LNCS, Springer, Heidelberg,
2008; 52–67. DOI: 10.1007/978-3-540-78789-1_4.

61. Fleurey F, Solberg A. A domain specific modeling language supporting specification, simulation and execution
of dynamic adaptive systems. In Proceedings of the 12th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS’2009), Springer-Verlang, Berlin, Heidelberg, 2009; 606–621. DOI:
10.1007/978-3-642-04425-0_47.

62. Becker B, Lambers L, Dyck J, Birth S, Giese H. Iterative development of consistency preserving rule-based refactor-
ings. In Proceedings of the 4th International Conference on Theory and Practice of Model Transformations Cabot J,
Visser E (eds)., Vol. 6707, LNCS, Springer, 2011; 123–137. DOI: 10.1007/978-3-642-21732-6_9.

63. Perrouin G, Morin B, Chauvel F, Fleurey F, Klein J, Le Traon Y, Barais O, Jézéquel JM. Towards flexible evolution
of dynamically adaptive systems. In Proceedings of the 34th IEEE International Conference on Software Engineering
(ICSE’2012), Zurich, Switzerland, 2012; 1353–1356. DOI: 10.1109/ICSE.2012.6227081.

64. Ramirez AJ, Jensen AC, Cheng BHC. A taxonomy of uncertainty for dynamically adaptive systems. In Pro-
ceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’2012), Zurich, Switzerland, 2012; 99–108. DOI: 10.1109/SEAMS.2012.6224396.

65. Hallsteinsen S, Hinchey M, Park S, Schmid K. Dynamic software product lines. Computer 2008; 41(4):93–95. DOI:
10.1109/MC.2008.123.

66. Hinchey M, Park S, Schmid K. Building dynamic software product lines. Computer 2012; 45(10):22–26. DOI:
10.1109/MC.2012.332.

67. Morin B, Barais O, Nain G, Jézéquel JM. Taming dynamically adaptive systems using models and aspects. In Pro-
ceedings of the 31st International Conference on Software Engineering (ICSE’2009), Vancouver, Canada, 2009;
122–132. DOI: 10.1109/ICSE.2009.5070514.

68. Irmert F, Fischer T. Meyer-Wegener K. runtime adaptation in a service-oriented component model. In Proceedings of
the ICSE 2008 Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS’2008), ACM,
Leipzig, Germany, 2008; 97–104. DOI: 10.1145/1370018.1370036.

69. Serral E, Valderas P, Pelechano V. Supporting runtime system evolution to adapt to user behaviour. In Proceedings of
the 22nd International Conference on Advanced Information Systems Engineering (CAiSE’2010), Vol. 6051, LNCS,
Springer-Verlang, Berlin, Heidelberg, 2010; 378–392. DOI: 10.1007/978-3-642-13094-6_30.

70. OSGi Alliance. OSGi service platform, rel. 4.1 2007.
71. Hearnden D, Lawley M, Raymond K. Incremental model transformation for the evolution of model-

driven systems. In Proceedings of the 9th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS’2006), Springer-Verlang, Berlin, Heidelberg, 2006; 321–335. DOI: 10.1007/
11880240_23.

72. Belaunde M. Transformation composition in QVT. In Proceedings of the First European Workshop Composition of
Model Transformations (CMT’2006), Bilbao, Spain, 2006; 39–45.

73. Kolovos DS, Paige RF, Polack F, Rose LM. Update transformations in the small with the epsilon wizard language.
Journal of Object Technology 2007; 6(9):53–69.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe



J. CRIADO ET AL.

74. Porres I. Rule-based update transformations and their application to model refactorings. Software and Systems
Modeling 2005; 4(4):368–385. DOI: 10.1007/s10270-005-0088-z.

75. Tisi M, Cabot J, Jouault F. Improving higher-order transformations support in ATL. In Proceedings of the 3rd Interna-
tional Conference on Model Transformation (ICMT’2010), Vol. 6142, LNCS, Springer-Verlang, Berlin, Heidelberg,
2010; 215–229. DOI: 10.1007/978-3-642-13688-7_15.

76. Bollati VA, Vara JM, Jiménez A, Marcos E. Applying {MDE} to the (semi-)automatic development of model
transformations. Information and Software Technology 2013; 55(4):699–718. DOI: 10.1016/j.infsof.2012.11.004.

77. Paulheim H, Probst F. Ontology-enhanced user interfaces: a survey. International Journal on Semantic Web and
Information Systems 2010; 6(2):36–59. DOI: 10.4018/jswis.2010040103.

Copyright © 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
DOI: 10.1002/spe


	Toward the adaptation of component-based architectures by model transformation: behind smart user interfaces
	Summary
	Introduction
	Solution overview
	Technological and conceptual context

	Essentials of Adaptation Process
	Contributions of the proposal
	Components
	Architectures
	Models
	Adaptation rules
	Model transformation

	Adaptation Process
	Adaptation schema
	Adaptation abstraction
	Adaptation schema definition

	Adaptation methodology
	Adaptation scenario
	Processing the context
	Rating the rules
	Selecting the rules
	Updating the rule repository
	Transforming the selected rules into the AMTi
	Obtaining the adapted architectural model

	Implementation and Assessment
	Validation and evaluation
	Discussion
	Threats to validity

	Related work
	Conclusions and future work
	REFERENCES


